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Abstract

Trypanosoma cruzi, the protozoan agent of Chagas disease in the Americas, is comprised

of six genetic lineages (TcI-TcVI) and a possible seventh (TcBat, related to TcI). Identifica-

tion of T. cruzi lineages infecting reservoir mammalian species is fundamental to resolving

transmission cycles. However, this is hindered by the limited sensitivity and technical com-

plexity of parasite isolation and genotyping. An alternative approach is serology using T.

cruzi lineage-specific epitopes, such as those of the trypomastigote small surface antigen

(TSSA). For surveillance of T. cruzi lineage infections in mammal species from diverse Bra-

zilian regions, we apply a novel rapid diagnostic test (RDT, Chagas Sero K-SeT), which

incorporates the TSSA peptide epitope specific to TcII/V/VI (TSSApep-II/V/VI) and Protein

G detection of antibodies. Chagas Sero K-SeT RDT results with sera from experimentally

infected mice, from tamarin primates (Leontopithecus spp.) and from canines (Canis famil-

iaris) were concordant with corresponding TSSApep-II/V/VI ELISAs. The Chagas Sero K-

Set detected TcII/V/VI infections in Leontopithecus spp. from the Atlantic forest (n = 46), in

C. familiaris (n = 16) and Thrichomys laurentius (n = 2) from Caatinga biome and Chiroptera

(n = 1) from Acre, Amazonia. The Chagas Sero K-SeT RDT is directly applicable to TcII/V/

VI-specific serological surveillance of T. cruzi infection in several different mammalian

Orders. It can replace ELISAs and provides efficient, point-of-sampling, low-cost detection

of TcII/V/VI infections, with at least equivalent sensitivity, although some mammals may be

difficult to trap, and, not unexpectedly, Chagas Sero K-SeT could not recognise feline IgG.

Knowledge of sylvatic hosts of T. cruzi can be expanded, new reservoir species discovered,

and the ecology of transmission cycles clarified, particularly with adaptation to further mam-

malian Orders.
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Introduction

The protozoan Trypanosoma cruzi is the etiological agent of Chagas disease, infecting 6–7 mil-

lion people (https://www.who.int/en/news-room/fact-sheets/detail/chagas-disease-(american-

trypanosomiasis). Vector-borne transmission occurs via contamination of mucous mem-

branes or abraded skin with faeces of triatomine bugs. Other transmission mechanisms

include oral ingestion of triatomine contaminated food, trans-placentally, and by blood/organ

donation. The initial acute phase can be fatal, particularly in infants and immunosuppressed

patients. Without successful chemotherapy T. cruzi infection is usually life-long; during this

chronic phase around 30% of those infected progress to chagasic cardiomyopathy, some of

whom develop gastrointestinal megasyndromes [1–4].

T. cruzi is zoonotic, carried by more than 100 mammal species and 40 species of triatomine

insect vectors [5]. The range of infected vectors and mammalian hosts in the Americas is from

the USA in the North to southern Argentina and northern Chile. The species T. cruzi is

divided into the six intra-species lineages (discrete typing units, DTUs) TcI–TcVI [6], with a

seventh proposed (TcBat, related to TcI) [7]. Of particular interest is greater understanding of

the cryptic natural sylvatic cycles of TcII and the hybrid lineages TcV and TcVI [8], which are

associated with severe chagasic cardiomyopathy and megasyndromes in the Southern Cone

countries of South America, especially in Bolivia. Historically, active transmission of TcII was

common in Brazilian domestic transmission cycles. However, the cases of Chagas disease in

the Brazilian Amazon basin are due predominantly to TcI, and also less frequently to TcIV

and TcIII. The elucidation of the sylvatic distribution of T. cruzi lineages in Brazil has been

subject to extensive research [9, 10], the TcI, TcIII and TcIV lineages are widely distributed in

Brazilian mammals and biomes [11], tamarins Leontopithecus spp. [12] and dogs [13, 14] have

been implicated by isolate genotyping as natural hosts of TcII/V/VI.

Identification of infecting T. cruzi lineage(s) by direct genotyping may be biased due to

sequestration in host tissues or selection in culture, potentially in a lineage-dependent manner.

This may lead to incomplete interpretation of the distribution of T. cruzi lineages in mammals.

Of the many commercial in-house and rapid serological tests for human and animal T. cruzi
infections, none is designed to identify T. cruzi lineage(s). The mucin Trypomastigote Small Sur-

face Antigen (TSSA), expressed on the vertebrate bloodstream trypomastigote form, is the only

T. cruzi antigen so far shown to be applicable to lineage-specific serology [15, 16]. The amino

acid cores of TSSA from TcI, TcIII, and TcIV each have their own lineage-specific sequence.

The TcII sequence is shared with TcV and TcVI, which have a second TcV/TcVI haplotype, and

are hybrids of TcII and TcIII. Antigens based on the TSSA isoform common to TcII/V/VI have

been applied to serology (ELISA) of naturally infected animals of two mammalian Orders.

Cimino et al [17] used an E. coli-produced recombinant protein with dog sera from northern

Argentina. Kerr et al [18] used a synthetic peptide epitope, TSSApep-II/V/VI, with Brazilian pri-

mates, confirming that Leontopithecus rosalia (golden lion tamarin) and Leontopithecus chry-
somelas (golden lion-headed tamarin) may act as reservoir hosts of lineages TcII/V/VI.

An obstacle to expanding this lineage-specific serology to a wider range of mammalian

Orders, and thus to resolving ecological cycles and reservoir distribution, is the availability of

suitable secondary species-specific antibody conjugates. An alternative approach is to utilise

conjugates linked to Protein G, produced naturally by group C and G streptococci, which

binds the Fc region of a range of mammalian IgGs. We recently developed a TSSApep-II/V/

VI-specific lateral flow immunochromatographic rapid diagnostic test (RDT) called Chagas

Sero K-SeT, which incorporates Protein G conjugate, and demonstrated its efficacy with sera

from Bolivian Chagas disease patients [19], and with Argentine sympatric humans and dogs

[20].
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Here, we apply Chagas Sero K-SeT to sera from experimental murine infections, and to

rapid serological surveillance for TcII/V/VI infections among a range of mammalian Orders

and biomes in Brazil.

Materials and methods

Ethics approval

Production of mouse sera adhered to the European 3Rs policy of Refinement, Reduction and

Replacement (99/167/EG: Council decision of 25/1/99), took place in authorised animal facili-

ties by licensed staff in agreement with the European Directive 86/609/EEC, and with review

and approvals under UK Home office regulations [Animals (Scientific Procedures) Act 1986;

project licence number 70/6997 to the London School of Hygiene and Tropical Medicine]. All

Brazilian samples were obtained following the guidelines of the Animal Ethics Committee

(CEUA) of the Oswaldo Cruz Institute/FIOCRUZ and all procedures followed protocols

approved by the FIOCRUZ Committee of Bioethics (license LW 81/12).

Origins of animal sera

Experimental infections. Mus musculus (strain CD1) were inoculated with 106 organisms

from stationary phase cultures containing infective metacyclic trypomastigotes of known bio-

logical clones of T. cruzi representing the lineages TcII (MHOM/BR/00/Y), TcIII (MDAS/PY/

00/Arma18) and TcIV (MAOT/BO/00/10R26). Serum was collected at approximately 10

months post-inoculation, and serology for infection was detected using T. cruzi lysate as

described below in section ‘Experimental murine sera’

Naturally infected mammals. Sera were archived samples collected in Brazil from natu-

rally infected mammals as part of the ongoing field research programmes of author AMJ and

collaborators. Collection sites encompass a range of geographical locations, mammalian

Orders, species and biomes, as shown in Fig 1, map derived from www.simplemappr.net [21].

TSSA lineage-specific peptides

Synthetic peptides TSSApep-II/V/VI, TSSApep-III, TSSApep-IV, and TSSApep-V/VI, repre-

senting the specific TSSA epitopes of T. cruzi lineages, identified from strains described in

[16], were synthesised, with N-terminal biotinylation (Table 1); details of TSSApep-II/V/VI

antigenicity have been described previously [22, 23]. The indirect fluorescent antibody test

(IFAT) was applied to all naturally- infected serum samples.

Lineage-specific TSSApep ELISA

Replica assays were performed simultaneously in duplicate plates. TSSA peptide (TSSApep)

ELISAs were performed with the four lineage-specific peptides shown in Table 1. Mean values

of optical density (OD) were calculated from the duplicate plates; cut-off values were mean

negative serum values + 3 SD, with at least two reference negatives in every ELISA plate. Posi-

tive/negative controls for each sylvatic mammal type were used according to the results of pre-

vious serology by immunofluorescence.

Experimental murine sera. 96-well flat bottomed plates (735–0465: Immulon 4HBX,

VWR, UK) were coated with 1 μg/100 μL/well of avidin (A9275: Sigma-Adlrich, UK) diluted

in coating buffer (15 mM Na2CO3, 34 mM NaHCO3, pH 9.6) for capture of biotinylated line-

age-specific peptide (Table 1). As positive controls, separate wells were coated with lysate of T.

cruzi TcII (IINF/PY/00/Chaco23) at 0.2 μg/100 μL/well. Plates were covered with an adhesive

sheet (676001: Greiner Bio-one, UK) and incubated overnight at 4˚C. Plates were washed x 3

Trypanosoma cruzi II/V/VI rapid serology identifies Brazilian sylvatic mammalian reservoirs
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with PBS/0.05% (vol/vol) Tween 20 (P7949: Sigma-Aldrich) (PBS/T) and blocked with 200 μL

blocking buffer (PBS/2% skimmed milk powder, Premier International Foods, UK) for 2 h at

37˚C. TSSApep at 1 μg/100 μL/well in PBS/T containing 2% skimmed milk powder (PBS/T/

M) was added to the avidin-coated wells, for 1 h at 37˚C. After washing (x 3), 100 μL/well of a

1:100 dilution of serum in PBS/T/M was added, for 1 h at 37˚C. After washing (x 6), 100 μL/

well of Peroxidase-AffiniPure Goat Anti-Mouse IgG (H + L) antibody (polyclonal; Jackson

Immunoresearch, USA; Cat. no. 115-035-003, Lot no. 45266; Antibody Registry

AB_10015289) diluted 1:5000 in PBS/T/M was added, for 1 h at 37˚C. After washing (x 6),

Fig 1. Map of Brazil showing origins of mammalian serum samples. States and biomes from which Chagas Sero K-SeT positive samples were

identified are shown in orange; states from which no positive samples were identified are shown in grey. Abbreviations: AC, Acre; BA, Bahia;

CE, Ceará; MA, Maranhão; MS, Mato Grosso do Sul; PI, Piauı́; RJ, Rio de Janeiro; RN, Rio Grande do Norte; TO, Tocantins.

https://doi.org/10.1371/journal.pone.0227828.g001

Table 1. Trypanosoma cruzi lineage-specific peptides (TSSApep) used in serology.

Peptide Amino acid sequence Representative strain GenBank

TSSApep-II/V/VI GTENKPATGEAPSQPG MHOM/BR/00/Esmeraldo GU075675

TSSApep-III GTEKKAAAGEAPSPSG MDAS/CO/00/CM17 GU075674

TSSApep-IV GTDKKTAAGEAPSPSG MHOM/BR/00/CanIII GU075671

TSSApep-V/VI GTENKPAAGEAPSQPG MINF/BR/00/CL Brener GU075678

Polymorphic residues are underlined. Peptides were N-terminal biotinylated.

https://doi.org/10.1371/journal.pone.0227828.t001
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plates were developed with substrate comprised of 100 μL/well of 50 mM phosphate/citrate

buffer (pH 5.0) containing 2 mM o-phenylenediamine HCl (OPD; P1526: Sigma-Aldrich) and

0.009% (vol/vol) H2O2 (216763: Sigma-Aldrich), and plates developed in the dark at room

temperature for 10 minutes. Substrate reactions were stopped by addition of 2M H2SO4

(50 μL/well), and absorbance read at 490 nm.

Primate sera. ELISA plates were coated, blocked, and received TSSApep as described in

Table 1 as described above. Thereafter, 100 μL/well of a 1:200 dilution of primate serum in

PBS/T/M was applied, for 1 h at 37˚C. Following washing (x 6), 100 μL/well of goat anti-

human IgG-peroxidase (polyclonal; Sigma-Aldrich, USA; Cat. no. A0170; Antibody Registry

AB_257868) diluted 1:5000 in PBS/T/M was added, for 1 h at 37˚C. After washing (x 6), plates

were developed with 100 μL/well of 3,3’,5,5’-Tetramethylbenzidine (TMB; Bio-Manguinhos,

Fiocruz, Brazil) in the dark at room temperature. After stopping the reaction, absorbances

were read at 450 nm.

Canine sera. ELISA plates were coated directly with 1 μg/100 μL/well TSSApep in coating

buffer overnight, without avidin, because we observed that some dog sera bound non-specifi-

cally to avidin. After washing and blocking steps as described above, 100 μL/well of 1:200 dilu-

tion of canine serum in PBS/T/M was added and incubated, for 1 h at 37˚C. After washing (x 6),

100 μL/well of 1:10 000 dilution of Peroxidase-AffiniPure Rabbit Anti-Dog IgG (H+L) antibody

(polyclonal; Jackson Immunoresearch, USA; Cat. no. 304-035-003, Lot no. 105408; Antibody

Registry AB_2339344) was added, for 1 h at 37˚C. ELISA development was by Biomanghuinos

TMB as described above, or alternatively by TMB ELISA substrate (ab171523: Abcam, UK). The

dilutions of sera and peroxidase-conjugated antibody were previously optimised by titration.

Feline sera. ELISA plates were coated, blocked, and received TSSApep as described for

murine sera. Thereafter, 100 μL/well of a 1:100 dilution of feline serum in PBS/T/M was

applied, for 1 h at 37˚C. After washing (x 6), 100 μL/well of rabbit anti-cat Ig-HRP (horse rad-

ish peroxidase, polyclonal; Sigma-Aldrich, UK; Cat. no. SAB3700080, Lot no. RI21730) diluted

1: 10 000 was added. Development was by OPD or TMB.

Other mammalian sera. Coating, blocking, addition of TSSApep and of 1:100 dilutions of

sera were as described for canine samples. IgG was assayed with the following conjugates

according to type of mammal: for armadillo, 1:1000 dilution of Protein G-HRP (P8170; Sigma-

Aldrich, UK); for opossum, 1:5000 dilution of goat anti-opossum IgG (H+L)-HRP conjugate

(polyclonal; Alpha Diagnostic International, USA; Cat. no. 30815-HP); for coati, 1:5000 dilu-

tion of goat anti-raccoon IgG-HRP (polyclonal; Bethyl Laboratories, USA; Cat. no. A140-123P;

Antibody Register AB_1966121); for bat, 1:5000 dilution of goat-anti bat IgG (H+L)-HRP

(polyclonal; Bethyl Laboratories, USA; Cat. no. A140-118P; Antibody Register AB_309475).

Comparison of Protein A and Protein G peroxidase conjugates. In comparative pilot

assays, Protein A-HRP (Southern Biotech, USA: Cat. no. 7300–05) and Protein G- HRP

(Fisher Scientific, UK; Cat. no. 11899150) were used at 1:1000 dilution in ELISA with sera

from armadillos, cats, rodents and dogs. In these assays, TSSApep-II/V/VI (directly coated)

and lysate were used separately as antigens. Reactions were developed with OPD.

Chagas Sero K-SeT rapid diagnostic test (RDT)

This novel, low cost, lateral flow immunochromatographic rapid test was developed with

Coris BioConcept, and employs TSSApep-II/V/VI as the coated antigen, and colloidal gold-

labelled Protein G as the detection molecule for specific IgG, as previously described [19, 20].

Following application of the serum sample on the sample zone (wide green line, Fig 2) then

buffer in the buffer window, reactions were considered positive if at 15 minutes incubation a

band was observed at the antigen line, in conjunction with an integral test validation line.

Trypanosoma cruzi II/V/VI rapid serology identifies Brazilian sylvatic mammalian reservoirs
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Statistical analysis

Significance of concordance between RDT results and ELISA (Kappa test) was calculated

using GraphPad (GraphPad Software, San Diego, California, USA).

Results

Lineage-specific TSSApep ELISA

TSSApep ELISA for experimental murine, and naturally infected primate, dog and cat are

described below in relation to the Chagas Sero K-SeT RDT. TSSApep ELISA data could not be

Fig 2. Concordance of TSSApep ELISA and Chagas Sero K-Set across mammalian Orders. Representative samples from

experimental T. cruzi murine infections and natural infections of Thrichomys laurentius (Rodentia: Echimyidae), Canis familiaris
(Carnivora: Canidae) and Leontopithecus chrysomelas (Primata: Callitrichidae). For primate samples, Kappa test = 0.84, 95%

confidence intervals (0.64–1.00). Sample Lc4 was T. cruzi seronegative. The T. laurentius sample shown here did not have a

corresponding ELISA.

https://doi.org/10.1371/journal.pone.0227828.g002
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obtained using the available conjugated secondary antibodies for other mammals, whether

mammal-specific (bat, opossum, coati) or Protein G conjugates (armadillo).

Concordance of lineage-specific ELISA and Chagas Sero K-SeT RDT. Fig 2 shows rep-

resentative examples of results with sera from experimental murine infections, and natural

infections of rodents (Thrichomys laurentius), canines (Canis familiaris) and primates (Leonto-
pithecus chrysomelas), assayed by both TSSApep ELISA and Chagas Sero K-SeT RDT.

In experimental murine infections and natural infections of Primata (Callitrichidae) and

Carnivora (Canidae), TSSApep-II/V/VI ELISA and Chagas Sero K-SeT RDT results were con-

cordant; P< 0.0001 for primates, for which most data were available (Table 2). Three of the

primates TcII seropositive by ELISA were also TcV/VI ELISA positive, indicating TcV/VI

infection or both TcII and TcV/VI infection. In agreement with previous ELISAs [24], serum

from experimental murine infection with TcII was Chagas Sero K-SeT positive, whereas serum

from TcIII and TcIV infections were negative by this RDT (Fig 2). Thus, not only did these

two lineage-specific assays perform equally well, the colloidal gold-labelled Protein G in Cha-

gas Sero K-SeT had the capacity to recognise specific IgG in diverse mammalian Orders

(Rodentia, Carnivora, Primata).

Prevalence of TcII/V/VI infections detected by Chagas Sero K-SeT RDT

Among the primates, the Chagas Sero K-SeT showed that 19 of 68 (29%) L. rosalia in Rio de

Janeiro State and 27 of 35 (77%) of L. chrysomelas in the northern Brazilian State of Bahia were

seropositive, indicating a high prevalence of TcII/V/VI infections, for which the natural hosts

were previously poorly known. For L. rosalia and L. chrysomelas, 8 and 23 of the same samples,

respectively, were previously tested by TSSApep ELISA [18]. In all but one case the Chagas

Sero K-SeT RDT result accorded with the ELISAs; the non-matching case was positive by the

RDT but negative by ELISA; Kappa test = 0.84 (95% confidence intervals: 0.64–1.00) (S1

Appendix).

Among the dogs, 16 of 57 (28%) of C. familiaris from the Caatinga biome of Ceará State

were seropositive by Chagas Sero K-SeT.

Table 2. Chagas Sero K-SeT RDT serological surveillance for TcII/V/VI natural infections among Brazilian mammal species.

Order: Family Species Common name Biome Municipality, Statea Chagas Sero K-SeT positive

Primatab: Callitrichidae Leontopithecus rosalia Golden lion tamarin Atlantic Forest Silva Jardim, RJ 19/68 (27.9%)

Leontopithecus chrysomelas Golden-headed lion tamarin Atlantic Forest Una, BA 27/35 (77.1%)

Carnivorac: Canidae Canis familiaris Domestic dog Caatinga São Benedito, CE 16/57 (28.1%)

Chiroptera: Phyllostomidae Phyllostomus elongatus Lesser spear-nosed bat Amazonia Acre 1/19

Rodentiad: Echimyidae Thrichomys laurentius Punaré Caatinga PI 2/23

a BA, Bahia; CE, Ceará; PI, Piaui; RJ, Rio de Janeiro.

b-d The following were all negative by Chagas Sero K-SeT:
b Primata: Ten Cebus libidinosus, two L. chrysopygus, and a single Alouatta belzebul
c Carnivora: Twenty nine Nasua nasua, nineteen Cerdocyon thous and four Chrysocyon brachyurus
d Rodentia: Fourteen Thrichomys apereoides, five Rattus and single Oligoryzomys, Rhipidomys, Nectomys, Akodon.

and for the following orders not listed in the Table:

Cingulata: Forty eight Euphractus sp. and a single Dasypus sp.

Marsupialia: Eleven Didelphis sp. and two Philander opossum
(Felidae: IgG is not recognised by Protein G, see text)

https://doi.org/10.1371/journal.pone.0227828.t002
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One bat (Phyllostomus elongatus) of 19 examined (Phyllostomus, Artibeus, Carollia), and

two Thrichomys laurentius (Fig 2) from the Caatinga biome in Piauı́ State were Chagas Sero K-

SeT seropositive and thus carried a TcII and/or TcV/VI infection (Table 2).

ELISA using the anti-cat IgG secondary antibody detected two TSSApep-II/V/VI seroposi-

tive cats. Chagas Sero K-SeT detected no infections in felines.

Of other mammals, for which no corresponding ELISA data were available, Chagas Sero K-

SeT found no TcII/V/VI infections in: coati (Nasua nasua, 29), crab-eating fox (Cerdocyon
thous, 19), maned wolf (Chrysocyon brachyurus, 4); opossum (Didelphis and Philander, 13), or

armadillo whether Euphractus (48) or Dasypus sp. (1) (Table 2).

The Protein G used in Chagas Sero K-SeT did recognise nearly a quarter or the dogs tested

by this RDT; the Protein G-HRP used in ELISA failed to recognise dog IgG. The Protein A-

HRP accorded with the result with specific anti-cat secondary antibody, and also recognised

anti-T. cruzi lysate IgG in two armadillos.

Discussion

Recent publications have reviewed the complexities relating to Chagas disease and T. cruzi
molecular epidemiology [3, 25]. Regarding the latter point, the application of serology based

on lineage-specific antigens has great potential for resolving the cryptic ecological cycles and

the discovery of novel reservoir hosts of this parasite. Applications of T. cruzi lineage–specific

serology to naturally-infected animals are with dogs [17, 26], primates [18] and sympatric

dogs, cats, and armadillo [20]. We have applied Chagas Sero K-SeT to exploit the capacity of

Protein G to recognise TSSApep-II/V/VI specific IgG from a range of mammalian Orders.

Previous reports of RDTs for T. cruzi serology of animal reservoirs have used InBios Trypano-
soma cruzi-Detect-Canine [27] or Chagas StatPak [28], with no lineage-specific diagnosis. We

demonstrate the versatility of the Chagas Sero K-SeT to recognise TSSApep-II/V/VI specific

IgG in experimental murine T. cruzi infections, and in natural infections across several Orders

of Brazilian mammals, namely Primata, Carnivora (canine), Rodentia and Chiroptera.

The Chagas Sero K-SeT with Leontopithecus spp. sera demonstrated the capacity of this

RDT for lineage-specific serology of primates, previously achieved only with ELISA using con-

jugated anti-human IgG [18]. Previous reports [29, 30] hypothesised that primates could be

reservoir hosts of TcII; however, searches for TcII infections in Brazilian Amazonian primates

only yielded TcI and TcIV. Our results confirm the high prevalence of TcII/V/VI infections in

Brazilian Leontopithecus primates in the Atlantic Forest region of eastern Brazil, not in the

Amazonian forest [29, 30]. Beyond Brazil, TcII was recently isolated by xenodiagnosis of a

free-living capuchin (Sapajus cay) from eastern Paraguay [31], and T. cruzi genotypes compat-

ible with TcII, TcV and TcVI were reported in howler monkeys (Alouatta caraya) in northern

Argentina [32]. The occurrence of these lineages in non-contiguous areas of South America

and their broad range of host genera suggest that the primate ecological cycles of these lineages

are far from fully elucidated.

Rocha et al [13] genotyped TcII from Brazilian dogs, as single or mixed TcI-TcII infections

in Minas Gerais State, southern Brazil. Previous reports [17, 26] have used a recombinant E.

coli-produced TSSA fusion protein from CL Brener strain (TcVI; a clone from parental strain

CL) in ELISA with naturally infected dogs from northern Argentina; however, the recombi-

nant included sequences that are shared with other lineages. Chagas Sero K-SeT identified

TcII/V/VI infections in dogs from Ceará state, in north-eastern Brazil, a region previously

known to be highly endemic for TcII in domestic transmission cycles, although intradomicili-

ary transmission of T. cruzi has now been controlled. However, Lima et al [14] also reported

TcII/V/VI and TcV/VI respectively in two dogs from Pará state, north of the Amazon Basin.
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Domestic cats, which can acquire infection by eating triatomines or infected mice, are hosts

of T. cruzi, as known from the early discovery of Chagas disease [33, 34], and Rocha et al [13]

reported TcI from a wild ocelot (Leopardus pardalis) in Minas Gerais State. The two feline

samples TSSApep-II/V/VI seropositive by ELISA were negative by Chagas Sero K-SeT as

expected, because Protein G does not bind feline IgG [35]. We found here that Protein A

could recognise feline IgG, and its further application for serological surveillance is warranted.

Regarding rodents, we show that the TSSApep-II/V/VI ELISA with anti-mouse IgG can be

replaced by Chagas Sero K-SeT with Protein G. Thrichomys laurentius is a sylvatic host of T.

cruzi [36, 37] in Ceará state, northeast Brazil. The TSSApep-II/V/VI seropositives identified

here by Chagas Sero K-SeT were from the neighbouring state of Piauı́. Similarly, a single bat

specimen was positive by Chagas Sero K-Set; T. cruzi lineages have been reported from Brazil-

ian bats, by genotyping [38, 39].

Armadillos, especially D. novemcinctus, have been reported as natural hosts of TcIII

throughout South America [11, 40, 41], thus the absence of TcII/V/VI infections from all 49

armadillos was not surprising. Although Chagas Sero K-SeT was shown to be able to detect

infection in armadillo [20], positive test line intensity was weak; Protein A may be more appro-

priate than Protein G for binding of armadillo IgG, as others have reported [42], and which we

observed here. No armadillo-specific conjugate was available for ELISA; this also encourages

further deployment of Protein A for these important reservoirs hosts. Opossums have been

identified as common hosts of TcI but rarely reported as hosts of TcII [11, 43].

Diagnosis of T. cruzi infection has not hitherto been lineage-specific. The search for a TcI-

specific antigen applicable to animals and humans remains an important current research

goal, and may elucidate the reported differences in serological and immune responses in

regions endemic for different lineages [44–46].

As recently described [9, 10], the association of T. cruzi lineages with hosts, biomes or habi-

tats is complex and not fixed. Infecting lineage composition may fluctuate within mammalian

populations over time if there is varying exposure and transmission efficiency. Mixed infec-

tions, such as TcI and TcII, may occur in single mammals, and are not currently detectable by

lineage-specific serology; nevertheless, due to sustained infection antibodies to TcII should not

be lost. The Chagas Sero K-SeT RDT described here does not make redundant T. cruzi geno-

typing, or advanced analytical techniques such as flow cytometry [47]; however, by detecting

lineage-specific host IgG, it can provide epidemiological information when direct parasite gen-

otyping is hampered or subject to confounding biases.

Conclusion

The biological and geographical range of mammals from which specific anti-TSSApep-II/V/

VI IgG has been identified by Chagas Sero K-SeT RDT demonstrates its great potential in

identifying novel reservoir hosts and elucidating ecological cycles of lineage transmission. We

have shown here that this rapid, easy to use and interpret, Protein G-based RDT can replace

ELISA in T. cruzi TSSApep-II/V/VI lineage-specific serology of a range of mammalian Orders;

it does not require isolation, culture or direct genotyping of parasites, nor is it subject to con-

founders of those approaches. The combined use of Protein A and Protein G (or Protein A/G)

as detection molecules for IgG may increase further the range of mammalian Orders to which

lineage-specific serology can be applied.
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