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A problem which frequently arises in the analysis of censored

survival data in medical statistics is that of obtaining treatment
comparisons while adjusting for and evaluating the effects of many
uncontrolled independent variables. Recent interest in this area

has centred around the use of non-linear regression models which

assume that independent variables affect the hazard function in a
multiplicative way. A non-parametric and several parametric models

of this type have been proposed in the literature. These models,

with extensions which stratify according to the independent variables

tc incorporate situations where the proportional hazards assumption

is violated, are discussed and associated methods of inference presented
Results, in the single independent variable case, concerning the
efficiency of inferences based on the non-parametric model when the

true model for survival time is of the exponential parametric form are
extended to incorporate the within strata models and the case of two
independent variables. The effect of censoring on these efficiency
results is assessed using compurter simulation. The important question
of assessing goodness of fit to the data is considered and finally an
example with data arising from a clinical trial is used to illustrate
the techniques discussed in the study.
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fMt~rjcal PfOtI-:

In medical statistic« one is often required to assess the
effect of independent (i.e. explanatory) variables such as age,
treatment, sex etc., on the time to death, called survival time,
of individuals For ease of exposition the term death will be
adopted throughout, although one could equally well consider time
to any well-defined event, such as response or relief of symptoms.
The methods to be described in this work also have applications
outside the field of medicine, for example in industrial life
testing experiments. However, for convenience of terminology, we
shall discuss the techniques within the medical framework.

For various reasons, data resulting from this type of
investigation is frequently incomplete, in the sense that observations
on survival time are not known exactly for all individuals. This
may be due to limitations on the length of study or death from a
cause other than that under investigation and so on. An incomplete
observation of this type is termed a loss or censored observation.
In *1.2. different types of censoring will be discussed in some
detail.
definitions

It is convenient at this stage to introduce some definitions.
Let T be a random vsiriable representing survival time. The survivor

function of T, denoted byTP(t). is defined by
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T(t) - p(™T*1t) . t>0.

The distribution function of T is then
F(t) - 1 -T(t) - p(T <t), t>0.

The hazard function (sometime* celled age-apecific failure
rate or force of mortality)X(t) of T is defined by

m «> f(t* TV + atlT~ . to»o.

u .
dt-*Oe
with corresponding ctaiNative hazard function given by

A(t) - 1 X(udu.

It follow* directly that X(t) ®m - T'(t)/T(t) and d(t) = - logT(t).
(TF*(t> denote* the fir*t derivative ofT (t) v.r.t. t).

A family of »urvivor function* (2 (t); a e D in vhich any two
such function* are connected by the relationshipTi(t) (Tj(t))
for some 6 e(0,«), is called a Lehmannfamily of survivor functions.

Alternatively, if Xji

), X2(t) are the hazard functions corresponding
toT'i(t) and T2 (t) respectively, this relationship can be written
equivalently a* Xj(t) I « X2(t).

Throughout thi* work the assvmption that independent variables
have multiplicative effect* upon the hazard function will usually be
nm.de. This assumption i* incorporated in most of the models for

survival date.discussed in the literature.
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Mainly in the earlier part of thia work, the following
data reported by Freireich et. al. (1963) will be used to
illustrate some of the techniques discussed. A trial was
conducted to compare the effects of 6-mercaptopurine (6-MP)
and a placebo on the maintenance of remissions in acute

leukaemia. One year after the start of the study, the lengths

of remission, in weeks, were recorded and are given in table 1.1.

1.1- Data from trial comparing 6-MP and a Placebo on
the maintenance of remission» in acute leukaemia,
Units are weeks.
6-MP i 6 6 6 6* 7 9* 10 10* 11* 13 16 17* 19* 20*
22 23 25% 32* 32* 3k* 35*
Placebo : 1122 3 k k 5588 88 e
12 12 15 17 22 23

d«oot«. a censored observation.

1k-g» JjtsSP of censoriifi

Formal Definition

Let T be a random variable representing survival time. If the
only information regarding an observation t on T is that
t ¢ (x|, x2), x2 > xi » 0 then the observation t is said to be
interval-censored in (xIt x2). If x2 m«, t is said to be right-censored
at xj , while if Xi » 0, t is said to be left-censored at x2. An
observation that is not censored is said to be exact or uneensored.

In medical investigations the most common type of censoring

is right-censoring, so that this work will be concerned mainly with
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situations in which observations are subject to right-censoring
only, and the ter» right-censored will be abbreviated to
canaored for convenience. Any deviation fro» this will be
indicated where appropriate.

A special case of right-censoring occurs when all censored
observations are equal to a constant t* which is greater than
the largest exact survival time. This is termed extreme censoring.
It can occur, for example, in a study in which all individuals
are put on test at the same point in time, and at a time t» after
the start of the study the data is recorded as time to death or
right-censored at t*.

It will be necessary throughout to a*s>*.e that censuring
and death are determined by independent mechanisms. Although
this is invariably realistic in medical applications, it may r,t
be so elsewhere. For example, in industrial life-testing a
situation may arise in which items are removed from test due to

disdnishing performance, prior to failure.

Censoring Mechanism

To simplify the mathcastical development in certain situations
it will be convenient to make assumptions about the underlying
mechanism producing censored observations.

A convenient such assumption is the random censorship model
introduced by Gilbert (1962) and used subsequently by several authors,
notably Breslow (1970) and Breslow and Crowley (197%). Suppose
Tj,...,Tn are independent random variables, with Tj representing the
survival time for the ith individual having distribution function

Ft~(.). Under the random censorship model it is assumed that there
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e*ict independent and identically distributed random variables
with ccanon distribution function Hy(y), which
represent the periods of observation for the different individuals.

Ky(y) is tensed the censoring distribution. Thus one observes
- ®in (Tj, Yj)

« . fe° S R

1 \1 It*,- -7,

The distribution function of Tj# is giver, by

To(t) - 1- (X- % (1) (1 - »(%))
i

Alternatively, Mantel and Myers (1971) suggest that for each
individual i, there exists a saxinta observable tine Yj, the tine
between entry into the study and termination of the trial for the
purposes of data analysis. Thus for individuals who die, T. < Yj
mi**le for survivors TA m YA. Information regarding the values of
the Yi,s however may not always be available. This model will be

referred to as the fixed observation tine model.

Censoring Pattern
To conclude this section the idea of censoring pattern, which
has been introduced by Oehan (1965a), will be discussed.

Suppose that,of the n observations on survival tine.c are

censored and n-c are exact. Let

*<L) * (S ) e *(K)




be the distinct ordered exact observations ad put

(]
di " ?number of exact observations equal to tjjj
G number of censored observations * *(£) wxd i) L -0-1
t(o: - 0 and t(ka4-I).
Then (dj, 1jj i-0,...,Kk)

is called the observed censoring pattern and
may be represented diagranmatically as follows:

*(0) (1) t(k)

Rote that £ d.» n-c and
i-0 1

11*3.  Estiaatlcr of a survivor gMP.ctjap

Introduction

I'f the individuals present in a study can reasonably be split into

a finite number of relatively homogeneous subsets according to the

independent variables, a useful visual indication of their effect on

survival experience may be obtained by plotting estimated survivor

functions within each subset.

-15-



-16-

Bw Liait estimate

Kaplan and Meier (1958) have proposed the following method

for estimating a survivor function. Suppose that independent

observations are taken on the survival time T which hr.s survivor

functionT(t). Let c represent the number of censored observations

and let n-c be the number uncensored. If

(1) % @) 20) Cn

denote the distant ordered uncensored observations and

(a.. i«Otlt....k) tne observed censoring pattern vnen the

Product Lijait (PL) estimate P(t) of T (t) is defined by

Pt) :- ‘in
@ **(1>

where mj m £ (174 ¢ d7) is the number of observations (censored and

uncensored) not less than t~j.
Kaplan and Meier obtain P(t) by assuming that I(t) is zero

except at points where deaths occur and show that P(t) is the meximum

likelihood estimator ofT(t; in the family of all possible survivor

functions. Theseauthors provide expressions for computing the variance
of P(t) and estimating the mean survival time using P (t).

Further theoretical justification of the form of P(t) has been
provided by Breslov and Crowley (197*0 under the random censorship model.
The adaptation of the PL estimate for interval-censored data has been
discussed by Peto (1973).
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Altshuler's estimate

An alternative method of estimating a aurvivor function has

been proposed by Altshuler (1970) who suggest» that a natural

estimator of A(t), the cumulative hazard function, is given by

e<t) m (IS VA

Nile

The resulting estimator of T (t) is then

T (t) » exp {- e(t»
AitsfiUier enow* Lial ifistsat Mtissier of iugTvt).
Taking the natural logc«ritj»] Of P(t) it follows that
log P(t) - | log (1 - d4s_ )

Vi)

so that for m - dict 11

log P(t> - - 1| d/B

- e(t)
»(o 1
ApprppiMtin, 111! at »_ function

Several authors (Kalbrieisch and Prentice (1973), Breslov (197+%)
have considered the estimation of a survivor function in a more general

context, which will be discussed later in *U.3. It is useful however

to outline their methods as they apply to a single group of observations.

Kalbfleisch and Prentice begin by approximating X(t) as a step
function



x(t)

where

suitable subdivision of the tine scale.

and p.d.f.

f(t)

If B1.2,..

> (X1

IX) - Lp. log X.
-1 1

from which it follows that, for

maximum likelihood estimate of X4 is given by

x4 - i

pro{ .1

b <bi<bj<

denote the observations on survival tisie in
of which pj are exact and

1* &1-1*V *

L« N« bf e o define a

The survivor function

of T are then given respectively by

iex| - Xjt
ey, P ¢ XD

fexp (-15t* - BILD) = gy i ox

Xtexp (- Xjb)

censored, the log likelihood function

s

r1
iA% % biln .
X171 T PEY slieg<RsRO

i-1,2,

, *4 the

1 <Pitg)f i1

*ViI>}'l

“18-



(*)+ the resulting estimated survivor function is obtained

on replacing X by \ in 1.1. LogTi(t) is a connected series
of straight lines vithT|(») m0 if 4 0

Alternatively, Breslov chooses intervals

%1 &<1-1) *<1)’ **1.

Lkore>tee (K

and treats all censorings occurring in I~ as having occurred at
b j j + Estimation of ¢.proceeds as above and

i K -
1

-kel.

Breslov's method disregards information regarding the exact
censoring times and censorings occurring prior to the first death

are ignored. This loss of information could be severe if the sample

is heavily censored, particularly in situations where several large

censoring times exceed the largest uncensored observation. The

resulting estimate Tg(t) ofT(t> is xero for t > t(kj.

Example

Th* Kalbfleisch and Prentice approach, with interval width's of

3 units for the 6MP group and 2 units for the Placebo group, has been

used to produce estimated survivor functions in figure 1.1 for the

data of example I. It is clear that 6-MP is the superior treatment.

S19-
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Zi»ile ir.dicator vetiable

The statistical problem considered in this chapter is one in

vhich independent variation is simply a single binary indicator

variable which divides the sample into two groups. Individuala
within each group are assumed homogeneous in the sense that group

membership is the only factor thought to affect survival.

Several approaches to the analysis of the two group situation

will be considered and procedures for extension to more than two
groups will be indicated where appropriate. Example | will be

used throughout the chapter to illustrate how the techniques may be
applied

notation

Although this chapter mainly considéra the two group case it
will be convenient to present the notation to be used in the more

*eneral K (*2) group situation. For jel(...,K let  be a random

variable representing survival time with distribution function

Ft (.), observations V ~

.. idl,...,n~ and corresponding indicators

. ™ where

rl if tjj is a death
‘0 if tj~ is a censoring.
K
In addition, let nm | n; and denote the distinct ordered uncensored
observations In the colbined sample by < thgj < « tAKj
with corresponding observed censoring pattern (dj, iotl,. .. k).

For i«0,l,....,k let
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mwill be generated according to the following plan»

1.25 0.91198
1.00 1.00
0.T5 1.13982

If X hac a Weibull distribution with parameters a and X

0.9H98
1.11918
1.39338
1.616*0
1.90766

2.17620

1.00
1.20
1.10
1.60
1.80

2.00

1.13962
1.30681
1.16700
1.62153
1.77129

1.91691

that (see appendix A for details),

E(X) - ~1/ar

function. Thus in sampling :

.l

where

T
2.17283
1.98527
1.81197
1.72807
1.63190
1.55695
2.00

1.793H
1.61301
1.52816
1.13711
1.36319
1.63007
1.18806
1.37775
1.28887
1.21529

1.15308

i exponential distributions («s1),

T(x) denotes the ,

_23-



mean time to death for group 1 ia 1 and for group 2 ia successively
1, 1/1.2, 1/1.U, 1/1.6, 1/1.6, 1/2.0. The values of X| and X2
when sampling from Weibull distributions vith a« 1.25 and a«0.75,
are chosen such that the Bean time to failure is 1 for group 1
and successively 1, 1/1.2, 1/1.U, 1/1.6, 1/1.8, 1/2.0 for group 2.
In addition, when ad,X| ® X2 m 1 snd T"2.0 the expected
proportion of censored observations in the combined sample is
~ (1 - e-2) so that in all remaining samples, T* is chosen to
ensure the same expected proportion of censorings. Thus in each
case, T* is the solution of

texp(- Xxy®) ¢ exp( -X2 ya

The simulations will be conducted vith equal sample sizes (nj ® n2» n)

in the two groups.

i2.2. A parametric model
The Weibull distribution
A natural choice for the distribution of survival time T is

the Weibull distribution, which may be defined through its hazard

function as follows

XT(t) - Xat*1 0.
The distribution function and p.d.f. of T are given by
() - 1- exp (-X ta)
fT(t) m Xata_l exp(- Xta) ts o

The exponential distribution is an important special case when «s!.



(1 - rTdts) . 11 - rT|<tr*
i.e. the survivor functions considered form s lLehmanr. family.
the ‘shape* parameter a is allowed to take different values in
the two groups this property no longer holds.

the log likelihood function is given by

*(#. X, *) » (log Xe log a)

i

ns
£, r s 2

13 ij mctji -
i Y J TS

The meximum likelihood estimates ¢, X, a of », > o are then

the solutions of the equations

tjlId N -

TV.'n - ".F Hi* -

ix I3 v ix j N e lit- (1E % 1o
The second partial derivatives of *.(+, X, a) are given by
82t(*.l.q) . . 1

e *2i-1 1

33X LW

-25-
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--s X ji*ji 1S %k

The expected values of the second derivatives cannot he evaluated
unless assumptions concerning the censoring mechanism are made.
However, the asymptotic covariance matrix of (4,X,a) may be estimated

consistently by V m O/ij3 « th* inT#rte of the negative of the matrix

of second partial derivatives evaluated at the maximum likelihood

estimates, and asymptotically

(4. X.i)" * m((+,X,€)", j).

An asymptotically efficient test of HA+al against one or two-sided
alternatives may then be performed using the relation
4~ H@, Vj2)-

Alternatively the standard likelihood ratio test

statistic

Lm-2 (1(4. X.a) - 1(4-1, X, ¢&))
1(a-1, i, a)

, where

is the maximum value of the log likelihood under the
restriction 4-1. may be used. Under HQ, L is distributed

asymptotically as X* « These two tests will be termed the M.

and LB tests respectively.
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The_t.xponential Piatribution

The analysis in the exponential ease la simpler. Peplacing
« by 1in 2.2 it follows that « the maximum likelihood estimate
of « is given directly by

"he asymptotic covariance matrix of <+. X) nay he estimated as before
by evaluating second partial derivatives at the maximum likelihood
estimates. These second derivatives are given by

Tests of hypotheses concerning the parameter « can be performed as
in the Weibull

case with the obvious simpli

cation.

Although the ML and LH tests are equivalent asymptotically, it
is of interest to compare their performance in small samples
Using an extension of the Monte Carlo procedure discussed in $2.1
the ssmll sample powers of these tests are compared at the end of
this section in the special case of exponential survival times.
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Ass~aptions concerning censoring mechanism

If assumptions concerning the censoring mechanism are made,
the expected values of the second partial derivatives of the log
likelihood given above may be evaluated. These results will be
presented in the exponential caae.

Firstly, wunder the fixed observation time model if Yjj

represents the maximum observable time for individual
then

i in group j,

= I21U.0

« latu.JoO.

The corresponding quantities in the Weibull case may similarly be
obtained, although they involve integrals which need to be evaluated

numerically.

Secondly, under the random censorship model with Hj(.) representing

the censoring distribution for group j members

112U.M - 121(4tM = n2 jt e X4t [X»(1 - HAU)) « HA(D)I dt

122(*5x>* J1 | *~U U - «~ (1)) «t I e X#t {1 - HAitJJdt ik.
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Extension to ths Weibull esse is straightforward.

In ths shove situations the asymptotic covariance Matrix
of (+,£) is then given by *(s,!) where ¢(4.X) » [iy (¢.xQ-
To use the expressions 2.U., knowledge of H~(.) and H,~(.) is
needed, although the simplifying assumption H~(t) « ~ U ) may

in certain situations be reasonable.

Th* y.-test

1f Tj, Tn are independent and identically distributed
random variables, with parameter X then Y « 2X T T. has a x2
distribution and it follows that the maximum IIIl;:elllhood estlm?r;tor
+ of ¢ at 2.3 has, in the uncensored case, an F-distribution on
(2ni, 2n2) d.f. under l<:¢ »1. If, for j-1,2, the death process
in group j is observed until a fixed number of deaths have
occurred, the result with d.f. (2 B! 1125 ) s exact
and is a good approximation (Cox (1-9531)% if the tgtlal observation
time is fixed and the number of deaths in each group random. The
test procedure based on the above, known as the F test, is
asymptotically efficient Its small sample power is compared at the

end of this section with that of the ML and LR tests discussed earliei

Table 2.1 shows the results of fitting Veibull and Exponential

models to the data of example I.
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Table 2.1. : Pitting Weibull and Ex* nential models to
data of example I.

Model M.l.e's  Value of log Estimated variance
likelihood at  of estimator
11 Weibull  +-2.3T6 var(i) + 1.168
$0.020 — 106.599
¢-1.366
11:weibull  5.0.037 tU-1.5.¢)
(o-1> i-1.1v1 —116.V05
111 Fxptl j-1<.602 *(e.)
i-0.025 — 108.52%
Li - -2<t(*-1,X,0) - t(¢.X.a)) - 19.652
L= -2{1(, {) - ti,xX,8)) - 3.890
2 -
Comparison of amdels | and Il yields the test statistics

Lj and 2. Under He:d m 1

i) Li is an observation on x? and is sicnificant at O.Ifpt.,

) 2 is an observation on It(0») which is not significant at 10? pt.

Comparison of models | and I11 yields the test statistic La .
Under HQ: a - 1, L2 is an observation on x? and is significant at
the 5t pt

The above tests have been considered in the context of two sided

alternatives.
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.Mgl€ power of the ML. LR and F test»
The email sample power of the ML, LR and F testa are compared
in this section using the Monte Carlo procedure discussed in f2.1.

The distribution of survival time in each of the two groups is
exponential. As the LR test is two-sided the appropriate alternative

hypothesis is Hj :¢ 4 1 so that two-sided significance levels have

been used and further samples with X2" 0.2, O.U, 0.6, and 0.8

generated according to the following plan:

Xi x2 T*

1 1 0.2 6.63051

3.761*1*1»
0.6 2.79772
0.8 2. 3031*1»

Again T* is chosen to ensure that the proportion of censored
observations is (I - e-2). Samples of size 50, 100, 200, 500 and I000

with equal numbers in each of the 2 groups have been used. The results

are given in table 2.2 which records the proportion of times HQ: ¢!

was rejected at the 5* level for each value of X2>*X! considered.

Entries for samples of size 50, 100 and 200 are each calculated from 1000
simulations, those for sample size 500 from 500 simulations and 100

simulations were used for sample size 1000. These results indicate that

the F and LR tests are to be preferred, particularly in small samples

(50 or 100) where the performance of the ML test is very poor. The

distributional assumptions concerning ¢, on which the ML test

is based
are clearly unsatisfactory. The power functions of the F and LR tests are

almost identical for all sample sizes.



Table 22 Srail staple poner of M, LF ad Fteste wen survival tines for goups 1ad 2
are exponential with peraretere  *j*| ad respectively. Eech entry is
propu. of tines rejected against twosided alterative 5#1 at ft level.

S s“@*' D j0y) a0 50 100
h ML B F M LF P ML IF P M IF P M it F

02 (098 098 093 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 100
Ok 08 073 073 0979 0950 090 1000 0999 100 1000 1000 1000 1000 1000 1000
06 0U9 0267 0289 0653 0526 05277 0838 07% 077 09% 0992 092 1000 1000 100
Ofi 019 0055 0097 0235 0139 OHI 033X 0211 0212 0560 0»71 0*7» 0000 0760 0780
10 00x o.ok) o.ok 0075 0080 0Bl 005 0016
12 0029 00 oos1 000 012 0108 o0.066 0163 016k 028 03Kk 03B 090 0620 060
Ik 0000 0112 0117 0088 0238 02 0231 Ok23 OKX 0726 0808 0808 0960 1000 1.000
16 00k 0206 028 0135 0k23 OKX 0509 0709 Q708 09 0900 090 1000 1000 1000
16 0006 0308 03k 02«6 0581 058 0750 0891 000 0999 0999 0999 1000 1000 1000
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»2.7. Contingency table«
Mode]

Suppose the time scale is split into k intervals
Cv>i>. Li.'i ) [% 1o <o—»

being termed the i'th interval.

All censored observations which

occur in the i'th interval will be treated as having occurred at

the end of that interval, that is, just prior to t~ For j*1,2
let denote the number of group j unceusored observations
occurring in the i'th interval and let s~j <enote the number

of group j uncensored and censored observations %Ti

* Tbe dat*
“®y then be sunnnarized by k, 2x2 tables, where the ith table is of

the form
survivors deaths Total
Group 1 -
P ii-ru rli -li
Group 2 . .
*2i_r2l r2i *2i
Total N N -
mi- i Pi -1

If Pij » p(Tj > tj/Tj » Ti_j~ denotes the cond

nal probability
of surviving the i'tn interval, for j»1,2, then X~, the logistic

transform of p~ is defined by

L
Ki ' loc u-
upii



The model to be considered is

Xi " v X2i " v *Bi *vyi 2.5.

and without loss of generality it may be assumed that ] B.“0.
The hypothesis of interest is Hj: Yj"0,

i-1
i»l,....k against the general

alternative Hj: y~0 for at least one i.

.Statistical analysis
Viet 5mi»2 and H. be random variables corresponding
to the observations rj€» “jj 0"1»2 and r~ in the i'th table and put

= (a1

Rik** " (Sjif*. Sik) and £ -

Using a straightforward ~mod|

cation of the methods given by Zelen
(1971) it follows that inferences concerning £»(yi...., Y7)' @ay
be based on the distribution of g2 conditional on the observed values
of £, £] and (2 = given by

C(g, Xa)*xp(x’r?)
p(g2 f2 el g2 "12) W
je(r, ¢)exp(x'g)

where s m s~) for j«I,2 and

CE. e - n

and the summation in the denominator is over the set

me <1 %%






vhere and 0”2 are as before, for testing ths difference
between the two groups. As Zelen (1973) points out. this

would be the appropriate test statistic if the model at 8.5

I "« 4 »1 e »*, % 5 e >l e

and one wished to test the hypothesis Ho: «'O against H*: a#G.

Under He. M is asynptotically an observation on a randcr variable
having a x* distribution. Zelen claims that the assv»ption implicit
at 8.8. that the difference between the two survival probabilities
on a logistic scale is constant for each table, is valid only if

the observations within each group are from an exponential
distribution and the intervals chosen are of equal widths. In view
of the connection between subsequent methods and Mantel's statistic,

this claim is difficult to support.

Although the choice of intervals in a contingency table analysis
is somewhat arbitrary, it will be convenient for comparison purposes
later to consider the following particular situation. Using the

notation of the introduction, partition the time axis at points where

deathsoccur and construct the intervals

AM(o) t(1))T & (') t(8)).. Wk t(k))* ~M(k)» t(kal)>*

the 2x2 table
Vher* t(0) * ° **** *<kel) " “e ror

corresponding to the interval ) is then



survivors deaths Total
Group 1 *u-*u ali
Group 2 qi-si a2i “2i
Total . -
L] *i .i

In this case the asymptotic test statistic

Kk
E (Roj'Wj)2/0,2 reduces to
i-1 zx 1

-e | K 3!
— oV 1l

It is assumed that 0”2 and are non zero. Tables in vhich

mAjK) j*1 or 2 contribute no information and are ignored, fote

that the first table is ignored i.e. censorings prior to the first

death contribute no information.

Correspondingly, Mantel's statistic M is given by

ma

with Uj , 0~2 as above.

For the data of example I, Sd « 37.09, Md « 16.73.

is significant at the 0.5* roint of x217 and Wd i« significant

-37-
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- ®__The Generalised Wilcoxon test
Oehan's test

Wilcoxon (19%5) proposed a statistic for comparing two groups
of observations. An extension of the Wilcoxon procedure,
applicable when observations are subject to censoring has been
considered by Gehan (1965a). Gehan's statistic W is defined
as follows:

For i-1. nl

LI ey 1 with g Hi 1
or w11, xpy and

wu LT e with gy .y ad
OF gni vz A oy e
0 otherwise
w

LU« Atestof Hii, ,_ . R
L Vx> xv
one or two-sided alternatives is then constructed by computing the

permutation distribution of W over the (Bi*nj)!/B ,nj, possible

samples leading to the same combined observed censoring pattern.
This test will be referred to as the Wtest.

Under He, Gehan obtains expressions for the mean and variance
of W condi

onal on the observed censoring pattern and, by

ng the asymptotic normality of this quantity, constructs

a large sample test of He in the usual way. Mantel (1967), by

considering a different representation of the Gehan statistic,

has simplified the calculation of the permutation distribution of Wand i

ence under H
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Modifications

Gehan (1965b) has generalised the above techniques bo deal
with interval censoring.

Breslov (1970) points out that Gehan'a permutation test and
his results concerning the moments of V are applicable only under
the random censorship model, with common censoring distributions,
and then modifies the Gehan procedure to deal with situations in
which this assumption is not valid. Breslov discusses these
techniques in the context of comparing K(%2) groups. Efron (1967)
has proposed several modifications of the above procedures which
increase their power against certain parametric alternatives.

Peto and Peto (1972) have also suggested improvements of the Wtest.

Example

For the data of example I, the value of Wand its moments under

W. 271, E(v) - 0, var(w) - 56U.39.
The observed value of the asymptotic test statistic 2z = W//var(w)

is then 3.59, which, in a test of Hy against the two-sided general

alternative, is significant at the 0.1* point of H(O.1).

Asymptotic Efficiency

Gehan (1965a) has compared the Wtest and the F test of $2.2

using the criterion of AR.E. The survival distribution in groups

1 and 2 are thus assumed to be exponential with parameters X and
4X respectively. Gehan's calculations are conducted with equal

sample sizes in the two groups and in the following two situations:



i) Ext] censoring, observation stop« at t#,

1i) Under the random censorship model with censoring distributions

H"Cy) t H2(y) - y/t» y *

In each of these cases, Gehan's results indicate that the V test
compares favourably with the F test as n w  although losses

in efficiency increase as Xt* increases.

i2.5 Peto and Peto's Logrank test
The Kgroup case: General approach

Peto and Peto (1972) propose a method of comparing K(*2)
groups of observations subject to censorship and it vill be
convenient to formulate their results in this more general context.
Assuming that in general the survivor function 1 - FT (.)

associated with the jth group is of the form

(1 - r_ <t)> K
T
(Lehmaimfamily of survivor functions), the hypothesis of interest
would be Hys 6 » 6, against the general alternative
Hj: 4 9q for at least one j. Let X(t) denote the hasard function

corresponding to F(t). The log likelihood function is then
UXx) B

«ji (log + log 2%12*

which under H reduces to



o<, >- =

J\ Ly . 100D

It follow* that 6g the maximum likelihood estimate of 9q is given oy

e-m(X .N il

Differentiating 2.12. produces

xtsal . 19 io« (i - R A
30j i-1 311

AdiiAL - -ij jV
»J 1 B 1 J

Putt.inc o, - a.rl.IM
J -1

Ej - - »0 106 <1 - '<*jI>»

and using the properties that asymptotically

it tin follows that, under H



*(°j - Ej) w0 and vor (Oj - Ej) - E(0j) - E(Ej)
so that asym~totically

X <03 * T o *rem

® at 2.13. may then be used to provide an estimate E(.) of E.
K K 3

and since JO. | V E.,
>1J J-1 3

K
7 (Oj - Ej)*/Ej is asymptotically
Ths calculation of tj requires knowledge of F(t). However Peto and

Peto point out that using Altshuler's estisiate of the cannon

survivor function. E. can be replaced by fc, =~ f'ie(t,.) where
r 113
ett) d
- J Jet

The test statistic is then of the form

having null distribution X*K 1«
Crowley (1973) has investigated this distributional result anJ under
the randasi censorship sedel, but not assuming equal censoring

distributions between groups, has shown it to be asymptotically valid
Note that



o3

-1 £

, uee k>

+o that when K-2, 2.it reduces to

-

voE )l 0L (0, =F /R, - (0, —» ) {-£
E» t]

_ s.5p
1 (0,401-E,) *
The two group cage: Logrank test

In the two croup case Peto (1972) discusses a test which is a

Modification of the above.

This test, called the Logrank test, is

based on the permutation distribution of X} scores from a finite

population of n, + nj scores, one for each member of the sample,

and may be formulated as follows. Without loss of generality it

ey be assumed that 6,

1, 62> t so that the hypothesis of interest
is He: t-1 against the general alternative H,: x#l. The log

likelihood from 2.12 is then

lit) - logX(t..) ¢ [‘IfcgU - Fit,.))
i-1

¢ tJ2log (1 - Fit,.)) ¢ (log v) f 62i,
i-1 1

and it follows that

il - J21log (1 - F(t2,) + I*62i
\rm| i-1 “ i-1

The logrank statistic, L, is obtained on replacing log (1 “ F(t))
in this expression by Altshuler's estimate of the conmon log survivor
function, so that



By defining LJt - - Iovmf J-1,25i-

as a sequence of nj ¢ n2 scores.

P*to (1972) and Peto and Peto (1972) suggest that an exacttest of
Hy against Hj may be performed by treating L as the bud of n2
scores randomly selected from the finite population of n4 + n2 scores.
The resulting permutation test, however, will only be valid under the
random censorship model with common censoring distributions
in the two groups.

Comparison of equations 2.15 and 2.10 shows that the logrank

statistic L is identical to the numerator of Mantel's statistic M"

Th. Loitr.nt tect

In the discussion of Peto and Peto (1972), Cumow (1972) and
Gehan (1972) question the use of Altshuler's estimate of the consnon
survivor function in preference to the PL estimate. Use of the PL
estimate P (t) of 1 - F(t) produces an alternative statistic, L*,

termed the modified Logrank statistic, given by

Y 1 lo, (1 -d7/ ).
i1 (resi 1

Thomas (1971) has established the asymptotic equivalence of L and L*



and assumine the random censorship model in which censoring

distribution* may differ between «roups has shown that L is
asymptotically normally distributed.

Peto and Peto (1972) indicate procedures for the extension

of their methods to incorporate situations in which independent

variation between individuals is more extensive.

Table 2.3. illustrates, using the data of example I. the

calculation of the statistics I. and L*. The numerical difference

between their observed values is seen to be small. The test

is also computed for this data.

statistic T (0.-E.)2/1
1030

Peto (1972) claims that the logrank test has optimal power

locally although Crowley (1970 disputes this claim and suggests
an alternative justification of the Logrank statistic. For the
special case of extreme censoring the locally most powerful property
has been established by Johnson and Mehrotra (1972).

Thoms (1971) obtains expressions for the mean and variance of
the Logrank statistic under the random censorship model with
censoring distributions (.). j-1.2. In addition, assuming that
Tj and T2 are distributed exponentially with parameters X and *X
respectively, Thomas compares the test based on the asymptotic normality
of L, under HO: g-1, with the asymptotic test based on the marginal
distribution of ¢ (equation 2.3) and shows that when (v)SHy2(*) .

the test based on L has A.F.E. equal to 1. For the case nj-n2 with
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Table 2.3

CU.u3.tioo of Lo«.nJi ul Hoiiflu Lo,.u* MMUtle.

ror data of Example I.

Observations

6-1» Placebo i, . i eor.
o o o U
1.1 1 1 2 12 Q91
2.2 2 2 2 W 09RKk
3 3 3 1 3B o8m6l
Ub u u 2 I o821
55 5 s 2 F 07650
¢ ¢ 3 B o611
i 03259
T 1 2O 06397
8,8,8,8 8 e U B 969
-05081
9 10 1 2B 015%
e -0.5165
1111 0 1u 2 2 03583
U 06117
1212 n 12 2 1B o2ur2
12 i3 1 16 01817
B 13 15 1 15 o.181
16 n 16 1 |h o.06
T 5 IT 1 13 00307
-1.0307
2 B 2 2 9 o259
23 T 23 2 7 05385
25*32*32*% 5385
»*.35%, >
¢ indicates censored observation.
L - 10.25\6 L* - 97239
Of 9, 02-21, 1, - 192188 ana
<Oi-*)* - 152183
-El OikO2fi)_ =
(152183 U significant at the 0.15 point of x2)

09512
0899
08732
08177
0.7589

—K&-

|



HAtR) = 1- e jr, Hj#(r) = 1 - e"®* y>0, «0

ke evaluates the A.F.E. for various values of a and X. The

A.R.E. is close to unity for most of the parameter values considered.

»2.6  Discussion

Lee, Desu and Gehan (1975), using the Monte Carlo procedure
discussed in $2.1, compare the small sample power against one
sided alternatives, in the two group case, of some of the tests

in this section, namely

i) Ftest

ii) Fj test : If T has a Weibull distribution with shape parameter o,
then T° has an exponential distribution. The Fj test is
performed by transforming each observation t to y*t° and using

the F test on the transformed observations.

Mtest : The asymptotic form (2.10) of Mantel's test.
iv) Wtest : The asymptotic form of the Generalised Wilcoxon test.
v) Ltest : An approximation to the Logrank test, treating L, under

HD, as normally distributed with sero mean and permutational

variance

njn2 1 LjiZ(n1*n2)(n1n2-1)

vi) M. test : The modified Logrank test with normal approximation
as in v).

In sampling from the exponential distribution, the Fj test does not

apply and of the remaining five tests,the F test is most powerful,

followed closely by the M, L and ML tests. The W test is less



_e*g-

powerful. When samples are from the Veibull distribution with

«» 075 and «= 1.25* the T test is not valid and of the regaining
tests the Fj test is most powerful followed by the M test. The
M, L and Wtests then follow in order of decreasing power. These
sisiulations were based on sasiple sices n,*n2“50 and censoring rate
*3* Further samples were generated with differing sample sices
(+1«140) and censoring rates (02, 10* 25*% 75% 90* and regardless
of the test considered it was found that power increased with increasing
sample sice and decreasing censoring rate. The above authors also
generated samples (m *02*50) from the Veibull distribution with
different shape parameters (a*l in group 1, a"C.85 in group 2) and
found that in this ease the Wtest is siost powerful followed by the

ML, Mand L tests. Since the ML and L tests are fonnulated under the
assumption that the survivor functions in the 2 groups derive from a

Lehman*family this result is not surprising. For further small

sample casqtarisons of the W, L and F tests see also Theses (1971) and
Efron (1967).
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Introductia.
Rearegaion Hgofig
In the last ehaipter, methods of analysis were discussed in a

particular situation where individuals were classified according to a
fi

ite number of groups (perhaps corresponding to different treatments)
and survival experience compared between groups. Usually other factors
such as age of individual, white blood count at time of treatment, severity
of disease and so on will affect survival tisie. The present chapter
considers models which allow for the investigation of, and adjustment for,
such concomitant variation.

I'f no censoring were present, normal theory least squares methods
might be applied using some suitable transformation on survival time.
However, these methods are not easily adapted to the censored case,
although in particular situations some work in this area has been carried
out (Sampford (195%), sampford and Taylor (1959), Kelson and Hahn (1972),
(1973). Hartley and Hocking (1971)).

Rather, recent work has proceeded on the use of regression models for
distributions which are thought to approximate closely the true distribution
of survival tine, such as the exponential or Weibull distributions. §3.2
investigates a logistic exponential regression model appropriate in the
survival data context. §3.3. looks closely at models in which the
independent variables are assvsned to have a multiplicative effect on the
hazard function.

Notation
The notation to be used in this and subsequent chapters is an

extension of that introduced in {2.1.
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Fori m n,

let Ti be a continuous random variable representing

and corresponding independent variables y! ® (Xjj, Xi2* *e*» xiph*

Denote the observation on T, by tA vith indicator

s if tiis a death
t~ is a censoring.

Additional notation to be used will be introduced at the beginning of the
appropriate section.

13.2. Logistic-Exponential Model
Model and Apalysis
For i m 1, ...» n assume that  is exponentially distributed with

parameter X~. Split the time axis into unit intervals and for deaths

let Tj represent the interval in which individual i dies. For censorings

let t~ denote the last complete interval in which individual i was observed

to have not yet died i.e. approximate censorings to have occurred at the

beginning of the corresponding unit interval. Then if  me ** , the

probability of individual i surviving a unit interval conditional on

entering it, the log likelihood function of X* m (Xj, xq) i8 given
tyers et. al. (1973) propose a i
the independent variables, i.e.

i1, 31

It follows that

Substitution of these expressions in I(X) yield the log likelihood function

t(6©,j0. The above authors indicate procedures for the maximum likelihood

estimation of 6Q, m($!,. .-, Bp).
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iLoe g1tk ytkor

where log Qik = - log jI ¢ exp (B(; .

Mantel and Hankey develop procedures for estisiating the parameters in
the model and discuss an application using the data given in tyers et. el.
Estimation of covariance matrix

%*ri et. al. in calculating the covariance matrix of =,, £ ( and tf)

in the model at 3.1 (and 3.2) evaluate the expected values of the second
partial derivatives of the log likelihood under the fixed observation
time model. However, Mantel and Hankey question the use of this procedure
and suggest that significance tests concerning the parameters for all
three models considered be carried out using the large sample likelihood
ratio procedure.

Alternatively, the expected values, may be evaluated by noting that

under the random censorship model, with censoring distribution H,(y),

r -XJ

E@> - | A a 1 (1-H ()> dt
#0

(L) - J u / . Xt [ u -H <t>> . 0> HlL<c!)] M.
w1 ud

Assuming a specific form for Hy(y) the expected values of t. and 6~ may
be substituted in place of x* and 6" in the second partial derivatives of
the log likelihood to yield the covariance matrix of parameter estimators.
(The second derivatives are simple linear functions of Xj and 67).

The introduction of the function g makes the use of this technique for

the model at 3.3 computationally complex.
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13»3. Frop°rVin'y
Tha. cpa.J3R.a~A

Cox (19T2) propoae» a model in which. for i » 1, n, the hazard

function »¢ (O for the i*th individual ia given by

PDEL X s XE<t> - XO(t) exp (£’ *%)

where ¢ 7 - Cox ---. Sp) is » vector of unknown parameters and *Q(t) U

en unknown function of time Note that for any two individuab i ifj,

Xt (%) - Xjtt) exp <X* (i - Jg> >
ao that the model ia of the proportional hazarda type. An attractive
feature of model I ia that the function AQ(t), termed the widerlying

hazard function,ia left arbitrary. In the next »ection models in which
XQ(t) takes a apecifie form will be considered.
The Exponential and Weibull «auacis

Prentice (19T3) has considered two models in which the function

X (t) takes a specific form.

1t oxo(t) - xa® 't «1 X then
», /%> - X.t"-1 .XI (f ZI). X0
MODEL 111 s If X(t) - X in lodel Z then
Xt(t) - Xexp (£,
Note that if a - 1, model Il reduces to Ill. The randee variable Tj,

representing survival time for the i’'th individual ia exponential under
model 111 and Weibull under model II.

In the two group case

i group 1 members,
- it
model 11 reduces to
X<t> - f Xat® -

ixee't«-1 group 2

ixation of the model discussed in 12.2 with a-Y and

log 9-



Mo4*1 111 wes first considered by Glasser (1967) for a single
independent variable.

Myers et. el. (1973) point out an interesting connection between
“»del XV and the for* of the logisitic exponential nodal at 3.2 Fro» 3.2
sd for snail «,

so that

b1 omos o« (¢ij).
which is equivalent to the expression for XA(t) in model XXX Byar and
Mantel (1975) have considered this connection in greater detail.
Inclusion of strata

In applications the assumption that particular independent variable(a)
act multiplicatively on the hazard function mey not be true. To incorporate
such a situation (or alternatively to elisiinate those independent variables
not of primary interest), Kalbfleisch (1974) suggests an extension of
Model 1.

Suppose that the individuals may be spli

nto s strata according
to the values of the independent variable(s) violating the assumptions of
model | (or Mt of jrimary concern) and for i«l, L« s let
Tij be a random variable representing survival time of the ith individual
in the jth stratum. The above author proposes a model in vhich the hazard
function of is given by

MOEEL IV : Xjt(t) m *oj(t) exp (£' ¢7j).

where x7j is the vector of independent variables to be included in the
description of the model for the ith member of the jth stratum. Similarly,
in this situation, models 11 and XXl may be adjusted respectively as
MODEL V : X7 it) » X~ taj_1 exp (¢" x.j)

MODEL VI i X~t) - Xj exp (£'
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Note that the proportional hazards assumption is retained within strata

for each of the above models. Further generality meay be obtained on

allowing independent variables included in the models to have different
effects between strata

Holt and Prentice (197T) have considered models IV and VI, and
model V (with w a for all j) in the matched pair situation i.e. m « 2,
j w1, .... ngms. These models are essentially of a different type to
the general within strata models given above in that introduction of new
observations introduces new parameters (or new functions in the case of
»»del 1V). The resulting methods of inference will not be considered
here and the reader is referred to Holt and Prentice for details.
Related models.

Although models | to VI will provide the main subject for study
in the remainder of this work, several other models of the proportional
hazards type have received attention. Two that will be briefly considered
here, of the exponential type, closely relate to model 111 and could
easily be extended to the stratified situation in an obvious way.

Firstly, a model proposed by Fiegl and Zelen (1965), assumes that
the hazard function for individual i is given by

> - (L e £' Xj)*1

Zippin and Armitage (1966) extend the method of analysis given by Fiegl and
Zelen to incorporate censored data. Several authors who have subsequently
used this model have encountered computational difficulties, due to the

restriction that, for i“l, .... n,a ¢ £'jtj >0. The methods outlined by

Mantel and Jsrers (1971) have gone some way towards solving these problems

although analysis remains cumbersome.
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Secondly, Greenberg et. al. (197%) propose a model in which
W<F> W o. Ji -

Again the restriction a + *0, i*l, ., n is necessary and causes

similar difficulties.

Thus if ease of application is considered as a criterion for choosing

between different nodels (as it probably is in the analysis of data) either

of the above should only be used if their approximation to the true

situation is thought (or discovered) to be better than any of the models
1to VI
The form of exp 5]

The exponent in each of the models 1 to VI

as Cox (1972) points out,

is quite flexible in that,

x may be replaced by any general function

h(Jd, X) of the independent variables. A relatively simple transformation

which may assist in the physical interpretation of the models I, 1l and 111
is obtained by using, for i « 1, ..., n
i e ia ieomioCyr e

for some or all of j « 1, ., p. Similar transformations within strata

will allcar similar interpretations in models IV, V and VI.

In addition, Cox (1972) suggested that time dependent independent

variables might be included in the specification of model I. For example,
in the two group situation, a suitable form of model | slight be
E<%) Wi Qt) group 1 members

( *Q(t) exp (0i + 8*1) group 2 menbers

Such variables may similarly be used in models Il to VI. Note however

that time dependent variables destroy the proportional hazards assumption.

(The comments of Kalbfleisch and Prentice (1972a) on how such variables would

affect model | are misleading). Discussion of the validity of including

time dependent variables of this type is given in 1U.6 and 5U.7 and their

use regarding goodness of fit is considered in *6.1 and *6.2. Otherwise it









k.lI. Introduction

Simmary

Inferential procedures arising from models | to VI will be
discussed in this chapter. Parameter estimation will be achieved
by the methods of meximum likelihood (1k.2 and Ik.3) although
other approaches, marginal likelihood (1k.6), partial likelihood
(*k.T) and Bayesian (1k.6) will be considered. |k.k investigates
methods of estimating covariance matrices of relevant parameter

estimators and |K.5 indicates tests of sig

cance concerning

their values. For the parametric models, results will usually be

given for models 11 and V only. Corresponding expressions for
models I11 and VI may be deduced as special cases.
Tied Data

It will be assumed throughout that random variables representing
survival time are continuous. Frequently, however, data will be

recorded in a form involving ties. |1f these are small in number,

a random breaking of the ties will usually be adequate. To cover

the possi

ty of a large number of ties, Cox (1972) discusses a
logistic model closely related to model I. Kalbfleisch and Prentice
(1973) extend their marginal likelihood approach to incorporate tied
data, retaining the form of model I. See also Breslow (197k). Each
of these methods may be employed within strata, under model 1V.
Analysis using any of the parametric models 11, 111, Vand VI is

unaffected by the possibility of tied data.



Notation
L«t ti* < ... < tn denote the ordered censored and uncensored

dependent observations with corresponding indicators

if t° is a death
e C irt, b . censoring,

and independent variables  , and denote by t(1) < t A ...<t(K)
the ordered uncensored survival times.

When dealing with models IV, V and VI the notation may be
extended in an obvious way. In the j 'th stratum, let

cees * t#inj b the ordere<l observations, with indicators
®ji *nd indePendent’ variables Corresponding unordered

quantities will be denoted by t,., and

fgmuUon Of likelihood faction.
Model |

Cox (1972), in computing the likelihood function under model I,
considers only time points tj» at which deaths occur (dj* - 1).
Given the set of individuals who have observations on survival time

the probability that the death is on the individual as observed

The required likelihood is then obtained as the product, over deaths,

of such terms and



L(E) m 7\ <«P (£
i-1

>/ A **P (£
j-i 3

Further discussion on the formation of this likelihood

k.6 end 1k.7

is given

Mrtfli »1 >ea? —

Under model 21 the likelihood function is given toy

L(f. Ale) - 71U a eft'’*i)4i exp (-At" «g'*1)

Model» IV. V end VI

in

The approach employed for model | suggests that the likelihood

function L(§) under model IV may be constructed as the product

strata, of terms

71 {exp(L »*iE ) / p(fit

and thus

L(E) * 71

The likelihood function L(£, X a) under model V is formed

in a similar way using k.2 and

@<4.&s> - A T\<»j *j "

where X' ® (Xi,..., A#) and a' m (ai,...t0$).

over



Ih.3. Parameter and function estimation
Model |

From k.I. the log likelihood function for £ is given by

Iem Yl
Differentiating

a
1 x*.. exp(e'X:*)

vy - ¥

soil'c ,
Tty
- zv{ I X* Ik xxp(” W< »I%)
»e, Tan i-1 el 11
-l x=Jt ({0 ¥ Serjk «r<tt | v P
- Utk(4) k-1 u.7.

The maximum likelihood estimate j of £ is the solution of

-0, K'l,...,p. Vith fev independent variable« the

likelihood may be tabulated directly to obtain parameter estimates.
Alternatively a Nevton-Raphson iterative procedure using U.6 and

K.T will yield £ Computation of the second partial derivatives

at U.7., however, may prove tedious and a search method using

k.5 may be preferable with large data sets. More will be said about

thecomputational aspects of model fitting in chapter 7.
The problem of estimating XQ(t) has been considered by several

authors.  Kalbfleisch and Prentice (1973) begin by approximating



thi* quantity u a step function as in 11.3. Estimation of the

steps 1£ is a direct extension of the methods of that section

and given £ the above authors show that the maximum likelihood

estimators  of i“l,2,....,r are given by

it T

where 1*1 ... represent observations on survival time in

1j with corresponding independent variables £it. The resulting

estimate of the survivor function

T(t) " exp |-er * f ~orb) du]
Jo

variables £ is then

for an individual with independent

exp |-t ¢jed ti1]
<),

o[- eV W iTM ¥
Alternatively, the Breslow approach of

*1.3 yields estimates

{I*<irr<i-iz) 1 »<* T}l

i-kel

which may again be used to obtain estimated survivor functions as above.

To achieve a form which generalises the PL estimate, Breslav (1971)

shows that the probability of surviving interval 1~ conditional

entering it may be estimated by
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ep (- (tf ., .p ) e&™4 i1, kel

and the corresponding estimate of the survivor function is

si(t) -

Oakes (1972) and Cox (1972) have also considered the estimation of
Xe(t). The approach of Oakes is similar to that of Breslov.

Cox, assisaing that XQ(t) is sero except at points where deaths occur,

performs a separate mmdmum likelihood estimation procedure for

MO« > each of these points. The resulting estimate of the underlying
survivor function is a further generalisation of the PL estimate.
Jtotels 11 and i

Prom k.2 the log likelihood under model 11 is

Differentiating,




The second pertial derivetives of £(jg(X.a) ere

R . - 517 Ji> ».3-1.
IR i [N
- 11 5E< docri> «i* me« U' jE) j-i...
»X R A T
«d %« - | (log t.) t.° exp (E' x.)
i-1 1
3az Cow A1 97000Vl f oy <isosis u.10.

Maxirum likelihood estimates ¢, *, a of £, X, a may be obtained as
with model 1.
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tjk <Hen> - *u

113 PAL (% x- » Jj'u

il pri <*eres* m : Qli*u (mi,i) - tu» »es'ii))  j.k-i.
inp.i p*i -p

VP pEaEatt e (1) <(10F 2Er Ly

Inp2 p.2 * JS.0 (b ¢ kU,2) - 2a<X> * ¢ 'iilLd 1)

$(10% » i7s,)%.

ilar result* for model V are obtained usine

X]

ft(1.1) - doc Xj ¢E'Sjiid

™Y s TESIE(L002) 200 X+ 1 iU LY
a7\

e(log Xj ¢ i%jiji)2)

Ag.~ptions concernir the censoring s-cUnig

Under the fixed observation tine model, if, for i“l,...,n
T- represents the maxinnn observable time for individual i, then i
model 1X
EUj) - 1- exp (- Tjrel'*1)
E(Ti®) - - ~ m— (1 - exp (- XTAeS'ii)

E((lo« TA> Tj@) “  J*(lo« u) u20 1 Xae®  exp(- XuBer 27)du

¢ (o« Mmgeexpt-Xtrefin)
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E((log - Jx(log us2 wa'_1 Xadt'*iccp( -Xu®A'*H)h

+ (log Tj)*»!* exp (-XYj® e®'xi).

when a# 1, evaluation of the last two terms cannot be achieved analytically.
However in the exponential case, these terms are not needed and the
required quantities are

Edj) - 1- exp(-XY. e£'*i)

E(TH) - 1- exp (- XTjerw)L.
Under the random censorship model

(«E)- i Aen'*1 at®lexp (-AeN*®) {1 - Hy (t)) dt

EiTj®) - fo t@Ci(t, X, a) dt
E((log TjJTj®} - ru,,« t) t8Ci(t, £, A, a) dt

E((log Ti)ITi®>- JO(log t)2taCi(t, £, A, «) dt,

where cij(t, X, «) - Xe**iat®" 1l exp(-X«fi'Sit®)(I-Hy (t)>
¢ exp(Xer  t®) h'v (1)
and for i»l,...tn, Yj is a random variable

representing period
of observation for individual i with distribution function ().

Similar resultis are obtained in an obvious way for models V and VI.
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»U.5 Teste of Bignificar.ee concerning parameters

Stepwise procedures
The purpose of an analysis using any of the above models

will usually be to select those independent variables having a

significant effect upon survival. This may be achieved by a

forward stepwise procedure similar to that used in standard multiple

regression, the effect of each new independent variable introduced

into the model being assessed using the large sample likelihood

ratio test procedure. A backward stepwise procedure, fitting a

model with all independent variables included and eliminating each

one in turn, is an alternative approach used in a related context

by Greenberg and Bayard (197k). The former method will prove more

useful for applications in which the number of independent variables

is large. In addition the hypotheses KQ: e*l and HQ:ai»a2"... *1

sire appropriate for distinguishing between models 11 and 111 and
between models V and VI respectively and nay be assessed using the

large sample test mentioned above.

Model | ~ connection with Logrank test
In discussing model 1, Cox (1972) indicates that the global

null hypothesis He:£ m 0 may be tested by noting that the

statistic ..., i*

asymptotically normally
distributed, under H ,

h rero mean vector and covariance

matrix Ji(fi)"1 where U(£) - £- In the two group case where

10 group 1 members
wixom o %

'l group 2 meribers

this statistic reduces to
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In the notation of *2.1. £ 6,

565w mlL

Comparison with 2.10 shows that the above test is equivalent to

Mantel's test based on the statistic M,j. The connection with the

Logrank test at 2.15 automatically follows.

*U,6. Marginal likelihood approach

Introduction

The techniques of marginal likelihood to be used in this

section have been developed along similar lines by Fraser (1968)

and by Kalbfleisch and Sprott (1970), for the purrose of eliminating

nuisance parameters.
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Model |

Several contributors to the discussion of Cox (1972)
vere unhappy about the formation of the likelihood function at U.1

and Kalbfleisch and Prentice (1973) have justified its for» vi

n

the framework of marginal likelihood. These authors argue that in
the uncensored case, the rank vector is sufficient for ¢'in the
absence of knowledge of !,,(.)' (i.e. marginally sufficient for ¢ .
Barnard (1963)). The siarginal likelihood of ¢, L(£) is then
proportional to the distribution of the rank vector.

ease, the full

In the censored
rank vector is not observed and Kalhfleiseh and

Prentice suggest that the marginal likelihood is sensibly based on the

probability that the rank vector is one of those possible under the

observed sample. The resulting expression is identical to the form

k.l. 1t is important to note that this extension to the censored

case cannot be justified formally within the context of marginal

likelihood. In addition, the marginal likelihood approach assstanes

that 10(<) is not identically xero over an open interval of the

positive real line, and that independent variables are not functions

of time. The marginal sufficiency arguments break down if time

dependent covariates are included in the model.

Models Il and 111
For model 11, in the uncensored case, A B (Aj...... An)’,
where Aj ® T./Tj, i*2,

. is marginally sufficient for ¢,a and

the marginal likelihood L(E, a) of £,a is proportional to the p.d.f.

f*(ft) of A. The p.d.f. of J - (Tj,.+=, Tn)' is
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fm(l) = xon [ lj‘”liexp (1 B%x. - X1 taeg"
* 4-1 1 4-1 1 1

Applying the multivariate transformation

T, -T1. Tj- AT, inS..

and integrating Tj from the resulting expression it follows that
f. () - (n-DJan_l exp f 1 £7*i] 727i@"1 [ | “i* e®'4*]  where »1*1
4 () - (-hJant exp f 4 £Ti)7s i ]
*ME. a).
In the censored case the marginal likelihood of £a is proportional

to the probability that £ is one of those possible given the sample.

(As in the case of model | this extension to the censored case cannot

be justified formally). Without loss of generality it may be assumed
that

e W@ e e mar e 1 rr2

W W — =m* - o

and the event of interest is

A2 - a2)..., Ar - ar, Arel >ar+1'""" A * an having probability
F/ (> e m o V Fr Rk, % .

=3 p(Tr.1 * LT
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Corresponding arguments in model IV indicate that the marginal
likelihood of Barises out of the joint distribution of the set
of rank vectors (with the Maual extension to the censored case), one for
each stratum, and the resulting expression is identical to 1».3.
Similar considerations also extend results to incorporate model V.
Inferential procedures

Methods of inference based on the marginal likelihoods in models
11 and 111 have been discussed by Prentice (1973). He suggests
that tests of significance concerning £, a in model Il and £ in
model 111 be conducted by comparing the null values to be tested with
the corresponding distribution of the marginally sufficient statistic.
Similar methods may be used with models V and VI. In each of these
models suitable estimators of the parameters are provided by the
mode of the marginal likelihood. Differentiating the log marginal

likelihood of £,a in model Il shows that £.,a are the solutions of
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CampariBon with U.9 »hows that the resulting estimates are identical

to those obtained using the standard maximum likelihood procedure.

Estimates in model V, obtained as above, also coincide vith those

obtained by maximum likelihood.
The large sample properties of maximian likelihood, hovever, have

yet to be established for methods based on marginal likelihood. The

implications of Kalbfleisch and Prentice (1973), that these should

necessarily hold in general, must be treated vith caution, although

for the special cases of the marginal likelihoods based on models 1

and IV, such large sample results are valid, as vill be seen In the next

section.

jU.T Partial likelihood approach
definition and properties
Cox (1975) has clarified the position concerning his

‘conditional*

likelihood for ~del 1 through the concept of partial likelihood, which

in Cox’s notation may be defined as follows

Suppose £ is a random variable with p.d.f. fA(€ ; ®) which may
be transformed to a sequence of (possibly vector-valued) random variables
(Xj. Sjj jel,...,m) the transformation not depending on the unknown
parameter . Then



Tk

and the second term of this expression is defined as the partial

likelihood based on £ in the sequence (XA, Sj ; cml,...m}.

. Yo

on).

anl] 80
If a suitable transformation is available such that the partial
likelihood depends only on the parameters of interest then inferences
concerning these parameters may be based on this likelihood. cox
discusses several points associated with the uniqueness and rormation

of partial likelihoods. In addition he shows that the standard

large sample properties of maximum likelihood., that

i) asymptotic normality of parameter estimators,

consistency of the matrix of 2nd partial derivatives,

evaluated at either the parameter estimates or the true parameter values,
in the estimation of the covariance matrix,

iii) large sample x2 test procedure based on the likelihood ratio,

are all valid when dealing with partial likelihoods.

Using the notation of *k.I for j*

k let Bj represent the

event, individual with independent variable dies at

and let repereser.t the event that a death occurs at t~» and

individuals censored in t(i)~ «** as observed. Then, Cox

argues that the resulting partial likelihood for model I is I*.i

Crowley (197*0 makes these points mathematically explicit for the two

sample problem. A further point of importance is that this approach

allows the inclusion of time dependent covariates.

It follows directly that the likelihood under model iv, at U.3,

may be interpreted as a partial likelihood and the inclusion of time

dependent covariates is also permitted in this model.



»**m8. Bayesian approach

Models 11 and 111
A Bayesian approach to the analysis of models Il and 111
night sensibly choose the non-informative priors *(£, X) « ~ for

The posterior density

Bodel 11l and w(£,X,0i ) « ~ for model I1.
under model 11 is then
h 1As*T"1 e

- 1 -
exp(X tj exp(g'6i)>
i-11

and using the result

xk elut - , where k is a non negative integer, it follows

that the marginal posterior density of #, J is

£ -f «
LY CAYA e N fte *

(i «p'tiiig A
which is identical to the expression U.Il for L(£,a) (except for a constant

of proportionality).

In model V with prior density
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2

T ft*

the marginal posterior density of £, is the product over strata

of terms  U.12., identical to the marginal likelihood under model V.






»5-3-_Introduction
efficiency

This chapter is concerned mainly with the relative efficiency of
methods of estination based on model | when the true model ia either
I or zzz. Similar comparisons between the within strata models are
also considered.

A suitable .sure of asymptotic efficiency of sethoda of estimation
am given toy Kendall and Stuart (1972. p.19) for eetimators which are
asymptotically normally distributed. If 6j is an asymptotically
efficient estimator of ttoe particular £ component O of interest and
©2 is another estimator with
var(©1)- -jp» (©*) as n w e then the asymptotic

relative

The quantity R2 X may toe interpreted in large samples as the inverse
ratio of sample sites reded to give the estimators equal variances.
In all applicationa to toe conaidered here, s+ 1. Results concerning
the asymptotic efficiency of testing procedures may be obtained by
exploiting the connection between A.R.E. and estimating efficiency outlined
toy Kendall and Stuart (1972. P 28h/5).
Carlo methods, similar to those of 12.1 will be used to
verify these asymptotic results and to assess the effect of censoring
Lea will also be achieved

toy simulation.

The within strata models are investigated in *5.5. The large and
small sample results for model | are considered for the 2 and K group
cases in *5.2.. while *5.3 and*5.** investigate the one and two independent

variable situations respectively.



Asymptotic covariance matrix of & in parametric models

It is convenient at this stage to consider again the results
of IU.i* concerning the asymptotic covariance matrix of £ for the
parametric models in the uncensored case. Under model 11, the

information matrix may be partitioned in a natural way as

e [N

where A, a p*p symmetric matrix,has elements

ap *2 matrix has elements

Cy = <Eeree>
and B, a2« 2

«

syimnetric matrix, has elements

IR A S *e > 1

The asymptotic covariance matrix [I11 (£,X,ci)] 1 may then be
conveniently written as

L-1"1CM : r 14 B1S »£ B>
where M ® (E-CY31£) 1 and the marginal distribution of £ is
asymptotically N(£, JJ).

similarly, under model V, the information matrix £V(i,A,a) may

partitioned as above and A, a p * p symmetric matrix, has elements
© i
sit * Xjik xjit K* 1-1.

£Ew 1Cj  where CA are p* s matrices with elements

“Ts-
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The matrix g may be written in the form

h ixJ
- B
where Bx ® diag#
(v *:>
Ba = diags |ﬁ 1a L(1,2) - 2(log »+ fi'Sji) UI.1) +
j it
and
& - oAty <L(1.,1) - Uog kj ¢ g'2ji)>] + and
diagh (a”)

denotes the V. = m diagonal matrix with element aj .

Asymptotically B~ N(fi, M) where M- (A - £ B 1 C) 1 1« as before.

Results for models 111 end VI are obvious special cases of the above.

1S.2 The two and K group cases
Large sample efficiency
As pointed out in I1U.5, the model | statistic in the two

group case is identical, to the logrank statistic at 2.15« The results
at the end of 12,5 indicate that the test based on this statistic is
asymptotically fully efficient under random censorship« when the
censoring distributions in the two groups are equal and the true
distribution of survival time is exponential. Further asymptotic

results have also been discussed in that section.

In the K-group
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mijlz



‘L if i in group j
[0 otherwise.

the null hypothesis H)z Bj* 82 " +es m * 0 can be tested

using the statistic given in (U.5 and under Hy

Crowley (1973) has extended the above 2 group results under identical
conditions showing that the test based on 5.1. is asymptotically fully
efficient. Again losses in efficiency occur for unequal censoring
distributions.

Small sample power

In the two group case, Lee, Desu and Gehan (1975) using the Monte
Carlo procedure of (2.1 have evaluated the small sample power of the

single tailed test based on the statiatic  jA~ , treating

/ Aj(0) as 1(0,1) under HQs - These authors incorporate
this test in the comparisons summarized in (2.6. and in both the
censored and uncensored situations show that this test compares
favourably with a) the F-test when the true distribution of survival
time is exponential and b) the Fj-test when the distribution is

Weibull. The ssmll sample efficiency of maximum likelihood estimation

based on model | to that under model 111, in the 2 group case is
considered in (5.3 as a special case of the single independent variable

situation.

(5.3 A single independent variable
The results of Kalbfleisch

The relative efficiency of the method of estimation based on
model | compared to that based on model 111 has been considered in the

single independent variable uncensored case by Ksabfleisch(197>ca).
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The results of 15.1 with p»l indicate that the model I11
information matrix is given by

-

- . is the j'th central nonei
Nt
of the finite population (*], S2,«,«,*a)*

*<0.X) m
where. for j»1,2,.... wt -

it then follows that

@1 likelihood estimator of O in model 111, is
distributed asymptotically as 110, 1/%)

Under Model I, the likelihood function can be written

and using k.T., the 2nd derivative of the log likelihood is

.- «2(e>
where gj(0) m - * * ~
Putting 13(0) - E(g2(0)) ®m Zg2(*) L(0), where the simulation is over

all n! possible rank vectors j, it follows that asymptotically 0j,

the maximum likelihood estimator of O under model 1,
R(0, 1/]jl(ej).

has distribution
The asymptotic variance of 8j cannot be evaluated

explicitly for non-zero 0. However at 0-0 relatively simple results

may be obtained, where
iler - (]

and Ep denotes expectation over the permutation distribution of the

finite population (x4, x2,..., *,)= Since
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At 0 m 0, the asymptotic variances of Bj and Bjjj are simple inverse
functions of the sample size, so that Rj jjjtO), the asymptotic relative

efficiency of Bj (compared to Sjjj) is 1.

Thus the method of estimation,
Bj. using model | is asymptotically fully efficient vhen 80 and the
connection between estimating efficiency and A.R.E. mentioned earlier
implies that a test of Hj: B'O based on the distribution of Bj has

A.R.E. equal to 1 when compared to the asymptotically efficient test based
on the marginal distribution of Bjjj.

For non-zero B, I*(b) cannot be evaluated analytically and some
approximations are needed.

Expanding log 11(B) as a Taylor series about
the value B'O

all values of B.

Evaluating term by term.
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11(0) - np2 + o(n)

>1ar  Ep (9300) - 920)9i ©)} - o(m

Ep 6.(0) - 2cs(o)ci(o) - (Caio))l + «2 «»{«i(0))”

2nu22 ¢ °(n).

For details of the calculations leading to these results see

Kalbfleisch (197**a). From 5.3 it follows that, in the neighbourhood
of 6" 0, 1*(3) m nb2e-W2e and the asymptotic relative efficiency of

Bj at 6 is given by

5-k-

If the true distribution is Weibull and model Il is appropriate

m

11A(e,*,a)

—i 1 “
e s

where Ba 0 J  *jth
Bn“ 72> Bj2® A (1- « - logx) « B2l and

B22% ~» - logX)2 * A * 82u2)and using the results of 15.1.

CE"V - cl128,<bu b2 - b,,2)*1-mV (1 esV ] 1

so that asymptotically
var (Bjj) - (A- CB* C)"1 - + Ay , and in the neighbourhood

of B» O,
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5.5.
Hote that RT TT(0> « 1 and that, since
asymptotically and in the neighbourhood of B » 0O
var (#)) » var (*jj) * var Cijjj) = that
Note also from the above analysis that
(i~
These asymptotic efficiencies have been evaluated in table 5.1.

for various values of |b] vith mj a i. Note that Rj m(®> exe*«d*

0.T5 for le] < 05361« In the 2 group case vith Zj m Y%-owp 2
and equal numbers in each group this corresponds to a ratio

of approximately 3s1 for the failure rates in the 2 groups.
Kalbfleisch, using computer simulation, indicates that 5.%. is
a good approximation when the distribution of the finite population
K), *2,..., *_ i» symmetric but discrepancies occur if the distribution

is skew. To investigate these claims and to assess the effects of

censoring on the effi

ency results, these and other simulations

are given here. 1000 observations were randomly generated

(500 in each group) for model 11l vith X»l, p*l and

Nevton-Raphson method. This procedure vas repeated 20 times and for

each 6 value, sample variances of Bj 411 calculated. The

results are given in table 5.2A). Tvo further situations vere

also considered. Firstly, the finite population(zj, 22, .e=,*i000"

consituted a random sample from a standard normal distribution and

secondly from a unit exponential distribution.

In each case the
finite population vas standardised






Table 5.2.

of Bj compared to Bjjjfor B* - 0.9(0.1)0.$

A)

-0.5
-0.1*
-0.3
-0.2
0.1
0.0
0.1
0.2
0.3
ok

0.5

Two (roup case.

0.779
0.852
0.91k
Cc961
0.990
1.000
0.990
0.961
0.91k
0.852

0.779

-0.w829
-0.3829
-0.2829
-0.1829
-0.0829
0.0171
0.1171
0.2171
0.3171
O.kITI

0.5171

(20 simulations)

in efy
variance(«102)

0.159k
0.159k
0.159k
0.159k
0.159k
0.159k
0.159k
0.159k
0.159k
0.159k

0.159k

Bj average

-0.k8k8
-0.38k8
-0.2851
-0.18k2
-0.0836
0.0170
0.1182
0.2196
0.3211
0.k230

0.5251
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Sample means and variances of Bj and Bjjj and estimated A.R.E.

Bj sample estimat«

variance(«10%) RI,111(l
0.1758 0.906
0.169k 0.9kl
0.1591 1.001
0.1588 1.00k
0.1603 0.99k
0.1611 0.989
0.1590 1.002
0.1661 0.959
0.1757 0.907
0.1807 0.882
0.1897 0.8k0



B)

o

0.5
-o.u
-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
o.u

0.5

Independent varieties observations from N(0,1).

RI,111(R)
using 5.5.

0.779
0.852
0.91h
0.961
0.990
1.000
0.990
0.961

0.91U
0.852

0.779

®m averafe

-0.u987
-0.3987
-0.2987
-0.1987
-0.0987
0.0013
0.1013
0.2013
0.3013
0.uo13

0.5013

-in

0.1127
0.1127
0.1127
0.1127
0.1127
0.1127
0.1127
0.1127
0.1127
0.1127

0.1127

--P1
varianee (»102)

6j average

-0.503U
-0.U01U
-0.3011
-0.2009
-0.1001
0.0015
0.1020
0.2026
0.30UU
0.U069
0.508U

(10 simulations)

variance(«10*)

0.2012
0.1800
0.1537
0.1313
0.1110
0.1061
0.1060
0.1073
o.nus
0.1188

0.1265

88-

estimated

v m

0.560
0.626
0.733
0.858
1.015
1.062
1.063
1.050
0.986
0.98

0.891

(*>
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C) Independent varieties observation* froa unit exponential distribution.

(10 simulations)

JH1 average #1U sample 6j average Bi sample estimated

using 5.U. variance(«10*) variance(«10*) FI.111(#)
-0.5 o.179 -0.5088 0.1u22 -0.5056 0.2300 0.618
-0.U 0852 -c.uos8 0.1U22 -0.U093  0.2392 0.59W
-0.3 o.91U -0.3088 0.1U22 -0.31L0  0.2069 0.687
-0.2 Qo1 -0.2088 0.1U22 -0.2122 0.1582 0.899
-0.1 o0.990 -0.1088 0.1U22 -0.1106  0.1619 0.878
0.0 1.000 -0.0088 0.1U22 -0.0092 0.1U28 0.996
0.1 o0.990 0.0912 0.1U22 0.0919 0.1U68 0.969
0.2 o.961 0.1912 0.1U22 0.1932 0.1515 0.939
0.3 o0.91U 0.2912 0.1U22 0.295U 0.16U 0.883
ou 0852 0.3912 0.1U22 0.3972 0.1720 0.827
05 o0.779 0.U912 0.1U22

0.U978 0.1721 0.827
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by subtraction of the sample mean and division by the sasiple standard

deviation to ensure that U] "O and u2 Results fro« 10

simulations are given in tables 5>2.B) and 5.2.C) respectively.

In the three cases considered, the expression 5.** is in

reasonably close agreement with the A.R.F. obtained from computer

simulation, although the results are generally less stable than those

of Kalbfleisch Particularly in the two latter cases, the estimated
values of Rj jii(B) lack symmetry about B"0. The reason for this is

not clear.
Effects of censoring

To assess the effect of censoring on the efficiency results of the

previous section the simulation study was extended. At each

simulation, having generated a random sample of 000 observations from

the appropriate form of model 111, the clinical trial situation was

simulated (as in 12.1) by assuming that individuals enter the trial

at a constant rate in the interval (O0.T-) and termination of the trial

at T* gave a set of censored and uncensored observations. T* was

chosen so that the expected proportion of censorings was successively

0. 3and 0.6. Thus for each of the 3 finite populations {zj.*2 seeee* 1000"

and for each 6 value considered, T* was the solution of

1000
1.3 S xp <-T* exa>> x p

for p» 0.3 and 0.6. Tables 5.3 and 5.U present the results for p”5.3

and p - 0.6 respectively.
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B) Independent variables observations fro« H(O(1) (10 simulations)
distribution.
0 0JJoverace -in e-rl*  0j averae O) SaTPIe estimated
vmriance(«10%) vnriance(*10%)
-0.5  -0.5057 0.3112 -0.5066 0.3115 0.999
-0.k -0.U136 0.2936 -0.U151 0.3200 0.918
-0.3 -0.300.6 0.3119 -0. 308 0.3299 0.9U8
-0.2  -0.2050 0.265 -0.2058 0.2731 0.968
-0.1 -0.1059 0.1881 -0.1075 0.1931 0.97W
0.0 0.0070 0.27me 0.0058 0.272». 1.009
0.1 0.1071 0.2202 0.1077 0.2077 1.061
0.2 0217 0.2359 0.2168 0.2037 1.158
0.3 0.3063 0.1860 0.3065 0.1932 0.963
oh 0.»108 017, 0.U110 0.1U2 1.210
0.5 0.5076 0.2063 1 0.5098 0.2091 0.987
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C) Independent variables observation« fro* unit exponential distribution
(10 simulations)
) sample i

€ "Il averte \-/;rl:'iance(‘ll)Z) i average \/Birian:e(«loz) :/St::itf:
-0.5 -o.ve39 0.U06T -0.U986 o.uloo 0.992
-0t -0.3996 0.3135 -0.,t003 0.3168 0.990
-0.3  -0.29%3 0.1782 -0.2958 0.1792 0.99%t
-0.2  -0.2020 0.1606 -0.2030 0.1W5 1.082
0.1 -0.1005 0.20hU -0.0996 0.1969 1.038
00  -0.0069 0.3000 -0.007>* 0.3076 0.975
0.1 0.0903 0.1863 0.090it 0.1976 0.9v3
0.2 0.1866 0.2163 0.1872 0.2289 0.9>*5
03 0.2902 0.1580 0.2921 0.2087 0.757
Ok 0.3961 0.1078 0.3993 0.1289 0.837
05 0.U972 0.1236 0.5009 0.1557

0.79*






B)

Independent variable observations fro* N(0,1) distribution

(10 simulations)

0
-0.5 -0.5036
-0.u  -0.3693
-0.3 -0.2952
-0.2 -0.1737
-0.1  -0.0905
0.0 0.0180
0.1 0.0969
0.2 0.2302
0.3 0.3268
QU o.uisi
0.5 05186

T Laverage
variance(>102)

0.3270 -0.5078
0.5869 -0.3911
0.3716 -0.2960
04937 -0.1739
0.3770 -0.0918
0.5277 0.0186
0.0130 0.0998
0.3382 0.2313
0.5139 0.3258
0.2260 owl79
0.2710 0.5180

Bjsampled
variance(»102)

0.32T2
0.5799
0.3302
0.Ublb
0.3695
0.525«
0.0076
0.338«.

0.5061

0.2129

0.2577

estimated
*1.111(B)

0.999
1.012
1.030
1.012
1.021
1.00*
1.013
0.999
1.015
1.063

1.052

-95-
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-0.3
-0.2
-0.1
0.0
0.1
0.2
0.3
ou
0.

Independent observations fron unit exponential distribution

(10 simulations)

>IN »verage

-0.U625
-0.37U5
-0.2622
-0.1756
-0.0879
0.0253
0.0981
0.1969
0.2968
0.U153
0.U956

i,
variance(*102)

n.

0.7823
0.5730
0.2836
0.6b20
0.3b71
0.3053
0.b2Ib

0.2952
0.28U8
0.1896

0.2b57

*

-0.b630
-0.37b2
-0.2617
-0.1761
-0.0871
0.02b5
0.0977
0.1968
0.2973
0.bl69
0.b956

8j sample
variance(*102)

0.7927
0.5632
0.2858
0.6b8b
0.3bSb
0.3060
O.blll
0.2862
0.2887
0.1917

0.2395

-96-

estinated

0.987
1.017
0.992
0.990
1.005
0.998
1.025
1.031
0.986
0.989
1.026
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These resultc clearly indicate that, in general, the large

sanple efficiency of gj compared to Bjjj increases when the data

is subject to censorship. In addition greater severity of censoring

improves the efficiency even further. This gem‘al trend is

particularly narked in the two situations where the independent
variables are randomly generated samples from standard normal and

unit exponential distributions. In the 2 group case, the estimated

value of Rj j(B) is greater than 95* for all B values considered
with censoring proportion 0.6. Corresponding lower bounds in the
standard normal and unit exponential situations are 99% and 96.5*

inspectively.

=1 consid.r.tior-B

In a sample of size n, Kalbfleisch suggests that the relative

iency of Bj compared to Bjjj is given by

5.6,

is the value of the information ratio

obtained at 5.2. by Kalbfleisch. The validity of this approximation

is assessed by the above author using computer simulation although

details are not given. Tables 5.5A) and 5.5B) present computer

simulated estimates (obtained as before) of this relative efficiency

in the 2 group case for various values of n, with no censoring and
30* censoring respectively. The expression 5.6. is also evaluated
in tables 5.5A).



Table 5.5.A)
n
using
o S56e
0.5 0706
-0k 0.772
0.3 0626
02 o871
01 0897
0.0  0.906
01 0897
02 0871
03 0828
ok 0772
05 0706
Do of
100
mijBU-

lations

Relative

obtained by simulation in the 2 group case and no cer.scrir.g.

20

siaulated
stiaate
0.568
0.537
0.565
0.567
0.597
0.752
0.791

0.738

0.673

0.671

0.569

efficiency Rj jii n(B) using 5.6 for

using :?aulated us ng siaulated
5.6 estiaate 5.6 estiaate
0.722  0.593 0.731 0.588
0.790 0.666 0.800 0.6k8
081*7 0.735 0.858 0.710
0.890 0.756 C.902 0.753
0.917 0.800 0.929 0.777
0.927 0.753 0.939 0.779
0.917 0.761 0.929 0.75k
0.890 0.737 0.902 0.7*7
0.81*7 0.66k 0.858  0.736
0.790 0.637 0.800 0.660
0.722  0.59« 0.731  0.555
100 100

0
using siaulated
5.6 estiaate
0.736 0.6kl
0.807 0.697
0866 0.7*6
0910 0823
0938  0.803
0.9k7  0.857
0938  0.851
0910 0.813
0.866 0.777
0.807 0.765
0.738  0.7k7
100

80

using siaulated

5*6 estiaate

0.7k9

0.819

0.879

0.92k

0.952

0.962

0.952

0.92*

0.879

0.819

0.7*9

0.716

0.79k

0.85k

0.8k3

0.866

0.878

o.eei

0.871

0.867

0.819

0.756

uje! and 6« -0.5(0.1)0.5 vith estimated values

no
using siaulated
5.6 estiaate
0.755 0.791
0.826  0.866
0886 0.916
0931  0.91k
0960 0912
0969 0.920
0.960 0.892
0931 0.831
0886 0.773
0826 0.725
375 0705
50
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The simulation results suggest that 5.6. i* an overestimate

of the relative efficiency in the 2 group case, although the approach
to full efficiency is at a comparable rate. The results in table
5.5B) again indicate that the relative efficiency increases when
censoring is imposed.

»¢siii__Two independent variables

Introduction

The situation of two independent variables considered in this
section is one that frequently occurs in medical statistics, where
the factor of special interest is perhaps treatment group, while
the second independent variable is some other factor, not of primary

interest, such as age or sex etc.

Large sample efficiency in uncensored case
The calculations involved in the two variable uncensored case

are a natural extension of those in 15.3. For j*1,2, let

Under model 111
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BO that asymptotically

em er<re i1y
«©,2
6% niw2 00 2~wi 7)
The likelihood function under model | in the uncenaored case is

L 7/ 6,%il * 82 *i2 \
U»rlte2) - 7T ~  a,» —
U 1 Vepwzi B2 1

where e..» o+ x,.* - x. idl,...n; ja,2.

The 2nd partial derivatives of the log likelihood are, using U.7.,

-m i* */i*

JUIE e e .

_«2,0t6»®2) t-k-1,
k-2,

el ine, i2) t>1,M or te2, k-1.

- 3i*i»16..t,)
icjl 3e:

where 8~ ( 61,62)

« > %~ a - i<8ina> - - *
t.ol,i. a MBT' 1P3) to,i<8i.»a 62 1*1,2,.



hittinc

21 (61.62) + * <Ai0(*i>a>ll - l«s30(*i.«i) 1 (»,.».).

ij2 (61.62) - 6 (ij~cei.ejl) - 17 ~61.62) 1 (61.62)
* i tl<ei.e2).

1], t(«].6.> + 6(607(6l.«2» - 1*0~(61.62) 1.(6!.62>*

the maximum likelihood estimator ¢j of | w (61602)

has asymptotic distribution N(fi, 11(0i,02) 1) where
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(01102) " [1131(#1.02)] and the asymptotic marginal distribution

of OTL is H(0i. VI(Ol.e2)). where

»2(61.62) - 1112(6i.e2) (1~ (61.62) 122(6i,62) - 1jt(6i.61)*)'1

Vj(61.62) cannot, in general, be evaluated analytically but again

relatively simple results may be obtained at Si* 62 “ O.

14(0.%) - 5p (R.ncO an - *

ijj'0-01 * Ep Ll 1<-"" T A **1.1

i3pi0.0) - Ep (A -2(0.0>) = - h 2
vj.0)  fill w2___ 2fc|
8N 2.0 40,2 M1 18 “0,S-»1,j)»0 t»)

so that at 6ls 62 “ 0. the asymptotic relative efficiency Rj jji(0.0)

of 6™ compared to is equal to 1. This implies that at 62» O,

a test of Hy: Pi* O based on the marginal distribution of Bjj

asymptotically fully efficient.
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As in the tingle independent variable case an approximation to

the asymptotic variance of valid in the neighbourhood of

(01,02) « (0.0), may be obtained for non-rero 01,02 By expanding
logVx(0i,02) aa a Taylor series about (OvO). The log transformation
again ensures that Vx(0i,02) i> strictly positive for all

0i and 02-
av (0.0) . av (0.0)
lo, »,<=,.B,) . lo, Y,(0.0) . v~O) - * Vijfo.ol M, -
oL 02 ( azv (0.0) rav (0.0h rev (0,0) ©
* 27",(0,0)3" 1 X(0*0) »01 >0, "L »bT§ L w2 j/

+ 287000 iy Y L 7

It may be shorn (the details are given in Appendix B) that in the

neighbourhood of (0i,02) m (0,0) and for lar-ge n
exp
U2,0 *0,2" UL,1;
and hence
- <i,0 5-T-

Note that Rj ~jiO.02) - 1, so that the estimator Bjj is asymptotically

fully efficient and a test of HQ: 0i" O based on the marginal
distribution of O~ has asymptotic relative efficiency equal to 1

compared to the efficient test based on 0XIJ These results are

independent of the value of 02 , although it should be noted that use
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of the Taylor expansion implies that 5.T is valid only for (61,62)

in the neighbourhood of (0,0).

Putting "0 in 5.T,

R, 111(B1,82) * BXP (-8'212,0)

which is identical to the asymptotic relative efficiency at 5.U. for the
single variable case. This result supports the claim, made by Kalbfleisch
(197M, that 5 ia a good guide in multiparameter problems provided

that the independent variables are nearly uncorrelated.

Under model Il the elements of the information matrix I11(Ri,6*,X,a)
are readily available. A is as in model IIl, B»
hi - . *12 (o - lo»*>* hi

he ' ST{(L" ' 10°5)l *J * *i* % 0 * »hj oS 4lil}.

Cllm 0 =« C21* Cl2 = - 5 (**%2.0 #*>*'|.1>- C22 - 1 (,**'1.1%"*0.2)
so that M- (A - CB~V )-1

2 2 2 i-1

~Tu2,0482 £ ~BiBMW
Tioxfive’,2,0%8120.2%78i* "l

*2ui,i-eisi. m1,0i2*fith

where w* (g O M0 2 W1 1~ follovs ~hat asymptotically

vor (e, t) - 1 (-J%* . on P,

ei

in the neighbourhood of (61,62) * (0,0)



Kote also that

-t * .

RI mKL Rxi nji*»»6) coincide with the corresponding
expressions for the single independent variable case when u, ,-0
and the casnents associated with Rj jjjifli.B?) concerning this
reduction apply here. Table 5.6. evaluates these asymptotic
efficiencies for various values of ~ and Bi for the case

20" 2" 11 tor vi i " O *w* *m *ntabl« 5.1.

15.5. Within strata models
Introduction

The large sample efficiency results of 15.3. and 15.U. in the
uncensored case are extended in this section to the within strata
models 1V, V and VI.

Single independent variable case
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It will again be convenient to transform linearly the independent

variable by defining, for J"

1 where x .
in... I

Saspor - 1.2,

i-3

“ eUh-* -it1-t

r*h central moment of the finite population ) within

the strata. Note that

M1 "(@2)1 “(sil









loft-
X . o (* - " -1o* xj}) -

1. - aic.( Sy» H1-* - loc *j} * |* * .

and asymptotically By A 1*B. M) where

M - (A - £ j"1i")-1. In this case CB-1£' reduces to
So«*;1 ¢ S| K. 9* IXK1)£|.

«..r.otr - <sk - L E1 90 )1

Evaluating term by term

i1 - W re H1- - - el *** e "())?]'D-
IXKLIH eccoma S oo

L
9 - Qi -y - io* g} * *r<j)2y)
. vl
. {x- - - 1o§} A2l )
s;lei."a. 9w .1 - {? #2<j)3 *

so that
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Hoo - (t'**sj>i) 1} 1 and asymptotically

& (o (= AV (3)2)

It then follows that

RV,Vi(e) * < (1 * Mj)?]

Note that Ry VI(0) m 1.

Under model 1V, terms appearing in 11V(8),the information about

B contained in the set of s rank rectors,may be evaluated as sums over

strata of corresponding model | quantities. At 6-0

" -2 o.r BAVAG
¢ jo1vj 1 Tej ) i-1

i W Tel
J ] J ¢

and asymptotically var (Bjy) « Cos~arison with the asymptotic

distributions of By and Byj shows that Rjy y(0) » RJV yj(0) = 1.
For non-zero B, loglIV(8) may be expanded as a Taylor series, about

BO, as at 5-3 and similar considerations yield

- lo(n.) - o(n),
JE R






where A ~2.0 "H and asymptotically
~1.1

*0.2

Bi : 12,010,2-MI 17

Under model V, the information matrix may be written as

IV(Bl«2. *. a)

where A is as in model VI,

al(elw(1)1,1 +fi2w(1)o,2) ---- -

hoe (_**_]c
tvifl s o} -

5¢ " dU«.( ((A{(l. * .

Jo>S












»6.2 Assessing goodness of fit

The possibility of using time dependent covariates was mentioned
briefly in »3.3 and the justification of their inclusion was given in
SU.7. In this general situation, models I, Il and IIl are

XA(t) m *0(t) exp (6% x. (1)

Xjit) w let” 1 exp (B* *i (1))

Xi(t) - Xexp (g* x. (t))
with corresponding likelihoods

iexp (€0 xj (tiM) | ol 1
lodel

i
A, A Xath® A exp (B'Xj(t.)) exp (6% x.(t.))V
o
An example of the use of such covariates in assessing the appropriatenes
of the proportional hazards assumption is given by Cox (1972). In

the analysis of the data of Ex.l, Cox uses his discrete form of model |
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coe . . [0 6-MP group
(-ee *U.I) with covariates x| . [} Blaceno group

- xi3 (t-10)
(The constant 10 is included to avoid unduly large numbers in the
exponent). Using the large sample likelihood ratio test, the

coefficient of x~ was found to be not significantly different from zero.
General procedures for choosing particular funtional forms for such
covariates are difficult to write down explicitly, although the

graphical methods of the previous section may yield some information

fee-slcy.’s .".test for parallelism’

In the two group case with additional independent variable

model | takes the form

An assumption implicit in this specification of the model is that
is independent of group membership, that is, the effect of x~ is the

same within the two groups. A more general specification of the form

Vo*>oxorg(t> oy *1*¥11 * «2-ij ¢ V u 'u 1 6.1
will allow this assumption to be assessed, the appropriate hypothesis
of interest being Hqs 8~0 (The usual large sample test may be
employed to test Hg). This is the basis of the 'test for parallelism’

considered by Breslow (197U) who writes 6.1 equivalently as

and investigates the hypothesis B21 m ®22*
In more general covariate situations, product terms may be

included in the model from the outset of the analysis and their
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coefficients assessed in tba usual manner to examine the significance
of such interactions.

Thft mLe—g . residuals

Model | may be written in the following equivalent way:
For i = 1, n, let e be a random variable having a unit exponential
distribution with

*1

1. Sl «Vi* o oa,<e)
This expression of the model allows the use of the methods of Cox and

Snell (1966) to define a set of <crude* residuals

where 0 is the meximum likelihood estimate of 6 and .) is the estimate

of XQ(.) (see fUt3). In the uncensored case the R~'s should exhibit
approximately the properties of a random sample of size n from a unit

exponential distribution. Information concerning possible dependence

of the error quantities on the x~'s may be gained from plots of ‘crude*
residuals against corresponding independent variable values for each
such variable. Plotting ordered residuals against expected order
statistics provides a check of the assumed distributional form of the
\%

similarly, models Il and 111 can be expressed respectively
through the transformations

*i* - » (T.; B.x.0i), i-

Fi whitii(v xe i-o

where the e~'s are as above. ‘Crude* residuals are obtained on

replacing parameters by their meximum likelihood estimates. To extend
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these methods to the censored case, note that for a censored

observation t , information on the true ‘crude’ residual, is of the
*r - hi(t* j 6,

so that proceeding as before produces a set of exact and censored

‘crude’ residusLls. Under any of the above models the error quantities

*1» have survivor function (c) satisfying

log (c) m-« = -A(e)
and a plot of log survivor function, estisiated from the ‘crude’ residuals,
provides a check of the distributional assumptions. Altshuler's
approach (11.3) to the estimation of a cumulative hazard function is
particularly appropriate here.

Expressing models 1V, V and VI respectively through the

transformations

where in each case, for j =

nA, is exponentially
distributed with unit mean allows corresponding methods to be used
having fitted a model of the within stratatype. In large data sets
these techniques should provide an adequate check of model assumptions.
In the uncensored case improvements of the above prodecures are
possible. Cox and Snell, in a general context, suggest transformation

of the'crude* residuals R* to form 'modified’ residuals R/ which
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reflect the properties of the c/A's more closely. These refinements
involve the calculation of means, variances and covariances of the
Ri *s and resulting choice of a suitable transformation. As an example
these authors have considered the uncensored case of model 111 with
a single independent variable. For the p independent variables case,

extensions of their calculations (details are given in appendix D)

ERi) - 14

=1

e
where
is the (k,t)th element of the inverse of the model I11
information matrix. The standardised form of model 111 has been used in
these calculations, i.e. with “XGi - XA Jel,,pi it

The size of the correction terms a”, e. and c,, provides a check of

the validity of the assumption that the properties of the crude residuals
are «dose approximation to those of the Ci'SV In the case gf IT:OdkEJ i,
Cox and Snell suggest as a suitable transformation R * (j_A )E !
icl,....n, where the *.'8 and I's are small. Assuming that this
transformation provides random variables Ri* each having a unit

exponential distribution they show that, for i







" m W S 1- 1 kX * ORIt * Mx*x’T - X Jx* P A
L AL xox* Wl 300
where for k-1 ... tk - E(Bk - Bk>
- U X Ix Ji
Ikl is the (k.t)th element of the model VI information m atr and

6.., is the Kroneckar delta. Again the »tsndardised form of the model

hes teen uaed. Defining ‘mod

ied* residuals R.- m (,23 ) eacn
o 1%

having a unit exponential distribution yields, bo the order considered,

- <32

Finally, covariances between residuals are given by

ji* va.1 o

2 2
k-1 t-1
Similar methods for models Il and V may te used, although the

recessary algebraic results require a considerably greater msuount. of

algebra. The results of appendix *A3 are relevant here -

BfttW. results

Greenberg et. al. (1971) using a related model Gsee S3»3) have

suggested comparison of observed and expected deaths is» checking modeX

assunptions.  The approach could be used here in the uncensored crnme

although extension to the general censoring situation w ill require
either information on potential censoring times (fixed observation
time model) or assumptions regarding the censoring distribution for

each individual (random censorship model) .
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In addition the above authors suggest the uae of half replicates

in assessing goodness of fit. In this approach the data is randomly

devided into two groups, one of vhich is used to estimate parameters,
allowing prediction of the survival pattern for the second group. The
observed and predicted patterns may then be compared. Censored data
again makes this technique intractible.

16.3 Discussion

A starting point in data analysis is likely to be graphical checks
of the type mentioned in [6.1 and fitting of an appropriate form of
model I, or model IV if jarticular independent variable(s) appear to
violate the proportional hazards assumption. (Alternatively, the
inclusion of time-dependent covariates may be considered for such

variables (see 16.2)). The results of chapter 5 suggest that, while

investigating the effects of independent variables, little is to be
gained from an efficiency standpoint by imposing more stringent
assumptions required by the parametric models Il and I11 or V and VI.
Selection of those independent variables meriting inclusion in the
model may then be carried out using a stepwise procedure of the type
discussed in iU.5. Together with checks of the model (i6.2) these
methods select relevant independent variables and appropriately model

their effects on survival. Estimation of the underlying hazard function

(or functions in model 1V) allows explicit expression of the nozord
function for an individual as well as definition of a ‘crude*
It

residual.
is at this stage that investigation of particular parametric forms

for XQ(.) (or Xi(.),....XfIs(.)) seems appropriate

In the next chapter an example using the above type of analysis
will be presented.
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111
£>¢ dt>

The investigation to be reported here arose fro» a clinical trial on

patients with histologically confirmed cirrhosis assessing the effect
of Prednisone treatment. The trial, conducted by the 'Copenhagen Study
Group for Liver Diseases’, began on 1st January 1962 and vas terminated
on January 1st 1969 for the purposes of data analysis. A detailed account
is given by Juhl et.al(1971). Each patient entering the trial vas
randomly allocated to either prednisone treatment or placebo tablets.
It vas thought that several additional factors might be of prognostic
importance, that is, age of patient at entry into trial, sex, average
daily alconol consumption for a specified period prior to entry, the
activity of the cirrhosis (a veil defined biochemical factor) and the
absence/presence of ucites.

In order to illustrate the methods discussed in this work, attention
will be confined to that subgroup of 177 male patients vhose alcohol
consumption vas above the median value amongst all males, and vho had
information on all the remaining variables mentioned above. 66 of these
patients were members of the control group (placebo tablets) vhile
91 received Prednisone (treatment group). All independent variables
are binary except age, which has been transformed by subtraction of the

age sample mean wit

in this group, 59.58 years and di

ion by the
group standard deviation, 9.51 years. Of the 110 uncensored survival
times, 102 were distinct, there being = pairs of 2 tied observations.
As regards analysis under models | and IV these ties, vhere necessary,

have been broken at random.
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Cboic« of initial model

Schalm and SucrtcrsKill (19T5) in discussing this trial and other

similar investigations suggest that the effect of Prednisone treatment

mey depend on a patients status regarding activity and ascites. These

lead to a tentative model in which the hasard function for
patient i is given by

considerations

VO - *Q(t) exptjgj. ¢ *jFjj) 7.1

where ~ XitXija th* Tsctor containing age, ascites and
activity variables, as given in table 7.1., and

in control group,

in treatment group
This model allows treatment comparisons to be sude within each of the

groups defined by ascites x activity.
Preliminary model checking methods of the type discussed in ]6.1.

assess the assumption that independent variables affect the hazard in this

vsy. Figures 7.1., 7.2., 7.3. and 7.k. provide plots of log underlying

cumulative hazard functions (obtained using the Kalbfleisch and Prentice

method of Ik.3.) having fitted model IV with each of age, ascites, activity

and treatment defining strata in turn.



fit. 7.1  Log «derlying cumulative hazard functions fit. 7.2. Log»deriving emulative hazard functions
to check inclusion of age. Model IT fitted with to check inclusion of ascites. Model IT fitted

variables xj.ij and y* j =1 with variables xj,xj andy* j ® 1.

Strata



fig. 7.3.  Log »deriving emulative haxard functi<
check inclusion of activity. Itodel IT fitted with
variable« *1#j and jrit | w1,

Strata

ij + ¢! (151 obana. 62 cenaored)



y;t. 7.».  Log «derlying hsterd flections to check inclusion of treelnent effect with eech grouf
defined by ascites mactivity. Model IT fitted with variable age.

]

p=3

2

x

Strata — X ®m-1 (12 obsns. 3 censored) Strits * m-1 (61 obsns. 31 censored)
m *1 (T obins, 2 censored)

(59 obsns. 27 censored)



e) Xxj m+l xj = -1

(5 obsns. 0 cencorei )



1o«
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xn figure 7.1». a dichotosy using the mean age allows this variable to
be included in these checks, for the treatment variable, comparison

has been performed by defining 8 strata according to y.A ; j = 1

and fitting model IV with independent variable age. ITiese plots
provide no evidence to suggest that the multiplicative assumptions
of the model at 7.1. are violated.

Parameter estimates, with standard errors, obtained by direct
evaluation of the matrix of second partial derivatives, having fitted
7.1. are given in table 7.2.

Table 7.2. Parameter estimates and standard errors having fitted
model | at 7.1.

Independent Estimated value Standard error
variable of coefficient of estimator

1 0.6126 0.121k

1 0.\619 0.1265

g -0.2009 0.1319

X1 -0.0239 0.2861

v 0.0202 0.1239

vi 0.k313 0.3026

Vo 0.5906 0.2529

Selection of significant effects

The methods of *k.3.have been employed to select those independent
variables meriting inclusion in the model. Table 7.3. presents results

of forward and backward stepwise selection procedures respectively.



Table 7.3.
on survival
a) Forward

Independent
variables

Hone

ey

*ict.yj
LRy

i y*ts

Ot yeyi
X1, Y4y
*ixiyeyj
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Selecting independent variables having significant effect

under siodel |

stepwise procedure

Meximum value of
log likelihood

-k9k.k69

-k77.511
-1*82.601
-»91.655
-U9».292
-4»9k.k66
-»92.037
-k86.k67

-1*66.310
-»T5.93T
7T m96
“77.»50
-»76.132
-*»70.U29

-»+65.397
-766.218
-m66.272
-»+65.635
-»+63.703

-U62.368

->»63.609
-U63.666
-»+62.876

+ stages in forward selection.

Value of test
statistic

33.916*

23.336
5.628
0.35*
0.006
¥.86.

16.00k

22.k02*
3.1k8
0.030
0.122
2.758

Ik.16k

1.826
0.18k
0.076
1.350
5.21k*

2.670
0.188
0.07k
1.65k
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b) Backward selection —  «=
Independent Maximum value of Value of test
variables log likelihood statistic
-261.662
*i*2.*3.yi.y2.y3 -U6U.810 6.276
MiXi.x),yi,ytyi. -+*62.337 1.310
x1.x2.x3.y1.y3.yl +*61.709 0.0?2U
x1.xt.x3drtJi.yil -*61.687? 0.006*
*i*2 ylytrysye -U62.77*U 2.12U
xi.*s yl.y2.ys.y*. -U67.010 10.676
*rcmyivy vy s.yv -»7U .99 26.626
xi.X2,X3,y2,y3 -U6U.821 6.272
*1»*2.%3 yz Wy, -+*62.338 1.306
*L.xj.xj.yj.yi, -*61.7X3 0.076*
*1.%2 .y2.y3.yl -U62.8ki 2.312
*i*3.y2.ys.yc -U67.02U 10.678
X2.x3.y2.y3.yl -U72.0i*9 26.728
x1.x2.x3.y3 -¥6U.821 6.276
xi x2,x3,y1 -*62.368 1.310*
Xi.x2.y3.yv -162.876 2.326
X1.X3.y3.yv -U67.061 10.696
x2.x3.y3.yv -*73.030 26.671*
x1.x2.x3 -+46?.397 6.038
*ir2.yv -U63.703 2.670%
xi.xj.yii -*68.17»* 11.612
X2.%s.yv -*76.315 27.891%
*iyv -U66.310 3.21U
*1.%2 -1%70.1*29 13.*32
*2.yv -1479.313 31.220

stages in backward selection
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Both procedure« result in « final Model containing the independent

variables xj,xj and y*. Parameter estimates and standard errors are
given in table 7.b. for this final model, together with the full

estimated covariance of the estimators obtained, as before, by direct

evaluation of the matrix of second partial derivatives .
Table 7.*. Pinal rersion of model | with independent variables
xi,xi and y*.

Independent Estimated value standard error of
variable of coefficient estimator
* (0.) 0.6b27 0.1181
(01) 0.1*992 0.1209
“b (oh) 0.5051 0.2328

Esti=«ted covariance matrix

el

ca
a 0.0139

o, 0.0003 0.011*6

e. -0.0001 -0.0111* 0.05%1

Mote that employing a selection procedure based on the approximate
normality of parameter estimators and the results of table 7.1+ would
have led to the same final model.

functional form for X~Ct)

Using intervals 1~ m £100(r-l), 100r) , r = 1 .30 and

111 = [3000,"

, table 7.5 presents step estimates in the step function
approximation (Kalbfleisch and Prentice, Ib.3) of X~ft) under model 1

having fitted the independent variables xj,x* and yt,.






Plot of log underlying ctmulmtive hnrnrd function ngninat log t
hnring fitted nodel | with independent mrinblee xjtX] nndy*.

log t
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In addition the straight line fit yields approximate values 0.9
and -6.5 for c and d respectively. The expression 7.2. may be
written equivalently as

».<F> -y t-1

d
where a»c and X*e , so that fitting a model of type Il provides an

appropriate ‘'smoothing' of the step function estimate of X~it).

Table 7.6. gives details of this fit.

Table 7.6. Parameter estimates and standard errors having fitted
model 11 with independent variables Xj,x2 and _,,
Independent Estimated Standard error
“Title parameter value of estimator
(a) 0.9283 0.0718
(X) 0.0011 0.0006
*1 0.6U36 0.1169
*2 0.5172 0.1203
ye 0.U895 0.2315

Bearing in mind standard errors, the estimated coefficients of

xj,X2 and yi, in model Il are in close agreement with those obtained

under model I. In addition a and X take

values close to those obtained
for ¢ and ed from the plot of log Ao(t) against log t.

Model check using residuals
The overall adequacy of the model has been checked using the

(crude) residualB obtained through the model 11
*6.2.

fit as discussed in
Figure 7.6. presents a plot of the cumulative hazard function
estimates ¢ (c) at points ¢ - 0(0.05)1, 1(0.2)2 , 2(0.5)3. The
relationship is as expected, suggesting that the model 11 fit adequately
describes the data. Note that a similar procedvre, based on model |
estimates and the estimated underlying hazard function to define

residuals, could have been used.
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Diacussion

Model fitting wm carried out on an ICL 190bs computer. The
mumerical Algorthme Group library routine* EUhEAF (model* | and 1V)
and EOUDCF (model 11) (Short write-up* contained in Mark U version of
Nag Mini Manual for ICL 1900« library) were used in the log likelihood

maximizations. Routines to calculate the value of the log likelihood
function and its first derivatives (and aecond derivatives in the case
of models | and 1V) at any point were supplied by the author.

The medical conclusions to be drawn from this analysis are clear.

Only in the ascites present, acti

ity absent group is there a significant

treatment effect and treatment with Prednisone in this case is

unfavourable a* regards length of subsequent survival. For the data

as a whole, younger patients tend to do better than older patients,
as would be expected, and the presence of ascites has a detrimental
effect on survival length.

The techniques used in checking model assumptions, that is log
cumulative hazard plots prior to model fitting and residual plots
after fitting, are clearly important points in any analysis. However,
it is not clear what departures might be expected if some of the

model assumptions are violated and more work in this area is required
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17.2 A related area of study
Change in treatment Btatus

A problem of the survival data type which has received recent
attention in the literature concerns the situation in which a patient
mey switch treatment group during the course of the study. Turahall.
Brown and Hu (197T), using an illustration involving Heart-transplant
data, have presented some theoretical techniques dealing with the two
treatment group situation in which all patients enter the study in one
of the groups and change in treatment status occurs, if at all, in
a single direction. Considerations of this type arise eleivhere in
the medical field. Spiers et.al.(1975) have reported a trial on patients
with Chronic Gran olocytic Leukaemia where an operation to remove the
spleen (movement to group 2) takes place at some time after entry

into the trial as a group 1 member.

One of the methods employed by the above authors is model 111

with a time-dependent covariate

at time y. after entry into study

u<o
u4o0

where <(u)
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Because of the 'no memory property of the exponential distribution
this is equivalent to the model 111, two group case, in which tj.irfA,
tj-y~, ieA are treated as group 1 and group 2 observations (censored
or exact)respectively and y~, ieA are treated as group 1 censored
observations, where A is the set of patients who change treatment.

Using a time-dependent covariate of this type in model | will

result in the likelihood as in *6.2. Under model 11, the likelihood
will consist of a term for each i*A of the form
~Xae tj J exp (-Xe t)

while for ieA, the required quantity is

Inferential procedures are carried out in the usual way.
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APPEHDIX A tixpecf.1 v~Luca na»uci>t«d with »»dais 17. 'T_I* V and VI

IA.3  The- kmt- ’<"wction and its derivatives

The gansna function r(a), defined for a>o, by

r(e) - [ ymim*dy Al
‘o

may be expressed as an infinite product

tAt - “tr T {<ie }

where w - lin | £ j - log nj m0.577215... ia Euler's constant.

Xf r(r)(a) denotes the rth derivative of T(a) w.r.t. a it follows

from Al. that

Ttr)(1) - .[0 (log y)r e~ dy r-0,1.2,...
Using A2. and the well known property r(a*l) - ar(a)
- log r(ac1) - log AYTaT * “» ¢ Ilog(aen) - logn -

and successive differentiation yields

. A3.
r1s

r(e*l>r - CrrvdP- Ly | .
YLVT7 A
[r(a+D]2 na d
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r (a*i)[r(a»i)]2 - 3r'U*x) r(a»i) r(a-n) + afrha»t)]*

[r(a«i)]2

w2231, (.«P - 2IX

Putting » ® O in each of A3, AU and A5 and using the result T(l) = 1

it follows that

r’'u) s S ort(i) - w2 s(2), r'd) - 3*5(2) - 25(3)
A6.
where s(r) is the Zeta-function
tA.2 Integrals of the form j y*(log y)b e~~ dy
It will be necessary for certain non-negative integers a and b to
evaluate the integral
L(a,b) m i y*(log y)b mT* sy AT.
o
Rote that
L(a.0) - r(at-l) - at , L(O,b) = r(b)(l) , R
A8-
For a,b » 1,2,... integration of AT.yields
L(a,b) = a L(a-I.b) ¢« b L(a-1.b-I) A9.

The recurrence relation A9. together with the initial values A8. may now

be used to obtain values of L(a,b). Numerical values are given in



table Al.

Table M . Values of L(a,b) for a,b » 0,1,2,3.

LA.3 Model Il and Model V quantities
Under Model II, T#, TO, ..., are independent random variables

with T\ having p.d.f.
PiCt/i.X.a) - lot*-1 e6'*i exp (-Xt® efi'*i) 0

Thus, for a,b m0,1,2

E {(log Ti)b T*®) - | Aa(logu)bu(**1)* ‘leli,*i exp(-Xu®efi,*i)du A10.

and using the change of variable v m AuBer **, this expression

reduces to

7 b« v
— T5K— (logv - logA - fc'x.) ve dv
o
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Similarly, under model V

Au *vTCJ) (locXj +
SAii__Model 111 and Model VI__a uantities
When a = 1. Model Il reduces to Ill. In this case quantities

of the form

E(T.*) - 1 Xu* e6'1 exp(-Xu e6'#i)du AL2
*o
for am 1,2,... are required
Putting a m 1 and b ® 0 in All. it follows that
aje~*fi*<i
=<o A13.

In addition, under model VI



Appendix B. The asymptotic variance of 87

IB.1 Taylor series expansion

For algebraic simplicity, let

Amlii (01*02)+ ®m 1JI (®1»#2)s C =
X- AB - C2.

1ij (61%02) and put

Then Vj(0i*02) « *nd the Taylor aeries expansion of log VI(0i,B2)
about (01*02) “ (0,0) is given as

log Vji(01.02) » log &

GRS T VAP

2 -(11) (1) _(D2 -(1)*% #-(12) -(12)
Hi * | -1

2| K “h )(OTO)>>IfeII %
-11B(22) ¢(22) y(2)2 *(2):
a lb * X *10,0)

. -U) . B -

where B Jg- * 112

ijrl,2.

with B%2) w 21 and similarly for X functions.

Extending this notation in an obvious way to include A and C functions
x(i) . x<i)B ¢ AB(I7- 20C+1*
x(ii), A(U)B + 2A(1V 1% o 2cc(ii\  i-1,2 and

x(12). a(12)b ,, a(D b(2).a(2)b(1) ~ AB(12)-2C(1)C(2)_2CC(12)>
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1B.2 A. B Md C functions evaluated at (61,62) m (0,0)
<*»(0.0) * VH.o*°-%»-
(a<1>>(o.0) - {fi;,<«**s*>}<0.0>

" Ep{«3.0(0'0) * «,.0«0-°> *1.0<0'0)}-
<A<i>>(0.0) - {li!l <*-»>}(0.0)

- s{*2.1<0>0) + *2.0<0"0,¢0.1<0"0)}-

“Ep[»u>0(0.0)-2«3>0<0.0),1 0(0.0>-(«2>0(0.0))! ~ 2 0(0.0)(,1i0(0.0))]
@<12'>(0.0) * {«1l« ™ <>>*}(0.0)

-rp(,31(0.°) - «2tllo.0),1>0<0.°)-,2t0,0.0),1>1(0.0)

* *3.0<0-0> «0.3<°-°> * «".0<0+0)*1.0<0+0, *0.1(0,°>" "

<a<M>>,0.0> * <*>-*»)}<0.0)

* Eptc.a<0-0> m 2*S.1(0-0,*0.1<0,°" = *2,0<0,0) tJ,2<0<"
¢+ «5..0<0.0> I"~to-onl.
The B functions may be deduced directly from the above on considerations

of symmetry.



(c>(0.0) = -

1p {«1.1°>05}
«<l1,)(0.0,
®mV«2.1(0>01" *1.1<0-0,¢1.0,0-°»

«=<2(0.0, ®

"’-0" *p.0'0-0"

<c<lt,>(0.0) m {H & :

%S &i.7100" ® «2,1<0-0>0.1(0-°» - -«1i2(0.0)li0(0.0)

+»J.ilo.0l «0.1<0'0) *1.0<O°0

« <2-5,><0.0, mf& £ '<-.-*>}(0.0,

m £p& i .3<0-°> - i*1,

"0, 1C701 - «1.110%01e0,2]0-0)
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By syrsnetry ~~(0,0), gg 2(0,0), gx 2(0,0), ~ 3(,0), gg h(0,0) and

3(0,0) may be deduced frctr the above.

IBU A, B, Cand X functions at (61,82) *“ (0,0) expressed in tenns

of population moments

R vV ~.0(0+0,, ®*2,0 s0l">
<A)(0,0> * ““i.0"' 0f»)
in EpA*3,000*@7 “ ""3,0 4°<n)

V $2.0<0%0) «1,0(0-01) * ouzo * °M

<A<1'><0.0) + “<">

(it Ep(82j1(°,0)> * mig x + o(n)

V ©2.0(0,0) “0.110-0» * ¢ om

A(*\o.0, * “<>



EP («V.0

V*3.0(0%0) «1,0<0%0,) " nw..0 '

Ep D «2t0

Ept»2,0(0»0)<*1,0 (0,0))~ " 2nidU,0_r,2132, +In"2,0" :

(0.0,>" “*U.0 " 3m2.0 * cin)

3ml.0 * °(n)

-15».-

<0t0)>" -n2w* tO*nul»,0"?n,'2,0*"*1o*n - -|) ¢ °<n)

<*U1))(0.0) 1 '*-i.0 ¢ "<>

V*3.1(0,<r " 731 ¢ F1,12.0 * (">
SU»a,0,B) ®.0 ~ = ©LIWR,0 * 3.1 ¢ ()
V “2.0<0'0> *1.110-0>, " r* su2.r e

V *3.0(0,0)*oc,i!o'® " m3n“iti“at0 ¢ ““5,i *

V*2.0(0-0,*1.0(0'0>»0.V(0'0» 2" I, 1“"1“1.1“s.0'1™1,1“s.0

U<li>)
s<12
V2.1

A27*2.0

1P0,2.°(0,'><*0.1<050,,J3" 2"%2,24",“2.0%,2 -k"*" .|
-2nw2 qllq 2(w ¢ log n) *o(n)

|A<22))(0.0) = m a*’

B functions

i)
iii)
iv)
v)

Vi)

S*1)4 1

2115 XBa(u* log n) »0(b)

(0,01 *  *1.1%2.0 & "<">

(0,001 1 ““2.2 * "2,0%0,2 * “»i.l * °<">
(0>0,*0.1<0» °» " -7"%2.2 -"%2,040.2 - 2“I.

(® T-MTM2.090.2%™2 2.7 1% - () 2.0%0.2

These may be obtained from the above by syrsnetry

">(0,3) " ™Moz * rf*>

(1) 9,0y =

p.o) m °<>

(0,0) “ =271, 1 *

(b(m >

(0.0)* -a“1.1%0.2 *0<">

>(0,0)" —~"*0,2 40<")

+o(n)

-



-155-

C function»

1)

1i)

iii)

jt0.0)) - .
Vi) )) x ¢o(n)
<c'o.c>* nMi,i * M)

V*Z.A(OVO)) = n*j ¢ o(n)

vrp (O:00€ly geog,y v g
«0,0) » oM

v ; >20.0)> + nit 2.4 o(n)
EP{«1,1<0»0* «0,1(0,0)> " nw,2 * °<n)

<c<i>,(0.0) m°<)

sxxs. X(©:9)> = hyz 1~ m1,1v2,0 *OM)

v 2. D0.0)> - -BNWISXV2 | suug )+ gers
. 170.0)¢ 142,0"a",1,1"2.0 (1% n*~ 11
®(b)
>1(0,0H*1 oo .
e X :0(070),23 "A3.,1 w v 1%2,0%2,1.152,0
(lo* muw2) 40(n)

frilK

(¢ '(0,0)

v %2 200) - npo v w2002 ¢ * 0<)

V. 1®.1(0,0)10.1<0,05,"" 2.2 #"2.010.2: 2,%1,1 +°<»>

<

“1.2(0,0)*1.0<0,0)> ““2.2 ‘n“2,0"0,2 o>
V el.1(0-0)e0.1(°,0,°1.0<0,0)1" #""2.2*"2"i.| "i"",2.0%0.2
-2ml,1 *loe n+ “ 4 1) «°(n)

(C(12))(0I0). s °(n)
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i) V*1.3(0,0)> * ““1.3 *3"i.10.2 4°<b)

V ,1,2(0,0>%0.1(0%0)

s 1*0,2 4° (n)

VvV “1.1<0,0>%0.2<0, foFe1.3 * *x,140,8

EPU1,1(0,0H'0.1(0,0)! 2,",1.3"'2,1.1"0.2""U1 1 O.j(lui»‘o(nZ)

(C >(0.0) » - 2w'1.1/0.2 *0<b)

X functions

i) ®00.0)  VADI *(0,0) - n (¢2t0WOt2-M“f1) + 0 (n)
i) (X<1))(0.0) - (A(1)B+ AB(1)-2CC(1,)(0>0> -0 (n*)
i similarly (X(2))(0>0) -0 (n 2)
in %)) o,0y * ("B e 2A"*B*1* ¢ AB(11*-2C*1*2-2CC*1%)(<

- n2(2v*ting) Lot0.21 40 (o)
o 12k~ (AL 84 A LMAN2A ¢ »12) 7 1) gm ™ 2) 4, (1)p(2)

(12)n
-+ '%%500.0)

- n2(2wjtl - 2w

i) @mp(b'o) = « <2T>-K<a)” »c (2t') (0i0

* fiz2ul, 10,2 * * o2

18.j Fvaluation of ter», ii. Taylor .>rie.

1 a ( "o cens
0.0



L XU.}(08) - " Keo2 M2,0V0,2
S ol
@ _@i
R21 - - )
X +(0,0)
LU, Im>. g11. J
or<av
210 24 0() 23 o0
o -
s
/b(12) ,.(12) _(h_(a> —(1). (2N

*>ep(l -1 - *-i5—

Thus in the neighbourhood of (61,62) m (0,0),

log = log { . cig>)

5T

»1,3870TIt
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Appendix C  The asymptotic variance of ~

mc-l-—-Taylor eeriee expen.ion
Put A - ify <6]. Sj), B- zU (>]. Bj). C- 111 (»1. S*> end
X- AB - C*. Again Vjy(0l. 01) » | and expanding

log VAV (6i, Bi) about (Bj, B2) ® (0.0) gives terms as in *B.I.

I£1i__A. B and C figiCtione evaluated at (HI, - (0.0)
These may be obtained as sums over strata of corresponding model |
quantities, Isee »».V).
A functions
<*b.0) 1 " ¢»J "(A)P.0 *
U '(0,0) - »>»> e <*<il>(0.0)
u) .,
©0) 4 onju * 0i"

(A '(0,0) 1 2 jti X *)LL "(j)2.0

22

(a(22)) g * 02)

ji-T.-Hdtion.

1B.(0,0) " nAD»2 #

<o<Iw <*> m <,U,)(0.0)

<<U,>®.0> cijua t o**'

(LUi)l(c.o) = i« W)l "u)0.2 %
+ o(n)

»»,0 8% "-a




c function
«=>(0.0) ' "Ll *°U)

<c<1''(0.0>->I"" - <cU>'(0.0>

<c<l>»(0.0) * "2 4 *<A)L1 “(4)2.0 * ol“>
G0N @ "(@20 “@p2** N LI *6

‘v (0.0) = 1 %] “(4)1.1 “(4)0.2 *

Evaluation of X functions at (Bj, 62) = (0,0)
<*>(0.0) « "2 '%2.0 “0.2 * “i.1> & °<*2>
<H(1''<0.0> - 0'2" « X' ">(0.0)

u<I)(t,0) mart ettt (4)11 " (4)2.0" " 0, 2( “(4)2,0°

-“20(ila QL *G2>e
¢ 200)" 22 "20"0j4 “(@po (@02 *“L1 ‘jlj 4'@LL
"'02Yid “@11 40 ' "20"X1 “(4)L1 (402 * 12
B @) "1™ jlj4 @1 "A02 * “2qn1.4"A02

toveli<4cl*4 MU )L x 0<t2



1.u Evaluation of.tej— ir, Taylor series

floe A
1 *Jfr

"o f -Pi2
I n(p2,0 V0,2

B(11) x(11) x(h)2

1B X x
(0,0}
{ uo,2 ]!l(JfI«ig »g) A
EEIRY B INE /7 {»..2 20"
(b<12> - x<* > - il gl
1B X B2 2 0.0
~fie? 1.2 <
+ 10.:P1LI(™ §0jU(0)2,0%3()0,2 + /
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* 0,2 (j~1<0K( 7§ 1i0.2(M2.0W0.2 * v om
Thun in the neighbourhood of (Bj, 62) m (0,0)
lo* IV * lo*
**0.2 1,1 m A U(0)11 *

" 200,2 Ul (BIU(j)I 62U(0)0,2)(i"1Uj) 1,0 «em»(J)I,,1} * °(1)



Appendix L Evaluation of modified residuals

»Eit__general result»

Let T|. T2, .... Tnbe independent randost variables with Tj bavin«
p.d.f. ). where 6 m (¢i, ...» 8%+ is a qx1 vector of
parameters.

In addition suppose that*jj functions hi(’), h2(=),

hn(-), such that for i » 1,
ci((2, ... c

n, e. » b (TAj £) and
are independent and indentically distributed random

variables. For i « 1, ...» nlet R* « h* (T® j £) denote the ’'crude’

residual corresponding to the random variable where 0 * (8j, ...,87]

denotes the meximum likelihood estimator of fi. The results of Cox

and Snell (1966) indicate that for s m 1, i

where ujl® - »log pAT./ft)

- Rlog Pi(T.7a) - »3log PAT./0) i

where i 1 - [i1r

38
r

the above authors show that, to o(%).












-166-

Thus from D 3. to o(l> .

LET RO ¢ K3 Dr *tr- XX 10 fdr kis)  xEo
Finally, for i#j
roel P
=h -
me" 1 ©oxir Ejs* sSit» - * —
o U
\ i))" h
0 that, from B 1%, too ("),
- f fAABL T (IR R P oW

ER.Fj) » 1 1 i
ol s

and cov (Rj.R.) - EtRjRj) - E(R.)E(R])

S 1e1 S I PR AN LR (LTSS

« 0(1)

worLL k),

i
da st

»Pjd—Model VI result*
£j°n of bias terms

Under model VI, q» p+s, 9¢ (Bj

log Pji (t]g) = logX. ¢ 6'lu " X.e& *&it, j-
i,






V. e *\-K>et X Ix X ,rt

Vit s <rers

of crude re.ia.yli
frr e 6T aom ¥
ctleulxtioni identic.l to thole of

ID .2 yield, toe(®

“»>nli 1 oe-sij e x*! *Jik m* »it x r *iu *1*

o %8kt
and
*%k.
£}"""lj #1J3 * k(jlbk Tojh«lian ik
ror Ji #
EUJi "k 23i1 *Jli» k
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Eji i iDVAEY o £ 14

@i

s @i,
i ¢ 2r g 4t

BV @i + P ik
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