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1. Introduction 

Leishmaniasis is a disease complex with two main clinical presentations – visceral leishmaniasis (VL, 

or kala-azar) and cutaneous leishmaniasis (CL). Both VL and CL have a worldwide distribution in 

nearly 100 endemic countries. Overall the number of potentially fatal VL cases has decreased during 

the past decade with an estimated annual incidence of less than 50,000 (2017 figures, 

https://www.who.int/leishmaniasis/burden/en accessed 01.10.19) with seven countries: Brazil, 

Ethiopia, India, Kenya, Somalia, South Sudan and Sudan having the major burden. The decrease in VL 

case numbers in the Indian subcontinent (ISC) is coincident with the introduction of a regional 

elimination programme launched in 2005, with improved access to diagnosis and treatment. The 

naturally cyclical pattern of transmission intensity of this anthroponotic disease may also contribute to 

this decrease in the ISC. In contrast, the number of cases in East Africa has not fallen and this endemic 

area is now a major focus for control programmes. The estimated worldwide annual incidence of CL is 

between 0.7 to 1.2 million cases [1] with Central and South America, the Middle East, Ethiopia and 

North Africa being the major endemic areas. Far less attention has been paid to the control and treatment 

of CL, a predominantly zoonotic and a slow self-curing disease (3 – 18 months in most cases) with 

disfigurement and stigma being the main corollaries of infection. In addition, there are rarer variants of 

CL: mucocutaneous leishmaniasis (MCL), diffuse cutaneous leishmaniasis (DCL), disseminated 

cutaneous leishmaniasis (DsCL), leishmaniasis recidivans (LR) and post-kala-azar dermal 

leishmaniasis (PKDL). With CL, these variant skin manifestations are often referred to collectively as 

the tegumentary leishmaniases (TL).  PKDL is a perplexing clinical presentation which follows cure of 

VL (5-10.% cases in Asia, up to 50% cases in East Africa, [2,3]).  

 

The protozoan parasites that cause VL and TL belong to at least 20 distinct species of the genus 

Leishmania (with new species being identified in the past decade) that are transmitted between 

mammalian hosts by female phlebotomine sandflies. Different species of Leishmania are largely 

responsible for the diverse clinical manifestations (Table 1) which are generated by the interplay 

between the parasite, host factors and vector biology. However, clinical cases reports suggest these 

https://www.who.int/leishmaniasis/burden/en


species-dependent clinical outcomes are not distinct.  In the sand fly gut Leishmania parasites exist as 

flagellated promastigote forms, while in the mammalian host the parasites invade macrophages losing 

their flagellum and transforming into to the intracellular amastigote. The amastigote multiplies and 

survives in the phagolysosomal compartment of the macrophage.  It has long been known that 

promastigotes differentiate within the sandfly to generate infective “metacyclic” forms [4-6]  and recent 

evidence suggests that there may also be heterogeneity in the intracellular amastigote form [7-9]. 

Leishmania parasites actively manipulate both of their hosts. In the sandfly, transmission efficiency of 

metacyclic promastigotes is enhanced by secretion of a proteophosphoglycan-rich, mucin-like gel 

(Promastigote Secretory Gel, PSG), which accumulates in the sand fly gut and mouthparts [10].  

Mammalian infection is established in the skin following the inoculation of metacyclic promastigotes 

that possess a lipophosphoglycan coat that enables them to resist complement and attach to and invade 

host cells. Peptides in sand fly saliva (for example, maxadilan) cause vasodilation and erythema that 

also aids the establishment of the infection in macrophages in the dermal layer of the skin [11]. Early 

responses to infection involve neutrophil infiltration and invasion of resident macrophages. Progress of 

the disease depends on the parasite species and host responses. For both VL and CL, disease progression 

depends on the maintenance of a parasite-specific immunosuppressive state including host cell 

macrophages. A key difference between VL and CL is the propensity of VL-causing species (Table 1) 

to cause disease at systemic sites, invading macrophages of the liver, spleen and bone marrow, with 

minimal skin pathology. Restoration of macrophage function, either through the development of an 

appropriate immune response or therapeutic intervention, can lead to amastigote killing in macrophages 

by nitric oxide and oxygen radicals. Resolution of disease following the activation of macrophages is 

enhanced by T helper 1 (Th1) - like responses mediated through the interaction of antigen-presenting 

cells (e.g., dendritic cells, macrophages) with CD4+ and CD8+ T cells and subsequent secretion of pro-

inflammatory cytokines, including interferon-γ (IFNγ) and tumor necrosis factor (TNF). In clinical 

forms of VL and in DCL, Th2 – like cell responses (including Il-4 and IL-13) are also evident [12,13] 

and inhibition of macrophage activation and immune dysregulation may be mediated through IL-10 and 

transforming growth factor-β (TGFβ) [14].  Immune responses and immunoregulatory pathways have 

been extensively defined in experimental inbred mice that show some but not all the characteristics of 



human disease [15,16].  Immune responses directed against the parasite may also playing a pathogenic 

role and contribute to tissue damage and clinical severity (see below).  

 

The prevention, treatment and control of both CL and VL depends on drugs, diagnostics and vaccines, 

as described in recent comprehensive reviews [2,17]. The complexity and variation of immune 

responses and immunopathology in humans and the different host interactions of the Leishmania 

species has an impact upon the effectiveness of these tools (Fig. 1). Recent studies have significantly 

increased our understanding of these interactions and suggested new strategies for discovery and 

development, and such data are the focus of this review.  

 

2. Key features of immunopathology in leishmaniasis  

Virulence factors allow pathogenic microbes to establish infection, colonise, replicate and disseminate 

throughout the host, evade anti-microbial immunity and facilitate transmission.  A plethora of 

Leishmania derived molecules have been described and reviewed elsewhere that have the cardinal 

properties of bona fide virulence factors [18]. Although some pathogens liberate virulence factors that 

directly cause tissue damage e.g. gangrene due to collagenases and phospholipases produced by 

Clostridium perfringens, similar factors have not yet been described for Leishmania.  Rather, clinical 

symptoms in leishmaniasis are, for the most part, the result of inappropriate immune responses 

leading to collateral damage to host tissues.  Hence, for its clinically relevant features, leishmaniasis 

represents a disease driven by immunopathology.  Hence, the “appropriateness” of an inflammatory / 

immune response, defined by its ability to strike the delicate balance between removal of Leishmania 

parasites and the minimization of pathology, may be defined by its quality, quantity or kinetics as well 

as by the parasite species under study.  Some of the key features of the immunopathology associated 

with leishmaniasis are described below.  

Macrophage activation: Macrophage activation is a central tenet of anti-leishmanial immunity, and 

the capacity of macrophages to polarise their functions towards the generation anti-microbial effector 

molecules such as NO and O2
-  under the influence of type 1 cytokines (classical activation) or 



towards the generation of arginine and polyamines under the influence of type 2 cytokines (alternate 

activation) is well established.  However, the simple assumption that type I cytokines are “protective” 

and type 2 cytokines are “detrimental” is not always borne out by the literature.  For example, IL-4, 

the prototypic Th-2 cytokine, plays an important early role in the generation of host protective CD4+ 

IFN+ Th-1 cells in murine models of CL [19] and IL-4R signalling is required for optimal protection 

in primary resistance and vaccine-induced immunity in experimental VL [20-22].   Similarly, 

chemotherapy with sodium stibogluconate (SSG) in models of VL also requires IL-4R signalling for 

optimal effectiveness [22].  More recent evidence indicates that cytokines influence macrophage 

metabolic states, with consequences for the amastigote’s access to required nutrients.  Specific 

metabolic countermeasures may have evolved to combat these stresses and ensure long lived 

parasitism [23].   

Tissue macrophages have two origins. Resident tissue macrophages originate from embryonic yolk 

sac-derived progenitors, fully differentiate to acquire their mature characteristics under the direction 

of tissue-specific transcription factors / tissue-derived cues and have the capacity of self-renewal.  In 

contrast, relatively short-lived tissue macrophages originate from hematopoietic stem cells via 

monocyte precursors [24,25].  Resident tissue macrophages play many of the key roles in tissue 

homeostasis and function, and they have been identified as niches for survival of L. major in the 

dermis [26] and L. donovani in the liver and spleen [27] and it is likely some of their housekeeping 

properties are impacted on by infection.  Monocytes and monocyte-derived macrophages [28-30], as 

well as dendritic cells [31] and neutrophils [32] may also be targets of infection and serve to regulate 

immunity and pathology though their relatively short life span may suggest that there is greater 

dynamics in the parasite populations they contain.  Recent evidence suggests that the bone marrow 

becomes a target of collateral T cell-mediated damage during VL [33,34] but the consequences of this 

for the dynamics of L. donovani infection in these diverse macrophage pools has yet to be fully 

established.  As discussed below, it is also possible that each of these myeloid cell populations will 

have distinct relationships with anti-leishmanial drugs (see section 5), in addition to their roles in 



tissue repair, remodelling and restoration of homeostasis, that are central to the processes 

underpinning clinical cure.  

 

Granulomatous inflammation:  Granulomatous inflammation is a focal mononuclear cell-rich 

response to poorly degradable foreign material that seeks to wall off the insult and /or focus immune 

responses. Granuloma form and function in experimental, canine and human leishmaniasis have been 

reviewed in detail elsewhere [35].  Granulomatous inflammation is a hallmark of VL and correlates 

well in experimental models with the degree of immune response. Failure of granulomatous 

inflammation may contribute to the severity of HIV-VL coinfection [36].  Although over-exuberant, 

granulomatous inflammation may have directly pathologic consequences, e.g. in schistosomiasis, this 

has rarely been described in VL [37].  In TL, granulomas are more variably observed, and may reflect 

the time of biopsy in relation to disease evolution and causative agent.  For example, a recent study in 

Tunisia demonstrated that both granuloma formation and the extent of the dermal lymphocytic 

infiltrate were minimal in L. major zoonotic CL compared to sporadic CL due to L. infantum [38]. 

Granulomas have also been observed in a majority of cases of non-ulcerating atypical CL due to L. 

infantum in Honduras [39] and are a valuable diagnostic characteristic of CL caused by L. donovani in 

Sri Lanka [40].  Although vaccine induced immunity in a primate models of VL was accompanied 

with enhancement of granuloma formation [41], it is not known whether this is a pre-requisite for 

vaccine-induced protection.  In human vaccine trials, histopathological responses to vaccination have 

not been studied to date, and the histopathologic response documented following leishmanisation was 

not documented [42].  The role of granulomatous inflammation in modifying the response to 

chemotherapy (see section 5 below) has not been formally addressed experimentally or clinically, 

largely because appropriate models do not exist and the invasive nature of tissue biopsies.  It is 

possible that the intensity of granulomatous inflammation alters drug PK properties, and that 

macrophages at the core of such structures represent a “privileged” site for amastigotes, but this 

remains to be formally evaluated.   

 



Alterations in tissue architecture: At homeostasis, each tissue has its own characteristic 

microanatomy, dedicated to performing its main function, be that of barrier or as a site of immune 

response induction.  By definition, tissue homeostasis is disrupted during clinical disease and this has 

been most well characterised in the context of remodelling of lymphoid tissue architecture during 

experimental and canine VL.  Immune tissues are highly compartmentalised, with discrete B and T 

cell zones organised on a framework of stromal cells and fed by lymphatics and blood vessels [43]. 

During normal immune responses, these tissues adapt to allow for clonal retention and proliferation, 

but these are usually short-lived changes. Leishmaniasis poses a long-lived insult to lymphoid tissues 

and these respond by exaggerated degree of remodelling that may negatively impact on immune 

function.  In the spleen of mice, dogs and humans infected with L. donovani / L. infantum, these 

changes include loss of stromal elements (follicular dendritic cells and fibroblastic reticular cells), 

dissolution of the marginal zone, white pulp atrophy and various degrees of admixing of splenic 

leucocyte populations [44-46].   

 

Systemic changes in metabolic and immune pathways: Transcriptomics has recently been applied to a 

variety of experimental models and to human samples in order to provide a more holistic view of the 

pathology associated with both VL and CL.  In human VL, comparisons between the whole blood 

transcriptome of healthy endemic controls with active cases, drug-cured cases and asymptomatic 

individuals have been reported from Brazil [47] and India [48].  Transcriptomic analysis of the 

splenic, hepatic and blood response to infection over time has been performed in mice [49] and for 

spleen only in hamsters [50].  High level analysis of these various reports indicates (i) IFN signatures 

are a prominent feature of infection; (ii) Th2 responses are variably represented with a bias to more 

severe disease; iii) changes associated with cell cycle, lipid metabolism, angiogenesis and 

haematological disturbances are evident in active disease and reduced after treatment; iv) treated 

patients, at least over the time period of study, fail to fully return to a homeostatic state.   Not 

surprisingly, each study also identified unique aspects to the transcriptomic profile.   A 

comprehensive cross-organ analysis in the mouse revealed only a limited concordance of DE genes 



between spleen, blood and liver and a clear lack of concordance across species [49].  Although such 

comparative studies require a degree of caution (due to variations in analytical approach), they serve 

as a reminder of the importance of further research on the pathophysiology of human disease.  

 

CL pathogenesis:  In contrast to VL, where studies on pathology have focused on systemic sites, CL 

immunopathology has largely focused on the skin, though many of the changes observed in chronic 

VL lymphoid tissue may also occur in the lymph nodes draining CL lesion sites.  Precise mapping of 

the nature of the inflammatory lesion and its development over time has been reported in murine 

models of CL, most notably due to L. major infection, but also with L. mexicana and L. braziliensis, 

with an emphasis on identifying determinants of host protection (reviewed in [51]) .  More recent 

studies spurred on by clinical observations in human L. braziliensis infection [52] and the 

identification of Leishmania viruses in metastatic strains of L. guyanensis [53] have focused on 

determinants of excessive host pathology.  In L. braziliensis infection, a pathogenic role for CD8+ T 

cells has now been firmly established. At a mechanistic level, highly cytotoxic CD8+ T cells are 

believed to induce the release of cellular DAMPS that trigger inflammasome activation that 

perpetuates the inflammatory cascade. These studies provide opportunities for novel forms of 

immunotherapy to minimise tissue damage [54].  Viral infections are well known as stimulators of the 

type I interferon response and it has been shown that type I interferons either driven by endogenous 

symbiont Leishmania viruses or through concomitant bystander viral infection can lead enhance the 

metastatic potential of L. guyanensis in mouse models [55].  These data require further substantiation 

in a clinical setting, however, but also pose questions regarding novel therapeutic approaches.    

 

3. Vaccines  

The case supporting development of a vaccine for leishmaniasis from a scientific and public health 

perspective has been made many times elsewhere [56].  Vaccine research has included the full range 

of techniques for antigen identification (from the use of serology through to computational prediction, 



[57]) and almost all conceivable vaccine delivery strategies, including cellular vaccination with 

antigen-pulsed dendritic cells, [58,59] have been explored for one or other form of leishmaniasis in 

animal models. Barriers to successful development of a vaccine to date have included i) lack of 

translational funding; ii) lack of correlates of immunity, iii) over-dependence on animal models; and 

iv) lack of a coherent programme of advocacy.  Nevertheless, recent years have seen excellent 

progress that has brought four candidate vaccines to or near to the clinic.  These include a 

recombinant fusion protein delivered with strong Th1-inducing adjuvants (LEISHF3+ GLA-SE; [60]), 

a naked multi-epitope DNA vaccine (LeishDNAvax; [61]), an adenovirus-based vaccine (ChAd63-

KH; [62]) and a live genetically attenuated vaccine (L. major/ L. donovani centrin- [63]).  Each has 

taken a different approach to vaccine antigen identification and vaccine delivery, providing a potential 

rich environment in the future for understanding the determinants of vaccine-induced immunity in 

humans.       

 

Prophylactic vaccines by definition are used in non-infected individuals to prevent the development of 

disease. Hence, immunopathology associated with Leishmania infection does not play a determining 

effect on vaccine design or efficacy. This does not rule out, however, that a subset of the target 

population for vaccination in an endemic setting may harbour sub-clinical and undetectable infections 

(using the diagnostic tools discussed below) that nevertheless have some local pathologic 

consequence.  More likely, however is the scenario whereby co-infections or other intrinsic (e.g. 

nutrition) or extrinsic (e.g. UV radiation) environmental factors impact on vaccine-induced 

lymphocyte activation, memory cell generation and /or effector and regulatory cell balance. Due 

attention should be paid to these possible factors when designing and evaluating future clinical trials. 

In contrast, therapeutic vaccines require enhancement of the state of immunity in those already with 

leishmaniasis pathology.  The extent to which ongoing pathology impacts the efficacy of therapeutic 

vaccines for CL is presently unknown and will require carefully designed clinical trials in which 

patients can be stratified according to pathologic criteria.  In animal models of VL, therapeutic 

vaccination can overcome the immunosuppressive state induced by VL [64] and post-exposure 



prophylactic vaccination in L. infantum-infected dogs was shown to reduce progression to 

symptomatic VL [65].  Prevention of PKDL by vaccination of previously treated VL patients poses an 

interesting challenge,  given that the immune status of treated VL patients is likely to have been 

improved but not normalised [48].  A clinical trial to assess this approach is in development 

(clinicaltrials.gov; NCT04107961).  Combination studies of vaccines deployed with additional 

immunomodulators to overcome pathology-induced immune regulation should be actively considered.  

 

4. Diagnostics  

As the leishmaniases are characterized by their clinical pleomorphism confirmation based solely on 

clinical grounds is a challenge. The wide variety of skin and mucosal lesions in CL involves an 

extensive differential diagnosis. In addition, diseases like malaria, infectious mononucleosis and 

malignancies, among others, present with fever, hepatomegaly and splenomegaly as does VL, often 

accompanied by cachexia and malnutrition in chronic courses.   

Parasite demonstration by microscopy of Giemsa stained tissue smears is the gold standard in the 

diagnosis of leishmaniasis; this is not always accessible and has variable sensitivity. Thus laboratory 

confirmation rates before treating CL can be as low as 5% in some settings, with patients being put on 

treatment with potentially toxic drugs without receiving a confirmatory diagnosis [66]. For VL 

invasive tissue sampling is required, usually from bone marrow or spleen and to a lesser extent lymph 

node. This requires expertise and specialised facilities for managing potential complications, so VL 

suspects are usually referred to specialised treatment centres for diagnosis. Because of this WHO 

recommended that a strict case definition for VL, i.e. fever for more than 2 weeks plus 

hepatosplenomegaly and /or wasting; with this a positive serology enables treatment initiation [67].   

Diagnosis for case management 

A common feature in VL is a polyclonal hypergammaglobulinaemia with a marked increase in serum 

IgG level, including IgG with specificity for Leishmania [68]. Therefore, identifying anti-Leishmania 

specific antibodies is currently the cornerstone of VL diagnosis. Rapid diagnostic tests (RDTs) based 



on the recombinant antigen rK39, from a Leishmania infantum strain from Latin America, are widely 

used and they show very good performance in the Indian subcontinent (ISC): 97% sensitivity (95% 

CI: 90.0 - 99.5), 90.2% specificity (95% CI: 76.1 - 97.7). In eastern Africa the specificity is similar 

91.1% (95% CI: 80.3 - 97.3), but the sensitivity drops to 85.3% (95% CI: 74.5 - 93.2) [69]. This 

inferior performance requires that in eastern Africa it is necessary to include the direct agglutination 

test (DAT) in the diagnostic algorithm (Figure 2). This is a robust test based on whole Leishmania 

antigen and it has been extensively validated. It cannot be considered an RDT as it requires some 

degree of laboratory expertise and capacity, and results are obtained after an overnight incubation 

[70]. 

The peculiarities of the antibody response against specific Leishmania antigens are key in the 

performance of serological tests. VL elicits a different immune response and different levels of anti-

Leishmania IgG across regions. rK39-based RDTs are based on a kinesin sequence from an American 

strain of L. infantum (syn. L. chagasi), this can explain the different performance of these tests in 

eastern Africa, where there is a high molecular diversity of the rK39 homologous sequences among 

regional L. donovani strains [71]. Another explanation for this is that there can be a different potency 

in the immune response, exemplified by the finding that anti-Leishmania IgG levels in VL patients 

from Sudan were significantly lower than in patients from India, independently of the geographic 

origin of the leishmanial antigen used to assess this [72]. A new RDT, based on the recombinant 

antigen rK28, may contribute to overcome this problem. The rK28 is a synthetic polyprotein 

containing rK39 repeats from a Sudanese L. donovani strain, flanked by HASPB1 repeats and the 

HASPB2 open reading frame from an Ethiopian strain [73]. Some preliminary studies claim that rK28 

RDTs show better performance in eastern Africa than those using the rK39 antigen; however, data are 

not definitive, as studies comparing rK28 RDTs with the rK39 RDT IT-Leish (Bio-Rad), which is the 

one recommended in most eastern African guidelines for VL, are limited. These studies are either 

non-prospective or use just serum or plasma from well characterized controls and cases (confirmed by 

parasitology) [74-76]. A prospective large scale evaluation of an rK28 RDT will be conducted by the 



AfriKADIA consortium in Ethiopia, Kenya, Sudan and Uganda; results will be available by the end of 

2020 [https://www.afrikadia.org/].  

Unlike in VL, CL is not characterized by an elevated production of anti-Leishmania antibodies, and 

the level of these is also quite variable between the different forms of tegumentary leishmaniasis. 

Therefore, antibody detection tests are not useful in the diagnosis of these forms of leishmaniasis. 

Anti-Leishmania antibodies are barely detectable in CL and to some extent these can be detected in 

ML and DCL but with limited and variable performance [67]. New opportunities for the serological 

diagnosis of CL may be brought by the detection of anti-α-Gal antibodies, with promising preliminary 

results for Old World leishmaniasis, nevertheless this field requires further research [77]. 

In immunosuppressed HIV+ patients, antibody-detection tests have limited sensitivity and cannot be 

used to rule out VL [78,79]. Also, the detection of total anti-Leishmania antibodies is not very helpful 

in the diagnosis of PKDL or VL relapses, as circulating antibodies from previous VL episodes remain 

for long periods even after successful treatment [80]. It seems however that exploring specific IgG 

types can be of help in assessing post-treatment cure and the risk of relapse, as well as in supporting 

the diagnosis of PKDL. The qualitative and quantitative detection of IgG1 in blood or serum/plasma 

samples, by means of ELISA or RDT using whole or recombinant rK39 leishmanial antigen, have 

shown the potential of IgG1 as a biomarker of post-chemotherapeutic relapse, as demonstrated with 

samples from Sudanese and Indian patients [81-83]. 

Antigen-detection tests can help in resolving some of the problems described above, these tests should 

be more specific and can distinguish active from past infections. Most of the approaches used up to 

date for the detection of leishmanial antigens in VL patients have targeted urine [84-86]. A latex 

agglutination test has shown a highly variable sensitivity (36%-100%) and specificity (64%-99%) 

across endemic regions and different groups of patients, including HIV-positive, thus this has not 

been fully implemented [69]. Different antigen detection ELISA tests have been developed, and they 

have shown high sensitivity and specificity in a preliminary study using samples from VL patients 

from different endemic regions, as well as utility in monitoring treatment efficacy [87]. Lack of 

further evaluation, the need to process the sample and the technical requirements of an ELISA tests 



have precluded putting them into routine practice. A more practical approach would be to detect 

leishmanial antigens in blood or serum/plasma. A prototype immunochromatographic test showed 

high sensitivity (96%) and specificity (99%) in the diagnosis of VL in Chinese patients using blood or 

serum [88]; unfortunately, further validation of this test and its results in other settings has not been 

pursued. 

A point-of-care (POC) tests for early diagnosis of CL is much needed to benefit patients and 

communities, its implementation will reduce morbidity and transmission (where this is 

anthroponotic). A target product profile (TPP) for a POC for CL was developed by consultation 

among experts with a  consensus that this POC test should target Leishmania antigens [89]. A 

promising option for the point-of-care diagnosis of CL that fits this TPP is a RDT detecting the 

leishmanial amastigote antigen peroxidoxin, CL DetectTM Rapid Test (InBios International Inc., 

USA). This test has shown variable performance across endemic regions, but for CL due to L. major 

or L. tropica the sensitivity and specificity obtained in different studies in Tunisia, Morocco and 

Afghanistan is acceptable [90-92]. 

Nucleic acid amplification tests (NAATs) have shown good performance in the diagnosis of the 

different forms of leishmaniasis, both in immunodepressed and immunocompetent patients. 

Polymerase chain reaction (PCR)-based methods have proven that confirmatory diagnosis of VL is 

feasible using a less invasive sample such as peripheral blood, and with high sensitivity  [93]. And 

this is especially relevant in CL, when chronic lesions have lower parasite loads that cannot be 

detected by microscopy [94,95]. A limitation to implement PCR-based diagnosis at the POC has been 

the requirement of well-equipped facilities and trained personnel, as well as the lack of 

standardisation, limiting the use of these tools to reference laboratories. Nevertheless, NAATs more 

amenable for use in limited resource settings have been recently developed, a commercial test based 

on the loop-mediated isothermal amplification (LAMP) of DNA, LoopampTM Leishmania Detection 

Kit (Eiken Chemical Co., Japan), overcomes the problem of standardisation. Its performance using 

peripheral blood (97%-99% sensitivity), as demonstrated in a study in Sudan, enables its inclusion in 

the VL diagnostic algorithm, reducing the need for invasive tissue aspiration [76]. A diagnostics 



evaluation study conducted in Afghanistan informed that an algorithm including CL DetectTM Rapid 

Test and LoopampTM Leishmania Detection Kit would have a sensitivity of 93%, minimizing the 

number of patients that would need to be referred for parasitological confirmation [92]. Other studies 

evaluating non-commercial LAMP assays have also reported high sensitivities in the diagnosis of CL, 

VL and PKDL [96]. As such, the diagnosis and management of leishmaniasis would benefit from the 

implementation of accurate NAATs at the POC. 

Diagnostics in the elimination and post-elimination of visceral leishmaniasis 

WHO aims at eliminating VL as a public health problem in the Indian subcontinent (ISC) by 2020. 

The implementation of test-and-treat strategies, relying on the use of antibody-detection RDTs has 

been pivotal in moving towards this target [97]. This effort will need to be sustained in the next few 

years to avoid resurgence and move towards the interruption of Leishmania transmission by 2030 

[98]. However, the current diagnostic tools may not be adequate to support this endeavour. 

More specific tests will be needed in the near and post-VL elimination phases, since the positive 

predictive value of antibody-detection RDTs decreases in a context of low endemicity [97,99]. Only 

VL suspects with symptoms (e.g. fever, splenomegaly) for more than two weeks are tested by the 

current RDTs, which precludes early diagnosis and treatment of acute cases who remain infectious in 

the community. Reducing the time between onset of symptoms and diagnosis-treatment has been 

identified as a key parameter for achieving and sustaining elimination [100]. But current antibody-

detection RDTs do not allow this, as they are not specific for acute VL and need to be interpreted 

along with a clinical case definition [69]. Detection of Leishmania antigens may be a more specific 

approach [101,102,87,88], and these can be detected earlier than anti-Leishmania antibodies [86,103]. 

Thus antigen-detection RDTs would allow diagnosis of VL cases without a time constraint or clinical 

case definition (e.g. < 2 weeks of fever); as described above several approaches for leishmanial 

antigens detection in clinical samples have been developed, but for different reasons these have not 

been implemented. A recent target product profile describes the features of an antigen detection RDT 

that can be used to assist in VL elimination [104]. Antigen detection tests would also allow 

diagnosing VL in groups of patients in which antibody detection tests underperform such as HIV-VL 



co-infected patients, relapses, as well as in PKDL. All these cases are gaining relevance in the last 

stages of the VL elimination in the ISC, as they are an important reservoir of Leishmania and are a 

serious threat to VL elimination [105,106,99].  

Diagnosis of PKDL is a key factor in elimination efforts as well as in patient management, for PKDL 

treatments are long (up to 12 weeks). PKDL diagnosis is challenging as case confirmation requires 

microscopy and/or molecular tests in skin biopsies. As these diagnostic procedures are difficult to 

perform, diagnosis in endemic areas is often made clinically [107]. Antibody detection RDTs, which 

are part of the PKDL diagnosis algorithm in the ISC, have limited value and alternatives such as 

point-of-care molecular tests with promising performance (e.g. LAMP) should be evaluated [108,99].  

There have been few if any studies directly seeking to evaluate the impact of pathology on the design 

and / or performance of diagnostic tests for VL or CL.  Although there may be limitations in 

translating such knowledge, a consideration of the role of pathology in determining the specificity and 

sensitivity of current and future tests may be warranted. For example, perturbations in the regulation 

of antibody responses are linked to disease progression [109] and antibody and antigen half-lives will 

be affected by changes in plasma or lesion protein binding capacity, glomerular filtration rate (e.g. 

secondary to immune complex deposition [110]) and or the degree of enteropathy [111].  Hence, each 

of the parameters highlighted in Fig. 3 will be influenced by the degree of pathology observed during 

the early pre-clinical, clinical and post-treatment phases of the disease.  As above in the case of 

vaccine efficacy, these pathologic changes might occur directly as a consequence of ongoing or 

previous leishmaniasis, but equally so may reflect the indirect immunopathological consequence of 

coinfections or other immune insults.  

 

 

5. Drugs 

There has been considerable progress in the development of treatments for leishmaniasis over the past 

two decades. A number of new drugs have been registered for VL (miltefosine, the liposomal 



formulation AmBisome, paromomycin) with some taking a lead role in disease control and elimination 

programmes [112,2]. At the same time there is an  inadequacy of drugs  for CL [113,114].  However, 

for the first time in history the pipeline of novel oral drugs for the treatment of VL and CL is more 

promising with five novel compounds for VL [115-117] and a renewed focus to find novel treatments 

for CL [118,119]. In this section, two aspects of the drug – immune response interaction will be 

discussed (i) immunosuppression and immunomodulation, and (ii) the impact of immunopathology on 

pharmacokinetics.  

Immunosuppression and immunomodulation 

Interactions between drugs and the immune response have been known, but poorly understood, since 

the early 20th century. It still provides a strong focus for research:  a recent study on antibiotics that 

showed how host cell metabolites both reduce drug activity whilst also enhancing host cell phagocytic 

activity provides an example of such work [120].  For leishmaniasis, as for other infectious diseases, 

there have been two directions of study: (i) to understand why drugs do not work in patients and disease 

models and (ii) the development of a strategy to stimulate/modulate the immune response to overcome 

any immunosuppression or accelerate cure.  

Drugs used for clinical treatment of VL have to work effectively in most endemic regions within the 

context of the immunosuppression provoked by this disease. With the more profound 

immunosuppression associated with HIV VL co-infections, the standard drugs become significantly 

less effective and only co-administrations have been shown to improve treatment [121]. The low 

efficacy of three of the drugs (liposomal amphotericin B, paromomycin and miltefosine) in East African 

VL [122,123]  that are so effective in the Indian subcontinent, has not been explained. Clinical isolates 

from both regions show similar susceptibility to these drugs within standard in vitro assays, so the clear 

implication is that host factors (immunology, pathology, pharmacokinetics [PKs]) are the responsible 

for this difference.  The potential importance of PKs has been illustrated by Dorlo and colleagues [124] 

who have determined different miltefosine exposures in adults and children in East Africa.  There are 

further clinical and experimental observations, one confirming, one confounding: (a) several of the 

drugs that work effectively as VL treatments in immunosuppressed VL patients (ibid) have significant 



dependence on cellular immune responses in mouse models of infection, either immuno-suppressed or 

deficient [125-127], (b)  all the drugs, whether immune or non-immune dependent in these studies, have 

well described interactions with the immune system (see reviews by Dorlo (2012) for miltefosine [128], 

Cohen (2016) for amphotericin B [129] and Murray (2005) for pentavalent antimonials [130]).  It is 

clear that more detailed studies are required to understand these interactions.  

For CL, drugs work within the context of a slow self-cure immune response; exceptions include diffuse 

cutaneous leishmaniasis (DCL) where there is an absence of an effective cellular immune response and 

absence of effective treatment. The objectives for drug treatment, and combinations with 

immunomodulators, are to both reduce the parasite burden and at the same time accelerate self-cure. 

Much of the area lacks clear clinical data due to the absence of robust clinical studies [113,114].   

The central role of the macrophage in the survival of Leishmania parasite has been the driving force 

for most studies on immunomodulation. Have we progressed much further than a statement from 

Bernard Shaw’s play Doctor’s Dilemma (1906) “There is at bottom only one genuinely scientific 

treatment for all diseases, and that is to stimulate the phagocytes” ?  BCG, which has well 

characterised stimulatory interactions with macrophages [131], was the immunodulatory component 

of treatment with pentavalent antimonials and  the recommended treatment for CL in Venezuela 

[132]. It was also used in combination with alum and pentavalent antimonials in clinical trials for the 

treatment of post-kala-azar dermal leishmaniasis [133]. Bacterial cell wall components, muramyl 

dipeptide and trehalose dimycolate have also been used in clinical studies [134] on CL and 

experimental VL [135].  Based on clearer understanding of cytokine-macrophage interaction both 

IFN [136] and GM-CSF [137] have been used in the treatment of both VL and CL. The rationale 

behind the potential application of GM-CSF for CL is threefold: (a) GM-CSF can promote 

proliferation, activation and differentiation of various myeloid cells (macrophages, dendritic cells and 

neutrophils) and their progenitors, (b) clinical trials have reported increased wound healing of diverse 

wound types (including CL) upon topical GM-CSF application, and (iii) CM-CSF is able to modulate 

the tissue immune response by increasing the levels of the anti-inflammatory cytokine IL-10. 

Randomized controlled trials in Brazil have indicated that GM-CSF both after oral [138] and topical 

[139] administration reduced the healing time of CL lesions when given in combination with 



intravenous antimonials.  In addition to its anti-inflammatory role, IL-10 also inhibits IFN induced 

macrophage killing of Leishmania and Murray and colleagues [140] demonstrated in a model of VL 

that blockade of IL-10 using anti-IL-10R antibodies resulted in significant increase in antimonial drug 

activity. A clinical trial to evaluate combining AmBisome with anti-IL-10R antibodies in VL patients 

was proposed but later withdrawn due to unavailability of the required antibody (clinicaltrials.gov; 

NCT01437020).  

Immunomodulator molecules that are also TLR agonists are being pursued for CL treatment. For 

example, CpG-D35, a D-type CpG TLR9 agonist, is currently undergoing Phase-I clinical trials after 

showing it was able to curtail lesion development upon administration to macaque monkeys infected 

with L. major [141]. Earlier studies indicated that this TLR9 agonist induces maturation of plasmacytoid 

dendritic cells and secretion of IFNα and -γ without direct activation of B cells [142]. A  small molecule, 

the imidazoline imiquimod a  TLR7 agonist, was shown  by Matlashewski and colleagues to stimulate 

macrophage functions including signal transduction and  NO production in experimental models, 

sufficient to kill intra-macrophage amastigotes [143]. Subsequent clinical studies using imiquimod as a 

topical adjunct therapy to pentavalent antimonials were inconclusive. Three of these randomized 

controlled trials (RCT) [144-146] showed no significant increased cure rate for the combination of 

imiquimod plus pentavalent antimonials versus antimonials alone. Efforts continue to find more active 

analogues [147].  A different approach was adopted  by Smith et al (2000) with the small molecule, 

tucaresol (in clinical trials for sickle cell disease), an orally bioavailable compound that enhances T-

helper-cell activity, with the induction of increased IL-2 and IFN levels in mice and humans and 

provides a costimulatory signal between macrophages and T-cells [148]. In mouse model of VL 

tucaresol gave a 60% reduction in parasite burden similar to that achieved by INF in the same model.  

Other recent approaches have also added considerably to understanding drug-immune interactions and 

possible new routes forward to immunomodulation and successful cure. Long-term clinical research 

on South American CL [54] showed that NLRP3 inflammasome is activated by CD8+ T cell-mediated 

cytotoxicity and drives disease progression. Based on these observations, the group studied a number 

of small molecule inhibitors of the inflammasome, for example, MCC950 and the diabetes drug 



glyburide.  In mouse models of CL, they showed that mice treatment with compounds that inhibit 

NLRP3 inflammasome activation, MCC950 or glyburide, failed to develop the severe disease seen in 

untreated mice. In VL, more detailed knowledge of the immune response has also been exploited. 

Based on knowledge of the immunopathology of the spleen, the receptor tyrosine kinase inhibitor 

sunitinib maleate was shown to induce restoration of splenic microarchitecture. Although this drug 

did not possess inherent anti-leishmanial activity. it afforded a significant dose sparing effect for 

subsequently administered antimonials [149].  

 

CL is also characterised by local inflammation. A combination of the anti-inflammatory agent, 

pentoxiphylline, with antimonial drugs has been shown to be an important adjunct therapy for some 

forms of CL and mucocutaneous leishmaniasis. In Brazil, randomized controlled trials (RCTs) have 

shown a synergetic effect of pentoxifylline in conjunction to antimonial therapy in ML patients [150] 

whereas this was not observed in patients suffering CL [151,152]. The difference in pentoxifylline 

efficacy as part of a combination therapy between New World CL and ML might be due to distinct 

differences in cytokine and macrophage populations present in the lesion [153] – an observation that 

merits further exploration as it could help elucidate immunomodulatory processes. It is worth noting 

that when tested in Old World CL, the combined approach of pentoxifylline with an antileishmanial 

agend showed enhanced healing in comparison to antileishmanial treatment only [154]. For further 

information on the activity of immunomodulators, see reviews by Dalton and Kaye (2010), Taslimi et 

al., (2018) and Adriaensen et al (2017) [149,155,156].  

PK/PD relationships, immunopathology in drug monitoring and targets for host directed therapy. 

Besides the direct involvement in the disease progression and outcome, the immunopathology also 

impacts drug pharmacodynamics (PD) and/or pharmacokinetics (PK). Impact on the latter has been 

shown in mice with CL, where the presence of parasites and the associated inflammation in the skin 

disturbed the cutaneous barrier function and physiology [157,158]. Interestingly, the permeation of 

hydrophilic compounds increased to a higher extent in comparison to lipophilic compounds which was 

hypothesized to be in part due to the inflammatory hydrophilic environment in CL skin. Whilst these 



findings are particularly important for topical drug administration where the drug is applied locally, 

increased drug levels were also observed in Leishmania-infected skin upon systemic drug 

administration [159,160] where they were associated with enhanced capillary leakiness and increased 

macrophage infiltration both of which could potentially be attributed to local inflammation. How 

Leishmania infection alters the skin tissue microenvironment in humans is yet unknown and is subject 

to further research. 

During the development of VL, the liver, a major drug metabolism site for drugs, undergoes 

morphological and functional changes; hence, it seems evident that VL impacts drug pharmacokinetics. 

In VL infected mice for example, the no-observed-adverse-effect level of miltefosine is approximately 

25 mg/kg (QD, for 10 consecutive days), whereas in experimental CL 35mg/kg is still well tolerated 

(experimental data, unpublished). Other studies also demonstrated a deterioration of the capacity of host 

hepatic microsomal membranes to metabolise xenobiotics in VL infected mice and hamsters [161,162]. 

Whilst in vitro studies suggest no involvement of cytochrome P450 isoenzymes in the metabolism of 

miltefosine [163], the enzymes are involved in the metabolism and clearance of many xenobiotics and 

reduced activity could potentially lead to reduced drug efficacy (metabolites are active) or toxicity when 

increased amounts linger around in the systemic circulation. For amphotericin B, a significantly lower 

concentration of drug was found in liver and spleen of VL-infected mice as compared to uninfected 

mice, which was hypothesised to be due to a reduced phagocytic activity in infected macrophages [155, 

157]. These findings were not investigated in humans but it seems plausible that the PK of certain drugs 

is altered by the disruption of the liver function as observed in VL.  Pathology is also known to affect 

drug ADME (absorption, distribution, metabolism and excretion) processes by alterations in protein 

binding which is important given that hypoalbuminemia is observed in both human and experimental 

VL. Low serum albumin levels have been associated with alterations in the degree of protein binding 

of highly protein-bound drugs such as miltefosine and thus could potentially impact its PK-PD 

relationship [164,165]. 

Another phenomenon which remains unexplored in VL patients and experimental models is the 

influence of granuloma formation on drug PK and thus efficacy. In tuberculosis, a granuloma forms a 



shielded lesion compartment that harbours bacteria and makes it difficult for drugs to permeate [166]; 

hence, the long and intense treatment regimen composed of a cocktail of four different drugs. Whilst 

difference in the extent of granulomatous inflammation are clear between leishmaniasis and TB [35], 

the altered local cellularity of a granuloma may nevertheless be of importance.  

Of further importance is the impact of the pathology on drug PD which involves processes best reflected 

by “what the drug does to the body”. Most chemotherapeutics exert their activity by stimulating or 

inhibiting enzymes that are involved in pathways essential for parasite survival. Recent research 

describes the presence of different metabolically active parasite populations in CL lesions [8]. Kloehn 

et al (2015) measured semi-quiescent L. mexicana parasites in non-healing CL lesions in mice [7]. This 

reduced metabolic state is characterised by low transcription rates and protein turnover and might thus 

contribute to a reduced drug efficacy.  

 

Summary  

Here we have illustrated how the complexity and variation of human immune responses and 

immunopathology and the different host interactions to twenty Leishmania species has an impact 

upon the effectiveness of vaccines, diagnostics and drugs (Fig. 1). Although rodent models have 

proved to be a useful tool for experimental studies on these interactions, well described limitations of 

(a) absence of models for important species (L. aethiopica, L. tropica, L. braziliensis), (b) differences 

between mouse and human immune responses (for example, to TLR agonists, [167,164] and 

serological indicators, and (c) differences in pharmacokinetics between mouse and humans  

[168,165], underpin most of this work. The application of transcriptomics, genomic data bases and 

methodologies to determine pharmacokinetics in infected tissues (not just plasma) in future studies in 

human subjects must now be used to inform future work so tools for treatment, control and 

elimination can be used with more understanding and effectiveness.  

 

 



Acknowledgements 

PK is supported by a Wellcome Trust Investigator Award (WT1063203); KVB is supported by a 

fellowship awarded from the Research Council United Kingdom Grand Challenges Research Funder 

under grant agreement ‘A Global Network for Neglected Tropical Diseases’ grant number 

MR/P027989/1.  

 

References 

1. Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis 
Worldwide and Global Estimates of Its Incidence. PloS one 7 (5):e35671 
2. Burza S, Croft SL, Boelaert M (2018) Leishmaniasis. Lancet 392 (10151):951-970. 
doi:10.1016/s0140-6736(18)31204-2 
3. Mukhopadhyay D, Dalton JE, Kaye PM, Chatterjee M (2014) Post kala-azar dermal leishmaniasis: 
an unresolved mystery. Trends Parasitol 30 (2):65-74. doi:10.1016/j.pt.2013.12.004 
4. Sacks DL (1989) Metacyclogenesis in Leishmania promastigotes Experimental Parasitology 69 
(1):100-103 
5. Dostalova A, Volf P (2012) Leishmania development in sand flies: parasite-vector interactions 
overview. Parasites & vectors 5:276. doi:10.1186/1756-3305-5-276 
6. Serafim TD, Coutinho-Abreu IV, Oliveira F, Meneses C, Kamhawi S, Valenzuela JG (2018) Sequential 
blood meals promote Leishmania replication and reverse metacyclogenesis augmenting vector 
infectivity. Nature Microbiology 3 (5):548-555. doi:10.1038/s41564-018-0125-7 
7. Kloehn J, Saunders EC, O’Callaghan S, Dagley MJ, McConville MJ (2015) Characterization of 
Metabolically Quiescent Leishmania Parasites in Murine Lesions Using Heavy Water Labeling. PLOS 
Pathogens 11 (2):e1004683. doi:10.1371/journal.ppat.1004683 
8. Mandell MA, Beverley SM (2017) Continual renewal and replication of persistent Leishmania 
major parasites in concomitantly immune hosts. Proceedings of the National Academy of Sciences of 
the United States of America 114 (5):E801-e810. doi:10.1073/pnas.1619265114 
9. Burchmore RJS, Barrett MP (2001) Life in vacuoles – nutrient acquisition by Leishmania 
amastigotes. International Journal for Parasitology 31 (12):1311-1320. 
doi:https://doi.org/10.1016/S0020-7519(01)00259-4 
10. Rogers ME, Chance ML, Bates PA (2002) The role of promastigote secretory gel in the origin and 
transmission of the infective stage of Leishmania mexicana by the sandfly Lutzomyia longipalpis. 
Parasitology 124:495-507 
11. Giraud E, Svobodova M, Muller I, Volf P, Rogers ME (2019) Promastigote secretory gel from 
natural and unnatural sand fly vectors exacerbate Leishmania major and Leishmania tropica 
cutaneous leishmaniasis in mice. Parasitology:1-7. doi:10.1017/s0031182019001069 
12. Pirmez C, Yamamura M, Uyemura K, Paes-Oliveira M, Conceicao-Silva F, Modlin RL (1993) 
Cytokine patterns in the pathogenesis of human leishmaniasis. The Journal of clinical investigation 
91 (4):1390-1395. doi:10.1172/jci116341 
13. Nylen S, Sacks D (2007) Interleukin-10 and the pathogenesis of human visceral leishmaniasis. 
Trends in immunology 28 (9):378-384. doi:10.1016/j.it.2007.07.004 
14. Caldas A, Favali C, Aquino D, Vinhas V, van Weyenbergh J, Brodskyn C, Costa J, Barral-Netto M, 
Barral A (2005) Balance of IL-10 and interferon-gamma plasma levels in human visceral 

https://doi.org/10.1016/S0020-7519(01)00259-4


leishmaniasis: implications in the pathogenesis. BMC infectious diseases 5:113-113. 
doi:10.1186/1471-2334-5-113 
15. Kaye P, Scott P (2011) Leishmaniasis: complexity at the host-pathogen interface. Nature Reviews 
Microbiology 9 (8):604-615 
16. Scott P, Novais FO (2016) Cutaneous leishmaniasis: immune responses in protection and 
pathogenesis. Nat Rev Immunol 16 (9):581-592. doi:10.1038/nri.2016.72 
17. Torres-Guerrero E, Quintanilla-Cedillo MR, Ruiz-Esmenjaud J, Arenas R (2017) Leishmaniasis: a 
review. F1000Research 6:750. doi:10.12688/f1000research.11120.1 
18. Atayde VD, Hassani K, da Silva Lira Filho A, Borges AR, Adhikari A, Martel C, Olivier M (2016) 
Leishmania exosomes and other virulence factors: Impact on innate immune response and 
macrophage functions. Cellular immunology 309:7-18. doi:10.1016/j.cellimm.2016.07.013 
19. Biedermann T, Zimmermann S, Himmelrich H, Gumy A, Egeter O, Sakrauski AK, Seegmuller I, 
Voigt H, Launois P, Levine AD, Wagner H, Heeg K, Louis JA, Rocken M (2001) IL-4 instructs TH1 
responses and resistance to Leishmania major in susceptible BALB/c mice. Nat Immunol 2 (11):1054-
1060. doi:10.1038/ni725 
20. Stager S, Alexander J, Kirby AC, Botto M, Rooijen NV, Smith DF, Brombacher F, Kaye PM (2003) 
Natural antibodies and complement are endogenous adjuvants for vaccine-induced CD8+ T-cell 
responses. Nature medicine 9 (10):1287-1292. doi:10.1038/nm933 
21. McFarlane E, Mokgethi T, Kaye PM, Hurdayal R, Brombacher F, Alexander J, Carter KC (2019) IL-4 
Mediated Resistance of BALB/c Mice to Visceral Leishmaniasis Is Independent of IL-4Rα Signaling via 
T Cells. Frontiers in Immunology 10 (1957). doi:10.3389/fimmu.2019.01957 
22. Alexander J, Carter KC, Al-Fasi N, Satoskar A, Brombacher F (2000) Endogenous IL-4 is necessary 
for effective drug therapy against visceral leishmaniasis. Eur J Immunol 30 (10):2935-2943. 
doi:10.1002/1521-4141(200010)30:10<2935::aid-immu2935>3.0.co;2-q 
23. Sernee MF, Ralton JE, Nero TL, Sobala LF, Kloehn J, Vieira-Lara MA, Cobbold SA, Stanton L, Pires 
DEV, Hanssen E, Males A, Ward T, Bastidas LM, van der Peet PL, Parker MW, Ascher DB, Williams SJ, 
Davies GJ, McConville MJ (2019) A Family of Dual-Activity Glycosyltransferase-Phosphorylases 
Mediates Mannogen Turnover and Virulence in Leishmania Parasites. Cell host & microbe 26 (3):385-
399.e389. doi:10.1016/j.chom.2019.08.009 
24. Yona S, Kim KW, Wolf Y, Mildner A, Varol D, Breker M, Strauss-Ayali D, Viukov S, Guilliams M, 
Misharin A, Hume DA, Perlman H, Malissen B, Zelzer E, Jung S (2013) Fate mapping reveals origins 
and dynamics of monocytes and tissue macrophages under homeostasis. Immunity 38 (1):79-91. 
doi:10.1016/j.immuni.2012.12.001 
25. Guilliams M, Scott CL (2017) Does niche competition determine the origin of tissue-resident 
macrophages? Nat Rev Immunol 17 (7):451-460. doi:10.1038/nri.2017.42 
26. Lee SH, Charmoy M, Romano A, Paun A, Chaves MM, Cope FO, Ralph DA, Sacks DL (2018) 
Mannose receptor high, M2 dermal macrophages mediate nonhealing Leishmania major infection in 
a Th1 immune environment. The Journal of experimental medicine 215 (1):357-375. 
doi:10.1084/jem.20171389 
27. Beattie L, Sawtell A, Mann J, Frame TCM, Teal B, de Labastida Rivera F, Brown N, Walwyn-Brown 
K, Moore JWJ, MacDonald S, Lim EK, Dalton JE, Engwerda CR, MacDonald KP, Kaye PM (2016) Bone 
marrow-derived and resident liver macrophages display unique transcriptomic signatures but similar 
biological functions. Journal of hepatology 65 (4):758-768. doi:10.1016/j.jhep.2016.05.037 
28. Heyde S, Philipsen L, Formaglio P, Fu Y, Baars I, Hobbel G, Kleinholz CL, Seiss EA, Stettin J, 
Gintschel P, Dudeck A, Bousso P, Schraven B, Muller AJ (2018) CD11c-expressing Ly6C+CCR2+ 
monocytes constitute a reservoir for efficient Leishmania proliferation and cell-to-cell transmission. 
PLoS Pathog 14 (10):e1007374. doi:10.1371/journal.ppat.1007374 
29. Romano A, Carneiro MBH, Doria NA, Roma EH, Ribeiro-Gomes FL, Inbar E, Lee SH, Mendez J, 
Paun A, Sacks DL, Peters NC (2017) Divergent roles for Ly6C+CCR2+CX3CR1+ inflammatory 
monocytes during primary or secondary infection of the skin with the intra-phagosomal pathogen 
Leishmania major. PLoS Pathog 13 (6):e1006479. doi:10.1371/journal.ppat.1006479 



30. Terrazas C, Varikuti S, Oghumu S, Steinkamp HM, Ardic N, Kimble J, Nakhasi H, Satoskar AR 
(2017) Ly6C(hi) inflammatory monocytes promote susceptibility to Leishmania donovani infection. 
Scientific reports 7 (1):14693. doi:10.1038/s41598-017-14935-3 
31. Tiburcio R, Nunes S, Nunes I, Rosa Ampuero M, Silva IB, Lima R, Machado Tavares N, Brodskyn C 
(2019) Molecular Aspects of Dendritic Cell Activation in Leishmaniasis: An Immunobiological View. 
Front Immunol 10:227. doi:10.3389/fimmu.2019.00227 
32. Hurrell BP, Regli IB, Tacchini-Cottier F (2016) Different Leishmania Species Drive Distinct 
Neutrophil Functions. Trends Parasitol 32 (5):392-401. doi:10.1016/j.pt.2016.02.003 
33. Pinto AI, Brown N, Preham O, Doehl JSP, Ashwin H, Kaye PM (2017) TNF signalling drives 
expansion of bone marrow CD4+ T cells responsible for HSC exhaustion in experimental visceral 
leishmaniasis. PLoS Pathog 13 (7):e1006465. doi:10.1371/journal.ppat.1006465 
34. Abidin BM, Hammami A, Stager S, Heinonen KM (2017) Infection-adapted emergency 
hematopoiesis promotes visceral leishmaniasis. PLoS Pathog 13 (8):e1006422. 
doi:10.1371/journal.ppat.1006422 
35. Kaye PM, Beattie L (2016) Lessons from other diseases: granulomatous inflammation in 
leishmaniasis. Seminars in immunopathology 38 (2):249-260. doi:10.1007/s00281-015-0548-7 
36. Angarano G, Maggi P, Rollo MA, Larocca AM, Quarto M, Scalone A, Gradoni L (1998) Diffuse 
necrotic hepatic lesions due to visceral leishmaniasis in AIDS. The Journal of infection 36 (2):167-169. 
doi:10.1016/s0163-4453(98)80007-8 
37. Yazici P, Yeniay L, Aydin U, Tasbakan M, Ozutemiz O, Yilmaz R (2008) Visceral leishmaniasis as a 
rare cause of granulomatosis hepatitis: a case report. Turkiye parazitolojii dergisi 32 (1):12-15 
38. Boussoffara T, Boubaker MS, Ben Ahmed M, Mokni M, Guizani I, Ben Salah A, Louzir H (2019) 
Histological and immunological differences between zoonotic cutaneous leishmaniasis due to 
Leishmania major and sporadic cutaneous leishmaniasis due to Leishmania infantum. Parasite (Paris, 
France) 26:9. doi:10.1051/parasite/2019007 
39. Sandoval Pacheco CM, Araujo Flores GV, Favero Ferreira A, Sosa Ochoa W, Ribeiro da Matta VL, 
Zuniga Valeriano C, Pereira Corbett CE, Dalastra Laurenti M (2018) Histopathological features of skin 
lesions in patients affected by non-ulcerated or atypical cutaneous leishmaniasis in Honduras, 
Central America. Int J Exp Pathol 99 (5):249-257. doi:10.1111/iep.12295 
40. Thilakarathne IK, Ratnayake P, Vithanage A, Sugathadasa DP (2019) Role of Histopathology in the 
Diagnosis of Cutaneous Leishmaniasis: A Case-Control Study in Sri Lanka. The American Journal of 
dermatopathology 41 (8):566-570. doi:10.1097/dad.0000000000001367 
41. Grimaldi G, Jr., Teva A, Porrozzi R, Pinto MA, Marchevsky RS, Rocha MG, Dutra MS, Bruna-
Romero O, Fernandes AP, Gazzinelli RT (2014) Clinical and parasitological protection in a Leishmania 
infantum-macaque model vaccinated with adenovirus and the recombinant A2 antigen. PLoS Negl 
Trop Dis 8 (6):e2853. doi:10.1371/journal.pntd.0002853 
42. Khamesipour A, Dowlati Y, Asilian A, Hashemi-Fesharki R, Javadi A, Noazin S, Modabber F (2005) 
Leishmanization: use of an old method for evaluation of candidate vaccines against leishmaniasis. 
Vaccine 23 (28):3642-3648. doi:10.1016/j.vaccine.2005.02.015 
43. Mebius RE, Kraal G (2005) Structure and function of the spleen. Nat Rev Immunol 5 (8):606-616. 
doi:10.1038/nri1669 
44. Kaye PM (2018) Stromal Cell Responses in Infection. Advances in experimental medicine and 
biology 1060:23-36. doi:10.1007/978-3-319-78127-3_2 
45. Stanley AC, Engwerda CR (2007) Balancing immunity and pathology in visceral leishmaniasis. 
Immunology and cell biology 85 (2):138-147. doi:10.1038/sj.icb7100011 
46. Hermida MD, de Melo CVB, Lima IDS, Oliveira GGS, Dos-Santos WLC (2018) Histological 
Disorganization of Spleen Compartments and Severe Visceral Leishmaniasis. Frontiers in cellular and 
infection microbiology 8:394. doi:10.3389/fcimb.2018.00394 
47. Gardinassi LG, Garcia GR, Costa CH, Costa Silva V, de Miranda Santos IK (2016) Blood 
Transcriptional Profiling Reveals Immunological Signatures of Distinct States of Infection of Humans 
with Leishmania infantum. PLoS Negl Trop Dis 10 (11):e0005123. doi:10.1371/journal.pntd.0005123 



48. Fakiola M, Singh OP, Syn G, Singh T, Singh B, Chakravarty J, Sundar S, Blackwell JM (2019) 
Transcriptional blood signatures for active and amphotericin B treated visceral leishmaniasis in India. 
PLoS Negl Trop Dis 13 (8):e0007673. doi:10.1371/journal.pntd.0007673 
49. Ashwin H, Seifert K, Forrester S, Brown N, MacDonald S, James S, Lagos D, Timmis J, Mottram JC, 
Croft SL, Kaye PM (2018) Tissue and host species-specific transcriptional changes in models of 
experimental visceral leishmaniasis. Wellcome open research 3:135. 
doi:10.12688/wellcomeopenres.14867.2 
50. Kong F, Saldarriaga OA, Spratt H, Osorio EY, Travi BL, Luxon BA, Melby PC (2017) Transcriptional 
Profiling in Experimental Visceral Leishmaniasis Reveals a Broad Splenic Inflammatory Environment 
that Conditions Macrophages toward a Disease-Promoting Phenotype. PLoS Pathog 13 
(1):e1006165. doi:10.1371/journal.ppat.1006165 
51. Loria-Cervera EN, Andrade-Narvaez FJ (2014) Animal models for the study of leishmaniasis 
immunology. Rev Inst Med Trop Sao Paulo 56 (1):1-11. doi:10.1590/s0036-46652014000100001 
52. Carvalho LP, Passos S, Schriefer A, Carvalho EM (2012) Protective and pathologic immune 
responses in human tegumentary leishmaniasis. Front Immunol 3:301. 
doi:10.3389/fimmu.2012.00301 
53. Ives A, Ronet C, Prevel F, Ruzzante G, Fuertes-Marraco S, Schutz F, Zangger H, Revaz-Breton M, 
Lye LF, Hickerson SM, Beverley SM, Acha-Orbea H, Launois P, Fasel N, Masina S (2011) Leishmania 
RNA virus controls the severity of mucocutaneous leishmaniasis. Science (New York, NY) 331 
(6018):775-778. doi:10.1126/science.1199326 
54. Novais FO, Carvalho AM, Clark ML, Carvalho LP, Beiting DP, Brodsky IE, Carvalho EM, Scott P 
(2017) CD8+ T cell cytotoxicity mediates pathology in the skin by inflammasome activation and IL-
1beta production. PLoS Pathog 13 (2):e1006196. doi:10.1371/journal.ppat.1006196 
55. Rossi M, Castiglioni P, Hartley MA, Eren RO, Prevel F, Desponds C, Utzschneider DT, Zehn D, Cusi 
MG, Kuhlmann FM, Beverley SM, Ronet C, Fasel N (2017) Type I interferons induced by endogenous 
or exogenous viral infections promote metastasis and relapse of leishmaniasis. Proceedings of the 
National Academy of Sciences of the United States of America 114 (19):4987-4992. 
doi:10.1073/pnas.1621447114 
56. Alvar J, Croft SL, Kaye P, Khamesipour A, Sundar S, Reed SG (2013) Case study for a vaccine 
against leishmaniasis. Vaccine 31 Suppl 2:B244-249. doi:10.1016/j.vaccine.2012.11.080 
57. Schroeder J, Aebischer T (2011) Vaccines for leishmaniasis: from proteome to vaccine 
candidates. Hum Vaccin 7 Suppl:10-15. doi:10.4161/hv.7.0.14556 
58. Masic A, Hurdayal R, Nieuwenhuizen NE, Brombacher F, Moll H (2012) Dendritic cell-mediated 
vaccination relies on interleukin-4 receptor signaling to avoid tissue damage after Leishmania major 
infection of BALB/c mice. PLoS Negl Trop Dis 6 (7):e1721. doi:10.1371/journal.pntd.0001721 
59. Majumder S, Bhattacharjee A, Paul Chowdhury B, Bhattacharyya Majumdar S, Majumdar S 
(2014) Antigen-Pulsed CpG-ODN-Activated Dendritic Cells Induce Host-Protective Immune Response 
by Regulating the T Regulatory Cell Functioning in Leishmania donovani-Infected Mice: Critical Role 
of CXCL10. Frontiers in Immunology 5 (261). doi:10.3389/fimmu.2014.00261 
60. Cecilio P, Perez-Cabezas B, Fernandez L, Moreno J, Carrillo E, Requena JM, Fichera E, Reed SG, 
Coler RN, Kamhawi S, Oliveira F, Valenzuela JG, Gradoni L, Glueck R, Gupta G, Cordeiro-da-Silva A 
(2017) Pre-clinical antigenicity studies of an innovative multivalent vaccine for human visceral 
leishmaniasis. PLoS Negl Trop Dis 11 (11):e0005951. doi:10.1371/journal.pntd.0005951 
61. Das S, Freier A, Boussoffara T, Das S, Oswald D, Losch FO, Selka M, Sacerdoti-Sierra N, Schonian 
G, Wiesmuller KH, Seifert K, Schroff M, Juhls C, Jaffe CL, Roy S, Das P, Louzir H, Croft SL, Modabber F, 
Walden P (2014) Modular multiantigen T cell epitope-enriched DNA vaccine against human 
leishmaniasis. Science translational medicine 6 (234):234ra256. doi:10.1126/scitranslmed.3008222 
62. Osman M, Mistry A, Keding A, Gabe R, Cook E, Forrester S, Wiggins R, Di Marco S, Colloca S, Siani 
L, Cortese R, Smith DF, Aebischer T, Kaye PM, Lacey CJ (2017) A third generation vaccine for human 
visceral leishmaniasis and post kala azar dermal leishmaniasis: First-in-human trial of ChAd63-KH. 
PLOS Neglected Tropical Diseases 11 (5):e0005527. doi:10.1371/journal.pntd.0005527 



63. Gannavaram S, Torcivia J, Gasparyan L, Kaul A, Ismail N, Simonyan V, Nakhasi HL (2017) Whole 
genome sequencing of live attenuated Leishmania donovani parasites reveals novel biomarkers of 
attenuation and enables product characterization. Scientific reports 7 (1):4718. doi:10.1038/s41598-
017-05088-4 
64. Maroof A, Brown N, Smith B, Hodgkinson MR, Maxwell A, Losch FO, Fritz U, Walden P, Lacey CN, 
Smith DF, Aebischer T, Kaye PM (2012) Therapeutic vaccination with recombinant adenovirus 
reduces splenic parasite burden in experimental visceral leishmaniasis. The Journal of infectious 
diseases 205 (5):853-863. doi:10.1093/infdis/jir842 
65. Toepp A, Larson M, Wilson G, Grinnage-Pulley T, Bennett C, Leal-Lima A, Anderson B, Parrish M, 
Anderson M, Fowler H, Hinman J, Kontowicz E, Jefferies J, Beeman M, Buch J, Saucier J, Tyrrell P, 
Gharpure R, Cotter C, Petersen C (2018) Randomized, controlled, double-blinded field trial to assess 
Leishmania vaccine effectiveness as immunotherapy for canine leishmaniosis. Vaccine 36 (43):6433-
6441. doi:10.1016/j.vaccine.2018.08.087 
66. WHO (2016) Leishmaniasis in high-burden countries: an epidemiological update based on data 
reported in 2014 WHO Weekly epidemiological record 22 (91):285-296 
67. Organization WECotCotLWH (2010) Control of the leishmaniases: report of a meeting of the 
WHO Expert Commitee on the Control of Leishmaniases vol 949. World Health Organization, Geneva 
68. Ghose AC, Haldar JP, Pal SC, Mishra BP, Mishra KK (1980) Serological investigations on Indian 
kala-azar. Clin Exp Immunol 40 (2):318-326 
69. Boelaert M, Verdonck K, Menten J, Sunyoto T, van Griensven J, Chappuis F, Rijal S (2014) Rapid 
tests for the diagnosis of visceral leishmaniasis in patients with suspected disease. The Cochrane 
database of systematic reviews (6):Cd009135. doi:10.1002/14651858.CD009135.pub2 
70. Chappuis F, Sundar S, Hailu A, Ghalib H, Rijal S, Peeling RW, Alvar J, Boelaert M (2007) Visceral 
leishmaniasis: what are the needs for diagnosis, treatment and control? Nature Reviews 
Microbiology 5 (11):873-882 
71. Bhattacharyya T, Boelaert M, Miles MA (2013) Comparison of visceral leishmaniasis diagnostic 
antigens in African and Asian Leishmania donovani reveals extensive diversity and region-specific 
polymorphisms. PLoS Negl Trop Dis 7 (2):e2057. doi:10.1371/journal.pntd.0002057 
72. Bhattacharyya T, Bowes DE, El-Safi S, Sundar S, Falconar AK, Singh OP, Kumar R, Ahmed O, 
Boelaert M, Miles MA (2014) Significantly lower anti-Leishmania IgG responses in Sudanese versus 
Indian visceral leishmaniasis. PLoS Negl Trop Dis 8 (2):e2675. doi:10.1371/journal.pntd.0002675 
73. Pattabhi S, Whittle J, Mohamath R, El-Safi S, Moulton GG, Guderian JA, Colombara D, Abdoon 
AO, Mukhtar MM, Mondal D, Esfandiari J, Kumar S, Chun P, Reed SG, Bhatia A (2010) Design, 
development and evaluation of rK28-based point-of-care tests for improving rapid diagnosis of 
visceral leishmaniasis. PLoS Negl Trop Dis 4 (9). doi:10.1371/journal.pntd.0000822 
74. Bezuneh A, Mukhtar M, Abdoun A, Teferi T, Takele Y, Diro E, Jemaneh A, Shiferaw W, Wondimu 
H, Bhatia A, Howard RF, Ghalib H, Ireton GC, Hailu A, Reed SG (2014) Comparison of point-of-care 
tests for the rapid diagnosis of visceral leishmaniasis in East African patients. The American journal 
of tropical medicine and hygiene 91 (6):1109-1115. doi:10.4269/ajtmh.13-0759 
75. Mukhtar M, Abdoun A, Ahmed AE, Ghalib H, Reed SG, Boelaert M, Menten J, Khair MM, Howard 
RF (2015) Diagnostic accuracy of rK28-based immunochromatographic rapid diagnostic tests for 
visceral leishmaniasis: a prospective clinical cohort study in Sudan. Trans R Soc Trop Med Hyg 109 
(9):594-600. doi:10.1093/trstmh/trv060 
76. Mukhtar M, Ali SS, Boshara SA, Albertini A, Monnerat S, Bessell P, Mori Y, Kubota Y, Ndung'u JM, 
Cruz I (2018) Sensitive and less invasive confirmatory diagnosis of visceral leishmaniasis in Sudan 
using loop-mediated isothermal amplification (LAMP). PLoS Negl Trop Dis 12 (2):e0006264. 
doi:10.1371/journal.pntd.0006264 
77. Subramaniam KS, Austin V, Schocker NS, Montoya AL, Anderson MS, Ashmus RA, Mesri M, Al-
Salem W, Almeida IC, Michael K, Acosta-Serrano A (2018) Anti-alpha-Gal antibodies detected by 
novel neoglycoproteins as a diagnostic tool for Old World cutaneous leishmaniasis caused by 
Leishmania major. Parasitology 145 (13):1758-1764. doi:10.1017/s0031182018000860 



78. Monge-Maillo B, Norman FF, Cruz I, Alvar J, Lopez-Velez R (2014) Visceral leishmaniasis and HIV 
coinfection in the Mediterranean region. PLoS Negl Trop Dis 8 (8):e3021. 
doi:10.1371/journal.pntd.0003021 
79. Diro E, Lynen L, Ritmeijer K, Boelaert M, Hailu A, van Griensven J (2014) Visceral Leishmaniasis 
and HIV coinfection in East Africa. PLoS Negl Trop Dis 8 (6):e2869. doi:10.1371/journal.pntd.0002869 
80. Gidwani K, Picado A, Ostyn B, Singh SP, Kumar R, Khanal B, Lejon V, Chappuis F, Boelaert M, 
Sundar S (2011) Persistence of Leishmania donovani antibodies in past visceral leishmaniasis cases in 
India. Clinical and vaccine immunology : CVI 18 (2):346-348. doi:10.1128/cvi.00473-10 
81. Bhattacharyya T, Ayandeh A, Falconar AK, Sundar S, El-Safi S, Gripenberg MA, Bowes DE, 
Thunissen C, Singh OP, Kumar R, Ahmed O, Eisa O, Saad A, Silva Pereira S, Boelaert M, Mertens P, 
Miles MA (2014) IgG1 as a potential biomarker of post-chemotherapeutic relapse in visceral 
leishmaniasis, and adaptation to a rapid diagnostic test. PLoS Negl Trop Dis 8 (10):e3273. 
doi:10.1371/journal.pntd.0003273 
82. Marlais T, Bhattacharyya T, Singh OP, Mertens P, Gilleman Q, Thunissen C, Hinckel BCB, Pearson 
C, Gardner BL, Airs S, de la Roche M, Hayes K, Hafezi H, Falconar AK, Eisa O, Saad A, Khanal B, 
Bhattarai NR, Rijal S, Boelaert M, El-Safi S, Sundar S, Miles MA (2018) Visceral Leishmaniasis IgG1 
Rapid Monitoring of Cure vs. Relapse, and Potential for Diagnosis of Post Kala-Azar Dermal 
Leishmaniasis. Frontiers in cellular and infection microbiology 8:427. doi:10.3389/fcimb.2018.00427 
83. Mollett G, Bremer Hinckel BC, Bhattacharyya T, Marlais T, Singh OP, Mertens P, Falconar AK, El-
Safi S, Sundar S, Miles MA (2019) Detection of Immunoglobulin G1 Against rK39 Improves 
Monitoring of Treatment Outcomes in Visceral Leishmaniasis. Clinical infectious diseases : an official 
publication of the Infectious Diseases Society of America 69 (7):1130-1135. doi:10.1093/cid/ciy1062 
84. Kohanteb J, Ardehali SM, Rezai HR (1987) Detection of Leishmania donovani soluble antigen and 
antibody in the urine of visceral leishmaniasis patients. Trans R Soc Trop Med Hyg 81 (4):578-580. 
doi:10.1016/0035-9203(87)90414-7 
85. De Colmenares M, Portus M, Riera C, Gallego M, Aisa MJ, Torras S, Munoz C (1995) Short report: 
detection of 72-75-kD and 123-kD fractions of Leishmania antigen in urine of patients with visceral 
leishmaniasis. The American journal of tropical medicine and hygiene 52 (5):427-428. 
doi:10.4269/ajtmh.1995.52.427 
86. Azazy AA, Chance ML, Devaney E (1997) A time-course study of circulating antigen and parasite-
specific antibody in cotton rats infected with Leishmania donovani. Ann Trop Med Parasitol 91 
(2):153-162. doi:10.1080/00034983.1997.11813125 
87. Vallur AC, Tutterrow YL, Mohamath R, Pattabhi S, Hailu A, Abdoun AO, Ahmed AE, Mukhtar M, 
Salam MA, Almeida ML, Almeida RP, Mondal D, Albertini A, Ghalib H, Duthie MS, Reed SG (2015) 
Development and comparative evaluation of two antigen detection tests for Visceral Leishmaniasis. 
BMC Infect Dis 15:384. doi:10.1186/s12879-015-1125-3 
88. Gao CH, Yang YT, Shi F, Wang JY, Steverding D, Wang X (2015) Development of an 
Immunochromatographic Test for Diagnosis of Visceral Leishmaniasis Based on Detection of a 
Circulating Antigen. PLoS Negl Trop Dis 9 (6):e0003902. doi:10.1371/journal.pntd.0003902 
89. Cruz I, Albertini A, Barbeitas M, Arana B, Picado A, Ruiz-Postigo JA, Ndung'u JM (2019) Target 
Product Profile for a point-of-care diagnostic test for dermal leishmaniases. Parasite epidemiology 
and control 5:e00103. doi:10.1016/j.parepi.2019.e00103 
90. Ben Salah A, Zaatour A, Gharbi A, Bettaieb J, Ghawar W, Khedher A Clinical evaluation of CL 
detect TM rapid test for cutaneous leishmaniasis: Performance characteristics when compared to 
smear microscopy at multiple test sites. In: ASTMH, New Orleans, 2014.  
91. Bennis I, Verdonck K, El Khalfaoui N, Riyad M, Fellah H, Dujardin JC, Sahibi H, Bouhout S, Van der 
Auwera G, Boelaert M (2018) Accuracy of a Rapid Diagnostic Test Based on Antigen Detection for the 
Diagnosis of Cutaneous Leishmaniasis in Patients with Suggestive Skin Lesions in Morocco. The 
American journal of tropical medicine and hygiene 99 (3):716-722. doi:10.4269/ajtmh.18-0066 
92. Vink MMT, Nahzat SM, Rahimi H, Buhler C, Ahmadi BA, Nader M, Zazai FR, Yousufzai AS, van 
Loenen M, Schallig H, Picado A, Cruz I (2018) Evaluation of point-of-care tests for cutaneous 



leishmaniasis diagnosis in Kabul, Afghanistan. EBioMedicine 37:453-460. 
doi:10.1016/j.ebiom.2018.10.063 
93. de Ruiter CM, van der Veer C, Leeflang MM, Deborggraeve S, Lucas C, Adams ER (2014) 
Molecular tools for diagnosis of visceral leishmaniasis: systematic review and meta-analysis of 
diagnostic test accuracy. Journal of clinical microbiology 52 (9):3147-3155. doi:10.1128/jcm.00372-
14 
94. Weigle KA, Labrada LA, Lozano C, Santrich C, Barker DC (2002) PCR-based diagnosis of acute and 
chronic cutaneous leishmaniasis caused by Leishmania (Viannia). Journal of clinical microbiology 40 
(2):601-606. doi:10.1128/jcm.40.2.601-606.2002 
95. Eroglu F, Uzun S, Koltas IS (2014) Comparison of clinical samples and methods in chronic 
cutaneous leishmaniasis. The American journal of tropical medicine and hygiene 91 (5):895-900. 
doi:10.4269/ajtmh.13-0582 
96. Nzelu CO, Kato H, Peters NC (2019) Loop-mediated isothermal amplification (LAMP): An 
advanced molecular point-of-care technique for the detection of Leishmania infection. PLoS Negl 
Trop Dis 13 (11):e0007698. doi:10.1371/journal.pntd.0007698 
97. Selvapandiyan A, Croft SL, Rijal S, Nakhasi HL, Ganguly NK (2019) Innovations for the elimination 
and control of visceral leishmaniasis. PLoS Negl Trop Dis 13 (9):e0007616. 
doi:10.1371/journal.pntd.0007616 
98. WHO (2017) Integrating neglected tropical diseeases into global health and development: fourth 
WHO report on neglecte tropical diseases. World Health Organisation,  
99. Rijal S, Sundar S, Mondal D, Das P, Alvar J, Boelaert M (2019) Eliminating visceral leishmaniasis in 
South Asia: the road ahead. BMJ (Clinical research ed) 364:k5224. doi:10.1136/bmj.k5224 
100. Medley GF, Hollingsworth TD, Olliaro PL, Adams ER (2015) Health-seeking behaviour, 
diagnostics and transmission dynamics in the control of visceral leishmaniasis in the Indian 
subcontinent. Nature 528 (7580):S102-S108. doi:10.1038/nature16042 

http://www.nature.com/nature/journal/v528/n7580_supp_custom/abs/nature16042.html#supple
mentary-information 
101. Rijal S, Boelaert M, Regmi S, Karki BM, Jacquet D, Singh R, Chance ML, Chappuis F, Hommel M, 
Desjeux P, Van der Stuyft P, Le Ray D, Koirala S (2004) Evaluation of a urinary antigen-based latex 
agglutination test in the diagnosis of kala-azar in eastern Nepal. Tropical medicine & international 
health : TM & IH 9 (6):724-729. doi:10.1111/j.1365-3156.2004.01251.x 
102. Salam MA, Khan MG, Mondal D (2011) Urine antigen detection by latex agglutination test for 
diagnosis and assessment of initial cure of visceral leishmaniasis. Trans R Soc Trop Med Hyg 105 
(5):269-272. doi:10.1016/j.trstmh.2010.12.007 
103. Attar ZJ, Chance ML, el-Safi S, Carney J, Azazy A, El-Hadi M, Dourado C, Hommel M (2001) Latex 
agglutination test for the detection of urinary antigens in visceral leishmaniasis. Acta Trop 78 (1):11-
16. doi:10.1016/s0001-706x(00)00155-8 
104. Picado A, Cruz I, Sampath R, Ndung'u JM (2019) An antigen detectin rapid diagnostic test (RDT) 
to acelerate control and elimination of visceral leishmaniasis. 11th European Congress on Tropical 
Medicine and International Health 113. doi:10.1093/trstmh/trz0  
105. Molina R, Gradoni L, Alvar J (2003) HIV and the transmission of Leishmania. Ann Trop Med 
Parasitol 97 Suppl 1:29-45. doi:10.1179/000349803225002516 
106. Molina R, Ghosh D, Carrillo E, Monnerat S, Bern C, Mondal D, Alvar J (2017) Infectivity of Post-
Kala-azar Dermal Leishmaniasis Patients to Sand Flies: Revisiting a Proof of Concept in the Context of 
the Kala-azar Elimination Program in the Indian Subcontinent. Clinical infectious diseases : an official 
publication of the Infectious Diseases Society of America 65 (1):150-153. doi:10.1093/cid/cix245 
107. Zijlstra EE (2019) Biomarkers in Post-kala-azar Dermal Leishmaniasis. Frontiers in cellular and 
infection microbiology 9:228. doi:10.3389/fcimb.2019.00228 
108. Verma S, Avishek K, Sharma V, Negi NS, Ramesh V, Salotra P (2013) Application of loop-
mediated isothermal amplification assay for the sensitive and rapid diagnosis of visceral 

http://www.nature.com/nature/journal/v528/n7580_supp_custom/abs/nature16042.html#supplementary-information
http://www.nature.com/nature/journal/v528/n7580_supp_custom/abs/nature16042.html#supplementary-information


leishmaniasis and post-kala-azar dermal leishmaniasis. Diagnostic microbiology and infectious 
disease 75 (4):390-395. doi:10.1016/j.diagmicrobio.2013.01.011 
109. Silva-Barrios S, Stager S (2019) Hypergammaglobulinemia sustains the development of 
regulatory responses during chronic Leishmania donovani infection in mice. Eur J Immunol 49 
(7):1082-1091. doi:10.1002/eji.201847917 
110. da Silva Junior GB, Guardão Barros EJ, De Francesco Daher E (2014) Kidney involvement in 
leishmaniasis—a review. The Brazilian Journal of Infectious Diseases 18 (4):434-440. 
doi:https://doi.org/10.1016/j.bjid.2013.11.013 
111. Cello JP, Day LW (2009) Idiopathic AIDS Enteropathy and Treatment of Gastrointestinal 
Opportunistic Pathogens. Gastroenterology 136 (6):1952-1965. doi:10.1053/j.gastro.2008.12.073 
112. Aronson N, Herwaldt BL, Libman M, Pearson R, Lopez-Velez R, Weina P, Carvalho E, Ephros M, 
Jeronimo S, Magill A (2017) Diagnosis and Treatment of Leishmaniasis: Clinical Practice Guidelines by 
the Infectious Diseases Society of America (IDSA) and the American Society of Tropical Medicine and 
Hygiene (ASTMH). The American journal of tropical medicine and hygiene 96 (1):24-45. 
doi:10.4269/ajtmh.16-84256 
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Table 1.  Leishmaniasis – species and clinical manifestations.  

Main Leishmania 

species  

Clinical  

presentations 

 Main Reservoir Countries or regions found 

L. donovani VL, PKDL Fatal within two years (VL). PKDL lesions 
may follow drug treatment 

Humans 
India, Bangladesh, Ethiopia, Sudan, 

South Sudan 

L. tropica CL, LR, rarely VL Self-healing within 12-18 months Humans 
East Mediterranean, Middle East, 

North Africa 

L. aethiopica CL, DCL, DsCL  Self-healing (except DCL) within 2-5 years. Hyraxes Ethiopia, Kenya 

L. major CL Self-healing within 3-12 months. Rodents 
North Africa, Middle East, Central 

Asia, West Africa 

L. infantum  
[L. chagasi]  

VL, CL 
Can be fatal within two years (VL), most 

adults asymptomatic 
Dogs, humans 

China, South Europe, Brazil, 
South and Central America 

L. braziliensis CL, MCL, DCL, LR 
May self-heal within six months. 

< 5% progress to MCL. 
Dogs, Humans, 

Rodents 
South America 

L. amazonensis CL, DCL, DsCL Not well described. 
Marsupials,  

Rodents 
South America 

L. guyanensis CL, DsCL, MCL May self-heal within six months. 
Marsupials, 

Sloths 
South America 

L. mexicana CL, DCL, DsCL Often self-healing within 3-4 months. 
Rodents, 

Marsupials 
South America 

VL= Visceral Leishmaniasis; PKDL = Post-Kala-Azar Dermal Leishmaniasis; CL = Cutaneous Leishmaniasis; MCL = Mucocutaneous Leishmaniasis; DCL = Diffuse 
Cutaneous Leishmaniasis; DsCL = Disseminated Cutaneous Leishmaniasis; LR = Leishmaniasis Recidivans   
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Abstract 

 

Leishmaniasis is a disease complex caused by 20 species of protozoan parasites 

belonging to the genus Leishmania. In humans the it has two main clinical forms, 

visceral leishmaniasis (VL) and cutaneous or tegumentary leishmaniasis (CL), as well 

as several other cutaneous manifestations in a minority of cases. In the mammalian 

host Leishmania parasites infect different populations of macrophages where they multiply and 

survive in the phagolysosomal compartment. The progression of both VL and CL 

depends on the maintenance of a parasite-specific immunosuppressive state based 

around this host macrophage infection. The complexity and variation of immune 

responses and immunopathology in humans and the different host interactions of the 

different Leishmania species has an impact upon the effectiveness of vaccines, 

diagnostics and drugs. 
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1. Introduction 

Leishmaniasis is a disease complex with two main clinical presentations – visceral leishmaniasis (VL, 

or kala-azar) and cutaneous leishmaniasis (CL). Both VL and CL have a worldwide distribution in 

nearly 100 endemic countries. Overall the number of potentially fatal VL cases has decreased during 

the past decade with an estimated annual incidence of less than 50,000 (2017 figures, 

https://www.who.int/leishmaniasis/burden/en accessed 01.10.19) with seven countries: Brazil, 

Ethiopia, India, Kenya, Somalia, South Sudan and Sudan having the major burden. The decrease in VL 

case numbers in the Indian subcontinent (ISC) is coincident with the introduction of a regional 

elimination programme launched in 2005, with improved access to diagnosis and treatment. The 

naturally cyclical pattern of transmission intensity of this anthroponotic disease may also contribute to 

this decrease in the ISC. In contrast, the number of cases in East Africa has not fallen and this endemic 

area is now a major focus for control programmes. The estimated worldwide annual incidence of CL is 

between 0.7 to 1.2 million cases [1] with Central and South America, the Middle East, Ethiopia and 

North Africa being the major endemic areas. Far less attention has been paid to the control and treatment 

of CL, a predominantly zoonotic and a slow self-curing disease (3 – 18 months in most cases) with 

disfigurement and stigma being the main corollaries of infection. In addition, there are rarer variants of 

CL: mucocutaneous leishmaniasis (MCL), diffuse cutaneous leishmaniasis (DCL), disseminated 

cutaneous leishmaniasis (DsCL), leishmaniasis recidivans (LR) and post-kala-azar dermal 

leishmaniasis (PKDL). With CL, these variant skin manifestations are often referred to collectively as 

the tegumentary leishmaniases (TL).  PKDL is a perplexing clinical presentation which follows cure of 

VL (5-10.% cases in Asia, up to 50% cases in East Africa, [2,3]).  

 

The protozoan parasites that cause VL and TL belong to at least 20 distinct species of the genus 

Leishmania (with new species being identified in the past decade) that are transmitted between 

mammalian hosts by female phlebotomine sandflies. Different species of Leishmania are largely 

responsible for the diverse clinical manifestations (Table 1) which are generated by the interplay 

between the parasite, host factors and vector biology. However, clinical cases reports suggest these 

https://www.who.int/leishmaniasis/burden/en


species-dependent clinical outcomes are not distinct.  In the sand fly gut Leishmania parasites exist as 

flagellated promastigote forms, while in the mammalian host the parasites invade macrophages losing 

their flagellum and transforming into to the intracellular amastigote. The amastigote multiplies and 

survives in the phagolysosomal compartment of the macrophage.  It has long been known that 

promastigotes differentiate within the sandfly to generate infective “metacyclic” forms [4-6]  and recent 

evidence suggests that there may also be heterogeneity in the intracellular amastigote form [7-9]. 

Leishmania parasites actively manipulate both of their hosts. In the sandfly, transmission efficiency of 

metacyclic promastigotes is enhanced by secretion of a proteophosphoglycan-rich, mucin-like gel 

(Promastigote Secretory Gel, PSG), which accumulates in the sand fly gut and mouthparts [10].  

Mammalian infection is established in the skin following the inoculation of metacyclic promastigotes 

that possess a lipophosphoglycan coat that enables them to resist complement and attach to and invade 

host cells. Peptides in sand fly saliva (for example, maxadilan) cause vasodilation and erythema that 

also aids the establishment of the infection in macrophages in the dermal layer of the skin [11]. Early 

responses to infection involve neutrophil infiltration and invasion of resident macrophages. Progress of 

the disease depends on the parasite species and host responses. For both VL and CL, disease progression 

depends on the maintenance of a parasite-specific immunosuppressive state including host cell 

macrophages. A key difference between VL and CL is the propensity of VL-causing species (Table 1) 

to cause disease at systemic sites, invading macrophages of the liver, spleen and bone marrow, with 

minimal skin pathology. Restoration of macrophage function, either through the development of an 

appropriate immune response or therapeutic intervention, can lead to amastigote killing in macrophages 

by nitric oxide and oxygen radicals. Resolution of disease following the activation of macrophages is 

enhanced by T helper 1 (Th1) - like responses mediated through the interaction of antigen-presenting 

cells (e.g., dendritic cells, macrophages) with CD4+ and CD8+ T cells and subsequent secretion of pro-

inflammatory cytokines, including interferon-γ (IFNγ) and tumor necrosis factor (TNF). In clinical 

forms of VL and in DCL, Th2 – like cell responses (including Il-4 and IL-13) are also evident [12,13] 

and inhibition of macrophage activation and immune dysregulation may be mediated through IL-10 and 

transforming growth factor-β (TGFβ) [14].  Immune responses and immunoregulatory pathways have 

been extensively defined in experimental inbred mice that show some but not all the characteristics of 



human disease [15,16].  Immune responses directed against the parasite may also playing a pathogenic 

role and contribute to tissue damage and clinical severity (see below).  

 

The prevention, treatment and control of both CL and VL depends on drugs, diagnostics and vaccines, 

as described in recent comprehensive reviews [2,17]. The complexity and variation of immune 

responses and immunopathology in humans and the different host interactions of the Leishmania 

species has an impact upon the effectiveness of these tools (Fig. 1). Recent studies have significantly 

increased our understanding of these interactions and suggested new strategies for discovery and 

development, and such data are the focus of this review.  

 

2. Key features of immunopathology in leishmaniasis  

Virulence factors allow pathogenic microbes to establish infection, colonise, replicate and disseminate 

throughout the host, evade anti-microbial immunity and facilitate transmission.  A plethora of 

Leishmania derived molecules have been described and reviewed elsewhere that have the cardinal 

properties of bona fide virulence factors [18]. Although some pathogens liberate virulence factors that 

directly cause tissue damage e.g. gangrene due to collagenases and phospholipases produced by 

Clostridium perfringens, similar factors have not yet been described for Leishmania.  Rather, clinical 

symptoms in leishmaniasis are, for the most part, the result of inappropriate immune responses 

leading to collateral damage to host tissues.  Hence, for its clinically relevant features, leishmaniasis 

represents a disease driven by immunopathology.  Hence, the “appropriateness” of an inflammatory / 

immune response, defined by its ability to strike the delicate balance between removal of Leishmania 

parasites and the minimization of pathology, may be defined by its quality, quantity or kinetics as well 

as by the parasite species under study.  Some of the key features of the immunopathology associated 

with leishmaniasis are described below.  

Macrophage activation: Macrophage activation is a central tenet of anti-leishmanial immunity, and 

the capacity of macrophages to polarise their functions towards the generation anti-microbial effector 

molecules such as NO and O2
-  under the influence of type 1 cytokines (classical activation) or 



towards the generation of arginine and polyamines under the influence of type 2 cytokines (alternate 

activation) is well established.  However, the simple assumption that type I cytokines are “protective” 

and type 2 cytokines are “detrimental” is not always borne out by the literature.  For example, IL-4, 

the prototypic Th-2 cytokine, plays an important early role in the generation of host protective CD4+ 

IFN+ Th-1 cells in murine models of CL [19] and IL-4R signalling is required for optimal protection 

in primary resistance and vaccine-induced immunity in experimental VL [20-22].   Similarly, 

chemotherapy with sodium stibogluconate (SSG) in models of VL also requires IL-4R signalling for 

optimal effectiveness [22].  More recent evidence indicates that cytokines influence macrophage 

metabolic states, with consequences for the amastigote’s access to required nutrients.  Specific 

metabolic countermeasures may have evolved to combat these stresses and ensure long lived 

parasitism [23].   

Tissue macrophages have two origins. Resident tissue macrophages originate from embryonic yolk 

sac-derived progenitors, fully differentiate to acquire their mature characteristics under the direction 

of tissue-specific transcription factors / tissue-derived cues and have the capacity of self-renewal.  In 

contrast, relatively short-lived tissue macrophages originate from hematopoietic stem cells via 

monocyte precursors [24,25].  Resident tissue macrophages play many of the key roles in tissue 

homeostasis and function, and they have been identified as niches for survival of L. major in the 

dermis [26] and L. donovani in the liver and spleen [27] and it is likely some of their housekeeping 

properties are impacted on by infection.  Monocytes and monocyte-derived macrophages [28-30], as 

well as dendritic cells [31] and neutrophils [32] may also be targets of infection and serve to regulate 

immunity and pathology though their relatively short life span may suggest that there is greater 

dynamics in the parasite populations they contain.  Recent evidence suggests that the bone marrow 

becomes a target of collateral T cell-mediated damage during VL [33,34] but the consequences of this 

for the dynamics of L. donovani infection in these diverse macrophage pools has yet to be fully 

established.  As discussed below, it is also possible that each of these myeloid cell populations will 

have distinct relationships with anti-leishmanial drugs (see section 5), in addition to their roles in 



tissue repair, remodelling and restoration of homeostasis, that are central to the processes 

underpinning clinical cure.  

 

Granulomatous inflammation:  Granulomatous inflammation is a focal mononuclear cell-rich 

response to poorly degradable foreign material that seeks to wall off the insult and /or focus immune 

responses. Granuloma form and function in experimental, canine and human leishmaniasis have been 

reviewed in detail elsewhere [35].  Granulomatous inflammation is a hallmark of VL and correlates 

well in experimental models with the degree of immune response. Failure of granulomatous 

inflammation may contribute to the severity of HIV-VL coinfection [36].  Although over-exuberant, 

granulomatous inflammation may have directly pathologic consequences, e.g. in schistosomiasis, this 

has rarely been described in VL [37].  In TL, granulomas are more variably observed, and may reflect 

the time of biopsy in relation to disease evolution and causative agent.  For example, a recent study in 

Tunisia demonstrated that both granuloma formation and the extent of the dermal lymphocytic 

infiltrate were minimal in L. major zoonotic CL compared to sporadic CL due to L. infantum [38]. 

Granulomas have also been observed in a majority of cases of non-ulcerating atypical CL due to L. 

infantum in Honduras [39] and are a valuable diagnostic characteristic of CL caused by L. donovani in 

Sri Lanka [40].  Although vaccine induced immunity in a primate models of VL was accompanied 

with enhancement of granuloma formation [41], it is not known whether this is a pre-requisite for 

vaccine-induced protection.  In human vaccine trials, histopathological responses to vaccination have 

not been studied to date, and the histopathologic response documented following leishmanisation was 

not documented [42].  The role of granulomatous inflammation in modifying the response to 

chemotherapy (see section 5 below) has not been formally addressed experimentally or clinically, 

largely because appropriate models do not exist and the invasive nature of tissue biopsies.  It is 

possible that the intensity of granulomatous inflammation alters drug PK properties, and that 

macrophages at the core of such structures represent a “privileged” site for amastigotes, but this 

remains to be formally evaluated.   

 



Alterations in tissue architecture: At homeostasis, each tissue has its own characteristic 

microanatomy, dedicated to performing its main function, be that of barrier or as a site of immune 

response induction.  By definition, tissue homeostasis is disrupted during clinical disease and this has 

been most well characterised in the context of remodelling of lymphoid tissue architecture during 

experimental and canine VL.  Immune tissues are highly compartmentalised, with discrete B and T 

cell zones organised on a framework of stromal cells and fed by lymphatics and blood vessels [43]. 

During normal immune responses, these tissues adapt to allow for clonal retention and proliferation, 

but these are usually short-lived changes. Leishmaniasis poses a long-lived insult to lymphoid tissues 

and these respond by exaggerated degree of remodelling that may negatively impact on immune 

function.  In the spleen of mice, dogs and humans infected with L. donovani / L. infantum, these 

changes include loss of stromal elements (follicular dendritic cells and fibroblastic reticular cells), 

dissolution of the marginal zone, white pulp atrophy and various degrees of admixing of splenic 

leucocyte populations [44-46].   

 

Systemic changes in metabolic and immune pathways: Transcriptomics has recently been applied to a 

variety of experimental models and to human samples in order to provide a more holistic view of the 

pathology associated with both VL and CL.  In human VL, comparisons between the whole blood 

transcriptome of healthy endemic controls with active cases, drug-cured cases and asymptomatic 

individuals have been reported from Brazil [47] and India [48].  Transcriptomic analysis of the 

splenic, hepatic and blood response to infection over time has been performed in mice [49] and for 

spleen only in hamsters [50].  High level analysis of these various reports indicates (i) IFN signatures 

are a prominent feature of infection; (ii) Th2 responses are variably represented with a bias to more 

severe disease; iii) changes associated with cell cycle, lipid metabolism, angiogenesis and 

haematological disturbances are evident in active disease and reduced after treatment; iv) treated 

patients, at least over the time period of study, fail to fully return to a homeostatic state.   Not 

surprisingly, each study also identified unique aspects to the transcriptomic profile.   A 

comprehensive cross-organ analysis in the mouse revealed only a limited concordance of DE genes 



between spleen, blood and liver and a clear lack of concordance across species [49].  Although such 

comparative studies require a degree of caution (due to variations in analytical approach), they serve 

as a reminder of the importance of further research on the pathophysiology of human disease.  

 

CL pathogenesis:  In contrast to VL, where studies on pathology have focused on systemic sites, CL 

immunopathology has largely focused on the skin, though many of the changes observed in chronic 

VL lymphoid tissue may also occur in the lymph nodes draining CL lesion sites.  Precise mapping of 

the nature of the inflammatory lesion and its development over time has been reported in murine 

models of CL, most notably due to L. major infection, but also with L. mexicana and L. braziliensis, 

with an emphasis on identifying determinants of host protection (reviewed in [51]) .  More recent 

studies spurred on by clinical observations in human L. braziliensis infection [52] and the 

identification of Leishmania viruses in metastatic strains of L. guyanensis [53] have focused on 

determinants of excessive host pathology.  In L. braziliensis infection, a pathogenic role for CD8+ T 

cells has now been firmly established. At a mechanistic level, highly cytotoxic CD8+ T cells are 

believed to induce the release of cellular DAMPS that trigger inflammasome activation that 

perpetuates the inflammatory cascade. These studies provide opportunities for novel forms of 

immunotherapy to minimise tissue damage [54].  Viral infections are well known as stimulators of the 

type I interferon response and it has been shown that type I interferons either driven by endogenous 

symbiont Leishmania viruses or through concomitant bystander viral infection can lead enhance the 

metastatic potential of L. guyanensis in mouse models [55].  These data require further substantiation 

in a clinical setting, however, but also pose questions regarding novel therapeutic approaches.    

 

3. Vaccines  

The case supporting development of a vaccine for leishmaniasis from a scientific and public health 

perspective has been made many times elsewhere [56].  Vaccine research has included the full range 

of techniques for antigen identification (from the use of serology through to computational prediction, 



[57]) and almost all conceivable vaccine delivery strategies, including cellular vaccination with 

antigen-pulsed dendritic cells, [58,59] have been explored for one or other form of leishmaniasis in 

animal models. Barriers to successful development of a vaccine to date have included i) lack of 

translational funding; ii) lack of correlates of immunity, iii) over-dependence on animal models; and 

iv) lack of a coherent programme of advocacy.  Nevertheless, recent years have seen excellent 

progress that has brought four candidate vaccines to or near to the clinic.  These include a 

recombinant fusion protein delivered with strong Th1-inducing adjuvants (LEISHF3+ GLA-SE; [60]), 

a naked multi-epitope DNA vaccine (LeishDNAvax; [61]), an adenovirus-based vaccine (ChAd63-

KH; [62]) and a live genetically attenuated vaccine (L. major/ L. donovani centrin- [63]).  Each has 

taken a different approach to vaccine antigen identification and vaccine delivery, providing a potential 

rich environment in the future for understanding the determinants of vaccine-induced immunity in 

humans.       

 

Prophylactic vaccines by definition are used in non-infected individuals to prevent the development of 

disease. Hence, immunopathology associated with Leishmania infection does not play a determining 

effect on vaccine design or efficacy. This does not rule out, however, that a subset of the target 

population for vaccination in an endemic setting may harbour sub-clinical and undetectable infections 

(using the diagnostic tools discussed below) that nevertheless have some local pathologic 

consequence.  More likely, however is the scenario whereby co-infections or other intrinsic (e.g. 

nutrition) or extrinsic (e.g. UV radiation) environmental factors impact on vaccine-induced 

lymphocyte activation, memory cell generation and /or effector and regulatory cell balance. Due 

attention should be paid to these possible factors when designing and evaluating future clinical trials. 

In contrast, therapeutic vaccines require enhancement of the state of immunity in those already with 

leishmaniasis pathology.  The extent to which ongoing pathology impacts the efficacy of therapeutic 

vaccines for CL is presently unknown and will require carefully designed clinical trials in which 

patients can be stratified according to pathologic criteria.  In animal models of VL, therapeutic 

vaccination can overcome the immunosuppressive state induced by VL [64] and post-exposure 



prophylactic vaccination in L. infantum-infected dogs was shown to reduce progression to 

symptomatic VL [65].  Prevention of PKDL by vaccination of previously treated VL patients poses an 

interesting challenge,  given that the immune status of treated VL patients is likely to have been 

improved but not normalised [48].  A clinical trial to assess this approach is in development 

(clinicaltrials.gov; NCT04107961).  Combination studies of vaccines deployed with additional 

immunomodulators to overcome pathology-induced immune regulation should be actively considered.  

 

4. Diagnostics  

As the leishmaniases are characterized by their clinical pleomorphism confirmation based solely on 

clinical grounds is a challenge. The wide variety of skin and mucosal lesions in CL involves an 

extensive differential diagnosis. In addition, diseases like malaria, infectious mononucleosis and 

malignancies, among others, present with fever, hepatomegaly and splenomegaly as does VL, often 

accompanied by cachexia and malnutrition in chronic courses.   

Parasite demonstration by microscopy of Giemsa stained tissue smears is the gold standard in the 

diagnosis of leishmaniasis; this is not always accessible and has variable sensitivity. Thus laboratory 

confirmation rates before treating CL can be as low as 5% in some settings, with patients being put on 

treatment with potentially toxic drugs without receiving a confirmatory diagnosis [66]. For VL 

invasive tissue sampling is required, usually from bone marrow or spleen and to a lesser extent lymph 

node. This requires expertise and specialised facilities for managing potential complications, so VL 

suspects are usually referred to specialised treatment centres for diagnosis. Because of this WHO 

recommended that a strict case definition for VL, i.e. fever for more than 2 weeks plus 

hepatosplenomegaly and /or wasting; with this a positive serology enables treatment initiation [67].   

Diagnosis for case management 

A common feature in VL is a polyclonal hypergammaglobulinaemia with a marked increase in serum 

IgG level, including IgG with specificity for Leishmania [68]. Therefore, identifying anti-Leishmania 

specific antibodies is currently the cornerstone of VL diagnosis. Rapid diagnostic tests (RDTs) based 



on the recombinant antigen rK39, from a Leishmania infantum strain from Latin America, are widely 

used and they show very good performance in the Indian subcontinent (ISC): 97% sensitivity (95% 

CI: 90.0 - 99.5), 90.2% specificity (95% CI: 76.1 - 97.7). In eastern Africa the specificity is similar 

91.1% (95% CI: 80.3 - 97.3), but the sensitivity drops to 85.3% (95% CI: 74.5 - 93.2) [69]. This 

inferior performance requires that in eastern Africa it is necessary to include the direct agglutination 

test (DAT) in the diagnostic algorithm (Figure 2). This is a robust test based on whole Leishmania 

antigen and it has been extensively validated. It cannot be considered an RDT as it requires some 

degree of laboratory expertise and capacity, and results are obtained after an overnight incubation 

[70]. 

The peculiarities of the antibody response against specific Leishmania antigens are key in the 

performance of serological tests. VL elicits a different immune response and different levels of anti-

Leishmania IgG across regions. rK39-based RDTs are based on a kinesin sequence from an American 

strain of L. infantum (syn. L. chagasi), this can explain the different performance of these tests in 

eastern Africa, where there is a high molecular diversity of the rK39 homologous sequences among 

regional L. donovani strains [71]. Another explanation for this is that there can be a different potency 

in the immune response, exemplified by the finding that anti-Leishmania IgG levels in VL patients 

from Sudan were significantly lower than in patients from India, independently of the geographic 

origin of the leishmanial antigen used to assess this [72]. A new RDT, based on the recombinant 

antigen rK28, may contribute to overcome this problem. The rK28 is a synthetic polyprotein 

containing rK39 repeats from a Sudanese L. donovani strain, flanked by HASPB1 repeats and the 

HASPB2 open reading frame from an Ethiopian strain [73]. Some preliminary studies claim that rK28 

RDTs show better performance in eastern Africa than those using the rK39 antigen; however, data are 

not definitive, as studies comparing rK28 RDTs with the rK39 RDT IT-Leish (Bio-Rad), which is the 

one recommended in most eastern African guidelines for VL, are limited. These studies are either 

non-prospective or use just serum or plasma from well characterized controls and cases (confirmed by 

parasitology) [74-76]. A prospective large scale evaluation of an rK28 RDT will be conducted by the 



AfriKADIA consortium in Ethiopia, Kenya, Sudan and Uganda; results will be available by the end of 

2020 [https://www.afrikadia.org/].  

Unlike in VL, CL is not characterized by an elevated production of anti-Leishmania antibodies, and 

the level of these is also quite variable between the different forms of tegumentary leishmaniasis. 

Therefore, antibody detection tests are not useful in the diagnosis of these forms of leishmaniasis. 

Anti-Leishmania antibodies are barely detectable in CL and to some extent these can be detected in 

ML and DCL but with limited and variable performance [67]. New opportunities for the serological 

diagnosis of CL may be brought by the detection of anti-α-Gal antibodies, with promising preliminary 

results for Old World leishmaniasis, nevertheless this field requires further research [77]. 

In immunosuppressed HIV+ patients, antibody-detection tests have limited sensitivity and cannot be 

used to rule out VL [78,79]. Also, the detection of total anti-Leishmania antibodies is not very helpful 

in the diagnosis of PKDL or VL relapses, as circulating antibodies from previous VL episodes remain 

for long periods even after successful treatment [80]. It seems however that exploring specific IgG 

types can be of help in assessing post-treatment cure and the risk of relapse, as well as in supporting 

the diagnosis of PKDL. The qualitative and quantitative detection of IgG1 in blood or serum/plasma 

samples, by means of ELISA or RDT using whole or recombinant rK39 leishmanial antigen, have 

shown the potential of IgG1 as a biomarker of post-chemotherapeutic relapse, as demonstrated with 

samples from Sudanese and Indian patients [81-83]. 

Antigen-detection tests can help in resolving some of the problems described above, these tests should 

be more specific and can distinguish active from past infections. Most of the approaches used up to 

date for the detection of leishmanial antigens in VL patients have targeted urine [84-86]. A latex 

agglutination test has shown a highly variable sensitivity (36%-100%) and specificity (64%-99%) 

across endemic regions and different groups of patients, including HIV-positive, thus this has not 

been fully implemented [69]. Different antigen detection ELISA tests have been developed, and they 

have shown high sensitivity and specificity in a preliminary study using samples from VL patients 

from different endemic regions, as well as utility in monitoring treatment efficacy [87]. Lack of 

further evaluation, the need to process the sample and the technical requirements of an ELISA tests 



have precluded putting them into routine practice. A more practical approach would be to detect 

leishmanial antigens in blood or serum/plasma. A prototype immunochromatographic test showed 

high sensitivity (96%) and specificity (99%) in the diagnosis of VL in Chinese patients using blood or 

serum [88]; unfortunately, further validation of this test and its results in other settings has not been 

pursued. 

A point-of-care (POC) tests for early diagnosis of CL is much needed to benefit patients and 

communities, its implementation will reduce morbidity and transmission (where this is 

anthroponotic). A target product profile (TPP) for a POC for CL was developed by consultation 

among experts with a  consensus that this POC test should target Leishmania antigens [89]. A 

promising option for the point-of-care diagnosis of CL that fits this TPP is a RDT detecting the 

leishmanial amastigote antigen peroxidoxin, CL DetectTM Rapid Test (InBios International Inc., 

USA). This test has shown variable performance across endemic regions, but for CL due to L. major 

or L. tropica the sensitivity and specificity obtained in different studies in Tunisia, Morocco and 

Afghanistan is acceptable [90-92]. 

Nucleic acid amplification tests (NAATs) have shown good performance in the diagnosis of the 

different forms of leishmaniasis, both in immunodepressed and immunocompetent patients. 

Polymerase chain reaction (PCR)-based methods have proven that confirmatory diagnosis of VL is 

feasible using a less invasive sample such as peripheral blood, and with high sensitivity  [93]. And 

this is especially relevant in CL, when chronic lesions have lower parasite loads that cannot be 

detected by microscopy [94,95]. A limitation to implement PCR-based diagnosis at the POC has been 

the requirement of well-equipped facilities and trained personnel, as well as the lack of 

standardisation, limiting the use of these tools to reference laboratories. Nevertheless, NAATs more 

amenable for use in limited resource settings have been recently developed, a commercial test based 

on the loop-mediated isothermal amplification (LAMP) of DNA, LoopampTM Leishmania Detection 

Kit (Eiken Chemical Co., Japan), overcomes the problem of standardisation. Its performance using 

peripheral blood (97%-99% sensitivity), as demonstrated in a study in Sudan, enables its inclusion in 

the VL diagnostic algorithm, reducing the need for invasive tissue aspiration [76]. A diagnostics 



evaluation study conducted in Afghanistan informed that an algorithm including CL DetectTM Rapid 

Test and LoopampTM Leishmania Detection Kit would have a sensitivity of 93%, minimizing the 

number of patients that would need to be referred for parasitological confirmation [92]. Other studies 

evaluating non-commercial LAMP assays have also reported high sensitivities in the diagnosis of CL, 

VL and PKDL [96]. As such, the diagnosis and management of leishmaniasis would benefit from the 

implementation of accurate NAATs at the POC. 

Diagnostics in the elimination and post-elimination of visceral leishmaniasis 

WHO aims at eliminating VL as a public health problem in the Indian subcontinent (ISC) by 2020. 

The implementation of test-and-treat strategies, relying on the use of antibody-detection RDTs has 

been pivotal in moving towards this target [97]. This effort will need to be sustained in the next few 

years to avoid resurgence and move towards the interruption of Leishmania transmission by 2030 

[98]. However, the current diagnostic tools may not be adequate to support this endeavour. 

More specific tests will be needed in the near and post-VL elimination phases, since the positive 

predictive value of antibody-detection RDTs decreases in a context of low endemicity [97,99]. Only 

VL suspects with symptoms (e.g. fever, splenomegaly) for more than two weeks are tested by the 

current RDTs, which precludes early diagnosis and treatment of acute cases who remain infectious in 

the community. Reducing the time between onset of symptoms and diagnosis-treatment has been 

identified as a key parameter for achieving and sustaining elimination [100]. But current antibody-

detection RDTs do not allow this, as they are not specific for acute VL and need to be interpreted 

along with a clinical case definition [69]. Detection of Leishmania antigens may be a more specific 

approach [101,102,87,88], and these can be detected earlier than anti-Leishmania antibodies [86,103]. 

Thus antigen-detection RDTs would allow diagnosis of VL cases without a time constraint or clinical 

case definition (e.g. < 2 weeks of fever); as described above several approaches for leishmanial 

antigens detection in clinical samples have been developed, but for different reasons these have not 

been implemented. A recent target product profile describes the features of an antigen detection RDT 

that can be used to assist in VL elimination [104]. Antigen detection tests would also allow 

diagnosing VL in groups of patients in which antibody detection tests underperform such as HIV-VL 



co-infected patients, relapses, as well as in PKDL. All these cases are gaining relevance in the last 

stages of the VL elimination in the ISC, as they are an important reservoir of Leishmania and are a 

serious threat to VL elimination [105,106,99].  

Diagnosis of PKDL is a key factor in elimination efforts as well as in patient management, for PKDL 

treatments are long (up to 12 weeks). PKDL diagnosis is challenging as case confirmation requires 

microscopy and/or molecular tests in skin biopsies. As these diagnostic procedures are difficult to 

perform, diagnosis in endemic areas is often made clinically [107]. Antibody detection RDTs, which 

are part of the PKDL diagnosis algorithm in the ISC, have limited value and alternatives such as 

point-of-care molecular tests with promising performance (e.g. LAMP) should be evaluated [108,99].  

There have been few if any studies directly seeking to evaluate the impact of pathology on the design 

and / or performance of diagnostic tests for VL or CL.  Although there may be limitations in 

translating such knowledge, a consideration of the role of pathology in determining the specificity and 

sensitivity of current and future tests may be warranted. For example, perturbations in the regulation 

of antibody responses are linked to disease progression [109] and antibody and antigen half-lives will 

be affected by changes in plasma or lesion protein binding capacity, glomerular filtration rate (e.g. 

secondary to immune complex deposition [110]) and or the degree of enteropathy [111].  Hence, each 

of the parameters highlighted in Fig. 3 will be influenced by the degree of pathology observed during 

the early pre-clinical, clinical and post-treatment phases of the disease.  As above in the case of 

vaccine efficacy, these pathologic changes might occur directly as a consequence of ongoing or 

previous leishmaniasis, but equally so may reflect the indirect immunopathological consequence of 

coinfections or other immune insults.  

 

 

5. Drugs 

There has been considerable progress in the development of treatments for leishmaniasis over the past 

two decades. A number of new drugs have been registered for VL (miltefosine, the liposomal 



formulation AmBisome, paromomycin) with some taking a lead role in disease control and elimination 

programmes [112,2]. At the same time there is an  inadequacy of drugs  for CL [113,114].  However, 

for the first time in history the pipeline of novel oral drugs for the treatment of VL and CL is more 

promising with five novel compounds for VL [115-117] and a renewed focus to find novel treatments 

for CL [118,119]. In this section, two aspects of the drug – immune response interaction will be 

discussed (i) immunosuppression and immunomodulation, and (ii) the impact of immunopathology on 

pharmacokinetics.  

Immunosuppression and immunomodulation 

Interactions between drugs and the immune response have been known, but poorly understood, since 

the early 20th century. It still provides a strong focus for research:  a recent study on antibiotics that 

showed how host cell metabolites both reduce drug activity whilst also enhancing host cell phagocytic 

activity provides an example of such work [120].  For leishmaniasis, as for other infectious diseases, 

there have been two directions of study: (i) to understand why drugs do not work in patients and disease 

models and (ii) the development of a strategy to stimulate/modulate the immune response to overcome 

any immunosuppression or accelerate cure.  

Drugs used for clinical treatment of VL have to work effectively in most endemic regions within the 

context of the immunosuppression provoked by this disease. With the more profound 

immunosuppression associated with HIV VL co-infections, the standard drugs become significantly 

less effective and only co-administrations have been shown to improve treatment [121]. The low 

efficacy of three of the drugs (liposomal amphotericin B, paromomycin and miltefosine) in East African 

VL [122,123]  that are so effective in the Indian subcontinent, has not been explained. Clinical isolates 

from both regions show similar susceptibility to these drugs within standard in vitro assays, so the clear 

implication is that host factors (immunology, pathology, pharmacokinetics [PKs]) are the responsible 

for this difference.  The potential importance of PKs has been illustrated by Dorlo and colleagues [124] 

who have determined different miltefosine exposures in adults and children in East Africa.  There are 

further clinical and experimental observations, one confirming, one confounding: (a) several of the 

drugs that work effectively as VL treatments in immunosuppressed VL patients (ibid) have significant 



dependence on cellular immune responses in mouse models of infection, either immuno-suppressed or 

deficient [125-127], (b)  all the drugs, whether immune or non-immune dependent in these studies, have 

well described interactions with the immune system (see reviews by Dorlo (2012) for miltefosine [128], 

Cohen (2016) for amphotericin B [129] and Murray (2005) for pentavalent antimonials [130]).  It is 

clear that more detailed studies are required to understand these interactions.  

For CL, drugs work within the context of a slow self-cure immune response; exceptions include diffuse 

cutaneous leishmaniasis (DCL) where there is an absence of an effective cellular immune response and 

absence of effective treatment. The objectives for drug treatment, and combinations with 

immunomodulators, are to both reduce the parasite burden and at the same time accelerate self-cure. 

Much of the area lacks clear clinical data due to the absence of robust clinical studies [113,114].   

The central role of the macrophage in the survival of Leishmania parasite has been the driving force 

for most studies on immunomodulation. Have we progressed much further than a statement from 

Bernard Shaw’s play Doctor’s Dilemma (1906) “There is at bottom only one genuinely scientific 

treatment for all diseases, and that is to stimulate the phagocytes” ?  BCG, which has well 

characterised stimulatory interactions with macrophages [131], was the immunodulatory component 

of treatment with pentavalent antimonials and  the recommended treatment for CL in Venezuela 

[132]. It was also used in combination with alum and pentavalent antimonials in clinical trials for the 

treatment of post-kala-azar dermal leishmaniasis [133]. Bacterial cell wall components, muramyl 

dipeptide and trehalose dimycolate have also been used in clinical studies [134] on CL and 

experimental VL [135].  Based on clearer understanding of cytokine-macrophage interaction both 

IFN [136] and GM-CSF [137] have been used in the treatment of both VL and CL. The rationale 

behind the potential application of GM-CSF for CL is threefold: (a) GM-CSF can promote 

proliferation, activation and differentiation of various myeloid cells (macrophages, dendritic cells and 

neutrophils) and their progenitors, (b) clinical trials have reported increased wound healing of diverse 

wound types (including CL) upon topical GM-CSF application, and (iii) CM-CSF is able to modulate 

the tissue immune response by increasing the levels of the anti-inflammatory cytokine IL-10. 

Randomized controlled trials in Brazil have indicated that GM-CSF both after oral [138] and topical 

[139] administration reduced the healing time of CL lesions when given in combination with 



intravenous antimonials.  In addition to its anti-inflammatory role, IL-10 also inhibits IFN induced 

macrophage killing of Leishmania and Murray and colleagues [140] demonstrated in a model of VL 

that blockade of IL-10 using anti-IL-10R antibodies resulted in significant increase in antimonial drug 

activity. A clinical trial to evaluate combining AmBisome with anti-IL-10R antibodies in VL patients 

was proposed but later withdrawn due to unavailability of the required antibody (clinicaltrials.gov; 

NCT01437020).  

Immunomodulator molecules that are also TLR agonists are being pursued for CL treatment. For 

example, CpG-D35, a D-type CpG TLR9 agonist, is currently undergoing Phase-I clinical trials after 

showing it was able to curtail lesion development upon administration to macaque monkeys infected 

with L. major [141]. Earlier studies indicated that this TLR9 agonist induces maturation of plasmacytoid 

dendritic cells and secretion of IFNα and -γ without direct activation of B cells [142]. A  small molecule, 

the imidazoline imiquimod a  TLR7 agonist, was shown  by Matlashewski and colleagues to stimulate 

macrophage functions including signal transduction and  NO production in experimental models, 

sufficient to kill intra-macrophage amastigotes [143]. Subsequent clinical studies using imiquimod as a 

topical adjunct therapy to pentavalent antimonials were inconclusive. Three of these randomized 

controlled trials (RCT) [144-146] showed no significant increased cure rate for the combination of 

imiquimod plus pentavalent antimonials versus antimonials alone. Efforts continue to find more active 

analogues [147].  A different approach was adopted  by Smith et al (2000) with the small molecule, 

tucaresol (in clinical trials for sickle cell disease), an orally bioavailable compound that enhances T-

helper-cell activity, with the induction of increased IL-2 and IFN levels in mice and humans and 

provides a costimulatory signal between macrophages and T-cells [148]. In mouse model of VL 

tucaresol gave a 60% reduction in parasite burden similar to that achieved by INF in the same model.  

Other recent approaches have also added considerably to understanding drug-immune interactions and 

possible new routes forward to immunomodulation and successful cure. Long-term clinical research 

on South American CL [54] showed that NLRP3 inflammasome is activated by CD8+ T cell-mediated 

cytotoxicity and drives disease progression. Based on these observations, the group studied a number 

of small molecule inhibitors of the inflammasome, for example, MCC950 and the diabetes drug 



glyburide.  In mouse models of CL, they showed that mice treatment with compounds that inhibit 

NLRP3 inflammasome activation, MCC950 or glyburide, failed to develop the severe disease seen in 

untreated mice. In VL, more detailed knowledge of the immune response has also been exploited. 

Based on knowledge of the immunopathology of the spleen, the receptor tyrosine kinase inhibitor 

sunitinib maleate was shown to induce restoration of splenic microarchitecture. Although this drug 

did not possess inherent anti-leishmanial activity. it afforded a significant dose sparing effect for 

subsequently administered antimonials [149].  

 

CL is also characterised by local inflammation. A combination of the anti-inflammatory agent, 

pentoxiphylline, with antimonial drugs has been shown to be an important adjunct therapy for some 

forms of CL and mucocutaneous leishmaniasis. In Brazil, randomized controlled trials (RCTs) have 

shown a synergetic effect of pentoxifylline in conjunction to antimonial therapy in ML patients [150] 

whereas this was not observed in patients suffering CL [151,152]. The difference in pentoxifylline 

efficacy as part of a combination therapy between New World CL and ML might be due to distinct 

differences in cytokine and macrophage populations present in the lesion [153] – an observation that 

merits further exploration as it could help elucidate immunomodulatory processes. It is worth noting 

that when tested in Old World CL, the combined approach of pentoxifylline with an antileishmanial 

agend showed enhanced healing in comparison to antileishmanial treatment only [154]. For further 

information on the activity of immunomodulators, see reviews by Dalton and Kaye (2010), Taslimi et 

al., (2018) and Adriaensen et al (2017) [149,155,156].  

PK/PD relationships, immunopathology in drug monitoring and targets for host directed therapy. 

Besides the direct involvement in the disease progression and outcome, the immunopathology also 

impacts drug pharmacodynamics (PD) and/or pharmacokinetics (PK). Impact on the latter has been 

shown in mice with CL, where the presence of parasites and the associated inflammation in the skin 

disturbed the cutaneous barrier function and physiology [157,158]. Interestingly, the permeation of 

hydrophilic compounds increased to a higher extent in comparison to lipophilic compounds which was 

hypothesized to be in part due to the inflammatory hydrophilic environment in CL skin. Whilst these 



findings are particularly important for topical drug administration where the drug is applied locally, 

increased drug levels were also observed in Leishmania-infected skin upon systemic drug 

administration [159,160] where they were associated with enhanced capillary leakiness and increased 

macrophage infiltration both of which could potentially be attributed to local inflammation. How 

Leishmania infection alters the skin tissue microenvironment in humans is yet unknown and is subject 

to further research. 

During the development of VL, the liver, a major drug metabolism site for drugs, undergoes 

morphological and functional changes; hence, it seems evident that VL impacts drug pharmacokinetics. 

In VL infected mice for example, the no-observed-adverse-effect level of miltefosine is approximately 

25 mg/kg (QD, for 10 consecutive days), whereas in experimental CL 35mg/kg is still well tolerated 

(experimental data, unpublished). Other studies also demonstrated a deterioration of the capacity of host 

hepatic microsomal membranes to metabolise xenobiotics in VL infected mice and hamsters [161,162]. 

Whilst in vitro studies suggest no involvement of cytochrome P450 isoenzymes in the metabolism of 

miltefosine [163], the enzymes are involved in the metabolism and clearance of many xenobiotics and 

reduced activity could potentially lead to reduced drug efficacy (metabolites are active) or toxicity when 

increased amounts linger around in the systemic circulation. For amphotericin B, a significantly lower 

concentration of drug was found in liver and spleen of VL-infected mice as compared to uninfected 

mice, which was hypothesised to be due to a reduced phagocytic activity in infected macrophages [155, 

157]. These findings were not investigated in humans but it seems plausible that the PK of certain drugs 

is altered by the disruption of the liver function as observed in VL.  Pathology is also known to affect 

drug ADME (absorption, distribution, metabolism and excretion) processes by alterations in protein 

binding which is important given that hypoalbuminemia is observed in both human and experimental 

VL. Low serum albumin levels have been associated with alterations in the degree of protein binding 

of highly protein-bound drugs such as miltefosine and thus could potentially impact its PK-PD 

relationship [164,165]. 

Another phenomenon which remains unexplored in VL patients and experimental models is the 

influence of granuloma formation on drug PK and thus efficacy. In tuberculosis, a granuloma forms a 



shielded lesion compartment that harbours bacteria and makes it difficult for drugs to permeate [166]; 

hence, the long and intense treatment regimen composed of a cocktail of four different drugs. Whilst 

difference in the extent of granulomatous inflammation are clear between leishmaniasis and TB [35], 

the altered local cellularity of a granuloma may nevertheless be of importance.  

Of further importance is the impact of the pathology on drug PD which involves processes best reflected 

by “what the drug does to the body”. Most chemotherapeutics exert their activity by stimulating or 

inhibiting enzymes that are involved in pathways essential for parasite survival. Recent research 

describes the presence of different metabolically active parasite populations in CL lesions [8]. Kloehn 

et al (2015) measured semi-quiescent L. mexicana parasites in non-healing CL lesions in mice [7]. This 

reduced metabolic state is characterised by low transcription rates and protein turnover and might thus 

contribute to a reduced drug efficacy.  

 

Summary  

Here we have illustrated how the complexity and variation of human immune responses and 

immunopathology and the different host interactions to twenty Leishmania species has an impact 

upon the effectiveness of vaccines, diagnostics and drugs (Fig. 1). Although rodent models have 

proved to be a useful tool for experimental studies on these interactions, well described limitations of 

(a) absence of models for important species (L. aethiopica, L. tropica, L. braziliensis), (b) differences 

between mouse and human immune responses (for example, to TLR agonists, [167,164] and 

serological indicators, and (c) differences in pharmacokinetics between mouse and humans  

[168,165], underpin most of this work. The application of transcriptomics, genomic data bases and 

methodologies to determine pharmacokinetics in infected tissues (not just plasma) in future studies in 

human subjects must now be used to inform future work so tools for treatment, control and 

elimination can be used with more understanding and effectiveness.  
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114. González U, Pinart M, Rengifo-Pardo M, Macaya A, Alvar J, Tweed JA (2009) Interventions for 
American cutaneous and mucocutaneous leishmaniasis. Cochrane Database Systematic Reviews 15 
(2 (CD004834)):1-171 
115. DNDi (2019) DNDi - Disease projects - Portfolio. Drugs for Neglected Diseases Initiative. 
https://www.dndi.org/diseases-projects/portfolio/. Accessed 7/11/2019 

 2019 
116. Khare S, Nagle AS, Biggart A, Lai YH, Liang F, Davis LC, Barnes SW, Mathison CJN, Myburgh E, 
Gao M-Y, Gillespie JR, Liu X, Tan JL, Stinson M, Rivera IC, Ballard J, Yeh V, Groessl T, Federe G, Koh 
HXY, Venable JD, Bursulaya B, Shapiro M, Mishra PK, Spraggon G, Brock A, Mottram JC, Buckner FS, 
Rao SPS, Wen BG, Walker JR, Tuntland T, Molteni V, Glynne RJ, Supek F (2016) Proteasome inhibition 
for treatment of leishmaniasis, Chagas disease and sleeping sickness. Nature 537:229. 
doi:10.1038/nature19339 

https://www.nature.com/articles/nature19339#supplementary-information 
117. Thompson AM, O'Connor PD, Marshall AJ, Blaser A, Yardley V, Maes L, Gupta S, Launay D, 
Braillard S, Chatelain E, Wan B, Franzblau SG, Ma Z, Cooper CB, Denny WA (2018) Development of (6 
R)-2-Nitro-6-[4-(trifluoromethoxy)phenoxy]-6,7-dihydro-5 H-imidazo[2,1- b][1,3]oxazine (DNDI-
8219): A New Lead for Visceral Leishmaniasis. J Med Chem 61 (6):2329-2352. 
doi:10.1021/acs.jmedchem.7b01581 
118. Van Bocxlaer K, Caridha D, Black C, Vesely B, Leed S, Sciotti RJ, Wijnant GJ, Yardley V, Braillard S, 
Mowbray CE, Ioset JR, Croft SL (2019) Novel benzoxaborole, nitroimidazole and aminopyrazoles with 
activity against experimental cutaneous leishmaniasis. International journal for parasitology Drugs 
and drug resistance. doi:10.1016/j.ijpddr.2019.02.002 
119. Caridha D, Vesely B, van Bocxlaer K, Arana B, Mowbray CE, Rafati S, Uliana S, Reguera R, 
Kreishman-Deitrick M, Sciotti R, Buffet P, Croft SL (2019) Route map for the discovery and pre-clinical 
development of new drugs and treatments for cutaneous leishmaniasis. International journal for 
parasitology Drugs and drug resistance. doi:10.1016/j.ijpddr.2019.06.003 

https://doi.org/10.1016/j.bjid.2013.11.013
https://www.dndi.org/diseases-projects/portfolio/
https://www.nature.com/articles/nature19339#supplementary-information


120. Yang JH, Bhargava P, McCloskey D, Mao N, Palsson BO, Collins JJ (2017) Antibiotic-Induced 
Changes to the Host Metabolic Environment Inhibit Drug Efficacy and Alter Immune Function. Cell 
host & microbe 22 (6):757-765.e753. doi:10.1016/j.chom.2017.10.020 
121. Burza S, Mahajan R, Sinha PK, van Griensven J, Pandey K, Lima MA, Sanz MG, Sunyoto T, Kumar 
S, Mitra G, Kumar R, Verma N, Das P (2014) Visceral leishmaniasis and HIV co-infection in Bihar, 
India: long-term effectiveness and treatment outcomes with liposomal amphotericin B (AmBisome). 
PLoS Negl Trop Dis 8 (8):e3053. doi:10.1371/journal.pntd.0003053 
122. Adam AAO, Dafalla MMM, Mohammed HA, Elamin MY, Younis BM, Elfaki ME, Musa AM, 
Elhassan AM, Khalil EAG (2014) Visceral leishmaniasis-hepatitis B/C coinfections: a rising necessity to 
triage patients for treatment. Ann Saudi Med 34 (2):143-146. doi:10.5144/0256-4947.2014.143 
123. Hailu W, Weldegebreal T, Hurissa Z, Tafes H, Omollo R, Yifru S, Balasegaram M, Hailu A (2010) 
Safety and effectiveness of meglumine antimoniate in the treatment of Ethiopian visceral 
leishmaniasis patients with and without HIV co-infection. Trans R Soc Trop Med Hyg 104 (11):706-
712. doi:10.1016/j.trstmh.2010.07.007 
124. Mbui J, Olobo J, Omollo R, Solomos A, Kip AE, Kirigi G, Sagaki P, Kimutai R, Were L, Omollo T, 
Egondi TW, Wasunna M, Alvar J, Dorlo TPC, Alves F (2019) Pharmacokinetics, Safety, and Efficacy of 
an Allometric Miltefosine Regimen for the Treatment of Visceral Leishmaniasis in Eastern African 
Children: An Open-label, Phase II Clinical Trial. Clinical infectious diseases : an official publication of 
the Infectious Diseases Society of America 68 (9):1530-1538. doi:10.1093/cid/ciy747 
125. Murray HW (2000) Suppression of posttreatment recurrence of experimental visceral 
Leishmaniasis in T-cell-deficient mice by oral Miltefosine. Antimicrobial Agents and Chemotherapy 
44 (11):3235-3236 
126. Murray HW, Delph-Etienne S (2000) Visceral leishmanicidal activity of hexadecylphosphocholine 
(miltefosine) in mice deficient in T cells and activated macrophage microbicidal mechanisms. J Infect 
Dis 181 (2):795-799 
127. Escobar P, Yardley V, Croft SL (2001) Activities of hexadecylphosphocholine (miltefosine), 
AmBisome, and sodium stibogluconate (Pentostam) against Leishmania donovani in 
immunodeficient scid mice.  (0066-4804 (Print)) 
128. Dorlo TP, Balasegaram M, Beijnen JH, de Vries PJ (2012) Miltefosine: a review of its 
pharmacology and therapeutic efficacy in the treatment of leishmaniaisis. Journal of Antimicrobial 
Chemotherapy 67 (11):2576-2597 
129. Cohen BE (2016) The Role of Signaling via Aqueous Pore Formation in Resistance Responses to 
Amphotericin B.  60 (9):5122-5129. doi:10.1128/AAC.00878-16 %J Antimicrobial Agents and 
Chemotherapy 
130. Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. The Lancet 
366 (9496):1577 
131. Chavez-Galan L, Vesin D, Martinvalet D, Garcia I (2016) Low Dose BCG Infection as a Model for 
Macrophage Activation Maintaining Cell Viability %J Journal of Immunology Research.  2016:17. 
doi:10.1155/2016/4048235 
132. Convit J, Ulrich M, Zerpa O, Borges R, Aranzazu N, Valera M, Villarroel H, Zapata Z, Tomedes I 
(2003) Immunotherapy of american cutaneous leishmaniasis in Venezuela during the period 1990-
99. Trans R Soc Trop Med Hyg 97 (4):469-472. doi:10.1016/s0035-9203(03)90093-9 
133. Musa AM, Khalil EAG, Mahgoub FAE, Elgawi SHH, Modabber F, Elkadaru AEMY, Aboud MH, 
Noazin S, Ghalib HW, El-Hassan AM, Group/Sudan TLR (2008) Immunochemotherapy of persistent 
post-kala-azar dermal leishmaniasis: a novel approach to treatment. Transactions of The Royal 
Society of Tropical Medicine and Hygiene 102 (1):58-63. doi:10.1016/j.trstmh.2007.08.006 %J 
Transactions of The Royal Society of Tropical Medicine and Hygiene 
134. Cohen HA (1979) Induction of delayed-type sensitivity to Leishmania parasite in a case of 
leishmaniasis cutanea diffusa with BCG and cord-factor (Trehalose-6-6' dimycolate). Acta dermato-
venereologica 59 (6):547-549. doi:102340/0001555559547549 



135. Adinolfi LE, Bonventre PF, Vander Pas M, Eppstein DA (1985) Synergistic effect of glucantime 
and a liposome-encapsulated muramyl dipeptide analog in therapy of experimental visceral 
leishmaniasis. Infect Immun 48 (2):409-416 
136. Badaro R, Johnson WD, Jr. (1993) The role of interferon-gamma in the treatment of visceral and 
diffuse cutaneous leishmaniasis. The Journal of infectious diseases 167 Suppl 1:S13-17. 
doi:10.1093/infdis/167.supplement_1.s13 
137. Badaro R, Nascimento C, Carvalho JS, Badaro F, Russo D, Ho JL, Reed SG, Johnson WD, Jr., Jones 
TC (1994) Granulocyte-macrophage colony-stimulating factor in combination with pentavalent 
antimony for the treatment of visceral Leishmaniasis. European journal of clinical microbiology & 
infectious diseases : official publication of the European Society of Clinical Microbiology 13 Suppl 
2:S23-28. doi:10.1007/bf01973598 
138. Almeida R, D'Oliveira A, Jr., Machado P, Bacellar O, Ko AI, de Jesus AR, Mobashery N, Brito 
Santos J, Carvalho EM (1999) Randomized, double-blind study of stibogluconate plus human 
granulocyte macrophage colony-stimulating factor versus stibogluconate alone in the treatment of 
cutaneous Leishmaniasis. The Journal of infectious diseases 180 (5):1735-1737. doi:10.1086/315082 
139. Santos JB, de Jesus AR, Machado PR, Magalhaes A, Salgado K, Carvalho EM, Almeida RP (2004) 
Antimony plus recombinant human granulocyte-macrophage colony-stimulating factor applied 
topically in low doses enhances healing of cutaneous Leishmaniasis ulcers: a randomized, double-
blind, placebo-controlled study. The Journal of infectious diseases 190 (10):1793-1796. 
doi:10.1086/424848 
140. Murray HW (2005) Interleukin 10 receptor blockade--pentavalent antimony treatment in 
experimental visceral leishmaniasis. Acta Trop 93 (3):295-301. doi:10.1016/j.actatropica.2004.11.008 
141. Flynn B, Wang V, Sacks DL, Seder RA, Verthelyi D (2005) Prevention and treatment of cutaneous 
leishmaniasis in primates by using synthetic type D/A oligodeoxynucleotides expressing CpG motifs. 
Infect Immun 73 (8):4948-4954. doi:10.1128/iai.73.8.4948-4954.2005 
142. Verthelyi D, Ishii KJ, Gursel M, Takeshita F, Klinman DM (2001) Human peripheral blood cells 
differentially recognize and respond to two distinct CPG motifs. Journal of immunology (Baltimore, 
Md : 1950) 166 (4):2372-2377. doi:10.4049/jimmunol.166.4.2372 
143. Buates S, Matlashewski G (1999) Treatment of experimental leishmaniasis with the 
immunomodulators imiquimod and S-28463: efficacy and mode of action. J Infect Dis 179:1485-1494 
144. Arevalo I, Tulliano G, Quispe A, Spaeth G, Matlashewski G, Llanos-Cuentas A, Pollack H (2007) 
Role of imiquimod and parenteral meglumine antimoniate in the initial treatment of cutaneous 
leishmaniasis. Clinical Infectious Diseases 44 (12):1549-1554 
145. Miranda-Verastegui C, Llanos-Cuentas A, Arevalo I, Ward BJ, Matlashewski G (2005) 
Randomized, double-blind clinical trial of topical imiquimod 5% with parenteral meglumine 
antimoniate in the treatment of cutaneous leishmaniasis in Peru. Clinical Infectious Diseases 40 
(10):1395-1403 
146. Firooz A, Khamesipour A, Ghoorchi MH, Nassiri-Kashani M, Eskandari SE, Khatami A, 
Hooshmand B, Gorouhi F, Rashighi-Firoozabadi M, Dowlati Y (2006) Imiquimod in combination with 
meglumine antimoniate for cutaneous leishmaniasis. Archives of Dermatology 142 (12):1575-1579 
147. El Hajj R, Bou Youness H, Lachaud L, Bastien P, Masquefa C, Bonnet PA, El Hajj H, Khalifeh I 
(2018) EAPB0503: An Imiquimod analog with potent in vitro activity against cutaneous leishmaniasis 
caused by Leishmania major and Leishmania tropica. PLoS Negl Trop Dis 12 (11):e0006854. 
doi:10.1371/journal.pntd.0006854 
148. Smith AC, Yardley V, Rhodes J, Croft SL (2000) Activity of the novel immunomodulatory 
compound tucaresol against experimental visceral leishmaniasis. Antimicrob Agents Chemother 44 
(6):1494-1498. doi:10.1128/aac.44.6.1494-1498.2000 
149. Dalton JE, Kaye PM (2010) Immunomodulators: use in combined therapy against leishmaniasis. 
Expert review of anti-infective therapy 8 (7):739-742. doi:10.1586/eri.10.64 
150. Machado PR, Lessa H, Lessa M, Guimaraes LH, Bang H, Ho JL, Carvalho EM (2007) Oral 
pentoxifylline combined with pentavalent antimony: a randomized trial for mucosal leishmaniasis. 



Clinical infectious diseases : an official publication of the Infectious Diseases Society of America 44 
(6):788-793. doi:10.1086/511643 
151. Brito G, Dourado M, Polari L, Celestino D, Carvalho LP, Queiroz A, Carvalho EM, Machado PR, 
Passos S (2014) Clinical and immunological outcome in cutaneous leishmaniasis patients treated 
with pentoxifylline. The American journal of tropical medicine and hygiene 90 (4):617-620. 
doi:10.4269/ajtmh.12-0729 
152. Brito G, Dourado M, Guimaraes LH, Meireles E, Schriefer A, de Carvalho EM, Machado PRL 
(2017) Oral Pentoxifylline Associated with Pentavalent Antimony: A Randomized Trial for Cutaneous 
Leishmaniasis. The American journal of tropical medicine and hygiene 96 (5):1155-1159. 
doi:10.4269/ajtmh.16-0435 
153. Faria DR, Gollob KJ, Barbosa J, Jr., Schriefer A, Machado PR, Lessa H, Carvalho LP, Romano-Silva 
MA, de Jesus AR, Carvalho EM, Dutra WO (2005) Decreased in situ expression of interleukin-10 
receptor is correlated with the exacerbated inflammatory and cytotoxic responses observed in 
mucosal leishmaniasis. Infect Immun 73 (12):7853-7859. doi:10.1128/iai.73.12.7853-7859.2005 
154. Sadeghian G, Nilforoushzadeh MA (2006) Effect of combination therapy with systemic 
glucantime and pentoxifylline in the treatment of cutaneous leishmaniasis. Int J Dermatol 45 (7):819-
821. doi:10.1111/j.1365-4632.2006.02867.x 
155. Taslimi Y, Zahedifard F, Rafati S (2018) Leishmaniasis and various immunotherapeutic 
approaches. Parasitology 145 (4):497-507. doi:10.1017/s003118201600216x 
156. Adriaensen W, Dorlo TPC, Vanham G, Kestens L, Kaye PM, van Griensven J (2017) 
Immunomodulatory Therapy of Visceral Leishmaniasis in Human Immunodeficiency Virus-Coinfected 
Patients. Front Immunol 8:1943. doi:10.3389/fimmu.2017.01943 
157. Sakthianandeswaren A, Elso CM, Simpson K, Curtis JM, Kumar B, Speed TP, Handman E, Foote SJ 
(2005) The wound repair response controls outcome to cutaneous leishmaniasis. Proceedings of the 
National Academy of Sciences of the United States of America 102 (43):15551-15556 
158. Van Bocxlaer K, Yardley V, Murdan S, Croft SL (2016) Drug permeation and barrier damage in 
Leishmania-infected mouse skin. The Journal of antimicrobial chemotherapy 71 (6):1578-1585. 
doi:10.1093/jac/dkw012 
159. Wijnant GJ, Van Bocxlaer K, Fortes Francisco A, Yardley V, Harris A, Alavijeh M, Murdan S, Croft 
SL (2018) Local Skin Inflammation in Cutaneous Leishmaniasis as a Source of Variable 
Pharmacokinetics and Therapeutic Efficacy of Liposomal Amphotericin B. Antimicrob Agents 
Chemother 62 (10):e00631-00618. doi:10.1128/aac.00631-18 
160. Wijnant GJ, Van Bocxlaer K, Yardley V, Harris A, Alavijeh M, Silva-Pedrosa R, Antunes S, Mauricio 
I, Murdan S, Croft SL (2018) Comparative efficacy, toxicity and biodistribution of the liposomal 
amphotericin B formulations Fungisome((R)) and AmBisome((R)) in murine cutaneous leishmaniasis. 
International journal for parasitology Drugs and drug resistance 8 (2):223-228. 
doi:10.1016/j.ijpddr.2018.04.001 
161. Coombs GH, Wolf CR, Morrison VM, Craft JA (1990) Changes in hepatic xenobiotic-metabolising 
enzymes in mouse liver following infection with Leishmania donovani. Mol Biochem Parasitol 41 
(1):17-24. doi:10.1016/0166-6851(90)90092-z 
162. Mukhopadhyay R, Madhubala R (1994) Antileishmanial activity and modification of hepatic 
xenobiotic metabolizing enzymes in golden hamster by 2(3)-tert-butyl-4-hydroxyanisole following 
infection with Leishmania donovani. Biochem Pharmacol 47 (2):253-256. doi:10.1016/0006-
2952(94)90014-0 
163. Sindermann H, Engel J (2006) Development of miltefosine as an oral treatment for 
leishmaniasis. Trans R Soc Trop Med Hyg 100 Suppl 1:S17-20. doi:10.1016/j.trstmh.2006.02.010 
164. Castro MdM, Cossio A, Velasco C, Osorio L (2017) Risk factors for therapeutic failure to 
meglumine antimoniate and miltefosine in adults and children with cutaneous leishmaniasis in 
Colombia: A cohort study. PLOS Neglected Tropical Diseases 11 (4):e0005515. 
doi:10.1371/journal.pntd.0005515 



165. Voak AA, Standing JF, Sepulveda N, Harris A, Croft SL, Seifert K (2018) Pharmacodynamics and 
cellular accumulation of amphotericin B and miltefosine in Leishmania donovani-infected primary 
macrophages. The Journal of antimicrobial chemotherapy 73 (5):1314-1323. doi:10.1093/jac/dky014 
166. Dartois V (2014) The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial 
cells. Nature reviews Microbiology 12 (3):159-167. doi:10.1038/nrmicro3200 
167. Bryant CE, Monie TP (2012) Mice, men and the relatives: cross-species studies underpin innate 
immunity. Open biology 2 (4):120015. doi:10.1098/rsob.120015 
168. Zhao M, Lepak AJ, Andes DR (2016) Animal models in the pharmacokinetic/pharmacodynamic 
evaluation of antimicrobial agents. Bioorg Med Chem 24 (24):6390-6400. 
doi:10.1016/j.bmc.2016.11.008 

 

 

 

 

 

 

 

 

 

 

 

 

 



Table 1.  Leishmaniasis – species and clinical manifestations.  

Main Leishmania 

species  

Clinical  

presentations 

 Main Reservoir Countries or regions found 

L. donovani VL, PKDL Fatal within two years (VL). PKDL lesions 
may follow drug treatment 

Humans 
India, Bangladesh, Ethiopia, Sudan, 

South Sudan 

L. tropica CL, LR, rarely VL Self-healing within 12-18 months Humans 
East Mediterranean, Middle East, 

North Africa 

L. aethiopica CL, DCL, DsCL  Self-healing (except DCL) within 2-5 years. Hyraxes Ethiopia, Kenya 

L. major CL Self-healing within 3-12 months. Rodents 
North Africa, Middle East, Central 

Asia, West Africa 

L. infantum  
[L. chagasi]  

VL, CL 
Can be fatal within two years (VL), most 

adults asymptomatic 
Dogs, humans 

China, South Europe, Brazil, 
South and Central America 

L. braziliensis CL, MCL, DCL, LR 
May self-heal within six months. 

< 5% progress to MCL. 
Dogs, Humans, 

Rodents 
South America 

L. amazonensis CL, DCL, DsCL Not well described. 
Marsupials,  

Rodents 
South America 

L. guyanensis CL, DsCL, MCL May self-heal within six months. 
Marsupials, 

Sloths 
South America 

L. mexicana CL, DCL, DsCL Often self-healing within 3-4 months. 
Rodents, 

Marsupials 
South America 

VL= Visceral Leishmaniasis; PKDL = Post-Kala-Azar Dermal Leishmaniasis; CL = Cutaneous Leishmaniasis; MCL = Mucocutaneous Leishmaniasis; DCL = Diffuse 
Cutaneous Leishmaniasis; DsCL = Disseminated Cutaneous Leishmaniasis; LR = Leishmaniasis Recidivans   
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Clinical VL suspect
Fever ≥ 2 weeks with splenomegaly or wasting 

(rule out malaria)

Previous VL case
Perform tissue aspirate microscopy
(lymph node/ bone marrow/spleen)

Negative

Search for other 
diagnosis and treat 

or refer

Positive

VL treatment as 
relapse

NEW case*
Perform a RDT (rK39**)

Positive

VL treatment

Negative

If DAT not 
available

Positive
≥ 1:3200

Negative
1:100 – 1:200

VL treatment
Re-test in 1 

week with DAT 
OR perform 

tissue aspirate 
microscopy

Microscopy

Search for other 
diagnosis and treat 

or refer

DAT

Borderline
1:400 – 1:1600

VL diagnostic algorithm. Source: National guidelines from Ethiopia, Kenya, Sudan and Uganda
* Parasitological diagnosis may also be conducted in tertiary hospitals and research centres
**National guidelines in Sudan also consider the use of rK28 RDTs
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We thank the reviewer for comment and corrections.  We have:  

Added 5 new references in the immunology/vaccine sections which refer to the DC issues 

raised by the reviewer.  Our aim was not to produce a full review on all aspects on immune 

regulation but to focus on issues indicated in the title of the manuscript. 

We have added an additional paragraph on molecular diagnostics with an additional 5 

references; this does add to the manuscript.  

Apologies that the Table 1 was omitted from the first submission. This was the corresponding 

author’s error.  
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