1	Etiology of childhood bilateral sensorineural hearing loss in
2	Shandong province, China
3	
4	
5	Fan Jiang ^{1*} , Hannah Kupper ² , Tess Bright ² , Wen-Zhe Qin ¹
6	
7	¹ School of Public Health, Shandong University, Jinan, China; <u>Jiangfanqz@163.com</u> (F.J.);
8	<u>ginwenzhe09@163.com</u> (W.Q.)
9	² International Centre for Evidence in Disability, London School of Hygiene & Tropical
10	Medicine, London, UK; <u>Hannah.kuper@lshtm.ac.uk</u> (H.K.); <u>Tess.bright@lshtm.ac.uk</u> (T.B.)
11	
12	* Correspondence: <u>Jiangfanqz@163.com</u> Tel.: +86-18053108811
13	School of Public Health, Shandong University, 44 Wen-hua- Road, Jinan, Shandong,
14	250012, China
15	
16	Conflicts of Interest
17	The authors declare that there is no conflict of interests.
18	
19	Funding Statement
20	We didn't receive funding for this study.
21	
22	
23	

24	Abstract
<u>2</u> 4	ADSUACI

25 **Objectives**

26 The purpose of this study is to ascertain the etiology of bilateral sensorineural hearing loss

27 (SNHL) in children aged ≤ 18 years living in Shandong province.

28 Methods

29 Data were taken from a cross-sectional study which was conducted between 2015 and 2017.

30 The study included children aged ≤ 18 years, recruited from special schools for children with

- 31 hearing loss and from hearing rehabilitation centers in Shandong province of China. Children
- 32 were screened for bilateral SNHL through audiological testing. Clinical examination, genetic
- 33 testing and structured interviews were conducted for those children who were identified as
- 34 having hearing loss to identify the potential cause.
- 35 Results
- The etiology of bilateral SNHL in our sample was genetic in 874 (39.3%), acquired in 650

37 (29.3%) and unknown in 697 (31.4%) children. Amongst children with acquired SNHL, the

cause was maternal viral infection in 75 (11.5%), perinatal factors in 238 (36.6%), meningitis,

measles and mumps in 146 (22.5%), and ototoxic exposure in 117 (18%). Among the children

- 40 with genetic SNHL, only 44 (4.9%) were identified as having syndromic hearing loss, and the
- 41 remainder (95.1%) were classified as non-syndromic hearing loss.

42 **Conclusion**

43 The findings indicated that nearly 30% of bilateral SNHL in Shandong province could be

- 44 preventable through immunization, early prenatal diagnosis, proper treatment of infections
- 45 and avoidance of prescription of ototoxic drugs. This finding emphasizes the need for

46 programs aimed at improving the health services at primary and secondary levels of health

47 care which will in turn prevent childhood hearing loss.

- 48 **Keywords:** SNHL; Etiology; Childhood; China.
- 49

50 **1.Introduction**

51 Hearing loss has become an important public health issue worldwide (Olusanya, Neumann, &

52 Saunders, 2014). According to the World Health Organization (WHO) estimate, across the

53 world there are 16 million (12-26 million) children who have a hearing loss (>35 dB HL), and

54 the global prevalence of hearing loss (>35 dB HL) among children 5–14 years of age is

estimated to be 1.4% (Stevens et al., 2011). China is one of the most populous countries in the

world, and among approximately 20 million babies born each year, around 60,000 are

57 expected to have congenital hearing loss (WHO, 2010). A government survey reported that

there were more than 1.7 million deaf and hard of hearing children (birth to age 18 years) in

59 China (Li & Prevatt, 2010).

Sensorineural hearing loss (SNHL) resulting from damage to the hair cells in the inner ear is the most common sensory deficit in humans (Prosser, Cohen, & Greinwald, 2015). Bilateral SNHL has profound medical, social, and cultural ramifications (Smith, Bale Jr, & White, 2005). Most notably, SNHL negatively impacts on the development of speech, language and cognitive skills in children, especially if it commences pre-lingually (Figueras, Edwards, & Langdon, 2008; Walch, Anderhuber, Köle, & Berghold, 2000). Untreated bilateral SNHL is also associated with slow progress in school, and difficulties in obtaining and performing

67	effectively in jobs later in life (Fellinger, Holzinger, & Pollard, 2012; Theunissen et al.,
68	2014). Communication difficulties can also have lasting emotional and psychological
69	consequences that can lead to feelings of isolation, loneliness and depression (Mason &
70	Mason, 2007; Stevenson et al., 2010). For instance, Li et al. (2010) found that the children
71	and adolescents with SNHL in China reported significantly higher levels of total fears and
72	anxieties than their peers with normal hearing. The impact on the family is also profound.
73	Parents of children with bilateral SNHL must deal with specific challenges, are often at
74	greater risk of stress, incur higher out-of-pocket expenses and lose more work days than other
75	parents (Barton, Stacey, Fortnum, & Summerfield, 2006; Yun et al., 2017). In addition to the
76	effect on children and families, SNHL can have great economic effects on countries (Smith et
77	al., 2005). Data from the 2015 Global Burden of Disease (GBD) database shows the estimated
78	cost of childhood (birth to age 14 years) hearing loss to the health-care systems in China was
79	\$ 7.86 billion (WHO, 2017).
80	The etiology of bilateral SNHL is traditionally classified as genetic, acquired and unknown
81	(summarized in Table 1). Genetic SNHL is further classified as syndromic or non-syndromic
82	and each of these is sub-categorised, depending upon the inheritance pattern. Most of these
83	
	genetic phenotypes are not associated with a named syndrome or other anomaly (non-
84	genetic phenotypes are not associated with a named syndrome or other anomaly (non- syndromic), with only 15% to 30% occurring as part of a recognized syndrome (Prosser et al.,
84 85	
	syndromic), with only 15% to 30% occurring as part of a recognized syndrome (Prosser et al.,
85	syndromic), with only 15% to 30% occurring as part of a recognized syndrome (Prosser et al., 2015; Tranebjærg, 2005). Acquired or later acquired SNHL may be caused by prenatal,

et al., 2015). However, the etiology of SNHL n can often not be determined conclusively for
many children (Morzaria, Westerberg, & Kozak, 2004).

91	The early identification of the etiological causes of SNHL is vital for prognosis, management,
92	genetic counseling, prevention and effective rehabilitation (Prosser et al., 2015). However,
93	SNHL remains underdiagnosed in children and etiology is not clarified in most developing
94	countries, so these crucial opportunities are missed (Morzaria et al., 2004). Lack of
95	information on the etiology of SNHL is also apparent in China, which hampers ability to plan
96	prevention, treatment and rehabilitation services. Liu et al. (1993) did a survey about
97	prevalence and etiology of profound deafness in the general population of Sichuan Province,
98	China. The results showed that among 236 cases with profound hearing loss the etiology was
99	most commonly genetic (43%), followed by acquired (35.6%) and unknown (20.3%) causes.
100	This study didn't divide the subjects into different groups according to age, so we lack data
101	about the etiology of childhood hearing loss. Fu et al. (2010) studied the etiology of hearing
102	loss in primary and middle school students in Hubei Province. Among 813 cases, 232 (28.5%)
103	were diagnosed with congenital hearing loss by pedigree analysis and 276 (33.95%) cases
104	were to have reported aminoglycoside-antibiotic-induced hearing loss. However, this study
105	didn't report information on other acquired causes. Up-to-data information on the etiology of
106	childhood hearing loss will be helpful for influencing local health policy and making plans for
107	prevention and treatment, and reducing the prevalence of hearing loss. To fill the gap in the
108	literature, the aim of the present study was to investigate the etiology of bilateral SNHL in
109	children born in Shandong province in order to be able to promote preventative measures of

110 childhood hearing loss in China more effectively.

111 **2. Materials and Methods**

112	The sample was derived from a cross-sectional survey which was conducted to estimate the
113	etiology and health service needs of children (≤ 18 years) with hearing loss. This study was
114	conducted across in 17 special education schools and 22 hearing rehabilitation centers during
115	2015-2017. The hearing rehabilitation centers and the special schools were located in 17
116	administrative regions of Shandong province.
117	Study setting
118	Shandong province includes 140 counties belonging to 17 administrative regions. It has a
119	population of 100 million, making it the second most populous province in China. According
120	to the 2006 National Survey of Disability, 1.5 million people were estimated to have disabling
121	hearing loss in Shandong province, including 15 thousand children under the age of 6
122	(National Bureau of Statistics, 2007). In 2017, the government health service reported that 2.3
123	thousand neonates and infants were identified with congenital or early childhood onset SNHL
124	in Shandong province (Shandong Province Government Office, 2018).
125	In Shandong province, children with hearing loss are educated either in special setting or
126	mainstream schools. The special schools are located in every administrative region of
127	Shandong and are funded by local government. These schools provide education for children
128	with hearing loss who were unable to benefit from hearing aids and have not receive cochlear
129	implantation (CI). From September 2018, children under 6 years with profound hearing loss
130	(ABR ≥100 dB nHL) in Shandong province are reimbursed 100% of the CI cost (surgery and

131	device) through basic medical insurance schemes (Shandong Province Government Office,
132	2018). However, before the improvements in medical insurance policies, access to CI was
133	very limited for many children with hearing impairment, especially those living in rural and
134	remote areas. As a consequence, many children with hearing loss were enrolled in special
135	schools. Children with hearing impairment who receive hearing-aids or CI, can attend
136	mainstream schools after passing an evaluation. A child with hearing impairment in
137	mainstream schools may receive additional support from teachers. Children with CI receive
138	training in rehabilitation centers after surgery. Usually, speech therapy begins with an
139	emphasis on auditory training (detection, recognition, discrimination, and perception),
140	followed by speech orthodontic treatment, articulation training, and language training
141	according to the child's performance (Zhou, Chen, Shi, Wu, & Yin, 2013). After two- or
142	three-years' speech therapy, these children can transition to mainstream schools.
142 143	three-years' speech therapy, these children can transition to mainstream schools. 2.1. Study participants
143	2.1. Study participants
143 144	2.1. Study participantsAll children aged ≤18 years old registered either at the 17 special education schools or 22
143 144 145	 2.1. Study participants All children aged ≤18 years old registered either at the 17 special education schools or 22 hearing rehabilitation centers were considered for inclusion in the study. Children who met
143 144 145 146	2.1. Study participants All children aged ≤ 18 years old registered either at the 17 special education schools or 22 hearing rehabilitation centers were considered for inclusion in the study. Children who met the following criteria were included: (1) aged ≤ 18 years at time of interview; (2) diagnosed
143 144 145 146 147	2.1. Study participants All children aged ≤18 years old registered either at the 17 special education schools or 22 hearing rehabilitation centers were considered for inclusion in the study. Children who met the following criteria were included: (1) aged ≤18 years at time of interview; (2) diagnosed with bilateral SNHL. Children were excluded based on the following criteria: (1) residual
 143 144 145 146 147 148 	2.1. Study participants All children aged ≤ 18 years old registered either at the 17 special education schools or 22 hearing rehabilitation centers were considered for inclusion in the study. Children who met the following criteria were included: (1) aged ≤ 18 years at time of interview; (2) diagnosed with bilateral SNHL. Children were excluded based on the following criteria: (1) residual hearing with Pure Tone Audiometry (PTA) ≤ 40 dB HL at two or more frequencies (500,

152	conductive, mixed or unilateral hearing loss (n=115), age greater than stated criteria (n=38),
153	or children who did not complete the interview or physical tests (n=20). The eligible 2221
154	children with bilateral SNHL were evaluated by the team of consultants, including four
155	otolaryngologists, two audiologists, an audiology technician, an ophthalmologist, a genetic
156	counselor, three nurses and three investigators.

We received ethical approval from Shandong Provincial ENT Hospital. Informed consent was
obtained from the parents and children by the investigative team after explanation was given
of the survey content and purpose.

160 2.2 Audiological testing

161	Auditory tests were performed by the audiologists and audiometric data for each child was
162	recorded by the investigators. The severity of loss was determined using WHO (2016)
163	classification in the better hearing ear with mild hearing loss at 26 to 40 dB HL, moderate loss
164	at 41 to 60 dB HL, severe loss at 61 to 80 dB HL, and profound loss at greater than 81 dB HL.
165	Depending upon the children's age and cooperation, PTA, ASSR and Pediatric Behavioral
166	Audiometry (PBA) (including Behavioral Observation Audiometry, Visual Reinforcement
167	Audiometry and Play Audiometry) were performed. For children 6 years old and above, PTA
168	(at 500, 1000, 2000, and 4000 Hz) data were collected. The tests were conducted in the
169	quietest rooms available in local special schools and rehabilitation centers. For children aged
170	less than 6 years old, PBA and ASSR were done in all cases. These procedures were
171	performed at local hospitals. For children with cochlear implants, the hearing level before
172	surgery was obtained from medical records of children, with the authorization of parents.

173 *2.3. Structured interviews*

174	Information about the children was collected using a standardized questionnaire form, which
175	was completed by parents or teachers with support from the interviewers. Questionnaires
176	covered medical history, family history and other details relevant to the hearing loss (e.g.
177	prenatal, perinatal and postnatal history). Parents were asked about a family history of hearing
178	loss, and, if possible, a pedigree was created. This information was gathered by the
179	otolaryngology team, recorded by the specialized investigators and analyzed by the genetics
180	team.
181	2.4. Clinical examination
182	Clinical examinations were performed by the otolaryngology team and ophthalmologist.
183	There are more than 200 different syndromes known to include hearing loss, and up to 30% of
184	genetic hearing loss in children can be attributed to syndromic forms (Petit, 1996). Therefore,
185	special attention was given to congenital findings that were known to be associated with
186	syndromic hearing loss. The clinical examination included a detailed examination of the ears
187	with an otoscope and, if necessary, an operating microscope. Specific etiologic findings
188	evaluated were the shape and position of the pinna, patency of the external auditory canal
189	(EAC), presence of otitis media, and abnormalities of the tympanic membrane. An ocular
190	examination and craniofacial examination were also performed. Finally, other congenital
191	anomalies such as pigmentation abnormalities of skins or abnormalities of limbs or stature
192	were noted.

193 2.5. Genetic testing

194	All children with hearing loss were offered a genetic test for GBJ2, SLC26A4 and
195	mitochondrial DNA12SrRNAA1555G. The literature on mutation hot spots of Chinese people
196	with non-syndromic hearing loss indicates that mutations in GJB2 gene, SLC26A4 gene and
197	1555A>G mutation in mitochondrial DNA are likely to be common, and these were
198	consequently the focus of our tests (Yuan et al., 2009). A 3-5 mL blood sample was taken
199	from the antecubital vein in a vial containing Ethylenediaminetetraacetic acid (EDTA). The
200	vial of blood was labeled with a secure identification number and refrigerated on site, pending
201	transport back to the Shandong Provincial ENT hospital. On arrival in the laboratory, the
202	blood sample was centrifuged to remove the leukocyte layer for DNA extraction.
203	2.6. Diagnosis classification
204	The audiometric data, clinical findings, genetic analysis results and risk factors were then
205	reviewed by the team of consultants including an otolaryngologist, an audiologist, an
206	ophthalmologist and a genetic counselor to determine the etiology of bilateral SNHL. Many
207	previous studies indicated that one of the reasons that physicians are often reluctant, or
208	uncertain, about pursuing an evaluation of the cause of hearing loss is that most of the causes
209	are unclear and more than one cause may exist (Billings & Kenna, 1999). In our study, an
210	identified cause was given priority over the presence of risk factors. When dual or multiple
211	causes existed, the evaluations of main cause were performed by the whole team, and based

212 on the physicians' best judgement.

213	Children with genetic causes were stratified into non-syndromic and syndromic groups.
214	Inclusion in a non-syndromic subgroup was determined by two factors: an identified mutation
215	in the hearing loss sensitive genes, and/or one or more close relatives with hearing loss.
216	Acquired SNHL was stratified into prenatal, perinatal and postnatal. Prenatal etiologies
217	include rubella, CMV, toxoplasma, herpes, syphilis, pregnancy-induced hypertension and
218	pesticide exposure. Perinatal etiologies include neonatal complications (hyperbilirubinemia,
219	asphyxia, prematurity, low birth weight), hydrocephalus and neonatal pneumonia. Postnatal
220	etiologies include meningitis, measles, mumps, trauma, otitis media, ototoxic drugs. There is
221	an overlap between the groups of ototoxicity and genetic mutation. Genetic mutation of DNA
222	12SrRNA A1555G is related to aminoglycoside antibiotics-induced deafness, which can
223	cause genetic susceptibility to aminoglycoside ototoxicity. The team of consultants classified
224	the children who had these two risk factors into the genetic etiology group.
225	The etiology of hearing loss was defined as unknown if there were no evidence for specific
226	risk factors, gene mutation or systemic syndromes.

227 **3. Results**

228 *3.1. Etiology of children with bilateral SNHL*

A total of 2221 children with bilateral SNHL were included in this study. The age of children

- ranged from 1 to 18 years old, 42.6% were girls and 63.6% lived in rural areas. The degree of
- hearing loss for the better hearing ear was moderate in 125 (5.6%) children, severe in 231
- 232 (10.4%) children and profound in 1865 (84%) children. The distribution of etiologies is listed

233	in Table 2. In 874 (39.3%) of the children, the cause was genetic factors. Acquired hearing
234	loss was responsible for 650 cases (29.3%) and unknown factors for 697 (31.4%).

235 *3.2. Genetic etiology*

236	Genetic etiology	was stratified into n	on-syndromic and s	syndromic subgrour	os (Table 3), 830

237 (95.1%) children were classified as non-syndromic, with 631 (72.2%) children found to have

a genetic mutation, 44 (5.1%) children had a family history, and 155 (17.8%) children had

- both a genetic mutation and family history. In the 786 children who had a genetic mutation,
- we found 412 (52%) had mutation in the GJB2 and 310 (39%) had mutation for the
- 241 SLC26A4. A mutation of A1555G was seen in 64 (8%) children. The syndromic SNHL group
- consisted of 44 (5%) cases, including 35 children with (4%) Waardenburg syndrome, two
- (0.2%) Down syndrome, three (0.3%) Goldenhar syndrome, two (0.2%) Brueghel syndrome
- and two (0.2%) Mobius syndrome.

245 3.3. Systemic abnormalities

Including the children with syndromic SNHL, systemic abnormalities were seen in 222 cases

247 (Table 4). 14 children were noted to have skeletal development restriction, two children had

- spinal diseases, 18 children had intellectual impairment and 36 children had reported
- 249 leukodystrophy. Significant ocular abnormalities were found in 55 children, including
- amblyopia, strabismus, ocular dysplasia, juvenile cataracts and 25 children had heterochromia
- 251 iridis. Hypertelorism were seen in four children and five had high myopia. Congenital heart
- disease was observed in 16 children, with three children presenting with pulmonary stenosis.

Two children had kidney malformation. Facial dysmorphism reported in 12 children with six children presenting with a history of cleft palate and six had cleft lip. Freckles could be found in 19 children and five children had distinct grey hair. These abnormalities can help us to identify the syndromic SNHL at an early period.

257 3.4. Acquired etiology

- 258 Acquired SNHL was detected in 650 children (Table 5). Prenatal risk factors were observed
- in 113 (17.4%) children. The most common infection type was maternal infection during
- pregnancy. A total of 36 (5%) mothers had rubella infection during pregnancy, six (0.8%)

reported a cytomegalovirus (CMV) infection, two (0.3%) had toxoplasma infection, 24

- 262 (3.7%) reported herpes virus infection and seven (1.1%) reported syphilis infection. In
- addition, three (0.5%) mothers reported pesticide exposure and 35 (5.4%) reported
- 264 pregnancy-induced hypertension.

265	Perinatal causes accounted	1 for 36.8% of bilateral SNHL	in these children. Among these, 68	3

- 266 (11%) children reported neonatal complication (hyperbilirubinemia, asphyxia, prematurity,
- low birth weight), nine (1.4%) had hydrocephalus and 20 (3.2%) children had neonatal
- 268 pneumonia. Exposure to ototoxic drugs was the largest cause in this group and occurred in
- 269 117 (19%) cases in the postnatal subgroup. Ototoxic drugs were used to treat infections in a
- 270 large percentage of children, with a known history of gentamicin exposure in 92 (15%)
- children, kanamycin exposure in 13 (2%) children and streptomycin exposure in 12 (2%)
- 272 children. 41 children who were found to have mutation at mitochondrial DNA 12SrRNA
- 273 A1555G also had a history of ototoxic drugs exposure and were classified into the group of

274	genetic etiology (above). A history of meningitis was noted in 86 (13.2%) children, mumps
275	and measles were recorded in 60 (9.2%) children. Finally, 36 (5%) children had a history of
276	head trauma before the onset of bilateral SNHL.

4. Discussion

278	The cause of bilateral SNHL in children is often not determined in developing countries
279	(Morzaria et al., 2004; Sun, Wei, Yu, Wang, & Liang, 2008). The main cause of the data gap
280	is that the diagnostic search for an underlying cause can be expensive, time-consuming, and
281	inconclusive, and that appropriately trained clinicians needed to make the diagnosis may not
282	be available (Mulwafu, Kuper, & Ensink, 2016; Stevens et al., 2011). However, up-to-date
283	information on the etiology of bilateral SNHL is needed to direct strategies for avoiding and
284	treating those preventable causes (Feder et al., 2017). Our study in Shandong, China, found
285	that the biggest cause of bilateral SNHL in 2221 children was genetic (39.4%), while fewer
286	cases were of acquired (29.3%) or unknown etiology (31.3%). Genetic causes included 95.1%
287	non-syndromic etiology and 4.9% with syndromic etiology. Of the acquired causes of hearing
288	loss, we found 17.4% prenatal, 36.6% perinatal and 46% postnatal acquired etiology.
289	WHO (2016) estimated that 40% of childhood hearing loss was caused by genetic factors. In
290	previous studies from developing countries, the etiology of childhood hearing loss was
291	estimated as genetic in 13%-63%, and the cause remained unknown in 18-53% and was non-
292	genetic in the remainder (Dereköy, 2000; Egeli et al., 2003; Khabori, 2004; Silan et al., 2004;
293	Zakzouk & Al-Anazy, 2002). We found that 39.3% of cases were genetic, which was
294	consistent with previous literature on mutation hot spots in the Chinese population with non-

295	syndromic hearing loss (Yuan et al., 2009). Of the 875 children with a genetic SNHL, just
296	4.9% were syndromic. This figure contrasts with the prevailing views on genetic SNHL
297	distribution, as researchers suggest that up to 30% of all genetic hearing loss is syndromic
298	(Smith et al., 2005). One explanation for this discrepancy is the structure of the special
299	educational schools and hearing rehabilitation centers in our setting, which do not provide
300	suitable facilities for the children who have multiple disabilities (i.e. syndromic cases) and so
301	they may have been excluded from our sample.
302	WHO (2016) estimates that about 60% of hearing loss is due to preventable causes and this
303	proportion is higher in developing countries (75%). Among the causes of preventable hearing
304	loss, neonatal complications account for 17% of childhood hearing loss (WHO, 2016).
305	Neonatal complications were estimated to be the cause of bilateral SNHL in 9% of our study
306	sample, compared to a slightly higher estimate of 12.1%-17.3% in previous studies of
307	developing countries (Egeli et al., 2003; Khabori, 2004; Zakzouk & Al-Anazy, 2002).
308	Another difference from previous reports was the lower prevalence of TORCH infectious
309	(toxoplasmosis, other, rubella, cytomegalovirus and herpes) in those with bilateral SNHL
310	from 7.6% to 23.8%, compared to our figure of 4.2% (Dereköy, 2000; Zakzouk & Al-Anazy,
311	2002). The lower proportion of hearing loss due to perinatal and prenatal factors in our study
312	may be attributed to improvements in pre and perinatal care and the emphasis on
313	timely TORCH examination and vaccination for pregnant women before their pregnancy in
314	Shandong province.

In previous studies, infectious diseases (meningitis, measles and mumps) were found to be

315

316	one of the most common causes of bilateral SNHL in children (Smith et al., 2005). In
317	particular, previous studies have reported that meningitis accounts for 21%-43% of acquired
318	SNHL in developing countries (Dereköy, 2000; Egeli et al., 2003; Khabori, 2004; Sajjad,
319	Khattak, Bunn, & Mackenzie, 2008; Silan et al., 2004; Zakzouk & Al-Anazy, 2002). Measles
320	is a less common cause ranging from 11% to 29% of acquired SNHL (Dereköy, 2000; Egeli
321	et al., 2003; Sajjad et al., 2008; Silan et al., 2004; Zakzouk & Al-Anazy, 2002). In our study,
322	infectious disease accounted for 21% of acquired factors and 2.7% of the total causes, making
323	our findings consistent with earlier studies. A clear implication is that infectious diseases
324	should be avoided to reduce SNHL. Indeed, WHO (2016) suggests that over 19% of
325	childhood hearing loss could be avoided through immunization against rubella and
326	meningitis. Strengthening immunization programmes will therefore be effective at prevention
327	of viral infection of children that lead to hearing loss, such as congenital rubella, meningitis,
328	mumps and measles (Swamy & Heine, 2015). However, according to the vaccination report,
329	the estimated vaccination rate of MMR (Measles, Mumps and Rubella Combined Attenuated
330	Live Vaccine) in rural area of China was just 50%-60%, with a much lower level expected for
331	those in remote areas (Li et al., 2017). These low coverage figures may explain the high
332	frequency of measles and mumps in our study.
333	It is noteworthy, that in our study the extent of ototoxic exposure in children with SNHL
334	(5.3%) was lower than previously reported (Fu et al., 2010). The unregulated use of ototoxic

drugs has been a major problem in China (Yun et al., 2017). In particular, the aminoglycoside

- 336 gentamicin has been widely used in China because of its low cost (Jian, Deng, & Sun, 2015).
- 337 Community based use of ototoxic medicine is difficult to track; however, studies have shown

that 30% to 40% of inpatient use of ototoxic drug in Chinese children may be inappropriate
(Kumana, Li, Kou, & Chan, 1989). In the past 15 years, China implemented legislation to
restrict the sale and use of ototoxic medicines (Gong et al., 2018). However, the higher
frequency of ototoxic exposure reported in rural compared to urban areas in our study
highlights the need to strengthen publicity and education about the harmfulness of ototoxicity
drugs in rural area of China.

344 In general, our data indicates that nearly 30% childhood SHNL in Shandong province could 345 be prevented. This study highlights the importance of improving maternal and neonatal care, 346 including strengthening the national immunization programme to ensure widespread 347 coverage, avoiding ototoxic drugs, and early diagnosis and proper treatment of prenatal and 348 postnatal infection in order to reduce the incidence of SNHL in children. Targeted genetic 349 tests may also be helpful for families to understand what is happening and to provide genetic 350 counselling which may help to decreasing the prevalence of genetic SNHL (Wormald, Viani, 351 Lynch, & Green, 2010). Genetic screening for a specific mitochondrial mutation during 352 pregnancy could offer a strategy of minimizing bilateral SNHL in babies from exposure to 353 avoidable risk factors such as neonatal use of aminoglycoside antibiotics. For the children 354 who have large vestibular aqueduct syndrome (LAVS), the genetic screening may enable 355 interventions to protect against trauma which could lead to SNHL (Xiang et al., 2017). There 356 may also be an important role for genetic testing in all newborns that do not pass newborn 357 hearing screening and their lineal relatives, especially the people who have family history of 358 hearing loss. In doing so, the information could assist in establishing the prevalence and links 359 between gene mutation and hearing loss in China.

360	This study has some limitations that need to be taken in to account when interpreting results.
361	Firstly, the children screened in the study may be influenced by selection bias in that some
362	children with bilateral SNHL may not attend specialist schools or rehabilitation centers, such
363	as children with multiple disabilities. Another consideration is that WHO (2016) classifies
364	disabling hearing loss as a hearing loss greater than 30 dB HL in the better hearing ear in
365	children, whereas in our study we only included children with hearing loss \geq 40dB HL to
366	allow comparison with previous studies. As such, some forms of milder SNHL were not
367	included in our study. Consequently, this group of children does not yield reliable information
368	about the etiology of childhood SNHL in the entire population. Secondly, there is the
369	potential for bias in collecting data by questionnaire. However, we tried our best in quality
370	control to make sure consistency in assessment. Thirdly, we are aware that an exact
371	classification of possible causes is problematic and that there are coexistent risk factors in this
372	group of children. This may have resulted in the underestimation of some causes of bilateral
373	SNHL among children. However, to the best of our knowledge, the data used in our study is
374	the most recent and largest study on childhood SNHL in China.

375 **5. Conclusion**

- 376 In conclusion, the most common causes of bilateral SNHL in children aged ≤ 18 years in
- 377 Shandong province were genetic non-syndromic (37.3%), unknown (31.4%), postnatal
- 378 (13.5%), perinatal (10.7%), prenatal (5.1%), and genetic syndromic (2%). That means that
- nearly 30% of cases of SNHL in childhood in this study could be preventable or treatable at
- 380 primary and secondary levels of health care. Consequently, we have to improve physician

- awareness and develop guidelines for medical evaluation of pediatric SNHL. Governments,
- 382 public health agencies, social service organizations, educational institutions and civil society
- 383 groups all need to collaborate in this endeavor. Comprehensive services are needed to support
- 384 children with SNHL, so that they are included in school and wider society, and are able to
- 385 maximize their quality of life and opportunities in life.

386 **Declarations of interest**

387 The authors declare that there is no conflict of interests.

388 Acknowledgment

- 389 We would like to thank all study participants for their time to be interviewed. We also thank
- 390 the support of Shandong ENT hospital and School of Public Health, Shandong University.

391 **Reference**

392	Barton, G. R., Stacey, P. C., Fortnum, H. M., & Summerfield, A. Q. (2006). Hearing-
393	impaired children in the United Kingdom, II: Cochlear implantation and the cost of
394	compulsory education. Ear and hearing, 27(2), 187-207.
395	doi:10.1097/01.aud.0000202348.77016.1f
396	Billings, K. R., & Kenna, M. A. (1999). Causes of pediatric sensorineural hearing loss:
397	yesterday and today. Archives of Otolaryngology-Head & Neck Surgery, 125(5), 517-
398	521. doi:10.1001/archotol.125.5.517
399	Dereköy, F. S. (2000). Etiology of deafness in Afyon school for the deaf in Turkey.
400	International Journal of Pediatric Otorhinolaryngology, 55(2), 125-131.
401	doi:https://doi.org/10.1016/S0165-5876(00)00390-6
402	Dietz, A., Löppönen, T., Valtonen, H., Hyvärinen, A., & Löppönen, H. (2009). Prevalence
403	and etiology of congenital or early acquired hearing impairment in Eastern Finland.
404	International Journal of Pediatric Otorhinolaryngology, 73(10), 1353-1357.
405	doi:https://doi.org/10.1016/j.ijporl.2009.06.009
406	Egeli, E., Çiçekci, G., Silan, F., Öztürk, Ö., Harputluoğlu, U., Onur, A., Egeli, A., &
407	Yildiz, A. (2003). Etiology of deafness at the Yeditepe school for the deaf in Istanbul.

408	International Journal of Pediatric Otorhinolaryngology, 67(5), 467-471.
409	doi:https://doi.org/10.1016/S0165-5876(03)00002-8
410	Feder, K. P., Michaud, D., McNamee, J., Fitzpatrick, E., Ramage-Morin, P., &
411	Beauregard, Y. (2017). Prevalence of hearing loss among a representative sample of
412	Canadian children and adolescents, 3 to 19 years of age. Ear and hearing, 38(1), 7-
413	20. doi:10.1097/AUD.00000000000345
414	Fellinger, J., Holzinger, D., & Pollard, R. (2012). Mental health of deaf people. The Lancet,
415	379(9820), 1037-1044. doi:https://doi.org/10.1016/S0140-6736(11)61143-4
416	Figueras, B., Edwards, L., & Langdon, D. (2008). Executive function and language in deaf
417	children. Journal of Deaf Studies and Deaf Education, 13(3), 362-377.
418	doi:https://doi.org/10.1093/deafed/enm067
419	Fu, S., Chen, G., Dong, J., & Zhang, L. (2010). Prevalence and etiology of hearing loss in
420	primary and middle school students in the Hubei Province of China. Audiology and
421	Neurotology, 15(6), 394-398. doi:https://doi.org/10.1159/000307346
422	Gong, R., Hu, X., Gong, C., Long, M., Han, R., Zhou, L., Wang, F., & Zheng, X. (2018).
423	Hearing loss prevalence and risk factors among older adults in China. International
424	journal of audiology, 57(5), 354-359.
425	doi:https://doi.org/10.1080/14992027.2017.1423404
426	Jian, X., Deng, Z., & Sun, Y. (2015). Aminoglycoside gentamicin research: fundamental
427	progress and new application prospects. <i>Sheng wu gong cheng xue bao= Chinese</i>
428	journal of biotechnology, 31(6), 829-844.
429	Khabori, M. A. (2004). Causes of severe to profound deafness in Omani paediatric
430	population. International Journal of Pediatric Otorhinolaryngology, 68(10), 1307-
431	1313. doi:https://doi.org/10.1016/j.ijporl.2004.05.002
432	Kumana, C., Li, K., Kou, M., & Chan, S. (1989). Cephalosporin and aminoglycoside
433	utilization in different parts of the world. <i>Journal of Antimicrobial Chemotherapy</i> , 24(6), 1001, 1010, doi:https://doi.org/10.1002/ioc/24.6.1001
434 435	<i>24</i> (6), 1001-1010. doi:https://doi.org/10.1093/jac/24.6.1001 Li, H., & Prevatt, F. (2010). Deaf and hard of hearing children and adolescents in China:
435 436	their fears and anxieties. American Annals of the deaf, 155(4), 458-466.
437	doi:https://www.jstor.org/stable/26235084
438	Li, R., Cheng, S., Luo, C., Rutherford, S., Cao, J., Xu, Q., Liu, X., Liu, Y., Xue, F., &
439	Xu, Q. (2017). Epidemiological characteristics and spatial-temporal clusters of
440	mumps in Shandong Province, China, 2005–2014. <i>Scientific reports, 7</i> , 46328.
441	doi:https://xs.scihub.ltd/https://doi.org/10.1038/srep46328
442	Liu, X., Xu, L., Zhang, S., & Xu, Y. (1993). Prevalence and aetiology of profound deafness
443	in the general population of Sichuan, China. <i>The Journal of Laryngology & Otology</i> ,
444	<i>107</i> (11), 990-993. doi: https://doi.org/10.1017/S0022215100125071
445	Mafong, D. D., Shin, E. J., & Lalwani, A. K. (2002). Use of laboratory evaluation and
446	radiologic imaging in the diagnostic evaluation of children with sensorineural hearing
447	loss. The Laryngoscope, 112(1), 1-7. doi:https://doi.org/10.1097/00005537-
448	200201000-00001
449	Mason, A., & Mason, M. (2007). Psychologic impact of deafness on the child and
450	adolescent. Primary Care: Clinics in Office Practice, 34(2), 407-426.
451	doi:https://doi.org/10.1016/j.pop.2007.04.003

452	Morzaria, S., Westerberg, B. D., & Kozak, F. K. (2004). Systematic review of the etiology
453	of bilateral sensorineural hearing loss in children. International Journal of Pediatric
454	Otorhinolaryngology, 68(9), 1193-1198.
455	doi:https://doi.org/10.1016/j.ijporl.2004.04.013
456	Mulwafu, W., Kuper, H., & Ensink, R. (2016). Prevalence and causes of hearing
457	impairment in Africa. Tropical medicine & international health, 21(2), 158-165.
458	doi:https://doi.org/10.1111/tmi.12640
459	National Bureau of Statistics. (2007). Main Data Bulletin of the Second National Sample
460	Survey of Disabled Persons. Retrieved from
461	http://www.stats.gov.cn/tjsj/ndsj/shehui/2006/html/fu3.htm
462	Ogawa, H., Suzutan, T., Baba, Y., Koyano, S., Nozawa, N., Ishibashi, K., Fujieda, K.,
463	Inoue, N., & Omori, K. (2007). Etiology of severe sensorineural hearing loss in
464	children: independent impact of congenital cytomegalovirus infection and GJB2
465	mutations. The Journal of infectious diseases, 195(6), 782-788.
466	doi:https://doi.org/10.1086/511981
467	Olusanya, B. O., Neumann, K. J., & Saunders, J. E. (2014). The global burden of disabling
468	hearing impairment: a call to action. Bulletin of the World Health Organization,
469	92(5), 367-373. doi:https://doi.org/10.2471/BLT.13.128728
470	Petit, C., . (1996). Genes responsible for human hereditary deafness: symphony of a
471	thousand. Nature Genetics, 14(4), 385-391.
472	doi:https://xs.scihub.ltd/https://doi.org/10.1038/ng1296-385
473	Prosser, J. D., Cohen, A. P., & Greinwald, J. H. (2015). Diagnostic evaluation of children
474	with sensorineural hearing loss. Otolaryngologic Clinics of North America, 48(6),
475	975-982. doi:https://doi.org/10.1016/j.otc.2015.07.004
476	Revello, M. G., Tibaldi, C., Masuelli, G., Frisina, V., Sacchi, A., Furione, M., Arossa, A.,
477	Spinillo, A., Klersy, C., Ceccarelli, M., Gerna, G., & Todros, T. (2015).
478	Prevention of Primary Cytomegalovirus Infection in Pregnancy. Ebiomedicine, 2(9),
479	1205-1210. doi:https://doi.org/10.1016/j.ebiom.2015.08.003
480	Sajjad, M., Khattak, A., Bunn, J., & Mackenzie, I. (2008). Causes of childhood deafness in
481	Pukhtoonkhwa Province of Pakistan and the role of consanguinity. The Journal of
482	Laryngology & Otology, 122(10), 1057-1063. doi:
483	https://doi.org/10.1017/S0022215108002235
484	Shandong Province Government Office. (2018). Notice of the Peoples' Government of
485	Shandong Province on the Establishment of Rehabilitation Assistance System for
486	Disabled Children. Retrieved from
487	http://www.shandong.gov.cn/art/2018/9/30/art_2259_28657.html
488	Silan, F., Demirci, L., Egeli, A., Egeli, E., Onder, H. I., Ozturk, O., & Unal, Z. S. (2004).
489	Syndromic etiology in children at schools for the deaf in Turkey. International
490	Journal of Pediatric Otorhinolaryngology, 68(11), 1399-1406.
491	doi:https://doi.org/10.1016/j.ijporl.2004.05.007
492	Smith, R. J., Bale Jr, J. F., & White, K. R. (2005). Sensorineural hearing loss in children.
493	The Lancet, 365(9462), 879-890. doi:https://doi.org/10.1016/S0140-6736(05)71047-3
494	Stevens, G., Flaxman, S., Brunskill, E., Mascarenhas, M., Mathers, C. D., & Finucane,
495	M. (2011). Global and regional hearing impairment prevalence: an analysis of 42

496	studies in 29 countries. The European Journal of Public Health, 23(1), 146-152.
497	doi:https://doi.org/10.1093/eurpub/ckr176
498	Stevenson, J., McCann, D., Watkin, P., Worsfold, S., Kennedy, C., & Team, H. O. S.
499	(2010). The relationship between language development and behaviour problems in
500	children with hearing loss. Journal of Child Psychology and Psychiatry, 51(1), 77-83.
501	doi:https://doi.org/10.1111/j.1469-7610.2009.02124.x
502	Sun, X., Wei, Z., Yu, L., Wang, Q., & Liang, W. (2008). Prevalence and etiology of people
503	with hearing impairment in China. Zhonghua liu xing bing xue za zhi= Zhonghua
504	liuxingbingxue zazhi, 29(7), 643-646.
505	Swamy, G. K., & Heine, R. P. (2015). Vaccinations for pregnant women. Obstetrics and
506	gynecology, 125(1), 212-226. doi:10.1097/AOG.0000000000000581
507	Theunissen, S. C., Rieffe, C., Netten, A. P., Briaire, J. J., Soede, W., Schoones, J. W., &
508	Frijns, J. H. (2014). Psychopathology and its risk and protective factors in hearing-
509	impaired children and adolescents: A systematic review. JAMA pediatrics, 168(2),
510	170-177. doi:https://doi.org/10.1001/jamapediatrics.2013.3974
511	Tranebjærg, L. (2005). Hereditary hearing loss-the updated resource book more needed
512	than ever. European Journal of Human Genetics, 13(7), 889-890.
513	doi:https://xs.scihub.ltd/https://doi.org/10.1038/sj.ejhg.5201396
514	Walch, C., Anderhuber, W., Köle, W., & Berghold, A. (2000). Bilateral sensorineural
515	hearing disorders in children: etiology of deafness and evaluation of hearing tests.
516	International Journal of Pediatric Otorhinolaryngology, 53(1), 31-38.
517	doi:https://doi.org/10.1016/S0165-5876(00)00307-4
518	World Health Organization. (2010). Newborn and infant hearing screening: Current issues
519	and guiding principles for action. Outcomes of a WHO informal consultation held at
520	World Health Organization headquarters (9–10 November 2009). Geneva,
521	Switzerland.
522	World Health Organization. (2016). Childhood hearing loss: strategies for prevention and
523	care. Retrieved from
524	https://apps.who.int/iris/bitstream/handle/10665/204632/9789241510325_eng.pdf
525	World Health Organization. (2017). Global costs of unaddressed hearing loss and cost-
526	effectiveness of interventions: a WHO report, 2017: World Health Organization.
527	Wormald, R., Viani, L., Lynch, S. A., & Green, A. J. (2010). Sensorineural hearing loss in
528	children. Irish medical journal, 103(2), 51-54.
529	Xiang, Y., Li, H., Xu, X., Xu, C., Che, n. C., Lin, X., & Tang, S. (2017). Mutation analysis
530	and prenatal diagnosis for 12 families affected with hereditary hearing loss and
531	enlarged vestibular aqueduct. Chinese Journal of Medical Genetics, 34(3), 336-341.
532	doi:10.3760/cma.j.issn.1003-9406.2017.03.005
533	Yuan, Y., You, Y., Huang, D., Cui, J., Wang, Y., Wang, Q., Yu, F., Kang, D., Yuan, H.,
534	& Han, D. (2009). Comprehensive molecular etiology analysis of nonsyndromic
535	hearing impairment from typical areas in China. Journal of Translational Medicine,
536	7(1), 79. doi:https://doi.org/10.1186/1479-5876-7-79
537	Yun, C., Wang, Z., Gao, J., He, P., Guo, C., Chen, G., & Zheng, X. (2017). Prevalence
538	and social risk factors for hearing impairment in chinese children—a national survey.
539	International journal of environmental research and public health, 14(1), 88.

540doi:https://doi.org/10.3390/ijerph14010088 Zakzouk, S. M., & Al-Anazy, F. (2002). Sensorineural hearing impaired children with 541 542 unknown causes: a comprehensive etiological study. International Journal of 543 Pediatric Otorhinolaryngology, 64(1), 17-21. doi:https://doi.org/10.1016/S0165-5876(02)00029-0 544545Zhou, H., Chen, Z., Shi, H., Wu, Y., & Yin, S. (2013). Categories of auditory performance 546 and speech intelligibility ratings of early-implanted children without speech training. 547Plos One, 8(1), e53852. doi:https://doi.org/10.1371/journal.pone.0053852 548

549

	Causes
Prenatal	Rubella, toxoplasmosis, cytomegalovirus (CMV), herpes, syphilis, pregnancy-induced hypertension, pesticide exposure
Perinatal	Hyperbilirubinemia, asphyxia,prematurity and low birth weight, hydrocephalus ,neonatal pneumonia
Postnatal	meningitis, measles and mumps, trauma, ototoxicity, Otitis media

Table 1 The most common etiologies of sensorineural hearing loss

		e	e	e i	
Hearing loss crit	teria	Genetic	Acquired	Unknown	Total
Gender	Girl	362	276	309	947
	Boy	512	374	388	1274
Residence	Urban	373	194	242	809
	Rural	501	456	455	1412
Age	1~	239	169	101	509
	6~	297	295	255	847
	14~18	338	186	341	865
Degree of hearing impairment	Moderate	20	54	51	125
	Severe	117	66	48	231
	Profound	737	530	598	1865

Table 2. Distribution of cases according to the etiologies of hearing impairment

		Number of cases	Percentage %
	Identified genetic mutation	631	72.2
Non-syndromic	Family history	44	5.1
	Both genetic mutation and	155	17.8
	family history		
	Waardenburg syndrome	35	4
	Down syndrome	2	0.2
Syndromic	Goldenhar syndrome	3	0.3
	Brueghel syndrome	2	0.2
	Mobius syndrome	2	0.2
		874	100

Table 3. Distribution of cases in genetic group

Table 4. Systemic abnormalities among cases

Name of systemic abnormalities	Number of cases	
Skeletal development restriction	14	
Spinal diseases	2	
Intellectual impairment	18	
Leukodystrophy	36	
Ocular abnormalities	55	
Hypertelorism	4	
High myopia	5	
Congenital heart disease	16	
Heterochromia iridis	25	
Pulmonary stenosis	3	
Kidney malformation	2	
Facial dysmorphism	12	
Freckles	19	
Distinct grey hair	5	

	Name of disease	Number of cases	Percentage (%)
	Rubella	36	5
Acquired/ prenatal	CMV	6	0.8
	Toxoplasma	2	0.3
	Herpes	24	3.7
	Syphilis	7	1.1
	Pregnancy-induced hypertension	35	5.4
	Pesticide exposure	3	0.5
Acquired/perinatal	Neonatal complications	209	32.2
	Hydrocephalus	9	1.4
	Neonatal pneumonia	20	3.2
Acquired/postnatal	Meningitis	86	13.2
	Measles and mumps	60	9.2
	Trauma	36	5
	Ototoxicity	117	19
		650	100

Table 5. Distribution of cases in acquired group