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ABSTRACT 

Context: Obesity and related non-communicable diseases represent a large and growing 

disease burden, and various aspects of contemporary urban environments may be 

important drivers of these health outcomes. Neighbourhood resources for physical 

activity, exposure to fast-food outlets and greenspace may play a role, but the evidence 

regarding these neighbourhood effects remains equivocal. A possible explanation is that 

neighbourhood effects may be heterogeneous; some people may be more sensitive than 

others to the built environment, and neighbourhoods may matter more in some places 

than in others. We know little about how neighbourhood characteristics interact with 

other factors at various scales to influence health. 

Methods: Using UK Biobank, a sample of >300,000 adults in mid-life, I conducted a multi-

scalar examination of heterogeneity in associations between neighbourhood built 

environments and adiposity, CVD and cancer. I examined cross-sectional associations 

between characteristics of the physical activity and food environments around people's 

home addresses, and multiple measures of adiposity, exploring potential effect 

modification by individual-, neighbourhood- and local authority-level variables. Using 

linked hospital data, I examined effect heterogeneity in longitudinal associations with 

CVD and cancer. 

Results: Population-wide associations obscured substantial effect heterogeneity. The 

magnitude of these associations varied with genetic risk, socioeconomic position, gender, 

and other environmental factors. Greater availability of formal physical activity facilities 

near home was associated with lower adiposity, particularly for people without public 

parks nearby, but less so for people also living near a fast-food outlet. Proximity to a fast-

food outlet was associated with BMI, but this was modified by genetic risk of obesity: high-

risk individuals appear to be more sensitive to their food environment. Associations 

between adiposity and neighbourhood characteristics varied across England, and potential 

drivers of this geographical heterogeneity were identified. Neighbourhood greenspace was 

not associated with any outcomes across the sample as a whole, but appeared protective 

against cancer in more deprived areas. 

Conclusions: This thesis contributes empirically and conceptually to our understanding 

of how, where and for whom neighbourhoods matter for health. The results highlight the 

role of individual and contextual factors operating at multiple scales to moderate people’s 

sensitivity to characteristics of their neighbourhood environment. A better understanding 

of effect modification relationships such as these may help to guide the development and 

evaluation of future interventions and policies involving the urban built environment. 
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 BACKGROUND 

1.1. Introduction 

Complex health conditions such as obesity, and the major non-communicable diseases for 

which obesity is an important risk factor (cardiovascular disease, diabetes, cancer), 

represent a large and growing disease burden globally, with major implications for 

population health and healthcare budgets1. Proximate risk factors for obesity and these 

major NCDs include health behaviours such as excess energy intake and physical 

inactivity. But interventions directly targeting behaviour change are often ineffective2 and 

can widen or entrench existing health inequalities by being more effective in the social 

groups that already experience better health3–5. Furthermore, the dramatic global increase 

in the prevalence of obesity6 cannot plausibly be explained by a population-wide shift in 

personal attributes such as genetic susceptibility; instead wide-scale ‘environmental’ 

drivers of diet and physical activity behaviours must be implicated7.  

The increasing prevalence of obesity and NCDs in recent decades has occurred in parallel 

with global increases in urbanisation, and these are thought to be related8,9. The nutrition 

transition  is closely linked to urbanisation10, and in low- and middle-income countries, 

the prevalence of obesity, diabetes, CVD and cancer is typically higher in urban areas than 

in rural areas11–15. Various studies of rural-to-urban migrants in emerging economies and 

of migrants to Western nations have tended to show an increased risk of NCDs and their 

risk factors associated with such a relocation16,17. Various theoretically ‘obesogenic’ features 

of contemporary urban (and suburban) living – typified in Western developed countries 

and increasingly spreading to other settings – may at least partially explain the recent rise 

in obesity and related diseases18. Increased availability, affordability and marketing of 

energy-dense foods encourages less healthy diets, while increased car dependency and 

increasingly sedentary work and home environments encourage less active lifestyles19,20. 

With urbanisation increasing rapidly across the globe21,22, the links between urban living 

and health will only become more pertinent.  

Evidence of geographical inequalities in health is also abundant, at various scales including 

between countries23; regionally within countries24; and even within cities25. This lends 

further credence to the importance of ‘place’ for health, a notion long part of the public 

health tradition, but which fell somewhat out of favour in the latter half of the 20th 

century, with the rise of individualism and a focus on the lifestyle determinants of chronic 

disease26. Geographical inequalities in health are driven by a combination of contextual 

(i.e. place-based) and compositional (population) factors27, and are likely to arise from a 
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complex interplay between contextual and compositional factors28. This complexity 

remains far from fully elucidated, and there is still much that is not well understood about 

how place and health are causally linked29–33.  

Local residential areas – usually referred to as neighbourhoods31 – have been singled out 

by researchers as a geographical scale at which the built and social environments may be 

particularly influential for health27, and a scale at which public health interventions might 

usefully be implemented. Yet despite considerable research over the past quarter of a 

century, the evidence base with respect to neighbourhood effects on health and health 

behaviours remains equivocal. A better understanding of whether, how, where and for 

whom these upstream, environmental contextual factors influence obesity, and NCDs 

such as CVD and cancer, is needed. In this thesis I seek to contribute new evidence to this 

area. 

1.2. Socio-ecological models of health 

A useful framework for thinking about these determinants is provided by socio-ecological 

models of health18,34–36. Socio-ecological models (a term I use loosely here to also include 

several related frameworks such as ecosocial theory37 and eco-epidemiology38) recognise 

multiple influences on health and health behaviours, operating at multiple levels, from 

physiological processes within individuals up through social and environmental influences 

in the local sphere, to factors operating at wider macro-environmental, societal and public 

policy levels39.  

Socio-ecological models also often acknowledge that factors at these various levels may 

interact in complex ways with one another to produce health and health inequalities40. 

Such models provide a lens through which we can integrate biological, social and 

environmental understandings of health production41, seek new understandings of the 

complexity of population health, and conceive of effective interventions to improve health 

and reduce health inequalities36.   

1.3. Neighbourhood built environments and health 

Features of the built environment are one subset of the multiple influences on health that 

are represented in socio-ecological models. These may operate at levels relatively 

proximate to the individual, such as the residential neighbourhood, or at a wider scale 

such as a city, region or country. From a socio-ecological perspective, spatial and place-

based features of the environments in which people live are potentially important 

components of the ecology of population health. 



15 

Variation in contextual factors at the neighbourhood level may be important drivers of 

health and health inequalities (both geographical and social). A better understanding of 

how such relationships work may highlight where the greatest potential for effective 

public health intervention lies. Early research into neighbourhood effects on health 

focussed on neighbourhood deprivation and poverty. Building on that, a substantial 

research effort has since evolved that has been focussed on specific characteristics of the 

built environments in which people live that are plausibly related to specific outcomes42.  

Brownson and colleagues43 define the built environment as the “physical form of 

communities”, including patterns of land use, built and natural features on various scales, 

and the transportation systems that link locations together. Various features of 

neighbourhood built environments have the potential to influence human health, through 

several mechanisms44. These include features that are directly toxic to human health (e.g. 

proximity to sources of pollution); features that constrain or facilitate healthy behaviours 

(e.g. access to a gym close to home making it easier to undertake regular exercise, or the 

relative densities of healthy and unhealthy food stores in a neighbourhood); and features 

that have a psychosocial impact (e.g. safe streetscapes, access to ‘natural’ spaces to reduce 

stress, and destinations that facilitate social interactions). 

Considerable research attention has been paid over the past two decades to the second of 

these categories – built environment features that constrain or facilitate healthy 

behavioural choices – and in particular to the potential effects of neighbourhoods on the 

diet, physical activity and body weight outcomes of residents. Neighbourhood provision 

(or lack thereof) of opportunities to engage in adequate levels of physical activity and to 

sustain a healthy diet have the potential to influence energy balance (i.e. energy intake 

relative to energy expenditure), and therefore determine whether a person gains excess 

weight. With the emergence of the so-called ‘obesity epidemic’, obesity-related outcomes 

have become an obvious focal point when seeking to understand relationships between 

neighbourhood environments and health42. Reflecting the energy balance equation, 

neighbourhood-obesity research is typically concerned with environmental factors that 

may facilitate or hinder the behaviours conducive to maintaining a healthy weight: factors 

in either the local food environment, or the local physical activity environment, or (less 

often) both in combination. These have been operationalised in a multitude of ways, 

including both objective and perceived exposure to resources that encourage or 

discourage healthy diet and adequate physical activity45. 
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 An inconsistent evidence base for neighbourhood effects on health 

A multitude of studies in different settings, predominantly urban contexts in developed 

countries, have been conducted to investigate the influence of neighbourhood 

characteristics on obesity and other cardiometabolic health outcomes, and on diet and 

physical activity behaviours. Yet equivocal and weak associations have predominated, and 

the evidence base to date remains inconclusive, at least in terms of clearly generalisable 

findings. Evidence from the USA makes it relatively clear that certain characteristics of 

neighbourhoods, such as land-use mix and urban sprawl, probably matter for health in 

that particular context. Contradictory evidence prevails in Europe and elsewhere, 

however, and for most neighbourhood characteristics representing the food and physical 

activity environments, the science remains far from settled46–52.  

The inconsistency of study findings is likely partially due to differences in methodological 

approaches adopted by researchers, and the degree to which the many methodological 

challenges of this kind of research have been adequately addressed. Several authors have 

noted that inconsistent findings across a wide range of environmental features may arise 

from a combination of factors including: underpowered studies; different study 

populations; inadequate adjustment for confounding; inappropriate delineation of 

relevant exposure areas; lack of complexity in exposure operationalisation; and the dearth 

of longitudinal or intervention studies to strengthen causal inference. Yet when 

Mackenbach and colleagues49 identified a lack of consistency in findings and examined 

possible drivers of this, they found that neither methodological quality nor neighbourhood 

environment measurement affected the consistency of the results in the studies they 

reviewed. Therefore methodological differences between studies seem unlikely to fully 

explain heterogeneous findings across the literature.  

1.4. Effect heterogeneity and the case for examining potential 
effect modification in neighbourhood-health research 

Beyond methodological differences between studies, another possible reason for the 

observed inconsistency in the evidence base is true heterogeneity of effect. Effect 

heterogeneity is present if the strength and/or direction of an exposure-outcome 

relationship varies across values or strata of a third variable. That third variable is then 

said to be an effect modifier53. For example, if the effect of exercise on CVD risk is different 

in younger people than it is in older people, then age is acting as an effect modifier. The 

distribution of effect modifiers in a population affects the magnitude of the associations 

in that population as a whole, so the presence of effect modification has implications for 
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generalisability54. In the case of neighbourhood effects on health, if neighbourhood 

characteristics do not influence health and health behaviours uniformly across the 

population, then associations estimated in population-wide studies may mask variation in 

the true magnitude of the association between population subgroups. Similarly, if 

neighbourhood characteristics do not influence health and health behaviours uniformly 

across geographical space, then findings from studies in one location may not be 

generalisable to other settings, and studies undertaken at a national scale, for example, 

might mask regional differences. 

In two recent papers, Keyes and Galea55,56 argue for a “causal architecture” approach – to 

social epidemiology in particular – moving away from estimating global effects of a single 

risk factor or exposure on an outcome, and towards a greater effort to understand “the 

complex architectures and networks of causes that underlie disease”56(p.2). They point out 

that “although replication of study findings increases our confidence in their validity, non-

replication may be telling us something crucial about causal architecture across 

populations”55. This point has particular relevance for neighbourhood effects studies, 

where we observe much inconsistency of study findings. The inconsistency of study 

findings may point to genuinely differential effects of neighbourhood characteristics 

across different settings and subpopulations. Some people may be more sensitive than 

others to their neighbourhood environment, and neighbourhoods may matter more for 

health in some places than in others27; if so, unpacking these differences and their drivers 

may inform our understanding of the ways in which neighbourhood environments 

contribute to a complex, multi-level system of influences operating together to produce 

complex health outcomes such as obesity. 

The possibility of effect heterogeneity also has implications for interventions, which may 

be less effective in some population subgroups and some locations. VanderWeele and 

Knol57 explain that studying interactions between exposures (i.e. effect modification) 

serves an important public health function of helping to determine which of two or more 

subpopulations would benefit most from intervention. In their review of reviews, Ding and 

Gebel50 examined the suggestions made for future research into relationships between the 

built environment and physical activity and/or obesity, and identified that the study of 

moderators (or modifiers) of these relationships was the most cited suggestion for future 

research. They conclude that “conceptually, it is important to identify when, where, and 

for whom certain environmental attributes are the most influential”50.   
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Socio-ecological models of health implicitly encode interactions between factors operating 

at various scales, from the individual to the macro-environmental and societal [e.g. 19,39], 

and in some cases they make effect modification explicit. Yet most studies that adopt a 

socio-ecological perspective focus on examining only the main effects of one or more of 

the many ‘upstream’ determinants of health posited in these models, rather than exploring 

the potentially important ways that multiple factors in a socio-ecological model interact 

to produce health. When interactions are examined, they are almost exclusively focussed 

on interactions between environments and intrapersonal characteristics, usually socio-

demographic factors. Subgroup analyses (e.g. by gender or socioeconomic position) or 

studies focussed on more narrowly defined populations (e.g. specific ethnic groups) are 

not uncommon and have indeed, in some instances, revealed additional complexities that 

may be masked in other studies58–61. But these relationships are often addressed as a 

secondary research question, and the literature contains very limited examination of other 

potentially important modifiers62.  

The widely cited ANGELO framework for obesogenic environments identifies 

environmental influences operating at various scales (referred to as the micro and macro 

environments)19. Despite widespread recognition of multiple environmental variables as 

important exposures, these are rarely considered as possible modifiers of one another’s 

effects on health. Drawing heavily on the ANGELO framework, Kremers and colleagues63 

have highlighted the conceptual importance of effect modification of the associations 

between environmental factors and ‘energy-balance behaviours’ (diet, physical activity, 

sedentary behaviour) but limited their consideration to individual-level modifiers of 

behaviour. Schneider and colleagues64 have recently further adapted this model, but also 

omit a wider suite of plausible effect modifiers. Here I have extended these models further, 

to indicate that any of the ANGELO framework’s environmental factors, along with a range 

of individual factors, may potentially modify the main effect of any other environmental 

factor on obesity or any related behaviour or health outcome (Figure 1.1). 
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Figure 1.1 Conceptual model of relationships between neighbourhood exposures 
and health outcomes, modified by other factors operating at individual, 
neighbourhood and macro-environmental levels 

Adapted from Kremers at al (2006) and Schneider et al (2017)    

As Figure 1.1 indicates, the effect of any given neighbourhood exposure on health can 

operate directly on health behaviours such as dietary intake or physical activity (the lower 

pathway in Figure 1.1), or that effect can be mediated by cognitive factors such as an 

individual's perception of the neighbourhood, or their attitudes (e.g. towards food or 

exercise) (Figure 1.1, upper pathway). Health behaviours then influence health outcomes 

such as obesity or chronic disease risk. Importantly, both the mediated and unmediated 

pathways from neighbourhood exposure to health may be modified: by other 

neighbourhood-level characteristics; by individual-level factors; or by characteristics of 

the wider physical, socio-cultural, economic or political contexts in which people and 

neighbourhoods are nested (the macro environment).  

Ding and Gebel's 2012 review50 posited socio-demographic and psychosocial variables as 

possible individual-level effect modifiers that warrant investigation, and social 

environmental variables as possible neighbourhood-level modifiers. Genetic factors (e.g. 

genetic risk of obesity) might be added to this list: Glymour and colleagues65 recently 

called for a focus on investigating genetic variation as a source of effect heterogeneity in 

social epidemiological studies generally, arguing that it may explain variation in sensitivity 

to one's environment, and similar calls have been made within the neighbourhood effects 

literature specifically66. Beyond the individual, features of the neighbourhood 



20 

environment might also interact with one another to influence health67, and macro-

environmental variables operating in the wider context in which neighbourhoods are 

located may also modify the influence of neighbourhood characteristics28. With the 

exception of socio-demographic variables, very few studies have examined many of these 

potential effect modifiers. In some cases research gaps will exist because of a paucity of 

appropriate data – a lack of either sufficiently large samples to enable robust analysis, or 

datasets that contain the relevant combination of variables. It is possible that some of the 

other gaps reflect publication bias if primarily null results have been generated, or they 

may reflect a genuine lack of research addressing those questions.  

In this thesis I use a uniquely large, comprehensive and geographically diverse sample of 

adults in mid-life to explore heterogeneity in the associations between physical 

characteristics of the residential neighbourhood environment and outcome measures 

relating to obesity and related major NCDs. With respect to obesity-related outcomes, I 

focus on two exposures, each relating to one side of the energy balance equation: 

neighbourhood availability of formal PA facilities (energy output), and neighbourhood 

proximity to fast-food stores (energy input). With respect to more distal NCD outcomes, 

I additionally consider neighbourhood greenspace as a third exposure, which may act 

through pathways other than energy balance. Using the model in Figure 1.1 above as a 

framework, I examine potential modification of these relationships by variables operating 

at the individual, neighbourhood and macro-environmental levels.  

Studying effect heterogeneity and its sources (effect modifiers, also referred to as 

moderators) in relationships between neighbourhood built environments and health can 

serve two important purposes: First, it can improve our understanding of the aetiology 

and epidemiology of important chronic health conditions, informing the development of 

better models of chronic disease and its many influences operating across multiple levels. 

Second, it can help identify the settings and subpopulations in which particular built 

environment interventions are likely to have the greatest public health impact, ultimately 

guiding more effective design of urban spaces to promote health and heath equity.  

In the rest of this chapter, I will introduce the neighbourhood-health relationships around 

which the thesis is focused, and outline plausible primary sources of potential effect 

heterogeneity. I will then briefly introduce the setting of the studies contained in the thesis 

and the methodological approach I adopt, and outline the specific objectives of the thesis. 
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1.5. Neighbourhood built environments and their relationships 
with adiposity and NCDs 

The health behaviours and outcomes on which this thesis is focused relate to obesity and 

the major NCDs for which obesity is an important risk factor. Specifically, I examine 

continuous measures of adiposity (BMI, waist circumference and percent body fat) in 

Chapters 4 – 7, and CVD- and cancer-related hospital admissions in Chapter 8. I 

investigate these outcomes in relation to various characteristics of the residential built 

environment. 

BMI above the healthy range has been shown to be associated with most causes of death68, 

and prevalence of obesity (BMI≥30 kg/m2) has doubled in more than 70 countries across 

the world since 198069.  It is estimated that high BMI contributed to 4 million deaths and 

120 million disability-adjusted life years globally in 2015 alone69. Excess weight defined by 

other measures of adiposity are also closely linked to poor health outcomes70. Eighteen 

million deaths each year are attributed to CVD globally71 and almost 9 million to cancer, 

with twice that number of incident cancer cases72.  

The risk of weight gain – a result of energy imbalance – may be influenced by exposures in 

the residential neighbourhood environment that relate to opportunities for acquiring food 

and engaging in physical activity. Unhealthy diet and inadequate physical activity are 

major risk factors for CVD and many cancers both through and independent of weight-

related pathways73. CVD and cancer may also be influenced by features of the built 

environment through pathways unrelated to diet and physical activity. Exposure to green 

space, for example, is hypothesised to influence risk of both CVD and some cancers 

through pathways involving air quality/pollution, immune function and the regulation of 

stress hormones74.  

If neighbourhood exposures are upstream determinants of these important health 

outcomes, a better understanding of how, where and for whom these relationships play 

out is important. The many equivocal and weak associations that have emerged from three 

decades of research on neighbourhood environments and health may indicate important 

effect heterogeneity that warrants further investigation. 

1.6. Sources of potential effect heterogeneity 

In Figure 1.1 (page 19) I categorised possible effect modifiers according to the level at which 

they operate:  individual, neighbourhood, and macro-environment. Here I provide 

examples of potential modifiers at each of those levels, which I go on to investigate in this 



22 

thesis. While Figure 1.1 indicates that a modifier may act on the primary neighbourhood-

health relationship at one or more of various points along the direct or mediated pathways 

(depicted by the multiple arrows from each modifier category), the analytical approach 

adopted in this thesis cannot tease apart those details. Rather, I am concerned with 

whether effect modification occurs at all.  

 Individual-level modifiers 

While several studies of neighbourhood built environments and health have included 

subgroup analyses, or formally tested for effect modification by demographic factors75–80 

and a handful of other potential modifiers81–85, it is rare in the published literature to see 

explicit investigation of effect modification by individual risk factors other than socio-

demographic ones62. Certainly within the UK research has primarily been limited to 

testing for effect modification by gender and income76,86,87. 

 Genetic risk  

Most complex health conditions such as obesity and many NCDs are understood to arise 

from the interplay of genetic and non-genetic factors. The rapid global rise in the 

prevalence of these conditions in recent decades suggests an important role for changing 

environmental influences88, either by direct interaction with genetic factors or by 

influencing behaviours that can moderate genetic risk. Obesity, for example, is known to 

have a heritable component89, and the fact that not all individuals have the same 

behavioural or physiological responses to the near-ubiquitous changes we have seen in 

recent decades to our food systems, urban environments, and modern lifestyles suggests 

that a complex interplay between genetic and non-genetic factors affects the body mass of 

individuals90,91.   

The advent of genome-wide association studies (GWAS) arising from advances in 

genotyping technologies is enabling the genetic components of common obesity to be 

more readily characterised, and the wealth of new data and methods have motivated and 

enabled the investigation of gene-environment (GxE) interactions90,92. In the context of 

obesity, the 'environment' in GxE studies overwhelmingly refers to proximate lifestyle or 

behavioural factors that directly influence energy balance93. Only a few studies of GxE 

interactions have examined truly 'environmental' factors such as  characteristics of the 

built, natural and social settings in which behavioural 'choices' are made and 

constrained94–99. 
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The influence of neighbourhood-level exposures on BMI may vary according to level of 

genetic risk. The influence of the environment could be stronger among people at higher 

genetic risk of obesity, if genetic risk increases sensitivity to environmental factors100,101. 

Alternatively, it may be stronger among people with low genetic risk, if a healthy 

environment allows such people to maximise their genetic 'advantage', while people at 

higher genetic risk express a high-BMI phenotype regardless of external factors93. Any such 

patterns of effect heterogeneity will be obscured by examining the population as a whole 

without regard to underlying genetic risk, resulting in an inaccurate description of how 

neighbourhoods influence health65. 

 Socioeconomic position 

As mentioned above, where effect heterogeneity has been examined, it has often been in 

terms of modification by socioeconomic position. This is indeed a potentially important 

source of effect heterogeneity, and understanding it better may lead to more effective 

tailoring and targeting of built environment interventions for health. In relation to food 

and physical activity environments, there are several mechanisms by which socioeconomic 

factors might have a modifying effect. First, regardless of the availability of health-

promoting resources in a neighbourhood, there may be unequal access to these resources 

if they require an individual to pay to access them, such as in the case of pay-to-use 

physical activity facilities such as gyms.  Second, preferences for some neighbourhood 

resources may vary across socioeconomic groups, perhaps due to prevailing socio-cultural 

norms. For example, low-income households may be more accustomed to patronising fast-

food stores because they provide inexpensive and convenient energy-dense meals102 while 

social norms might encourage high-income householders to shop at high-end 

supermarkets103.  Finally, effects of health-promoting neighbourhood resources that do not 

have prohibitive attendant costs (parks, walkable areas, low-cost leisure centres, 

affordable healthy food retailers) might be larger for low-income households if exposure 

to those resources offsets inequitable access to more costly formal physical activity 

facilities. 

Regardless of the direction of any such effect heterogeneity, it remains a poorly 

understood aspect of neighbourhood-health relationships. If benefits or harms of 

neighbourhood characteristics depend on socioeconomic status, then any efforts to 

improve population health by improving neighbourhood built environments will risk 

widening health inequalities if they are blind to socially differential impacts.  
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 Neighbourhood-level modifiers 

Attempting to isolate effects of individual neighbourhood characteristics on health is 

likely to only ever paint an incomplete picture of how environmental factors influence the 

health of local residents67,104. Ignoring the underlying distribution of other, effect-

modifying neighbourhood characteristics (beyond controlling for their possibly 

confounding influence), may obscure important effects in some places. While many 

studies have sought to characterise overall neighbourhood 'obesogenicity' through the 

combination of multiple neighbourhood attributes into a single composite measure105,106 

or using methods such as cluster analysis to identify neighbourhood typologies107,108, it is 

surprisingly uncommon for researchers to explicitly investigate the way neighbourhood 

characteristics might interact to produce health effects such as obesity62 (although some 

examples do exist62,c.f.109). It is more common for modification by neighbourhood 

deprivation to be studied, and numerous studies have detected evidence that this is an 

important modifier (e.g.77,110).  

 Built environment 

With the exception of studies that examine composite measures of neighbourhood 

obesogenicity, most focus on the influence of specific neighbourhood exposures, largely 

ignoring the possibility that the effects of a given neighbourhood characteristic may not 

be universal, but instead vary according to other factors in the neighbourhood built 

environment. For example, as a potentially health-promoting neighbourhood resource111, 

formal physical activity facilities may have a stronger influence on health outcomes in 

areas with fewer informal resources for physical activity, such as parks. Conversely, in a 

neighbourhood food environment dominated by fast-food stores, this competing 

influence on the other side of the energy balance equation might dampen the potentially 

health-promoting influence of physical activity facilities on body weight.  Understanding 

whether the effect of one neighbourhood characteristic is modified by the presence of 

other neighbourhood characteristics, may help to identify settings in which interventions 

targeting a particular feature of the built environment may be more (or less) effective, and 

to optimise future interventions accordingly112.   

 Neighbourhood deprivation 

Neighbourhood deprivation may also modify effects of neighbourhood built 

environments. There is some (albeit mixed) evidence that residents of more deprived areas 

have poorer access to health-promoting neighbourhood resources – a concept know as 

deprivation amplification113. Even if resources are superficially equitably distributed, their 

quality (e.g. of public green spaces) may be lower in more deprived areas113,114, and this may 
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cause the relationship between the neighbourhood built environment and health to vary 

according to area deprivation.  Psychosocial stress due to neighbourhood crime or lack of 

social cohesion115 may be another mechanism by which neighbourhood deprivation could 

act as a modifier of effects of the built environment. On the other hand, some 

neighbourhood resources may provide greater benefit in deprived areas if they offset other 

area-based inequalities (e.g.116).  

 Macro-environmental modifiers 

Finally, evidence for a relationship between some neighbourhood characteristics and 

health is stronger in some geographical settings than others, and this hints at possible 

effect modification by factors operating at the macro-environmental scale. 

Land-use mix and urban sprawl appear to have an influence on obesity-related outcomes 

in North America, but there is no such evidence from Europe49; European studies of 

associations between access to parks and recreation facilities and obesity yield results that 

are too mixed to make generalisations49, and even within a relatively small country such 

as the UK, the evidence regarding those relationships is mixed110,117,118. Inter-city 

comparisons across ten countries also found variation in the association between 

perceived neighbourhood physical activity environments and physical activity119. In terms 

of the food environment, the evidence is dominated by studies from the United States and 

is equivocal overall51,104. From the limited number of studies conducted in the UK, greater 

exposure to fast-food outlets has been shown to be associated with higher BMI or greater 

odds of obesity in London120, Leicester121, Cambridgeshire76,122 and Norfolk123, but not in the 

North East of England124 or Leeds125,126. 

Observing this kind of broad-scale geographical heterogeneity, we are compelled to ask 

what might be driving it, and this leads us to consider possible effect modifiers in the 

macro-environment. For example, might there be physical or social attributes of the wider 

contexts (cities, regions, nations) in which neighbourhoods are located, that cause 

neighbourhood environment to matter more in some settings than others? Although 

socio-ecological models acknowledge that these complex, multi-level relationships 

probably exist19,127, and despite calls to understand ‘place’ as multi-scalar and relational28, 

the potentially modifying roles of wider contextual factors remain underexamined. 

Various macro-environmental factors have been linked to outcomes such as obesity and 

health behaviours such as physical activity, and any of these might also modify the 

influence of the neighbourhood environment on these outcomes. Such factors include 
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government quality and public sector expenditure128,129, climate and weather130,131, 

economic prosperity132,133, greenspace134, and social norms regarding health behaviours and 

obesity135,136.  

Geographical heterogeneity in the magnitude and direction of associations from place to 

place poses challenges for the generalisability of findings from many studies. 

Understanding the drivers of such heterogeneity may help to make sense of the 

inconsistent evidence base, and could ultimately have important implications for the 

tailoring of interventions based on local context123. 

1.7. Study setting 

Understanding how contextual factors influence obesity and NCDs is a globally relevant 

area of public health concern, but appropriate data for large-scale observational studies of 

neighbourhood effects are lacking in most settings. The study of effect heterogeneity as 

part of this broader endeavour entails restrictive data requirements, and this is likely to be 

one reason it has not been extensively and routinely examined in studies of 

neighbourhood influences of health. There are three particular requirements that often 

pose a challenge. 

First, larger sample sizes are required to detect interactions than are required to detect 

main effects. When effect modification hypotheses are not specified early in the design of 

a study, sample size calculations are likely to be based on achieving sufficient power to 

detect only main effects of a particular magnitude, leaving studies underpowered to detect 

interactions137. Good epidemiological practice demands the avoidance of underpowered 

and post hoc subgroup analyses138. 

Second, investigation of effect heterogeneity requires that data have been collected on 

effect modifiers of interest. Again, this requires a priori specification of effect modification 

hypotheses at an early stage of study design. Many neighbourhood effects studies make 

use of secondary data sources, and this necessarily limits researchers to the study of the 

potential effect modifiers for which data are available.  

Third, for robust effect modification analysis, there needs to be sufficient variation in the 

distribution of effect modifiers across the study population and in particular across values 

of the primary exposure. This necessitates, again, large and diverse samples, and/or 

geographical diversity to ensure sufficient variation in environmental variables. In the case 

of genetic risk as a potential modifier, only recently has it become possible to study gene-

environment interactions, as genotyping of large cohorts has become more feasible. 
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In the UK, where almost two in every three adults is classified as either overweight or 

obese139, and where CVD accounts for 37% of deaths and cancer to a further 27%140, there 

exists a comprehensive data resource, UK Biobank, with a unique breadth and depth of 

data that allows some of the complexity of neighbourhood-health relationships to be 

probed in a single very large cohort. In this PhD project I make use of data from this 

relatively new cohort of approximately half a million adults in mid-life. Cross-sectional 

data collected at recruitment to the UK Biobank cohort include detailed demographic and 

socioeconomic characteristics, medical history, health behaviours, psychosocial factors, 

and objective measurement of a range of physical, genetic and cognitive characteristics, 

via anthropometry, biological sampling (including genome-wide genotyping) and various 

other tests. UK Biobank also contains detailed and comprehensive environmental data 

based on objective measurement of each participant's residential neighbourhood. This 

dataset is described in detail in the next chapter. In addition to these extensive cross-

sectional data, ongoing linkage to administrative health records for the cohort provides 

longitudinal data, enabling the investigation of incident health outcomes over time. Geo-

location of cohort participants also allows for additional linkage by data users to external 

datasets, enabling the examination of relationships with place-based features of the 

macro-environment.  The size, scope and geographical breadth of UK Biobank make it 

very well suited for use in the investigation of multiple potential modifiers of the 

associations between characteristics of neighbourhood built environments and various 

health outcomes.   

In contrast with many studies of the neighbourhood environment and health, which tend 

to focus on either the general adult population or children and adolescents, this PhD is 

focussed on middle- to older-aged adults. This is a critical period of the lifecourse for the 

development of chronic disease, and is where the burden of obesity, cardiometabolic 

disease, many cancers, and associated healthcare costs are concentrated. This age group 

is also residentially more stable than some others, and potentially engages with the 

neighbourhood environment in ways that differ from younger or older age groups.  
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1.8. Thesis aims and objectives 

The overarching aim of this PhD is to use this uniquely large, comprehensive and 

geographically diverse sample of adults in mid-life to explore heterogeneity in the 

associations between physical characteristics of the residential neighbourhood 

environment and outcome measures relating to obesity and two of the major non-

communicable diseases for which obesity is a risk factor: cancer and CVD.   

I address this aim by examining cross-sectional associations between characteristics of the 

physical activity and fast-food environments around people's home addresses and 

multiple measures of adiposity (BMI, waist circumference and percent body fat), exploring 

potential effect modification by factors operating at individual, neighbourhood and local 

authority levels. I then make use of linked hospital data to examine longitudinal 

associations between neighbourhood characteristics and CVD and cancer outcomes, 

including potential effect heterogeneity.  

Specifically, the objectives of this PhD are: 

1. To estimate the independent, cross-sectional associations between measures of the 

local physical activity and fast-food environments and adiposity in mid-aged adults 

in the UK. 

2. To examine whether genetic risk of obesity modifies associations between 

characteristics of the neighbourhood physical activity and fast-food environments 

and BMI. 

3. To examine whether the association between the availability of formal physical 

activity facilities and adiposity is modified by other physical features of the 

neighbourhood environment. 

4. To examine possible geographical heterogeneity in the associations between 

neighbourhood PA and fast-food environments and BMI across England, and 

explore whether any such heterogeneity might be explained by locally varying 

contextual factors.  

5. To assess whether characteristics of neighbourhood environments are associated 

with being admitted to hospital with cardiovascular disease or cancer, and whether 

these associations are modified by household income and area deprivation.  
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1.9. Thesis structure 

This thesis is structured as a collection of five research paper manuscripts, addressing each 

of the primary objectives of the thesis. The first of these has already been published in The 

Lancet Public Health, the second two are being finalised for submission to PLoS Medicine 

and Social Science and Medicine, and the final two will be submitted to Health and Place 

and Circulation. Within each chapter the paper manuscript is prefaced by a cover sheet 

which provides information about the manuscript's publication status, copyright 

information, author details, and a description of my contribution to these multi-authored 

papers. While each manuscript is co-authored with my supervisors (and one with two 

additional collaborators), I am the major contributor to, and first author of, all five.  

The empirical chapters (Chapters 4-8) are preceded by this introductory chapter (Chapter 

1) locating the research in the various relevant literatures, describing a conceptual 

framework and rationale for the thesis, and outlining the thesis objectives, and by two 

chapters providing an overview of the data (Chapter 2) and methods (Chapter 3) used in 

the research. The latter complement the methods sections in the empirical chapters, 

which were restricted in length due to journal constraints on word counts. 

To facilitate the reading of the thesis as a single, coherent body of work, I also include 

some linking material at the beginning of each empirical chapter. Supplementary material 

that did not fit within the word limits for journal submission is included in a series of 

appendices.   

The empirical chapters are followed by a final, synthesis chapter where I provide an 

overview of the study findings and a broader discussion of their implications, the strengths 

and limitations of the analyses, directions for future research and policy, and overall 

conclusions.  

Due to the structure of the thesis as a series of connected research papers, I present 

references at the end of each chapter rather than in a single list at the end of the thesis.  
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 DATA 

In this chapter I introduce the UK Biobank resource, the principal source of data used 

throughout this thesis. I describe the establishment of the UK Biobank resource, the 

recruitment of participants and a summary of characteristics of the cohort, and I describe 

the data available to researchers, including various linked data sources that form the wider 

UK Biobank resource. I also provide details of additional sources of publicly available data 

that I linked to the UK Biobank cohort myself, for the analyses presented in Chapter 7. I 

then describe the process of data access and management that I undertook in preparation 

for data analysis. Details of the methods used to analyse the data, including details of the 

operationalisation of variables, are provided later, in Chapter 3 (Methods). 

2.1. UK Biobank 

 Background 

Understanding the determinants of common, complex health conditions requires the 

recognition that these conditions tend to be caused by a multitude of exposures that may 

each have modest effects and interact with each other in complex ways1. To investigate a 

wide range of exposures and their potentially complex interplay, large prospective studies 

with extensive, detailed data collection, broad distribution of exposures, and sufficient 

numbers of disease cases are needed2.  

To this end, the UK Biobank was established by the Medical Research Council and 

Wellcome Trust. UK Biobank is one of the largest and most detailed population-based, 

prospective cohorts ever established. It was designed to combine extensive, precise 

baseline assessment of exposures with comprehensive follow-up and characterisation of 

many different health-related outcomes in order to enable exploration of the many 

determinants of diseases of middle and older age1. The cohort comprises half a million 

adults aged 40-69 years at recruitment, and data collection spanned biological sampling, 

behavioural and life history data, and sociodemographic characteristics, along with 

ongoing prospective linkage to routine data collected through the National Health Service 

(NHS). This makes it a rich resource for investigating the determinants of a wide range of 

important diseases1, and provides researchers with opportunities to investigate a wide 

range of disease outcomes through linkage to routine medical records that will increase 

over time3. The core cohort has also been linked to environmental data, principally a high-

resolution spatial database of objectively measured characteristics of the physical 

environment around each participant's place of residence, referred to as the UK Biobank 

Urban Morphometric Platform (UKBUMP). Repeat assessment and additional data 
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collection has been carried out for subsamples of the cohort, and there is potential for 

future additional data collection and linkage to additional external data sources. To 

promote innovative science, UK Biobank has been made available to researchers globally4.  

In the following sections I describe in more detail the establishment of the UK Biobank 

resource, and the various data available to researchers, with a focus on the data I have used 

in this PhD project (see also Figure 2.2 at the end of this chapter).  

 Pilot phases  

To test the feasibility of the proposed establishment of UK Biobank and its assessment 

methods, two piloting phases were undertaken2. The first was a small-scale pilot 

conducted on 300 participants in early 2005, to test key parameters of the baseline 

assessment protocol. The second pilot phase, conducted during March to June 2006, 

involved recruitment of 3,799 participants from the Stockport area to a single assessment 

centre. In this second pilot phase, all of the planned procedures were assessed, including: 

identification of the target sample from NHS records; invitation to participate; consenting 

and baseline assessment of potential participants; and collection, transfer and storage of 

data and biological samples. This pilot phase also allowed the determination of the 

response to invitation, and identification of any major factors that affected it, and 

assessment of participants' views on the baseline assessment visit, as well as an evaluation 

of their understanding of the consent to participate. This pilot study showed that protocols 

worked well, and provided information that was later used to refine the invitation and 

assessment procedures for the final protocol. Participants from the second pilot phase and 

their data were integrated into the final cohort. 

 Recruitment 

 Invitation and response 

In the UK, 98% of the population are registered with a general practitioner (GP) through 

the NHS4. NHS records were used to identify 9.2 million people aged 40–69 years old who 

were living within 25 miles of one of the study's 22 assessment centres 1. Between 2006 and 

2010, an invitation letter with a provisional appointment to attend the nearest assessment 

centre was sent to each of these people, approximately 6–8 weeks ahead of the provisional 

appointment date. The invitation letter contained a detailed information leaflet describing 

the purpose of UK Biobank, how people had been identified for invitation, and what 

consenting to participate would involve. Invitees who wanted to find out more 

information were directed to a study website and free contact telephone number if they 
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wished to discuss the study with a member of the study team2. Overall, 503,325 

participants were recruited, yielding a response fraction of 5.5%1. 

 Assessment Centres 

UK Biobank established 22 assessment centres in cities in England, Wales and Scotland, 

as displayed in Figure 2.1. Participants attended these centres to undergo the baseline 

assessment. The assessment centres covered a variety of settings, in order to maximise 

socioeconomic and ethnic heterogeneity, and ensure an urban–rural mix and broad 

distribution across all exposures. Assessment centres were necessarily located in cities, in 

order to be in close proximity to sufficient numbers of the target population. Assessment 

centres also needed to be conveniently located for public transport links, nearby parking 

and disabled access. The 22 assessment centres include the site of the integrated pilot 

phase (Stockport). Assessment was coordinated centrally and phased across the centres, 

with up to six assessment centres active at any one time during the recruitment phase (as 

shown in Table 2.1). Assessment centre staffing and equipment were configured to operate 

six days per week and assess approximately 100 participants per day at each centre4. 

 

Figure 2.1 Map of UK Biobank assessment centres 
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Table 2.1 Number of participants recruited to each UK Biobank assessment centre  
(sorted by dates of recruitment period) 

Assessment centre Recruitment dates Participants* 

Stockport (pilot) 13/03/2006 to 14/06/2006 3,799 

Manchester  16/04/2007 to 22/12/2007 13,943 

Oxford  30/04/2007 to 03/11/2007 14,063 

Cardiff  08/10/2007 to 31/05/2008 17,885 

Glasgow  16/07/2007 to 19/04/2008 18,653 

Edinburgh  07/11/2007 to 07/06/2008 17,202 

Stoke  05/12/2007 to 26/07/2008 19,441 

Reading  14/05/2008 to 02/05/2009 29,426 

Bury  14/01/2008 to 20/12/2008 28,326 

Newcastle  23/01/2008 to 28/03/2009 37,011 

Leeds  27/02/2008 to 11/07/2009 44,220 

Bristol  09/07/2008 to 28/11/2009 43,020 

Central London 27/08/2008 to 29/08/2009 12,584 

Nottingham  30/07/2008 to 12/09/2009 33,883 

Sheffield  05/08/2009 to 13/07/2010 30,399 

Liverpool  28/01/2009 to 01/04/2010 32,825 

Middlesbrough  29/04/2009 to 06/02/2010 21,290 

Hounslow  17/06/2009 to 26/06/2010 28,881 

Croydon  24/09/2009 to 09/07/2010 27,392 

Birmingham  29/10/2009 to 21/07/2010 25,506 

Swansea  11/03/2010 to 03/07/2010 2,284 

Wrexham  16/08/2010 to 01/10/2010 649 

* Totals as reported in UK Biobank Showcase. Excludes people initially recruited but not included 
in the final dataset released to researchers. 

Source: http://biobank.ctsu.ox.ac.uk/crystal/exinfo.cgi?src=UKB_centres_map (Accessed 7 May 2019) 
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 Individual Assessment 

The baseline assessment process of UK Biobank took between two and three hours per 

participant, and consisted of four parts: 

 written consent; 

 touch screen questionnaire; 

 face-to-face interview; 

 measurements. 

Participants first provided electronic signed consent to the collection of baseline data and 

prospective linkage to administrative health records (see section 3.4.6 for details of UK 

Biobank’s ethical approvals). Participants then proceeded to a touch screen questionnaire, 

which allowed them more privacy to answer questions, and to complete the form in their 

own time. It included questions about socio-demographics, lifestyle and behaviour, early 

life factors, psychosocial factors, general health and medical history, and also involved 

hearing and cognitive function tests. Assistance was available for participants when 

required. 

Following the touch screen questionnaire, information collected in the questionnaire 

about serious illness, operations and other procedures, medications, employment and 

early life factors was then discussed in more detail with participants in a nurse-led face-

to-face interview.  

The following measurements were then taken: 

 standing and sitting height; 

 waist and hip circumference; 

 weight and bioimpedance; 

 hand grip; 

 spirometry; 

 bone density; 

 arterial stiffness; 

 eye measurements; 

 fitness assessment using a static bike; 

 detailed web-based diet questionnaire. 

Each participant also donated blood and urine. Some participants also provided saliva 

samples. The biological samples were used to assay a panel of biomarkers, and the blood 
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samples were also used to perform genotyping assays for each participant, generating 

genome-wide genetic data. The protocols used by UK Biobank in the collection and 

processing of the genetic data are described more fully in section 2.1.7 of this chapter. 

For this PhD project, of the data collected directly from participants at the baseline 

assessment, I have used anthropometric measurements (height, weight, waist 

circumference and bioimpedance measures), various items from the touch screen 

questionnaire, and genetic data. The release of biomarker data was delayed until 2019, so 

this was not available for use in this PhD. Subsamples of the main cohort have participated 

in detailed follow-up and enhanced phenotyping and exposure measurement4, but those 

data have not been used in this thesis. Full details of the specific variables I have used or 

derived are provided in Chapter 3 (section 3.3). 

 The UK Biobank Urban Morphometric Platform (UKBUMP) 

Linked to the individual-level UK Biobank dataset is a high-resolution spatial database of 

a wide range of objectively measured characteristics of the physical environment around 

each participant's place of residence. Scaling up a pilot study conducted in Wales, Sarkar 

and colleagues5 automated and applied a series of spatial and network analyses to a 

number of UK-wide spatial databases in order to generate a collection of metrics 

characterising potentially health-promoting or health-damaging morphological features 

of the built environment surrounding the precise, geocoded home address of each 

individual in the UK Biobank.  This collection of metrics is referred to as the UK Biobank 

Urban Morphometric Platform (UKBUMP), and full details are provided on the UK 

Biobank website (http://biobank.ndph.ox.ac.uk/showcase/label.cgi?id=100115). The 

UKBUMP is the primary source of the neighbourhood data I use in this thesis. 

Table 2.2 summarises the 'morphometrics' developed for the platform and the spatial 

databases from which these metrics were derived.  The various UK-wide spatial databases 

from which the environmental metrics were derived include UK Ordnance Survey 

Mastermap and AddressBase Premium databases, UK Land registry data, digital terrain 

models and commercial satellite imagery, among others. Further details of the metric-

generating processes used in the creation of UKBUMP can be found in Sarkar et al5. 
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Table 2.2 Summary of data available in the UK Biobank Urban Morphometric Platform5 

* These data were released in two batches and one batch was provided as counts per km2 rather than per buffer, so these were multiplied by the area of the buffer to 
produce a count. 

Morphometric category Description Measurement Main source of raw data 

Health specific destination 
accessibility 

Proximity of home address to 39 potentially health-
influencing destinations (including GP practices, 
dentists, fast-food outlets, industrial sites, schools, 
pubs, public transport, parks, among others 

Street network distance in metres from home 
address to nearest destination in each category 

Ordnance Survey AddressBase 
Premium 

Land use density Density of 217 different land use classes at 4 
different levels of detail, for buffers around home 
address 

Number of features of each land-use type per buffer, 
for buffers of 0.5, 1.0 and 2.0 km street network 
buffers, and for Lower Super Output Areas, around 
participants' home addresses* 

Ordnance Survey AddressBase 
Premium 

Accessibility foodscapes 
(London area only) 

Proximity and density measures for 19 typologies 
of food stores 

Street network distance to nearest address, and 
density in street-network buffers (0.5,1.0 and 1.5km)  

Ordnance Survey AddressBase 
Premium 

Greenness Normalized Difference Vegetation Index (NDVI) of 
buffers around home address 

Mean, minimum, maximum and standard deviation 
of NDVI for 0.5 and 1.0km Euclidean buffers around 
participants' home addresses 

Bluesky International Ltd. 

Street network accessibility 20 modelled indices of physical street-level 
accessibility for 19 different buffers around home 
address 

Various Ordnance Survey Mastermap 
Integrated Transport Network 
layer 

Terrain (slope) Terrain slope of area surrounding home address Mean, minimum, maximum and standard deviation 
of slope(in degrees) for 0.5 and 1.0km Euclidean 
participants' home addresses 

Bluesky International Ltd. 

Building class Description of the dwelling within which UK 
Biobank participant resides 

Age, type, quality and class of building The GeoInformation Group 
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In recognition of the challenges associated with delineating a health-relevant 

'neighbourhood' for any given individual (discussed further in Chapter 3), the built 

environment was characterised in multiple ways and at multiple scales around each 

individual's home address. For land-use densities, a metric for each land-use type (e.g. 

residential, retail outlet, park, sports facility, manufacturing plant, public transport hub) 

was derived for street-network buffers of 500 m, 1000 m, 1500 m and 2000 m around each 

individual's place of residence, as well as the Lower Super Output Area (LSOA) in which 

the place of residence was located. Street-network buffers are catchment areas defined by 

distances along vehicle-access streets radiating from the home address, for example a 1000 

m buffer will extend along each 1000 m stretch of street network from an individual's home 

address. In contrast, greenness and terrain metrics were derived for 500 m and 1000 m 

Euclidean buffers. Euclidean buffers are defined by straight-line (as-the-crow-flies) 

distances from the central address and are therefore circular, while street-network buffers 

are polygons defined by the specific road network of the area and influenced by physical 

boundaries such as waterways. While Euclidean buffers may be appropriate for measures 

to capture the overall greenness or terrain of an area, a street-network buffer is likely to 

be more suitable when considering local access to specific land-use types. Proximity 

metrics for health-specific destinations were defined not by buffers, but by distances along 

the street network from a person's home address to the nearest instance of each of 39 

destination types, based on an origin-destination cost matrix algorithm to identify the 

'least-cost' route. 

Most measures in UKBUMP were available for participants recruited through all 

assessment centres except Stockport, the area in which the pilot study was conducted 

(n=3,799). Two important exceptions that influenced the choice of variables used in this 

PhD are the measures of a wider range of food outlet types (which are only provided for 

London), and the measure of local 'greenness', based on the Normalised Difference 

Vegetation Index (NDVI) derived from satellite imagery (which was absent or only 

partially observed for several assessment areas).  

Details of the specific data I have used from UKBUMP, the variables I have derived from 

them to operationalise the neighbourhood measures central to this project, and for what 

analytical purpose each variable has been derived, are provided in Chapter 3. Briefly 

though, because my primary focus in the thesis is on obesity-related outcomes, I have 

focussed my choice of exposure variables by selecting one measure of neighbourhood 

environment relating to each side of the energy balance equation; in other words, one 

exposure relating to physical activity (number of formal physical activity facilities within 
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a 1000 m buffer) and one relating to diet (proximity to nearest takeaway/fast-food outlet). 

I also make use of other UKBUMP data to derive measures of neighbourhood-level 

confounders (residential density in a 1000 m buffer) and modifiers (parks and open/green 

spaces in a 1000 m buffer). In deciding on the specific data and measures to use, I made an 

a priori determination of the best available measures in UKBUMP (noting that these have 

their limitations, as I discuss later), drawing on the existing literature on neighbourhood 

environment measurement.  These decisions are detailed further in Chapters 3 and 4. 

Though there are substantial advantages to this dataset including its size and linkage to a 

wide-range of objectively measured health outcomes, there are also limitations. Relying 

on pre-defined, 'off-the-shelf' environmental measures such as those in UKBUMP, 

especially when based on primary data collected for non-research purposes can be 

problematic6,7. The documentation associated with UKBUMP provides insufficient detail 

to assess the accuracy and validity of the underlying databases. More detailed discussion 

of the limitations of the specific metrics used in this thesis can be found in the relevant 

chapters, and in a general discussion of limitations of the thesis in Chapter 9. Limitations 

aside, this is the only sample of this size, and for this population of particular importance, 

for which such a detailed set of person-centred environmental data is available alongside 

objective and wide-ranging health-related data. 

 Additional greenspace measures linked to UK Biobank  

In addition to the measures contained in the UKBUMP, in 2018 a further set of 

environmental measures derived by Wheeler and colleagues8 were linked to the UK 

Biobank cohort and made available to approved researchers, and I have accessed these to 

derive one of the exposure variables used in the thesis.  

Amongst these extra environmental data are measures of residential green and blue space 

exposure, estimated for participants living in England (but not Scotland or Wales), using 

the Generalised Land Use Database (GLUD) for England 2005. This database provides data 

on land use distribution for 2001 Census Output Areas in England, across a range of land 

use categories. For each output area, the area of the GLUD categories 'greenspace', 

'domestic gardens' and 'water' were calculated as a percentage of the total of all land use 

types, and these have been intersected with 300 m and 1000 m Euclidean buffers around 

UK Biobank participant home locations to allocate area-weighted means of each land use 

percentage coverage to each participant. The derived measures available to UK Biobank 

researchers are therefore percentage values for 'greenspace', 'domestic gardens' and 'water' 

within 300m and 1000 m buffers around each participant's home address. 'Greenspace' in 
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GLUD includes all public or private vegetated areas larger than 5 m2 in area, with the 

exception of domestic gardens, which are classified separately. 'Water' refers to lakes, 

rivers, etc. As explained in the documentation for these measures8, there is no established 

distance within which green spaces are thought to influence health, but there is some 

evidence for the relevance of a 300 m threshold9,10, and this has also been taken up in policy 

recommendations in the UK11. A 1000 m buffer has also been used in some studies and data 

for this buffer size were also provided.  

For this thesis, I have used these data to derive a variable characterising total 

neighbourhood greenspace (including gardens), in preference to the incomplete NDVI 

data available in UKBUMP. 

 Genotyping data 

UK Biobank collected genome-wide genotype data on all participants using two purpose-

designed genotyping arrays. Initially, a subset of 49,950 participants involved in a substudy 

were genotyped by Affymetrix (now part of ThermoFisher Scientific) using the UK BiLEVE 

Axiom Array. Following this, 438,427 participants were genotyped using the closely-

related UK Biobank Axiom Array. Both arrays were purpose-designed specifically for the 

UK Biobank genotyping project and share 95% of marker content. The released genotype 

dataset combines results from both arrays, and includes a total of 805,426 markers12. In 

addition to these markers, genotypes at a further ~96 million loci were imputed.  

The marker content of the arrays was chosen to capture genome-wide genetic variation, 

and includes many markers with known associations with, or with possible indicated roles 

in, disease, along with a range of rare coding variants (minor allele frequency (MAF) <1%), 

and markers that provide good genome-wide coverage for imputation of common (MAF 

>5%) and low frequency (1-5% MAF) genotypes in European populations12 that were not 

directly assayed. 

Blood samples collected at the baseline assessment visit were stored at the UK Biobank 

facility in Stockport, UK, until DNA extraction and genotyping were commenced in 

November 2013. A comprehensive quality control process was designed specifically to 

accommodate the complex processing of large-scale dataset. The data released to 

approved researchers contains genotypes of 488,377 UK Biobank participants. Genotypes 

are missing from the remaining 3% of the sample because insufficient DNA was extracted 

from participants' blood samples.   
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While the majority (94%) of the UK Biobank cohort reported their ethnic background as 

"White" and most of those White British, ~22,000 individuals had a self-reported ethnic 

background originating outside Europe, and this creates strong population structure at 

the genetic level (because of differences in allele frequencies across populations with 

different ancestral backgrounds). This population structure requires epidemiological 

studies using the data to account for the ancestral background of participants. To this end, 

a principal component analysis (PCA) was performed by UK Biobank on a subset of 407,219 

unrelated, high-quality samples, following which all samples were projected onto the 

principal components (PC) and their loadings, thus forming a set of PC scores for all 

samples in the cohort12.  

The PCs separate participants by axes of ancestral background, with each additional PC 

capturing population structure at progressively finer sub-continental geographic scales. 

Consistent with this, individuals with similar PC scores have similar self-reported ethnic 

backgrounds. These PCs are made available to researchers to include in analyses to control 

for the population substructure. Bycroft and colleagues12 note that researchers may want 

to analyse only the subset of participants with White British ancestry to further reduce the 

risk of confounding due to differences in ancestral background. They also note that even 

the White British ancestry subset may still contain subtle structure present at sub-national 

scales, which the methods applied to UK Biobank were not able to detect. Further, 

Haworth and colleagues13 found evidence that there remained geographic structure in 

genetic data that could not be accounted for using routine adjustment for assessment 

centre and the PCs. I examine this possible source of bias in Chapter 5. 

I describe in Chapter 3 (Methods) the procedures for accessing and managing selected 

genetic data for numerous BMI-related variants of interest, which I make use of in the 

analyses in Chapter 5.  

 Prospective data linkage 

At recruitment, participant consent included consent to the ongoing linkage of their 

baseline data, and any subsequent data collected, to administrative health records, 

including death registrations (Office for National Statistics), cancer registrations (national 

cancer registries), Hospital Episode Statistics (HES) (including admissions, diagnoses, 

procedures) and primary care records via the NHS. This data linkage is updated regularly 

and made available to UK Biobank researchers. In this thesis I make use of the HES data, 

and these were available up to January 2016 at the time I accessed them. Hospital 
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admissions are coded using the International Statistical Classification of Diseases and 

Related Health Problems, 10th Revision (ICD-10)14.  

 Response & representativeness 

UK Biobank achieved a baseline response fraction of 5.5%, after inviting over 9 million 

eligible people to participate1. This is lower than the 10% response achieved in the pilot 

phase and which the study team expected to match or exceed in the main recruitment 

phase2. It is not clear what the reasons are for this.   

A comparison of participants and non-participants (those who were invited but did not 

participate) found that participants were more likely than non-participants to be female, 

older, and live in less socioeconomically deprived areas. Regional differences were also 

observed. In a comparison of sociodemographic, physical, lifestyle, and health-related 

characteristics of the cohort with summary statistics for the general population from the 

UK Census and nationally representative population-based surveys, participants in the 

cohort had fewer self-reported health conditions, were less likely to be obese, and were 

less likely to smoke or to drink alcohol on a daily basis. During early follow-up, mortality 

and incident cases of disease were generally lower in the UK Biobank cohort than in the 

general population15. In other words, there is evidence of a "healthy volunteer" selection 

bias in UK Biobank, and it is not representative of the general population, at least on some 

measures. The implications of this have been debated. While UK Biobank acknowledge 

that the cohort (like many large prospective cohorts) is not suitable for estimating 

generalisable prevalence or incidence rates of disease, they argue that exposure-outcome 

associations estimated from the cohort should be broadly generalisable15. Others have 

disputed this claim, citing the risk of collider bias if the probability of participation in the 

study is influenced by the exposure and the outcome16. 

 Withdrawals and exclusions 

UK Biobank participants are free to withdraw consent at any time, and researchers 

working with the data are instructed periodically to remove recently withdrawn 

participants from unpublished analyses. Between the time the data for the project 

associated with this PhD were first made available to me, and the submission of this thesis, 

96 participants have withdrawn. Some withdrew after the paper in Chapter 4 was 

published, but prior to the submission of this thesis. Therefore, the number of participants 

reported to be available in the cohort as a whole is slightly higher in that paper compared 

with elsewhere in the thesis. 
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The 3,799 cohort members recruited during the integrated pilot phase are also excluded 

from all analyses in this thesis because UKBUMP environmental data were not available 

for these individuals. I also excluded nine participants aged less than 40 or more than 7o 

at the baseline assessment. While recruitment eligibility was restricted to people aged 40-

69 years, by the time of assessment some people were aged 70, and they were not excluded. 

This leaves a total available sample of N=498,747. Final analyses excluded observations 

that were missing data on key variables in any given analysis, so were based on smaller 

and variable sample sizes. In Chapter 3 (Methods), where I report summary statistics for 

key variables, these are based on the largest available sample size. 

 Characteristics of the UK Biobank cohort  

As already described, the UK Biobank participants were aged between 40 and 69 years 

when invited to participate, and members of the achieved sample were more likely than 

the target population to be female, older, live in less socioeconomically deprived areas, 

and own their home. The mean age of the sample is 56.5 years and 54.4% are female. All 

but 5% of the cohort is of White ethnicity, which is similar to the general population in 

the same age range in the 2001 Census (94.5% White) but somewhat higher than in the 

2011 Census (91.3% White)15. Analyses in this thesis represent the subsamples of the cohort 

with complete data on the variables relevant for each analysis. This raises additional 

concerns about representativeness. Table 2.3 summarises the sample for key 

sociodemographic characteristics, showing the degree of missingness on key variables. 

Additionally, each of the research papers in the thesis contains a table summarising the 

characteristics of the sample relevant for that chapter. Several analyses presented in this 

thesis are further restricted to participants living in urban areas (in particular, Chapters 6 

and 7). The ethnic diversity of the urban subsample (94.9% White) was very similar to that 

of the larger sample used in analyses that included both urban and non-urban participants 

(94.6% White). This suggests a possible mismatch with the target population because 

people of White ethnicity are less likely than other ethnic groups to live in urban areas 

(for the population as a whole, 89% of the urban population was classified as White in 

2001, and 83% in 201117). However for the age range of the target sample, ethnic diversity 

might be expected to be more similar in urban and non-urban areas than in younger age 

groups, as there is greater ethnic diversity amongst younger ages18.  

The distribution of each of the key exposures, outcomes and effect modifier variables is 

summarised in Chapter 3 where each variable is described in detail.  
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Table 2.3 Characteristics of available sample of UK Biobank participants 
(n=498,747*) 

Characteristic   Range % missing 
Age** Mean (SD) 56.5 (8.1) 40–70 0.0 
Sex (female) % 54.4  0.0 
Ethnicity    0.5 

White % 94.6   
South Asian/South Asian British % 1.6   
Black/Black British % 1.6   
Chinese/other(non-South)Asian % 0.7   
Mixed: White/Black % 0.2   
Mixed: White/Asian % 0.2   
Mixed - detail unknown % 0.2   
Other % 0.9   

Income    14.7 
Less than 18,000 % 22.9   
18,000 to 30,999 % 25.4   
31,000 to 51,999 % 26.0   
52,000 to 100,000 % 20.3   
Greater than 100,000 % 5.4   

Education    1.3 
College or University degree % 32.7   
A levels/AS levels or equivalent % 11.2   
O levels/GCSEs or equivalent % 21.4   
CSEs or equivalent % 5.5   
NVQ or HND or HNC or equivalent % 6.7   
Other professional qualifications % 5.2   
None of the above % 17.3   

Employment status    0.6 
Paid employment or self-employed % 57.5   
Retired % 33.5   
Unable to work % 3.4   
Unemployed % 1.7   
Home duties/carer/student/volunteer/other % 4.1   

Area deprivation (Townsend index) Median (IQR) -2.1 (-3.6–0.5)  0.1 
Urbanicity (home postcode classified as urban) % 86.1  1.0 

Note: Due to rounding error, some percentages sum to more than 100% 

* Summary statistics for the full sample of participants from the 21 assessment areas for which 
UKBUMP environmental data are available (excludes Stockport, the site of the integrated pilot). 

** 40-69 year olds were invited to participate in UK Biobank but the recruited sample was aged 37-
73 (>99% aged 40-69). The analytical sample included people aged 70 at the time of assessment, 
but excluded nine individuals with complete data who were aged <40 or >70. 
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 Data access and management 

The preliminary phase of application for access to the UK Biobank data commenced in 

November 2015 and approval to proceed to the main application phase was granted in 

January 2016. A detailed project proposal and data request was submitted in February 2016, 

with approval granted in July 2016 (Project number 17380). The individual baseline data 

and an initial release of the UKBUMP data were made available in October 2016. The access 

procedure involved secure access via the UK Biobank Access Management System to 

download and extract main and supplementary datasets. Once extracted, these datasets 

were converted to Stata (.dta) format (StataCorp LP, College Station, TX, USA) to enable 

further data management and analysis. 

Following extraction of the individual-level baseline assessment data and UKBUMP data, 

I undertook the following process to construct a master dataset from which all analytical 

samples were derived.    

1. Labelling of all received variables (in their raw form).  

2. Generation of descriptive statistics for all received variables for comparison with the 

reported summary statistics in UK Biobank's 'Data Showcase', to verify that the data 

extraction and conversion steps had produced the expected data. 

3. Substantive review of key variables to familiarise myself with the data.  

4. Review of values and missing data for all key variables to check for duplicates, 

implausible values, etc. UK Biobank data has already undergone extensive cleaning 

and quality assurance checking, so this step served mostly as a check, and another way 

to become more familiar with the data and anticipate any issues that may arise for 

analysis (e.g. distributional or data sparsity issues). 

5. Derivation of variables for use in analysis, including recoding. While many variables 

were received in a format that was close to suitable for analysis, most required minor 

recoding (e.g. of missing values from a numeric code to system missing). Other key 

variables such as the environmental exposures and some covariates required 

categorisation from a continuous form, or collapsing to a smaller number of categories 

than the original variable. Details of the final derived variables are given in Chapter 3 

(Methods). 

6. Unnecessary variables were dropped and baseline assessment data were linked to the 

variables derived from the UKBUMP to form a single dataset.  

In the initial data release the built environment data (UKBUMP) were incomplete, 

allowing only preliminary data management and analysis, but having established the data 
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management processes it was straightforward to update the master dataset when the 

updated data release became available in June 2017. The analyses in Chapters 4 and 6 were 

based solely on this master dataset. Genetic data, updated hospital admissions data, and 

the additional source of greenspace measures from UK Biobank, along with the open 

access Local Authority-level data, were not accessed until early 2018, so these were 

managed separately and linked to the master dataset at a later stage, in preparation for the 

analyses in Chapters 5, 7 and 8. 

Genetic data were extracted and converted to custom tables by Dr Jody Phelan at LSHTM. 

The genetic data were downloaded from the European Genome-phenome Archive (EGA) 

in the form of bgen files for each individual chromosome. These were decrypted using the 

EGA download software, EgaDemoClient. The sample file linking the genotypes with 

subject IDs were downloaded using the ukbgene software. Plink2 (v2.0) was used to 

convert these files into bed/bim/fam files. All relevant SNP data (exact allele dosages for 

genotypes assayed directly, and imputed allele dosages otherwise) were extracted and 

converted into VCF format using plink (v1.9). The VCF files were merged using bcftools 

and parsed into a custom table format using in-house Python scripts. I separately accessed 

the principal components from the PCA for population structure directly through the UK 

Biobank Access Management System, in the same manner as other baseline data. 

Hospital Episode Statistics (HES) data linked to the cohort were downloaded as a separate 

bulk file from the UK Biobank Showcase, and linked to the cohort using a provided key. 

Following coding guidance provided at an ‘Introduction to HES’ training course run by the 

Administrative Data Research Centre for England, I manipulated the raw HES data to 

aggregate hospital episodes into admissions (a single admission may be made up of 

multiple episodes, e.g. if a patient is transferred between consultants or departments), and 

then extracted the primary diagnosis attached to each admission, in order to identify 

relevant ICD-10 codes for the analysis in Chapter 8.     

Details of the access and management of additional external data sources are provided 

below. 

 

 

 

 



56 

2.2. Additional Data Sources 

The fourth objective of this PhD was to examine possible geographical heterogeneity in 

associations between the neighbourhood built environment and adiposity across England, 

and to explore whether any such heterogeneity might be explained by locally varying 

contextual factors. To achieve this, I assigned each UK Biobank participant to the Local 

Authority District in which their address was located, and then linked Local Authority-

level data from three publicly available external datasets to the cohort. This enabled me to 

examine whether selected attributes of these larger administrative areas modified the 

association between the neighbourhood environment and BMI. 

Due to privacy restrictions, the exact address coordinates of participants are not routinely 

made available to researchers; instead approximate coordinates (grid references rounded 

to the nearest 1 km) are available. Using these approximate coordinates I geocoded 

participants and assigned them to the LAD in which they reside, using QGIS v2.1419.  

During this process I identified 91 address points that were well outside the geographical 

scope of the UK Biobank study. I therefore excluded these from the analysis of 

geographical heterogeneity (presented in Chapter 7) as their locations were considered 

unreliable. 

Once each UK Biobank participant was assigned to a Local Authority, it was then possible 

to link the UK Biobank dataset to external, Local Authority-level data.  Being 

administrative units, Local Authority Districts are well described in publicly available 

datasets spanning multiple domains. This provided opportunities to consider a range of 

Local Authority-level variables that might be important effect modifiers (or confounders). 

After canvassing various available datasets, I identified suitable variables in the following 

datasets: 

 The Land Cover Atlas of the UK20: a compilation of the relative proportions of land 

cover types for each Local Authority District, using a broad classification scheme 

and derived from Coordination of Information on the Environment (CORINE) 

Land Cover data from 201221. 

 Neighbourhood Statistics – Local Authority Model-Based Estimates of Healthy 

Lifestyles Behaviours, 2003-0522: estimates of the prevalence of obesity, smoking, 

fruit and vegetable consumption and binge drinking among adults in each Local 

Authority, derived from the Health Survey for England and modelled with 
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additional information from other administrative data sources to produce accurate 

small area statistics for each Local Authority. 

 Regional gross disposable household income, UK 1997 to 2016: annual estimates of 

gross disposable household income (GDHI) per capita for a range of geographical 

levels (NUTS1-3 and Local Authorities), produced by the Office for National 

Statistics23. 

Details of the variables extracted from each of these three datasets are provided in 

Chapters 3 and 7. Those variables were then linked to the master UK Biobank dataset by 

merging on the unique Local Authority District identifying code. 

Figure 2.2 summarises visually the data used in this PhD project. Having described these 

data sources in this chapter, I turn in the next chapter to a description of the measures 

and methods I used in the analysis of these data. 



58 

 

Figure 2.2 Visual summary of the UK Biobank resource and additional data sources used in this project 
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 METHODS 

3.1. Introduction 

This thesis comprises five research papers using the UK Biobank data. Specific details of 

the methods employed in this thesis are provided in each paper, but due to the word 

limitations of the journals to which the papers are being submitted, the methods used are 

only briefly summarised in these papers. Therefore, in the current chapter I provide more 

detail on the methods used, including the definitions of key variables, how they were 

operationalised, and basic descriptive statistics. 

Prior to that, I provide a brief expansion on some of the key concepts and definitions that 

have been used throughout this study, building on ideas introduced in Chapter 1.  In 

particular, I discuss the concepts of effect modification and defining neighbourhoods in 

relation to health behaviours and outcomes. 

3.2. Key definitions  

 Effect modification 

Central to this thesis is the examination of effect modification in relation to the 

associations of interest between neighbourhood exposures and health outcomes. As stated 

in Chapter 1, when the strength and/or direction of an exposure-outcome relationship 

varies across values or strata of a third variable, that third variable is said to be an effect 

modifier, and we can infer that effect heterogeneity, or effect modification, is present1.  

Across the relevant literatures, various terms are used to describe the same 

methodological concept. The underlying idea that causal effects on an outcome might be 

heterogeneous across values of other variables is variously referred to as effect 

heterogeneity, effect modification, effect measure modification, moderation, and 

statistical interaction. Effect measure modification is technically most correct because for 

some classes of outcomes (e.g. binary) the choice of effect measure (e.g. rate ratio vs rate 

difference) can dictate whether effect modification is observed. Furthermore, from 

statistical models we might observe evidence that an effect estimate is modified, but if the 

model produces biased estimates of the true causal effect, then we cannot conclude with 

certainty than the true causal effect is in fact modified. Strictly speaking, conclusions are 

therefore drawn about whether an effect measure is modified, rather than an effect: hence, 

effect measure modification. In practice, effect modification is the more commonplace 

terminology, and in general, I use that term (and its derivatives) throughout this thesis 

when referring to specific relationships. I also use the more general 'effect heterogeneity' 
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when referring to the broader phenomenon. I avoid the use of the term moderation. While 

it is widely used and understood to be the same as modification in this context, it implies 

a tempering or dampening of a main effect, when in fact a third variable may either amplify 

or dampen the effects of the primary exposure.       

As the testing of statistical interactions is a common way to assess effect modification, the 

term interaction is also often used interchangeably with any of the above-mentioned 

terms. Throughout this thesis I reserve the use of this term for instances where I am 

referring to interaction terms in regression models, or, in the case of Chapter 5 gene-

environment interactions. It is important, however, to distinguish between statistical and 

biological interaction. In the latter case, the effect of the exposure on the outcome is 

biologically dependent on the presence or absence of a third variable, meaning both are 

necessarily causes of the outcome; in contrast, statistical interaction can occur whether or 

not the third variable (the modifier) is a cause of the outcome. Assessing questions of 

biological interaction therefore requires stronger causal assumptions and consideration of 

an additional adjustment set to minimise confounding2. In the thesis, when I use the term 

interaction it should be assumed to mean statistical interaction.  

As stated, effect modifiers need not themselves be direct causes of the outcome. Though 

they may be, they might also act only by modifying the effect of another exposure. For 

example, faced with the same dose of a given exposure, men may be more likely than 

women to develop a given outcome, even though sex itself doesn't cause the outcome. In 

that case, sex would be considered an effect modifier of the exposure-outcome association. 

Alternatively, having a higher genetic risk of that outcome might make someone more 

sensitive to the same exposure than someone at lower genetic risk. In that case, genetic 

risk would be an effect modifier as well as a direct cause of the outcome. I have considered 

both kinds of potential effect modifiers. 

 Defining neighbourhood measures 

As a convenient shorthand for referring to the local built environment around a person's 

home, I use the term 'neighbourhood' throughout this thesis. Depending on the specific 

measure being referred to, this takes on slightly different meanings, but in general it is 

used here to characterise exposure (or lack thereof) to health-promoting or health-

damaging resources close to home.  

Due to the reliance on secondary data in this thesis, the choice of environmental measures 

and the scales on which they are measured are all constrained by what is already available 
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within the UK Biobank resource, or what is able to be linked to it within the approved 

project scope. Working within the limits of the available data, this thesis is a collection of 

studies about relationships between health and particular characteristics of the built 

environment around cohort members’ primary place of residence.  

For the physical activity environment, I use a density measure of facilities based on a fixed 

buffer size around the home address. This kind of density-based definition is also 

employed for other environmental variables examined in this thesis as potential effect 

modifiers, or included as model covariates to control for potential confounding. The one 

notable exception is the measure of the fast-food environment that I employ in this thesis 

– proximity to a fast-food outlet. While I refer to this as a neighbourhood characteristic, it 

is not geographically bounded in the same way a density measure for a given buffer size 

is. Rather it is defined as the street-network distance from the home address to the nearest 

fast-food outlet, and, in some analyses, then categorised into levels of proximity. By 

categorising this proximity measure, it is also possible to indirectly interpret the results in 

terms of presence/absence of a fast-food outlet for the neighbourhood boundaries 

represented by the category cutpoints (500 m, 1000 m, etc.). 

 Challenges to defining health-relevant geographical areas 

For any given measure, the ideal definition of a 'neighbourhood' is contested, and in reality 

it is likely that the geographical parameters of the health-relevant environment near home 

will vary from one individual to the next3. It may also vary for specific resources. For 

example, people might expect and be prepared to travel further to a formal physical 

activity facility such as a swimming pool, than to a local park. Thus, there is always a risk 

of what Duncan and colleagues4 refer to as 'spatial misclassification', when a researcher 

arbitrarily defines a neighbourhood boundary in some way. Kwan5 describes the Uncertain 

Geographic Context Problem (UGCoP), whereby the actual geographical area that exerts 

an influence on health is unknown for any given environmental characteristic, and 

furthermore the causally relevant timing and duration of exposure to that area are also 

unknown. For the physical activity environment, I use a street-network buffer size of one 

kilometre. Evidence suggests that one kilometre is the approximate distance from home 

that adults are typically willing to walk to reach places, and that areas within one kilometre 

of home are perceived by people to be part of their neighbourhood6. I use the same buffer 

size for neighbourhood availability of parks and other public green/open spaces (examined 

as an effect modifier in Chapter 6) and residential density (a model covariate). In the case 

of neighbourhood park availability, it was important to use the same buffer size as that 

used for formal PA facilities, because I was hypothesising that the two might, in a sense, 
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compete as health-promoting resources, with one moderating the influence of the other.  

In contrast, in Chapter 8 I use a 300 m buffer as a measure of neighbourhood exposure to 

greenspace, based on previous research showing this is a distance from home beyond 

which the use of green spaces quickly declines7,8 and because it has been proposed in the 

UK as a benchmark for greenspace provision9. In that chapter, I was allowing that 

greenspace may act on cancer and CVD outcomes via pathways unrelated to physical 

activity, and was not directly relating the two environmental variables to one another in 

any way, so using a buffer with the stronger empirical basis for support was more 

important. When I capture the food environment using a proximity measure, no 

assumptions are made about the causally relevant geographical space with respect to fast-

food exposure. 

All studies that focus on the local residential area rest on an assumption that the 

residential neighbourhood, however defined, captures the relevant space in which people 

act and make decisions relating to behaviours such as diet and PA. It is increasingly being 

recognised that there are other important places – such as workplaces and commuting 

routes – that may also be relevant for many people, and that by ignoring these we may fall 

into the 'residential trap'10. This has given rise to the notion of 'activity spaces'11, the 

measurement of which captures environmental exposures around additional anchor 

points beyond the home address, for example using travel surveys12 or GPS tracking13. It is 

possible that the effects of exposures in the local residential neighbourhood – be they 

positive or negative – may be diluted by exposure to other areas, e.g. if your home 

neighbourhood lacks suitable places for physical activity, you might be able to compensate 

for this by making use of places near your workplace, such that characteristics of the 

workplace neighbourhood might modify or confound estimated effects of the home 

neighbourhood14. This poses challenges for constructing a well-defined exposure. 

Unfortunately it was not possible to account for other parts of individuals' activity spaces 

using UK Biobank. 

Given that most of this thesis is focussed on investigating whether neighbourhood-health 

associations are modified by various individual and environmental modifiers, rather than 

estimating the magnitude of causal main effects of a neighbourhood exposure on a health 

outcome (with the exception of Chapter 4), some of these issues relating to the 

operationalisation of neighbourhood exposures may be less salient. Further discussion on 

the limitations of the particularities of neighbourhood definitions in relation to this 

project as a whole is included in the final chapter of the thesis.   
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3.3. Measures 

 Outcomes 

Table 3.1 summarises the outcome measures used throughout the thesis, including their 

source and whether they are examined as cross-sectional or prospective outcomes.  

Table 3.1 Outcome measures 

OUTCOME DETAILS 

Body Mass Index (BMI) Cross-sectional; measured at baseline assessment visit 

Waist circumference (WC) Cross-sectional; measured at baseline assessment visit 

Percent Body Fat Cross-sectional; measured at baseline assessment visit 

Incident CVD-related 
hospital admissions 

Prospective; identified in linked Hospital Episode Statistics data using 
ICD-10 codes I10-I25, I46,I48,I50,I60-79.  

Incident cancer-related 
hospital admissions 

Prospective; identified in linked Hospital Episode Statistics data using 
ICD-10 codes C00-C97 (excluding skin cancers (C43 and C44)) 

 

 Adiposity 

The primary outcome variables used in four of the five research papers in this thesis are 

measures of adiposity. Several objectively assessed adiposity measures are available in UK 

Biobank. Each has its own limitations and each performs differently in how well they 

predict various other health outcomes in various population subgroups15, therefore I have 

examined three different measures rather than just one (when appropriate), and examined 

consistency of associations with the key exposures across these measures. The three 

adiposity measures examined in this thesis are waist circumference (WC), body mass index 

(BMI), and percent body fat.  

 Body Mass Index (BMI) and Percent Body Fat 

Weight and various body composition measures were collected using a body composition 

analyser during baseline assessment16. This 'bioimpedance' equipment estimates body 

composition by measuring the resistance (impedance) to a small electrical current passed 

across body tissues between electrodes attached to the hands and feet, with greater 

impedance of the current indicative of more fatty tissue16,17. Impedance values are then 

used to automatically estimate percent body fat. BMI values (weight in kilograms, divided 

by square of height in metres) were calculated from the weight measurement taken by the 
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body composition analyser, and standing height collected using a calibrated height 

measure.  

The bioimpedance machine was not used for participants who were pregnant, using a 

pacemaker, using a wheelchair, an amputee, unable to grip the handles of the machine, 

unable to stand, wearing a plaster cast or unwilling to remove their shoes. For these 

people, percent body fat is not recorded, and weight was instead measured by standard 

scales, from which BMI was then derived.  Because some of the reasons for non-use of the 

bioimpedance machine would lead to inappropriate manually calculated BMI values, 

impedance-only BMI values were used in a sensitivity analysis in Chapter 4 to see if results 

were influenced by the method of BMI measurement. 

BMI is a commonly used measure in epidemiological and clinical studies because it is easy 

to calculate. However, it is an indirect measure of body fatness because it does not 

distinguish fat mass from lean body mass. It therefore tends to be a poorer predictor of ill-

health in older adults, and on average for a given BMI value, percent body fat tends to be 

higher in Asian populations than in White populations17.  

Limitations of the bioelectrical impedance method include that it is sensitive to the 

influence of hydration status, food intake and skin temperature. Percent body fat 

estimated by bioimpedance also tends to overestimate the true value in lean subjects while 

underestimating it in obese subjects17.   

 Waist circumference 

In contrast with BMI and percent body fat, which are both measures of overall adiposity, 

waist circumference (WC) is a measure of central or abdominal adiposity. Central 

adiposity is recognised as being more closely linked to cardiometabolic outcomes18, and 

although WC can be more difficult to measure accurately, it is sometimes considered a 

more suitable measure than BMI for assessing risk of adiposity-related ill-health, 

particularly in older adults17. WC measurements were collected from participants using a 

tape measure and were manually recorded by the assessors. 

All three adiposity metrics (BMI, WC and % body fat) have been treated as continuous 

variables in the analyses. I have elected to use continuous measures of adiposity rather 

than binary/categorical indicators of overweight or obesity, because the latter involves 

considerable loss of information19. Furthermore, while obesity is a strong risk factor for 

many health outcomes, the recent Global Burden of Disease study of the health effects of 

overweight and obesity estimated that more than a third of deaths and disability-adjusted 
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life years associated with a high BMI occurred in individuals who were overweight rather 

than obese, indicating the importance of considering the full range of BMI values, and 

other adiposity measures20.  

Figures 3.1–3.3 show the distribution of BMI, percent body fat and WC in the UK Biobank 

cohort. While the various adiposity measures are correlated (some more than others) 

(Table 3.2), a study in the UK recently found that patterns of social disparities in adiposity 

varied substantially depending on the measure of adiposity used21, further highlighting the 

value of considering multiple measures. 

 

 

Figure 3.1 Distribution of BMI in the UK Biobank cohort 
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Figure 3.2 Distribution of percent body fat in the UK Biobank cohort 

 

Figure 3.3 Distribution of waist circumference in the UK Biobank cohort 
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Table 3.2 Correlation matrix for BMI, WC and percent body fat in UK Biobank 
cohort 

 BMI WC % Body Fat 

BMI 1.0000   

WC 0.8137   1.0000  

% Body Fat 0.5715    0.2411    1.0000 

 

One or all of these adiposity measures are the primary outcomes in the research papers in 

Chapters 4-7. I examine all three measures in Chapters 4 and 6. In Chapters 5 and 7 I focus 

on BMI. In Chapter 5 this is because I am examining gene-environment interactions with 

genetic variants and polygenic risk scores associated specifically with BMI.  In Chapter 7 

where I examine geographical heterogeneity of associations, I focus only on BMI, after 

seeing in Chapters 4 and 6 that results are consistent across the three adiposity measures.  

The measures of BMI and percent body fat collected using the body composition analyser 

are missing in 2% of cases. For BMI, manual measurements are available for some of those 

missing the impedance measurements, reducing missingness on BMI to 0.6% of the total 

sample.  Waist circumference is missing in 0.4% of the sample. 

 Hospital Admissions 

In the final research paper (Chapter 8), I move away from cross-sectional associations with 

adiposity outcomes, and examine longitudinal associations with incident CVD- and 

cancer-related hospital admissions. 

Hospital admissions were identified in the linked HES data, using the ICD-10 coding to 

identify cause of admission22. The specific outcomes were defined as any hospital 

admission for which the primary diagnosis is recorded as cardiovascular disease (ICD-10 

codes I10-I25, I46, I48, I50, I60-79) or cancer (ICD-10 codes C00-C97, excluding skin 

cancers C43-44). CVD and cancer admissions were examined separately. I also separately 

examined associations with admission for two cancer subtypes that have the most well-

established links to physical activity23 and diet24 – breast cancer (C19) and colorectal cancer 

(C18).   
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Table 3.3 Number of CVD- and cancer-related hospital admissions in UK Biobank 
cohort   

 Number of admissions Admissions as % of sample 

CVD-related 26,984 5.4% 

Cancer-related (excl. skin cancers) 26,495 5.3%  

Note: Totals do not exclude individuals with pre-existing conditions 

 

 Environmental variables 

In this thesis, I make use of several types of variables that capture characteristics of 

geographical areas (Table 3.4). Conceptually these represent two distinct geographical 

scales: the local residential environment, or 'neighbourhood'; and the wider context in 

which those more local residential neighbourhoods are located, which I refer to as the 

'macro-environment'. Practically, these have needed to be operationalised based on 

available data, and this means that the neighbourhood variables are defined in slightly 

different ways. While all are defined with reference to the home address of an individual, 

they are a mix of land use density of a street-network buffer around the home address, 

percentage of a Euclidean buffer around the home address, street-network distance from 

the home address to a destination, or attributes of the postcode or census area in which 

the home address is located. The two macro-environmental variables are defined as 

attributes of the Local Authority District in which the home address is located, but unlike 

the neighbourhood variables, allocation to a Local Authority relied upon approximate 

rather than precise home location grid references. These variables are summarised in 

Table 3.4. Details of how each were defined are provided in the next section of this chapter 

according to their analytical purpose (exposure, effect modifier or confounder). Due to the 

reliance on secondary data, the timing of the collection of the underlying datasets varies. 

While I have made every attempt to use data as close as possible to the UK Biobank 

baseline phase, there remains some risk of temporal mismatch (discussed in Chapter 9). 

One further geographical level at play in the UK Biobank is that of the assessment areas. 

Participants were sampled from within a 25-mile radius centred around 22 study centres 

across the UK where the baseline assessment took place. This clustered sampling design 

and the possible spatial dependence arising from it needs to be accounted for in analyses. 

To this end, assessment area is specified as the level-2 identifier in multilevel models in 

Chapters 4-7, also allowing the primary relationships of interest to vary by assessment 

area. In Chapter 8, dummy variables for assessment areas are instead included in single-

level Cox proportional hazards models. 
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Table 3.4 Measures of environmental attributes 

MEASURE CONCEPTUAL 
GEOGRAPHICAL LEVEL 

ANALYSED AS DETAILS DEFINED WITH REFERENCE 
TO 

SOURCE 

Formal physical 
activity 
environment 

Neighbourhood 
environment 

Primary exposure  
(Ch 4-8) 

Land-use density measure of availability of facilities such as 
sports facilities, gyms, swimming pools (1000m street-network 
buffer) 

Exact home address UKBUMP 
Measured at end of baseline* 

Fast-food 
environment 

Neighbourhood 
environment 

Primary exposure  
(Ch 4,5,7,8)  
Potential effect modifier  
(Ch 6) 

Distance to nearest hot/cold takeaway/fast-food outlet Exact home address UKBUMP 
Measured at end of baseline*  

Green space: Public 
greenspace and 
domestic gardens 

Neighbourhood 
environment 

Primary exposure (Ch 8) 
Secondary exposure (Ch 4) 

Percentage of 300m buffers defined as ‘public greenspace’ or 
‘domestic garden’ in GLUD 

Exact home address GLUD (2005) 

Parks & public/open 
green spaces 

Neighbourhood 
environment 

Potential effect modifier  
(Ch 6) 

Land-use density measures for parks and other public 
green/open spaces. 

Exact home address UKBUMP 
Measured at end of baseline* 

Area deprivation Neighbourhood 
environment 

Potential confounder (Ch 4-8) 
Potential effect modifier  
(Ch 8) 

 Postcode of home address Townsend Index 
(2001) 

'Natural' land cover Macro-environment  Potential effect modifier  
(Ch 7) 

Percent of Local Authority District land cover classified as 
‘natural’ 

Approximate home address 
(rounded to nearest km) 

Land Cover Atlas of the UK 
(based on CORINE) (2012) 

Urbanicity Neighbourhood 
environment 

Potential confounder  
(Ch 4,5,8) 

Home postcodes used to classify participants from England 
and Wales according to an ONS-defined scale of urbanicity 
collapsible to 4 categories based on population density (2001 
Census). Scottish participants are classified using a scale that is 
not strictly equivalent, so I collapse all to urban/non-urban 

Postcode of home address UK Biobank (ONS) 
(population density  based on 
2001 Census) 

Residential density Neighbourhood 
environment 

Potential confounder  
(Ch 4-8) 

1000m street-network buffer Exact home address UKBUMP 
Measured at end of baseline* 

Local descriptive 
obesity norm 

Macro-environment  Potential effect modifier  
(Ch 7) 

LAD adult obesity prevalence (published modelled estimates 
based on 2003-05 Health Survey for England data). 

Approximate home address 
(rounded to nearest km) 

Health Survey for England 
(2003-05) 

LAD-income Macro-environment  Potential confounder  
(Ch 7) 

Local Authority Gross Domestic Household Income Approximate home address 
(rounded to nearest km) 

ONS (2006) 

 

* Source material for UK Biobank Urban Morphometric Platform states the spatial data “were collected as close as possible to the end of the baseline wave to avoid temporal mismatch” 
(Sarkar et al. Annals of GIS, 2015, p.12) but does not provide specific dates, and cites the 2012 release of OS AddressBase Premium. Other publications by the creators of UKBUMP and using 
exposures derived from OS AddressBase state these “were assessed towards the end of the baseline phase (2010)” (Sarkar et al. Lancet Planetary Health, 2017, p.e279). 
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 Exposures 

Four of the five objectives of this thesis are focused exclusively on obesity-related 

outcomes, and as mentioned in Chapter 2, to address these objectives I focussed on two 

exposure variables, each thought to influence these outcomes via a separate pathway, and 

each relating to opposite sides of the energy balance equation: availability of formal PA 

facilities, and proximity to fast-food outlets. Availability of formal PA facilities near home 

is relatively understudied in relation to obesity-related outcomes, but what research there 

is suggests a possible relationship, so further research in this large UK-wide sample was 

warranted. Other features of the built environment are also thought to promote PA (e.g. 

walkability) but as these are the focus of extensive research by others, I have chosen to 

focus on the formal PA environment. Community food environments, including a focus 

on fast food, have received considerable research attention, but the evidence remains 

inconclusive. Of the limited data on the food environment available in UKBUMP for the 

full UK Biobank cohort, fast-food proximity was arguably the most appropriate for my 

analyses. Fast-food outlets and formal PA facilities are neighbourhood resources that are 

also both primarily commercial in nature, and therefore amenable to regulatory and 

market-based interventions. To address my fifth research objective, where my outcomes 

of interest were CVD and cancer, I also examined a third neighbourhood exposure 

(domestic and public greenspace) that might also influence these outcomes through 

pathways independent of adiposity or energy balance.  

Availability of formal physical activity facilities is examined as an exposure in all five 

research papers. Proximity to a fast-food outlet is examined as an exposure in four research 

papers (Chapter 4, 5, 7 and 8), and also as a potential neighbourhood-level effect modifier 

in Chapter 6. Neighbourhood greenspace is examined as an exposure in the final research 

paper (Chapter 8). For completeness, I also examine this greenspace measure as a 

secondary exposure in additional material in Chapter 4, as it was not available at the time 

of publishing the research paper in that chapter. The following section explains the 

operationalisation of these three neighbourhood exposures in greater detail. 

 Availability of formal physical activity facilities 

There is some evidence that neighbourhood exposure to dedicated facilities for physical 

activity, sometimes referred to as recreation facilities, is associated with higher levels of 

physical activity25–27. Whether they are associated with body weight outcomes is less well 

studied and less clear. 
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Definitions of such facilities usually include swimming pools, gyms, sports playing fields, 

leisure centres, and racquet sports facilities, among other facilities. These facilities may be 

open to the public or restricted to membership holders, and may be free at point of use or 

pay-to-use. Across studies, the definitions used usually varies somewhat, and there is some 

indication that the types of facility matter28. 

In this thesis, based on land-use density data from the UKBUMP, I define neighbourhood 

availability of formal physical activity facilities as the density (count) of physical activity 

facilities within a 1000 m street-network buffer around the home address. Physical activity 

facilities were defined as any land use classified in the Commercial-Leisure subcategory 

(CL06) of the UK Ordnance Survey AddressBase database. This subcategory comprises any 

address point classified as "Indoor/Outdoor Leisure/Sporting Activity/Centre not further 

defined", as well as the following more specific categories of land use: 

 Bowls Facility 

 Cricket Facility 

 Diving / Swimming Facility 

 Equestrian Sports Facility 

 Football Facility 

 Golf Facility 

 Activity / Leisure / Sports Centre 

 Playing Field 

 Racquet Sports Facility 

 Rugby Facility 

 Recreation Ground 

 Skateboarding Facility 

 Civilian Firing Facility 

 Tenpin Bowling Facility 

 Water Sports Facility 

 Winter Sports Facility 

Non-commercial resources that may be considered informal physical activity facilities, 

such as public parks and other public open spaces, and walking and cycling paths, were 

not included in the count (except where covered by the above classification e.g. playing 

fields).   
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Collapsing all these facility types into a single measure may obscure facility-specific 

associations with health outcomes, but due to the large proportion of address points 

classified in the ‘Indoor/Outdoor Leisure/Sporting Activity/Centre not further defined’ 

category, it was decided that such a disaggregation would not be meaningful. While the 

land-use density is the only measure of PA facilities available in UK Biobank, the 

heterogeneous nature of this exposure makes a density measure more suitable than a 

proximity measure in this case.  

 

Figure 3.4 Distribution of availability of formal PA facilities within 1000m buffers 

 

Data on the availability of PA facilities were missing for 3.5% of the full sample. For those 

with data, just under a third of participants had no formal physical activity facilities within 

a kilometre of their home. The median number of facilities within a neighbourhood buffer 

was one (IQR: 0-3). The full range was zero to 39, but 90% of participants had no more 

than six facilities near home (Figure 3.4).  

In Chapter 4 this exposure variable was categorised as no facilities, 1 facility, 2-3 facilities, 

4-5 facilities, or 6 or more facilities (Table 3.5). In Chapters 6 and 8, where the sample was 

further stratified by an effect modifier, the top two categories were collapsed so the 

uppermost category was '4 or more facilities', due to the number of observations in the '6 

or more' category becoming quite small when stratified by another variable.  
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Table 3.5 Categories of neighbourhood availability of formal PA facilities 

Number of formal PA facilities  
within 1km 

n % 

0 150,187 30.11 

1 96,018 19.25 

2 - 3 114,677 22.99 

4 - 5 58,212 11.67 

6 or more 61,973 12.43 

missing 17,680 3.54 

Total 498,747 100.00 

 

In Chapter 5 and Chapter 7 it was desirable to work with a continuous exposure for reasons 

specific to those chapters (outlined therein). In those two chapters, availability of PA 

facilities is therefore treated as a continuous variable, consistent with the roughly linear 

association observed using the categorical variable across the sample as a whole in Chapter 

4. To  treat it as a continuous variable, the number of facilities per 1000 m buffer has been 

topcoded due to the very long tail of the positively skewed distribution (0.07% of the total 

sample were recoded to 15 from a higher value; recoded distribution shown in Figure 3.5). 

 

Figure 3.5 Topcoded distribution of availability of formal PA facilities within 1000m 
buffers 
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 Fast-food environment 

There is a large body of research investigating whether access to fast-food outlets near the 

home may be a determinant of weight status and obesity29, but the conclusions have been 

inconsistent or equivocal, and most evidence comes from the USA, where the structure of 

the built environment differs from countries such as the UK. While a recent study in the 

UK found that exposure to fast-food outlets near home was associated with both BMI and 

odds of obesity in adults30 this study was limited to one area in the UK and other 

international research has not consistently replicated findings from the USA31,32.  

Neighbourhood exposure to fast-food outlets can and has been operationalised in a variety 

of ways in different studies, including proximity measures (how close a person lives to a 

fast-food outlet), absolute count or density measures (number of outlets in a buffer, or 

outlets per population or km2), and relative measures (e.g. fast-food outlets as a proportion 

of all food retailers in an area)33. Each captures something different about the fast-food 

environment that may plausibly influence diet and subsequent health outcomes.  

In this thesis, exposure to fast-food outlets is operationalised as a proximity measure. 

Ideally, a relative measure of the food environment would have been used, but it was not 

possible to construct such a measure from the UKBUMP data for the full sample. Proximity 

has been used in numerous studies in the UK and elsewhere to capture exposure to fast-

food outlets31,34–36. Proximity and density measures of the food environment have been 

shown to be moderately to strongly correlated in the UK37 and while neither is 

demonstrably superior to the other, a recent systematic review (focussed on dietary 

outcomes) found that proximity measures of the food environment tend to produce 

smaller effect sizes than absolute density measures38, indicating proximity measures may 

be a more conservative approach.  Proximity measures also avoid the need to make 

assumptions about the causally-relevant geographical area. I therefore used the UKBUMP 

data on the distance from each participant's home location to the nearest address point in 

the UK Ordnance Survey AddressBase Premium database that was classified as a 'hot/cold 

fast-food outlet/takeaway'. Thus, for each individual, fast-food proximity is defined as the 

street-network distance (in metres) from their home address to the nearest takeaway/fast-

food outlet. Data were missing for 3.6% of the full sample, including 20 observations with 

a distance greater than 40km to the nearest fast-food outlet, which I excluded on the 

grounds that these were implausible values given the catchment area for the study was 

itself roughly that distance around centrally located assessment centres. 
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Based roughly on the distribution of the data (Figure 3.6), I used these distances to 

categorise individuals as living <500 m, 500-999 m, 1000-1999 m, or 2000m+ from their 

nearest fast-food outlet (Table 3.6). This categorical form of the exposure was used in 

Chapters 4 and 8. As with the PA environment, in Chapter 5 and 7, I treated proximity to 

fast-food as a continuous variable, to better facilitate the analyses conducted in those 

chapters. When treating fast-food proximity as continuous, I used its logarithm (base 10) 

transformation for ease of interpretation, so that a one-unit increase represented a 10-fold 

increase in distance to the nearest outlet (e.g. 100m to 1000m) (Figure 3.7). To facilitate 

this I recoded to one metre a small number of observations where the distance to the 

nearest outlet was zero or less than one metre, because it is not possible to take the 

logarithm of zero, and the logarithms of values less than one are negative.  

As a large distance to a fast-food outlet indicates that there are none close to the home 

address, while a smaller distance indicates there is at last one near the home address, this 

could alternatively be reclassified into a binary variable with a cutoff at e.g. 1km. Instead, 

by splitting distance into multiple categories, I make greater use of the available 

information while still allowing indirect interpretation in terms of presence/absence for 

the neighbourhood boundaries represented by the category cutpoints. This avoids making 

assumptions about the causally-relevant geographical area. 

 

Figure 3.6 Distribution of proximity to nearest fast-food outlet 
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Table 3.6 Categories of proximity to nearest fast-food/takeaway outlet 

Distance to nearest fast-food/takeaway outlet n % 

Closer than 500m 88,789 17.80 

500-999m 124,684 25.00 

1000-1999m 133,386 26.74 

At least 2000m 134,161 26.90 

missing 17,727 3.55 

Total 498,747 100.00 

 

 

Figure 3.7 Logarithmic transformation of proximity to nearest fast-food outlet 

 

Food outlet classification in the source database for the current study is supplied by local 

authorities and may include misclassification of some outlets (particularly 

misclassification of addresses as restaurants rather than fast-food outlets), potentially 

biasing the regression coefficients estimated in this thesis towards the null. The quality of 

the underlying source data – in terms of accuracy and completeness – could also vary 

geographically, introducing more misclassification error in some areas than in others. 

Unfortunately is was not possible to assess the accuracy and validity of the measure and 

its source data. I discuss the implications of this in the limitations section of the 

Discussion, and in individual research papers. 



79 

 Greenspace 

Unlike formal PA facilities and the fast-food environment, which will predominantly 

influence energy balance-related outcomes if they influence health at all, exposure to 

green spaces has considerable potential to influence health through multiple causal 

pathways. Various conceptual models linking green space to health have been proposed39–

41 and these typically recognise multiple pathways by which exposure to green space or 

nature more generally might influence health, including improved air quality, 

opportunities for physical activity, stress reduction and relaxation, resilience to heat‐

related illness by mitigation of the urban heat island effect, greater social cohesion, 

buffering from noise pollution, exposure to natural light, and improved functioning of the 

immune system42. 

Therefore, in this thesis, I focus on PA facilities and the fast-food environment when I 

consider obesity-related outcomes (Chapters 4-7), but in Chapter 8 when I consider a 

wider set of health outcomes (namely CVD and cancer), I also examine greenspace as an 

additional neighbourhood exposure because of its potential to influence these outcomes 

through multiple pathways.  

A review43 of recent studies of green space and health identified three dominant ways of 

objectively quantifying exposure to green space or greenness: vegetation indices based on 

satellite imagery (e.g. Normalised Difference Vegetation Index (NDVI)); metrics based on 

land-use databases (e.g. proportion of an area classified as some form of greenspace); and 

proximity metrics (e.g. the distance from a person's home to the nearest park). As with 

other neighbourhood exposures, each captures a slightly different dimension of what it 

might mean to be 'exposed' to 'greenspace'. 

When examining greenspace as an exposure here, I make use of the additional measures 

added to UK Biobank derived from the Generalised Land Use Database (GLUD). I 

combined the land use percentages for 'greenspace' and 'domestic gardens' to derive a 

combined measure of greenspace exposure for 300 m neighbourhood buffers. Combining 

'greenspace' and 'domestic gardens' is consistent with previous research using the GLUD 

to examine relationships with health44. Of the 300 m and 1000 m buffers available to UK 

Biobank researchers, I chose to use the 300 m buffer as the primary delineation of 

neighbourhood exposure to greenspace on the basis that previous research has shown this 

to be a distance beyond which the use of green spaces declines7,8 and also because it is a 

policy-relevant distance, having been proposed in the UK as a benchmark for greenspace 

provision9. Furthermore, with the inclusion of gardens in the measure, a buffer of 300 m 
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is more likely to capture meaningful exposure to domestic gardens, as within a smaller 

buffer gardens will be more likely to be part of, or visible from, the individual's home. 

Results of some studies suggest that being able to view greenspace from home (e.g. 

through a window) may confer psychological benefits45,46, and small buffers (e.g. 250 m) 

have been used in other UK-based studies that have demonstrated a link with mental 

health47,48.  

 

Figure 3.8 Distribution of neighbourhood greenspace (300m buffers) 

 

The mean percentage land use classified as greenspace or garden in a 300m 

neighbourhood buffer was 66.4% (SD=12.8%) but with a range spanning 1.6% to 99.3% 

(Figure 3.8).  For consistency with the other exposures examined in Chapter 8, I 

categorised this measure into four ordinal groups, in this case using quartiles (Table 3.7), 

which were then used as the greenspace exposure variable in Chapter 8. 

Table 3.7 Categories of neighbourhood greenspace 

Quartile of greenspace (300m buffer) Mean % green min max 

Q1 Least green 45.65 1.64 57.88 

Q2 62.91 57.88 67.14 

Q3 71.49 67.14 76.45 

Q4 Most green 85.58 76.45 99.30 
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As the GLUD measures were available only for those UK Biobank participants resident in 

England, the analyses using this exposure excluded anyone living in Wales or Scotland. 

Among residents of England, 1.1% were missing data on greenspace exposure.  

In Chapters 6 and 7 I also consider access to ‘parks’ or 'natural' spaces as a possible effect 

modifier of associations between the formal PA environment and adiposity, but in those 

analyses I use different measures more specifically suited to the research questions, and 

which I detail in Section 3.3.4.2. 

 Effect modifiers 

A central focus of this thesis is to explore possible sources of effect heterogeneity in the 

associations between the neighbourhood built environments and health. To do this I 

identified seven potential modifiers of the association between one or more of the primary 

exposures and one or more of the primary outcomes, each operating at one of three 

distinct levels: individual, neighbourhood, and macro-environment.  

 Individual-level effect modifiers 

At the individual- or intrapersonal- level, a characteristic of an individual may render them 

more or less susceptible to developing the outcome of interest, in any given environment. 

Such characteristics would then be considered effect modifiers. I examined the following 

three potential, individual-level effect modifiers. 

Sex/Gender 

Effects of neighbourhood characteristics may differ for men and women, with some 

studies having observed stronger associations among women than among men49,50. 

Differences might be explained by traditional gender roles that result in women spending 

more time in their local neighbourhood50. This is one potential effect modifier of 

neighbourhood-health associations that has been relatively widely investigated. In 

Chapter 4, where the primary focus is to first estimate the main cross-sectional 

associations in the sample as a whole, I also examine possible effect modification by sex. 

In Chapter 8, where I consider cancer and cardiovascular disease outcomes, I present sex-

stratified results alongside combined results, due to different baseline risk among men and 

women. UK Biobank reports participants’ sex (female or male) derived from central NHS 

registry data, and participants had the option to update this information. No additional 

data were collected on gender identity.  
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Table 3.8 UK Biobank participants by sex 

Sex n % 

Female 271,335 54.40 

Male 227,411 45.60 

Missing 1 0.00 

Total 498,747 100.00 

 

Household income 

Health inequalities by income and other measures of socioeconomic position are well 

documented, and there is also some evidence of effect modification by income of 

neighbourhood effects on BMI51, obesity52 and diabetes53 in the US. It is not clear whether 

income modifies such associations in the UK, though one recent study suggests a double 

burden of exposure to fast-food outlets and low income in London54. Any neighbourhood 

characteristics to which residents might be price-sensitive could plausibly be expected to 

have a directly differential effect by household income (e.g. pay-to-use recreation 

facilities). Other, less direct mechanisms may also generate effect heterogeneity. 

Household income is recorded in UK Biobank in five categories of annual household pre-

tax income in pounds sterling: less than £18,000, £18,000 - £30,999, £31,000 - £51,999, 

£52,000 - £100,000, more than £100,000.  

Table 3.9 UK Biobank participants by household income 

Average household annual income (pre-tax) n % 

Less than £18,000 97,208              19.49       

£18,000 – £30,999 108,180       21.69       

£31,000 - £51,999 110,777       22.21 

£52,000 - £100,000 86,272       17.30 

Greater than £100,000 22,932        4.60 

Don’t know 21,305        4.27 

Refused to answer 2,221        0.45 

Missing 49,852       10.00 

Total 498,747      100.00 

 

In Chapter 4 I collapsed the highest two income categories so there were four roughly 

evenly sized groups, and then tested for interactions with availability of formal physical 

activity facilities and proximity to a fast-food outlet, with respect to adiposity outcome 

measures. In Chapter 8, a binary indicator of high household income (at least £31,000) was 

used to investigate income as an effect modifier of associations with CVD and cancer. In 
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that chapter a binary effect modifier was preferred for the type of analyses being performed 

(see Chapter 8 for details). Unfortunately, household income was not readily able to be 

equivalised to account for household size, nor could I take into account housing costs or 

taxes. As I describe in the later section on confounders, I adjusted all other models for 

potential confounding by income, using the five-category form of the variable. 

Genetic risk 

Family and twin studies have shown that BMI is likely to be between 30% and 70% 

heritable55–57. Except in rare cases (e.g. syndromic obesity), it is generally thought that the 

genetic determinants of body weight are largely polygenic (involving multiple genes), and 

BMI has been associated with a large number of genetic loci, particularly since the advent 

of genome-wide association studies (GWAS)56. In Chapter 5 I operationalise genetic risk 

using two polygenic risk scores for obesity, based on the most current evidence from meta-

analyses of GWAS58, and test whether polygenic risk acts as a modifier of the association 

between neighbourhood characteristics and BMI. I also examine possible effect 

modification by selected individual single nucleotide polymorphisms (SNPs) strongly 

associated with BMI and putatively linked to either dietary intake or physical activity 

behavioural pathways.  

Typically, genetic risk scores (GRSs) are derived by summing the number of high-risk 

alleles present in an individual, usually weighting by known estimates of effect size. A 

recent GWAS identified 97 SNPs associated with BMI58. As shown in equation 1 below, I 

used these to construct two alternative GRSs by summing the number of BMI-increasing 

alleles across the set of SNPs, and weighting the allele count at each SNP by its published 

effect size (β).  

GRS = (β1 * SNP1) + (β2 * SNP2) + ... (βn * SNPn)   (equation 1) 

For non-imputed genotypes, the allele count of each SNP takes a value of 0, 1 or 2, while 

for imputed genotypes, I used the SNP’s imputed allelic dosage, which is a value between 

0 and 2 representing the sum of the probability of each of the three genotypes at a given 

SNP.   

The first GRS used 91 of the 97 BMI-associated SNPs reported in the recent GWAS, with 

the exception of six that I excluded on the basis that they were reported elsewhere either 

as being in linkage disequilibrium with other SNPs in the GRS, or of having pleiotropic 

effects59. Linkage disequilibrium and pleiotropy can introduce bias in the associations 
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between the genetic risk score and the outcome, and in interaction analyses60. To 

construct the second GRS, I followed another recent study using UK Biobank data and a 

GRS for obesity59, in which they also based their SNP selection on the 97 SNPs identified 

in the recent GWAS58, but limited their GRS to 69 SNPs identified in the primary meta-

analysis of studies of individuals of European descent, excluding the SNPs identified in the 

secondary meta analyses of studies in regional, sex-stratified or non-European-descent 

populations. The distribution of the genetic risk scores are shown in Figure 3.9.  

To ensure higher values of the GRSs represented increased risk of obesity, it was necessary 

to recode some of the SNP genotypes so that the non-reference allele in the dataset was 

the same allele associated in the GWAS with higher BMI.  Further details of the GRS 

derivation are provided in Chapter 5, and full lists of the SNPs included in each GRS can 

be found in the Supplementary Material for Chapter 5 (Appendix Two).  

Separately I also examined six individual SNPs as possible effect modifiers. These were 

identified from the literature as having well-established links to obesity and food intake 

(markers of the FTO, MC4R and TMEM18 genes)57,58, or had been linked specifically to 

physical activity (markers of CADM2, GNPDA2 NRXN3)61,62. Full details are provided in 

Chapter 5. If any of these individual SNPs do interact with the food or physical activity 

environment to influence BMI, it would be expected that those linked to diet would 

interact only with the food environment, while those linked to physical activity would 

interact only with the physical activity environment. 
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Figure 3.9 Distribution of genetic risk scores for BMI in UK Biobank cohort 
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 Neighbourhood-level effect modifiers 

At the level of neighbourhood, loosely defined, physical or social characteristics of a 

neighbourhood may modify the effect of another neighbourhood characteristic on an 

outcome of interest. In Chapter 6 I examine two characteristics of the built environment 

as potential, neighbourhood-level effect modifiers of the relationship between 

neighbourhood availability of formal PA facilities and adiposity. 

Availability of informal physical activity resources (parks and other public open/green 

spaces) 

Studies of neighbourhood physical activity environments and obesity tend not to routinely 

consider how co-occurring characteristics of the built environments might act in 

synergistic or antagonistic ways to influence physical activity and health. For example, 

formal physical activity facilities such as gyms and swimming pools may play an important 

role for people living in areas with few informal resources that promote physical activity 

(such as parks and other public spaces). To examine this hypothesis, in Chapter 6 I 

consider whether the number of parks or other public open/green spaces in a one 

kilometre street-network buffer around each participant's home acts as an effect modifier 

of the association between the availability of formal physical activity facilities and 

adiposity.   

This variable is derived from the UKBUMP data on land-use densities, in the same way I 

derived the formal physical activity facilities measure, but in this case counting the 

number of sites categorised as:  

 Park 

 Public Park/Garden 

 Public Open Space/Nature Reserve 

 Playground 

 Open Space/Heath/Moorland.  

Because the distribution was highly positively skewed, and to reflect the measure of formal 

physical activity facilities, I categorised this as zero, one, or at least two parks or other 

informal physical activity resources within 1 km.  
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Table 3.10 UK Biobank participants by category of neighbourhood availability of 
parks and other public open/green spaces 

Number of parks and other public open/green spaces 
within 1km   

n % 

0 215,401 43.19 

1 91,213 18.29 

2 or more 174,453 34.98 

missing 17,680 3.54 

Total 498,747      100.00 

 

Proximity to fast-food outlets 

Just as the absence of informal physical activity resources might strengthen the influence 

of formal physical activity resources on obesity risk, so might an unhealthy food 

environment have the opposite, antagonistic effect, overriding the potentially health-

promoting influence of the neighbourhood physical activity environment on energy 

balance and resulting adiposity. Chapter 6 therefore also includes examination of the fast-

food environment as a possible effect modifier of the formal physical activity environment. 

I used the measure of proximity to a fast-food outlet that I had previously defined for 

analysis as an exposure in other chapters, but collapsed to three categories rather than 

four, for internal consistency within that chapter (so, <500 m, 500-1499 m, or at least 1500 

m from home to the nearest takeaway/fast-food outlet). 

Table 3.11 UK Biobank participants by category of proximity to nearest fast-food 
outlet 

Distance to nearest fast-food/takeaway outlet   n % 

Closer than 500m 88,789       17.80 

500m – 1499m  208,308       41.77 

At least 1500m 183,923       36.88 

missing 17,727 3.55 

Total 498,747      100.00 
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Area-level deprivation 

Neighbourhood deprivation has been shown in many studies to be associated with poorer 

health outcomes, probably operating through various complex mechanisms63–65. 

Accordingly, studies of built environments and health usually adjust for deprivation, or 

concentrate their focus on deprived neighbourhoods. While it has been shown not to be 

universally the case66, there are many examples of more deprived areas having lower 

quality neighbourhood resources – a process referred to as 'deprivation amplification'67. 

One dimension of this phenomenon is the possibility that while broad measures of the 

neighbourhood built environment might not reveal greater exposure to unhealthy 

resources, the (often unmeasured) quality of some available resources may be worse,  for 

example poorer quality public green spaces, and perceptions of the built environment 

might be affected by issues of safety or crime68–70. On the other hand, if deprived areas do 

have fewer healthy resources but only in one domain of the built environment (e.g. formal 

PA facilities) the effect of other domains (e.g. informal resources for physical activity, such 

as greenspace) might be stronger there than in less deprived areas that are well resourced 

across all domains. It is therefore difficult to predict which direction any effect 

modification by area deprivation would operate in, and it is also possible that an absence 

of statistical evidence for effect modification by area deprivation could arise from multiple 

processes operating in opposing directions..  

Attempting to overcome some of these challenges for interpretation, in Chapter 8 I 

investigate whether the associations of three distinct characteristics of the neighbourhood 

built environment with hospitalisations due to CVD or cancer are modified by area 

deprivation. This is measured using the Townsend score of each participant's census 

output area. Census output areas are statistical units of varying sizes, the majority (80%) 

comprising between 110 and 139 households and therefore representing an area fairly local 

to a person's home. The Townsend deprivation index incorporates four variables: 

unemployment (% aged 16 and over who are economically inactive); non-car ownership 

(% of all households); non-home ownership (% of all households); and household 

overcrowding. These variables are measured from the 2001 census for each census output 

area and combined (via a series of calculations involving log transformations and 

standardisations) to give a 'Townsend score' for that output area. A greater Townsend 

index score implies a greater degree of deprivation. UK Biobank participants were assigned 

a score corresponding to the output area in which their postcode is located. Using publicly 

available quintile boundaries for the 2001 Townsend index71, I constructed a binary 

indicator of deprivation (areas in the three least deprived quintiles vs those in the two 
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most deprived quintiles) to investigate area deprivation as an effect modifier. This is done 

alongside the investigation of household income as an effect modifier for the same 

associations (described earlier), and each adjusted for confounding by the other, to 

attempt to isolate modifying effects of each. All other models in the thesis were adjusted 

for confounding by area deprivation, as described in Section 3.3.6. 

Table 3.12 UK Biobank participants by area deprivation 

Quintile of Townsend 2001 area deprivation score n % 

Least deprived areas 211,466 42.40 
2 67,715 13.58 
3 65,313 13.10 
4 77,024 15.44 
Most deprived areas 76,607 15.36 
missing 622 0.12 
Total 498,747 100.00 

 

 

 

Figure 3.10 Distribution of area deprivation (Townsend 2001 score) in UK Biobank 
cohort 
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 Macro-environmental effect modifiers 

Studies of neighbourhoods and health across a range of settings have yielded inconsistent 

findings, indicating possible geographical heterogeneity in the health effects of 

neighbourhood characteristics. This in turn suggests that macro-environmental attributes 

of larger geographical areas within which neighbourhoods are located might play a 

modifying role. Understanding any such drivers of geographical effect heterogeneity may 

help clarify observational findings and inform local policy interventions. I examined the 

following two potential effect modifiers at the level of Local Authority District: 

Percentage of land cover classified as 'natural' 

People living in cities and towns that are surrounded by accessible natural landcover 

(woodland, moors, beaches, etc.) have enhanced informal opportunities for outdoor 

physical activity even if those natural spaces are not within one's immediate 

neighbourhood. Increased exposure to such environments in the wider area may also 

contribute to a local culture of outdoor recreation. In such places, there may be less 

reliance on, or normalisation of, using formal physical activity facilities such as gyms and 

leisure centres close to home. In such places, we might therefore see a reduction in the 

magnitude of association between the neighbourhood availability of formal physical 

activity facilities and adiposity.  

The percentage of land cover classified as 'natural' in each Local Authority in England is 

compiled in the Land Cover Atlas of the UK72, having been derived from Corine Land Cover 

data from 2012 (as described in Chapter 2). The 'natural' land cover classification includes 

all land cover that is neither 'artificial' (urban, industrial, commercial, transport, mining 

etc.) nor 'agricultural'. The 'natural' classification covers land cover types such as forests, 

grasslands, moorland, beaches, wetlands, and water bodies. It does not include farmland 

such as pastures, which is classified as 'agricultural' or urban green areas such as parks and 

sport and leisure facilities (e.g. playing fields), which are classified in Corine as 'artificial' 

and in the Land Cover Atlas of the UK as their own category of 'urban green'. Corine Land 

Cover data are based on remotely-sensed satellite imagery spanning the whole of Europe, 

which classified land use based on the identification of large (≥25 hectares), relatively 

homogeneous areas. More heterogeneous areas are classified depending on the dominant 

land use; for example, 'discontinuous urban fabric' areas will contain a mix of buildings 

and artificial surfaces, but also smaller vegetated areas, while large urban parks or urban 

woodlands will be classed as 'green urban areas'. Thus, the 'natural' classification refers 
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only to large areas of natural land cover, while smaller green spaces are classified 

elsewhere.  

Figure 3.11 shows the distribution of natural landcover percentage across the 158 Local 

Authorities in England represented in UK Biobank. Natural landcover percentage ranged 

from 0.0% to 55.6%, with a median of 5.1% (IQR: 1.2-12.2%). Due to its positive skew, 

natural landcover percentage was square-root transformed prior to analysis. As people 

living in rural areas may have a different relationship to the natural environment73–75, I 

restricted the analysis to the 86% of the UK Biobank cohort living in areas that are 

classified by the Office of National Statistics as urban (specifically, where a person's home 

postcode is located within a city or a town that has a population of at least 10,000 people). 

 

 

Figure 3.11 Distribution of 'natural' landcover percentage in Local Authorities in 
England represented in UK Biobank 
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Local descriptive norms for obesity 

Spatial variation in the prevalence of particular traits (e.g. obesity) or behaviours (e.g. PA) 

creates what are known as local descriptive social norms76. I hypothesise here that in areas 

where adult obesity prevalence is high, social pressure to be a healthy weight may be 

weaker due to obesity becoming ‘normalised’77, and this may attenuate any health-

promoting influence of the neighbourhood built environment on adiposity. To test this, I 

use Local Authority-specific estimates of obesity prevalence among adults (aged 16 or over) 

for the period 2003–0578. This period immediately precedes the recruitment for UK 

Biobank, so approximates the social norms that prevailed at the time of the baseline 

assessment (without relying on the same data source). 

Obesity prevalence estimates were only available for LADs in England, so the analysis 

using this variable (Chapter 7) was restricted to UK Biobank participants residing in 

England. This has the advantage of also reducing the risk of confounding due to contextual 

differences that might arise from historical or current differences between the devolved 

nations of the UK.  

Figure 3.12 shows the distribution of estimated obesity prevalence across the 158 Local 

Authorities in England represented in UK Biobank. Mean obesity prevalence was 23.0% 

(SD=3.7%). An estimate of obesity prevalence was unavailable for seven Local Authorities 

so for these I used regional estimates of obesity from the Health Survey for England for 

the same period, imputing the value for the region in which each Local Authority was 

located.  I treated obesity prevalence as a continuous variable. 
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Figure 3.12 Distribution of estimated adult obesity prevalence in Local Authorities 
in England represented in UK Biobank 

 

 Covariate selection 

 Directed Acyclic Graphs to identify potential confounders 

Based on the existing literature and careful consideration of the conceptual model 

underpinning the relationships under investigation in this thesis, I identified potential 

confounders of each association of interest. This information was then summarised in 

directed acyclic graphs (DAGs) to assess which variables should be adjusted for in each 

analysis. This also enabled me to identify any situations where adjustment for a potential 

confounder might induce bias through another pathway. I used the web-based DAGitty 

interface to draw the DAGs and help to identify the minimally sufficient adjustment sets79. 

Supplementary Figures 1 and 2 of the published paper in Chapter 4 show DAGs for the 

relationships between the physical activity environment and adiposity, and the fast-food 

environment and adiposity (Appendix One).  

As illustrated in these DAGs, potential confounders included individual demographic and 

socioeconomic variables and several local area characteristics. Each paper in the thesis 

contains a brief justification for the adjustment or not for specific variables.  In general, 
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alongside socio-demographic characteristics of the individual that could confound 

estimates, models are adjusted for area-level deprivation as a strategy to minimise 

confounding by other unmeasured neighbourhood characteristics80. Physical activity 

environment and fast-food environment models are also mutually adjusted for one other. 

The operationalisation of all covariates used in the thesis is described in a subsequent 

section of this chapter. 

 Checks for multicollinearity 

Having used DAGs to articulate the likely confounding relationships and identify the 

minimally sufficient adjustment sets, I then used change-in-mean squared error (ΔMSE) 

procedures to formally check that adjusting for potential confounders using the observed 

variables in UK Biobank did not introduce multicollinearity into the regression models81. 

Briefly, this involves comparing a fully adjusted model to a series of models in which each 

covariate is dropped, to check that the inclusion of any one covariate doesn't inflate the 

mean squared error of the main effect estimate – if it does, this indicates that the reduction 

in bias gained by including the variable is outweighed by the inflation of the standard error 

of the effect estimate. For simplicity, I did this using OLS (rather than mixed effects) 

regression models and assumed the conclusions drawn from these checks would apply 

across the related but more complex models used in this thesis. The change-in-MSE checks 

indicated multicollinearity was not a problem and it was appropriate to proceed with the 

adjustment sets identified using the DAGs. 

 Controlling for confounding in analyses of effect modification  

As mentioned earlier, effect modifiers need not themselves be direct causes of the 

outcome. If they do cause the outcome, we might be interested in either statistical 

interaction (effect modification) or biological interaction. The latter exists when the effect 

of the exposure on the outcome is biologically dependent on the presence or absence of a 

third variable, rather than that effect simply varying across levels of the third variable, 

without being a necessary condition for causing the outcome. Effect estimation in the 

context of biological interaction requires that confounders of both exposure-outcome 

relationships be adjusted for, while in the case of effect modification (statistical 

interaction), one need only adjust for confounders of the primary exposure-outcome 

association to estimate an unbiased effect82. As I am only concerned with effect 

modification in this thesis, I take the latter approach to covariate adjustment in my 

regression models. 
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 Operationalisation of potential confounders 

 Socio-demographic covariates 

The following variables measuring demographic and socioeconomic characteristics of 

participants are included as covariates in the primary analyses, to control for potential 

confounding: age, sex, highest level of education attained, annual household 

income, employment status, ethnicity. These might act as confounders because they 

tend to be associated with the outcomes (e.g. average BMI is higher among older people, 

Black/Black British ethnic groups, and people with lower educational attainment), while 

also influencing the type of neighbourhood a person resides in, via affordability, lifestyle 

preferences, and residential segregation along ethnic or religious lines.  

Age was treated as a continuous variable centred around its mean. Nine cases were 

excluded as their age at baseline assessment was recorded as being <40 or >70. These 

exclusions were made because 40-69 years was the eligible age when identifying the 

sample to be targetted for recruitment. Since assessment appointments were scheduled 

for several weeks after the initial recruitment letter, some individuals may have turned 70 

by the time of assessment. The reasons for the small number of participants outside this 

range is not explained in the UK Biobank documentation.    

Sex was included as a binary variable (male or female). 

Highest level of education was classified as College/University degree, A/AS levels or 

equivalent, O levels/GCSEs or equivalent, CSEs or equivalent, NVQ/HND/HNC or 

equivalent, Other professional qualifications, or None of the above, and included as a 

categorical variable. 

Income was included in models as the following categories of annual household pre-tax 

income in pounds sterling: Less than £18,000, £18,000 - £30,999, £31,000 - £51,999, £52,000 

- £100,000, Greater than £100,000. In the models in Chapter 8 where income was treated 

as a confounder (rather than a potential effect modifier as it was in some of that chapter’s 

models) the top two categories were collapsed because of concerns about data sparsity in 

the proportional hazards models.  

Employment status: multiple responses were allowed, to capture a variety of roles. The 

following hierarchy was imposed when multiple employment statuses were identified: 

paid work, retirement, unable to work, unemployed, other. The 'other' category includes 

home/caring duties, volunteer work,  student, and 'none of the above', due to small 

numbers of people identifying these as their sole employment status (when other 



96 

categories were also selected, those were given precedence). Although this approach 

appears to devalue unpaid work such as home and caring duties, it has been taken here so 

that the variable provides the best reflection of status in the paid labour force, and with a 

particular interest in distinguishing between people more likely to be exposed to 

workplace and commuting environmental influences, and those who may have 

proportionately greater exposure to their home/neighbourhood environment.  

Detailed information on self-reported ethnicity was collected at assessment, and for the 

purposes of its inclusion as a covariate in these analyses it has been reclassified into eight 

categories: White; South Asian/South Asian British; Black/Black British; Chinese/other 

Asian; Mixed: White/Black; Mixed: White/Asian; Mixed – no detail; Other. This differs 

from the standard ONS-recommended harmonized ethnicity coding because the ONS 

scheme groups together ethnic groups known to have different BMI-health relationships 

(specifically, South Asian is combined with Chinese and other East Asian groups, and 

Mixed covers any combination of ethnicities). I have instead split the 'mixed' 

classifications up by the non-white component since that is specified in many cases in this 

sample, and generated an 8-category variable that more appropriately captures the nuance 

otherwise lost in coarser groupings of 'mixed' and 'Asian'. Exploratory analyses suggested 

the primary analyses were not sensitive to the classification scheme used. 

Area-level covariates 

Three measures relating the area in which participants lived were also included as 

covariates in primary analyses. These were: area deprivation, urban/non-urban status 

(except in analyses restricted to urban residents), and neighbourhood residential 

density. These area-level measures are considered potential confounders because various 

neighbourhood characteristics tend to cluster together (e.g. more fast-food outlets in 

deprived areas, more physical activity resources in densely populated, urban areas), and 

they capture dimensions of neighbourhoods that are also associated with the health 

outcomes of interest in this project. Models in Chapter 7 are also adjusted for the gross 

disposable household income (GDHI) per capita of the Local Authority in which they 

live, to control for possible confounding effects of the wider socioeconomic context.  

Area deprivation was measured by the Townsend score (see earlier description in Section 

3.3.4.2 for details). When modelled as a covariate it was treated as a continuous variable. 

Urban/non-urban status was included as a binary indicator based on postcode, whereby 

all postcodes located within an area with population of at least 10,000 people were 

classified as urban and all others as non-urban. The primary analyses reported in Chapters 
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6 and 7 were restricted to the urban subsample and therefore those models were not 

adjusted for this. 

Residential density: Using the same land-use density dataset in UKBUMP as for the 

physical activity environment measures, the density of residential land use around each 

person's home address was measured as a count of all features within a 1000 m street 

network buffer that are classified as residential (including various types of dwelling as well 

as garages/parking spaces) in the UK Ordnance Survey AddressBase database. As this 

measure is highly negatively skewed, I log10 transformed it before inclusion in analyses. 

Gross disposable household income (GDHI) per capita (for 2006), was used in Chapter 

7 to control for possible confounding effects of the wider socioeconomic context83. GDHI 

is the amount of money that all of the individuals in the Local Authority District have 

available for spending or saving after any income and benefits have been received and 

direct and indirect taxes have been paid. GDHI is a concept that is seen to reflect the 

collective 'material welfare' of individuals in a region83.  

Additionally, in single-level models (Chapter 8), assessment centre was included as a 

covariate, while in multilevel models (Chapters 4-7) this was included as the level-2 

identifier rather than a covariate.  This is described further in Section 3.4 on statistical 

methods. 

Other covariates 

In Chapter 8, proportional hazards models for CVD- and cancer-related hospitalisations 

are additionally adjusted for smoking status (current/previous/never), alcohol intake 

frequency (less than/at least 3 times per week) and number of years living at current 

(baseline) address (continuous). I dichotomised alcohol intake frequency from the 

original 5-point scale on which the data were collected, after finding that results were 

insensitive to how the variable was classified.   

 Mutual adjustment for other neighbourhood exposures 

Additionally, in Chapters 4, 5 and 7, where there are two primary environmental exposures 

(fast-food proximity and availability of physical activity facilities) each is also treated as a 

potential confounder of the association between the other environmental exposure and 

adiposity, since the two are correlated. That is, in models of the PA environment and 

adiposity, distance to nearest fast-food outlet was included as a covariate, and in models 

of the fast-food environment, availability of formal PA facilities was included as a 



98 

covariate. This was also undertaken for models of the physical activity environment in 

Chapter 6. 

Additional covariates included in sensitivity analyses 

Chapter 4 includes sensitivity analyses to test whether the association between the 

physical activity environment and adiposity is confounded by dietary intake, and whether 

the association between the fast-food environment and adiposity is confounded by 

physical activity. This was done by including the following additional covariates in 

regression models:  

Total energy intake (KJ): This was collected via 24-hour recall dietary assessment from 

a subset of respondents. Dietary assessment was added to the baseline assessment 

protocol late in the recruitment phase, and was therefore collected for only ~70K 

participants at the baseline assessment visit. After the close of recruitment, 4 additional 

questionnaire rounds were conducted online, with invitations emailed to participants at 

3-4 monthly intervals. This is therefore after the baseline visit when anthropometry 

measurements were collected. Involvement by participants was voluntary, and 

participants could respond at multiple time points, so there are multiple recordings for 

some people. Ultimately, responses were collected from a total of 210,140 unique 

individuals between April 2009 and June 2012. The variable I constructed for analysis uses 

the earliest available measurement for anyone with any measurement recorded.  

Total physical activity: Data on the type and duration of physical activity were collected 

from UK Biobank participants via the touchscreen questionnaire at the baseline 

assessment, using the short form of the International Physical Activity Questionnaire 

(IPAQ). Participants were asked to report on the number of days in a typical week they 

engaged in walking, moderate physical activity or vigorous physical activity, and for each 

type of physical activity engaged in at least once in a typical week, how many minutes they 

typically engaged in these activities per day. Following the IPAQ guidance, this 

information was then combined and weighted by the energy requirements (in metabolic 

equivalents (METs)) of each activity, to derive a measure of total energy expended through 

self-reported physical activity, expressed in terms of MET minutes per week. As this 

measure is highly positively skewed, it was recoded to a categorical variable indicating low, 

moderate or high levels of physical activity, following IPAQ guidance.  

Chapter 8 includes sensitivity analyses to test whether the models of the associations 

between characteristics of the neighbourhood environment and hospital admissions due 

to CVD and cancer are confounded by baseline BMI, hypertension or medications for 
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hypertension or cholesterol. BMI was included as a continuous variable and 

hypertension and medications as binary indicators. 

 Adjustment for latent genetic structure  

It has recently been shown that there exists apparent latent genetic structure in the UK 

Biobank sample that, contrary to expectation, is not accounted for using routine model 

adjustment for assessment centre and principal components derived from the genotype 

data84.  To explore the possibility that my results in Chapter 5 might be biased by this 

latent genetic structure, I performed sensitivity analyses in which models were adjusted 

for all available genetic ancestry principal components provided by UK Biobank (rather 

than the standard approach of adjusting for the first 10), and for geographical coordinates 

of birth location.  

3.4. Statistical methods 

 Treatment of missing data 

The primary environmental exposure variables were missing for up to 3.6% of the relevant 

sample, as reported earlier.  

Of the primary covariates (excluding diet and physical activity), income has the greatest 

degree of missing data (15%, of which 10% refused to answer, while 4.3% didn't know and 

0.5% were missing for another reason). All other individual-level covariates are missing at 

a frequency of 1% or below.  

Thus, the main concern is whether income was missing in a way that would systematically 

bias the results. Principally, whether the exposure-outcome associations are different 

among participants who did not report income data compared with the rest of the sample.   

In preliminary work for the paper in Chapter 4, I compared excluded cases to the complete 

case sample. Comparisons across covariates showed this group to be from less deprived 

areas, more likely to be retired or otherwise not in the labour market (e.g. home duties), 

less highly educated, and more likely to be of South Asian or Black ethnicity.  I then 

compared the coefficients from models not adjusted for income with those from fully 

adjusted models, and observed that excluding income from the models increased the 

coefficients by around 10% at most (both in models including cases missing on income, 

and those without them). I therefore determined that the effect of income missingness 

was unlikely to spuriously inflate estimates.  On this basis, along with the fact that on 

theoretical grounds it would be hard to justify not including income as a covariate, and 
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the fact that examination of effect modification by income was one of my research 

questions, I decided to retain the adjustment for income despite the missing data issue, 

and analyse the data for complete cases, including on income, only.   

Implications of any substantial missing data on variables only used in sensitivity analyses 

are discussed in the relevant chapters (in particular Chapter 4). 

 Descriptive statistics 

Beyond the distributions and other summary statistics reported in the preceding 

description of the key variables, descriptive statistics for all key variables are reported 

within each empirical chapter as they relate to that analysis. 

Continuous variables are summarised by their mean and standard deviation if they are 

approximately normally distributed, and by the median and interquartile range otherwise. 

Categorical variables are summarised by the number and percentage in each category. 

 Multilevel regression modelling 

The general analytical approach I have taken in this thesis is to use multivariable 

regression models to estimate independent associations between each characteristic of the 

neighbourhood environment and each outcome, and then investigate modification of 

those associations by including interaction terms in the models. 

Due to the clustered sampling design of UK Biobank, the data has a hierarchical structure, 

whereby individuals are nested within assessment areas. To account for this structure, I 

use multilevel (mixed effects) models in Chapters 4, 5 and 6, specifying assessment centre 

as the level-2 cluster identifier, to analyse cross-sectional relationships. In Chapter 7, I am 

explicitly interested in the nesting of individuals within Local Authority Districts, so in 

that case I use Local Authority instead of assessment areas to identify clusters. In Chapter 

8, when analysing time-to-event data, I use single-level proportional hazards models with 

a dummy variable for each assessment area.    

In the first research paper (Chapter 4), I estimate multilevel, multivariable linear 

regression models with random intercepts, and random coefficients for the environmental 

exposures, and I specified an unstructured variance/covariance matrix. Specifying a 

random intercept allows the mean value of the outcome to vary across assessment centres, 

and specifying a random coefficient for the main exposure variable allows the exposure-

outcome association to also vary by assessment centre, thus acknowledging the possibility 

that the association of interest may not be uniform across all study sites. Assuming an 
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unstructured variance/covariance matrix allows the random intercepts and coefficients to 

covary85. Covariate adjustment sets were determined for each model as earlier described 

(p.93). Results were expressed as the mean difference in adiposity associated with a 

unit/categorical change in the exposure, and 95% confidence intervals (95% CI). This same 

model is used as a basis for the analyses in Chapters 5-7. 

While I am not specifically concerned here with estimating or interpreting variance at the 

level of assessment area, this modelling approach aligns theoretically with the conceptual 

framework underpinning this thesis: that is, that these neighbourhood-health associations 

may not be uniform across geographical space or the population. I formally tested whether 

multilevel models were a better fit to the data than equivalent OLS models, by comparing 

the OLS to the random intercept model using the likelihood ratio test. Upon determining 

that the multilevel random intercept model was preferable, I then compared this to the 

model with random coefficients for the exposure, and these too improved model fit.  

In Chapter 7, where I investigate geographical heterogeneity across Local Authority 

Districts of England, the first stage of the analysis entails additionally estimating single-

level, OLS models for each Local Authority. These are linear models with the same 

covariate set as the multilevel models.   

In secondary analyses in Chapter 4 to examine effect modification by sex and household 

income, and then for the effect modification analyses that are the focus of Chapters 5-7, I 

add various interaction terms to this basic multilevel model specification. Each interaction 

term represents the cross-product of the primary neighbourhood exposure and the 

potential effect modifier being examined.  

In Chapter 7, in that paper's second stage of analysis, I test for cross-level interactions 

between the neighbourhood characteristic and potential modifiers operating at the Local 

Authority level. To obtain estimates with a meaningful interpretation I centre the level-1 

exposure variable (neighbourhood characteristic) around the cluster (Local Authority) 

mean of that variable. According to Enders and Tofighi86 this is appropriate for research 

questions where a level-1 exposure, and modification of its effect by a level-2 variable, are 

of substantive interest, as they are in Chapter 7. 

In Chapter 8 I examine associations between neighbourhood exposure and incident 

hospital admission due to CVD or cancer after baseline, using multivariable Cox 

proportional hazard models. Results are expressed as adjusted hazard ratios (HRs) and 

95% confidence intervals (95% CI). I test the proportional hazards assumption by visual 
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inspection of adjusted log-log plots to detect non-parallel curves (using the stphplot 

command in Stata).  

Across the thesis, I focus on estimating the health benefits associated with exposure to 

theoretically health-promoting neighbourhood characteristics, rather than health deficits 

associated with exposure to less healthy environments. In practical terms, this means 

taking the theoretically least health-promoting level of exposure as a referent and 

estimating relative to that group the differences in adiposity (Chapters 4-7), and relative 

hazard of admission to hospital (Chapter 8), for those exposed to theoretically healthier 

environments. 

Specific details of each model are provided in the methods sections of the relevant 

chapters herein. All models for any given outcome were restricted to participants with 

complete data for all covariates. Final analytical sample sizes therefore varied accordingly. 

The flow diagram in Figure 3.13 shows the various exclusions and analytical sample sizes 

for the primary analyses in Chapters 4 to 8.   

 Assessment of effect modification 

When investigating effect modification, it is important to note that it can be assessed on 

either the additive or the multiplicative scale2. The interpretation of effect modification 

differs, often importantly, depending on which scale is used. 

When dealing with continuous outcomes, interaction terms in linear models 

automatically provide a direct way to assess effect modification on the additive scale. On 

the other hand, when dealing with binary and time-to-event outcomes, interaction terms 

in logistic and other non-linear models directly assess effect modification on the 

multiplicative scale. When an exposure is continuous or binary (as opposed to categorical) 

the p-value for the interaction term in a linear regression model can be interpreted as 

strength of evidence against the null hypothesis of no interaction on the additive scale, 

while in non-linear models the p-value refers to an interaction on the multiplicative scale. 

If the exposure is categorical, likelihood ratio tests can be used to compare models with 

and without the interaction term, with these being interpreted on the same scale as the p-

value for a continuous exposure would be. In all cases, stratified models or marginal 

predictions then allow assessment of how the effect estimates actually differ across strata 

of the effect modifier.  
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* A further 39 also withdrew consent but were already excluded from analysis due to missing data. 
** Includes 26 observations with apparently incorrect coordinates (from a total of 91, the rest of 

which were excluded earlier due to missing data) 
 

Figure 3.13 Flow diagram of exclusions from full UK Biobank samples for analysis 
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For both continuous and non-continuous outcomes, more complicated techniques can be 

employed to switch to the other scale for the assessment of effect modification82. For 

continuous outcomes, log-linear models can be used to assess effect modification on the 

multiplicative scale, and for binary or time-to-event outcomes, measures such as the 

relative excess risk due to interaction (RERI) can be calculated87,88. Presentation of effect 

modification results from observational studies using RERI measures is recommended by 

the STROBE guidelines89.  

The additive scale is the more informative with respect to the potential public health 

consequences of the exposure for different strata of the effect modifier, because unlike the 

multiplicative scale, it estimates the absolute increase in risk taking into account baseline 

risk in each strata of the effect modifier82. Put another way, the multiplicative scale might 

indicate larger effects of an exposure in one group than another, but if the risk of the 

outcome is much lower in that group to begin with, the overall public health consequences 

of intervening on the exposure in that group will be minimal. On the other hand, the 

multiplicative scale might show an equally strong effect of an exposure on all groups (i.e. 

no effect modification), but if one group has a much higher baseline risk of the outcome, 

intervening on the exposure in that group would benefit a greater number of people. 

Assessing effect modification only on the multiplicative scale would preclude us from 

reaching that important conclusion.   

Therefore, on the understanding that the additive scale is the preferred scale for assessing 

effect modification for this thesis, the type of outcome being modelled in each Chapter 

has dictated how I have assessed effect modification. In Chapters 4-7, where the outcomes 

are continuous measures of adiposity, I use linear models and am therefore working on 

the additive scale. Amongst these analyses, when the exposure and effect modifiers are 

categorical (Chapters 4 and 6), I use likelihood ratio tests to compare linear models with 

and without inclusion of interaction terms. When both are continuous variables (Chapters 

5 and 7), I simply assess the p-value for the interaction term directly from the model. 

In Chapter 8 where I deal with time-to-event outcomes, I assess effect modification on the 

additive scale by calculating the RERI. Details of how this is calculated and interpreted are 

provided in the methods section of Chapter 8. Essentially, the model is estimated with a 

single reference category for all combinations of levels of the exposure and potential 

modifier, and the RERI is calculated as per equation 2: 

RERI = HR11 – HR10 – HR01 + 1           (equation 2) 
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where HR11 represents the hazard ratio (relative to the reference category) for people 

'exposed' to both the primary exposure and the effect modifier, HR10 represents the hazard 

ratio for people exposed to the primary exposure but not the effect modifier, and HR01 

represents the hazard ratio for people exposed to the effect modifier but not the primary 

exposure. Evidence of effect modification is indicated by a departure of the RERI from zero 

(whether above or below zero depends on how the exposure and outcome are defined). 

 Sensitivity analyses 

To test the robustness of my findings to potential sources of bias and various analytical 

choices that may have influenced the internal validity of the study, in each chapter I 

include several sensitivity analyses. These are summarised as: 

 Negative control analysis to examine risk of residual confounding 

To assess the possibility that the main associations of interest in the thesis are residually 

confounded, I designed a negative control analysis in Chapter 4 in which I used height as 

a negative outcome control.  

The use of negative controls has been advocated as a way to check for residual 

confounding90. Negative controls can be either exposure or outcome controls, and should 

be selected such that they have no plausible causal relationship with the outcome (in the 

case of negative exposure controls) or the exposure (in the case of negative outcome 

controls), but the control and the exposure or outcome should have a very similar set of 

common causes (potential confounders). 

Substituting height for adiposity, I estimated associations with the availability of physical 

activity facilities and proximity to a fast-food outlet, using the same modelling approach 

as in the analyses where I examined associations between these same exposures and BMI, 

waist circumference and body fat. In these analyses, insofar as the assumption holds that 

the unobserved common causes of the exposure and the control are identical, a null 

association between the exposure and the control implies an absence of residual 

confounding of the exposure-outcome association. 

 Sensitivity to choice of outcome  

In Chapter 4 I examine all three of BMI, WC and body fat as primary outcomes. In Chapter 

6 I focus on BMI as the primary outcome, but I also perform the same analyses using WC 

and body fat. I do not do this is Chapter 5 because the genetic risk alleles used in that 

chapter are specifically linked to BMI. In Chapter 7 where I explore geographical 
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heterogeneity, I examine only BMI as an outcome, since results in earlier chapters were 

consistent across adiposity measures. 

Throughout the thesis, I use a version of the BMI variable in which missing BMI values 

from the impedance machine are replaced with manual measurements taken by nurses at 

the assessment visit. This affects 1.4% of observations. In a sensitivity analysis in Chapter 

4 I check whether results of the BMI models are robust to this imputation by running the 

same model excluding the observations relying on manually recorded BMI. 

In Chapter 8, when I examine cancer-related hospital admissions, I also examine 

admissions related to breast and colorectal cancer specifically, as secondary outcomes.   

 Sensitivity to operationalisation of genetic risk 

In Chapter 5 I construct weighted polygenic risk scores, which I examine as potential 

modifiers of the association between neighbourhood exposures and BMI. Although 

weighting of each SNP in the risk scores by its published effect size is standard practice91, 

and appropriate due to the varying degree to which each SNP is associated with BMI, I 

perform sensitivity analyses using an unweighted version of each genetic risk score. In 

these, I expect to observe weaker evidence of a GxE interaction than in the main analysis, 

due to dilution of the effects of the more influential SNPs.  

 Sensitivity to covariate adjustment sets and missing data 

In Chapter 4 I consider energy intake (in kJ, measured via 24-hour recall dietary 

assessment) as a possible confounder of the association between the physical activity 

environment and adiposity, and energy expenditure (self-reported) as a possible 

confounder of the association between the food environment and adiposity. As described 

in Chapter 4, adjustment for dietary intake risked introducing selection bias (due to 

missing data) and potentially also collider bias, hence the decision not to adjust for diet, 

and to instead examine the implications of that decision in sensitivity analyses.  

In Chapter 5 I examine the possibility that the GxE interaction results might be biased by 

latent genetic structure in the UK Biobank sample, first by adjusting for 40 rather than the 

standard 10 first of the provided genetic ancestry principal components, and then by 

additionally adjusting for the geospatial coordinates (squared) of each individual’s birth 

location. 
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In Chapter 8 I perform sensitivity analyses adjusting for an additional set of potential 

confounders that I had excluded from the primary analysis due to ambiguity regarding 

temporal precedence.  

 Sensitivity to sample restrictions 

In Chapters 6 and 7 I exclude from the main analysis the 14% of UK Biobank participants 

living in non-urban postcodes. This is done because perceptions of proximity of food 

outlets and public amenity of green space are likely to differ in urban residential areas 

compared with non-urban areas73–75 and I want to account for this potential source of 

heterogeneity in the sample. In Chapter 4 I simply adjusted for urban/non-urban status, 

but in Chapter 6 where combinations of exposures are considered and where public 

greenspace is also introduced as a possible effect modifier, I am more concerned with this 

issue and want to focus on drawing inferences for an urban population. To examine 

whether the findings differ by excluding non-urban participants rather than adjusting 

models of the full sample for urbanicity, I repeat the primary analyses on the full urban 

and non-urban sample combined, adjusting for urban/non-urban status.  

In Chapter 5, the main analysis is restricted to the UK Biobank participants of White 

British ancestry because one of the two genetic risk scores is based only on SNPs associated 

with BMI in analyses of individuals with European ancestry. The other genetic risk score 

used in the main analyses includes SNPs associated with BMI in populations of non-

European descent, so I undertook a sensitivity analysis that tested for GxE interactions 

with that risk score in a sample unrestricted by ethnicity, in order to assess generalisability 

of the primary findings to the broader population.  

In Chapter 8, follow-up time in the main analysis starts immediately after baseline 

assessment (between 2007 and 2010). However, as some of the neighbourhood measures 

are based on secondary spatial data collected around 2012, I perform a sensitivity analysis 

in which I restrict follow up to 2012 onwards. 

 Ethics 

Institutional ethical approval for this PhD was granted in September 2016 by the London 

School of Hygiene and Tropical Medicine's Observational/Intervention Research Ethics 

Committee (LSHTM Ethics Reference 11897). As a research project approved by UK 

Biobank's Principal Investigator, with oversight from the UK Biobank Ethics and 

Governance Council, Board and Access Sub-Committee, the project is also covered by 

ethics approval granted to UK Biobank by the North West Multi-centre Research Ethics 
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Committee (reference number 16/NW/0274). UK Biobank also secured the approval of the 

Patient Information Advisory Group (now National Information Governance Board for 

Health & Social Care) in England and Wales for gaining access to information that would 

allow it to invite people to participate, and the Community Health Index Advisory Group 

in Scotland. 
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 NEIGHBOURHOOD BUILT ENVIRONMENTS 
AND ADIPOSITY 

4.1. Introduction 

In this chapter I present an examination of the cross-sectional associations between 

characteristics of the neighbourhood built environment and three measures of adiposity 

described in the preceding chapter. The main part of this current chapter has now been 

published as a peer-reviewed paper in The Lancet Public Health, and is presented here in 

its published form. 

The focus of the research paper is on the independent associations of neighbourhood food 

and physical activity environments with adiposity, along with possible effect modification 

by sex and household income. This paper sets up the foundation for subsequent chapters, 

by establishing the relationships within this cohort between adiposity and two of the 

central exposures on which I focus in this thesis. The research papers making up the three 

chapters following this one build on this by examining various forms of effect 

heterogeneity in these primary relationships – from interactions with genetic risk of 

obesity (Chapter 5), to modification of the effects of one neighbourhood characteristic by 

others (Chapter 6), through to geographical heterogeneity in the relationships across 

England (Chapter 7).  

As additional material in this chapter, I also examine the association between 

neighbourhood greenspace and adiposity. In the final research paper (Chapter 8), I step 

from adiposity as the outcome, to more distal outcomes – namely CVD and cancer – and 

from a cross-sectional to longitudinal study design. In that final paper I explore an 

additional exposure (neighbourhood greenspace). For completeness I therefore include at 

the end of the current chapter an additional analysis of the association between the 

neighbourhood greenspace measure that I use in Chapter 8, and adiposity, mirroring the 

main analyses of the first research paper. This greenspace measure did not become 

available until after the research paper in the current chapter was published. Furthermore, 

the relationship between greenspace and adiposity is not a primary focus of this thesis 

because other researchers using UK Biobank have already published results of a similar 

analysis using a different greenspace measure available in UKBUMP.  
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4.2. Research Paper 1 

 

Associations between fast food and physical activity environments and 
adiposity in mid-life: cross-sectional, observational evidence from UK 
Biobank 

 

Note: Further supplementary material that was published alongside, or referred to in, the 

following research paper is included in Appendix One. 
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4.3. Additional material 

Neighbourhood greenspace and adiposity 

Links between green space and health and wellbeing have long been recognised, but until 

recently rigorous scientific evidence on specific outcomes and the mechanisms involved 

has been limited. In the past decade there has emerged a substantial body of research 

investigating the relationship between routine exposure to green space, particularly in 

urban residential areas, and various health-related outcomes.  

Various conceptual models linking green space to health have been proposed1–3 and these 

typically recognise multiple pathways by which exposure to green space or nature more 

generally might influence health, including improved air quality, opportunities for 

physical activity, stress reduction and relaxation, resilience to heat‐related illness by 

mitigation of the urban heat island effect, greater social cohesion, buffering from noise 

pollution, exposure to natural light, and improved functioning of the immune system4. 

Mostly because of the potential pathway through physical activity, green space is a 

potential determinant of overweight and obesity. Some of the other pathways identified 

above may also link green space to adiposity, for example through stress reduction or the 

positive effects of exposure to sunlight (e.g. improved sleep quality, which has been linked 

to metabolic outcomes including obesity5. The total influence of these pathways on obesity 

or adiposity can and has therefore been explored in a number studies6, including one using 

UK Biobank7 as well as many studies that have focussed on the relationship between 

greenspace and physical activity as either an outcome or a mediator of greenspace-health 

associations (e.g.8–11).   

I have not focussed on the relationship between greenspace and adiposity in this thesis 

because other researchers using UK Biobank have already published results of a similar 

analysis using the greenspace measure available in UKBUMP (NDVI, which is only 

available for a subset of the cohort). The greenspace measure I use in Chapter 8 to examine 

associations with NCD outcomes did not become available until after the research paper 

in the current chapter was published. For completeness, I have repeated with the 

greenspace exposure the main, population-average analyses from the published paper, and 

I present those results here.  

No association was observed between the amount of greenspace in the immediate 

neighbourhood and any of the adiposity outcomes, nor with the negative control, height 

(Table 4.5). I also checked whether the primary results of the published paper were 

sensitive to the addition of neighbourhood greenspace to the models (i.e. whether it may 



129 

have confounded the published analyses). Adding neighbourhood greenspace to the 

maximally adjusted models in the paper (for residents of England only due to greenspace 

data availability) made only negligible difference to the estimates for the formal physical 

activity environment. Estimates for proximity to a fast-food outlet were slightly 

attenuated, but upon further examination it was apparent that this was due to the 

restriction of the sample to residents of England, rather than adjustment for greenspace 

(not shown). 

 

Table 4.5 Associations between neighbourhood greenspace and adiposity 

 WC (cm) BMI (kg/m2) % body fat 
Height (%) 

(negative control) 

Greenspace + Gardens  
(300m buffer) 

(n=355,471) (n=355,049) (n=349,890) (n=355,249) 

Least greenspace ref ref ref ref 
Q2 0.35 (0.01, 0.69) 0.23 (0.10, 0.35) 0.25 (0.09, 0.42) -0.11 (-0.21, -0.01) 
Q3 0.22 (-0.20, 0.65) 0.21 (0.04, 0.39) 0.23 (0.04, 0.43) -0.11 (-0.25, 0.02) 
Q4 0.05 (-0.39, 0.49) 0.13 (-0.04, 0.29) 0.15 (-0.03, 0.33) -0.04 (-0.19, 0.11) 
Most greenspace -0.27 (-0.76, 0.22) 0.01 (-0.17, 0.19) -0.05 (-0.24, 0.14) -0.01 (-0.16, 0.14) 
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 GENETIC RISK OF OBESITY AS A MODIFIER OF 
ASSOCIATIONS BETWEEN NEIGHBOURHOOD 
ENVIRONMENT AND BODY MASS INDEX  

5.1. Introduction 

In the previous chapter I presented evidence for characteristics of the physical activity and 

fast-food environments around people’s homes being associated with adiposity, averaged 

across a study population of adults in mid-life, and also showed there were some gender- 

and income-related differences in the magnitude of those associations. These findings are 

consistent with some, but not all, other studies that have asked the same or similar 

research questions in other samples and other settings. In this next chapter I build upon 

those findings, extending – beyond gender and income differences – the idea that 

neighbourhood effects may not apply universally. Here in Chapter 5 I examine whether 

some individuals may be more sensitive to potentially obesogenic features of their local 

environment, depending on their underlying genetic risk of obesity. I present a research 

paper based on a novel study of gene-environment interactions, in which I have used the 

detailed genetic data in the UK Biobank resource to construct polygenic risk scores for 

obesity and tested whether these interact with measures of the neighbourhood food and 

PA environments to influence BMI. I also test interactions with a series of individual 

genetic variants linked to BMI through either diet or PA pathways, to check for consistency 

with the results of the polygenic risk score analyses. 

Having improved the manuscript following a round of peer review with JAMA, I am now 

preparing the version included here for submission to PLoS Medicine. 
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5.2. Research Paper 2 

 

Genetic risk of obesity as a modifier of associations between 
neighbourhood environment and Body Mass Index  

 

Note: Supplementary material for this research paper is included in Appendix Two. 
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Genetic risk of obesity as a modifier of associations between 
neighbourhood environment and Body Mass Index  

ABSTRACT  

Background: There is growing recognition that recent global increases in obesity are the 

product of a complex interplay between genetic and environmental factors. However, in 

gene-environment studies of obesity, ‘environment’ usually refers to individual 

behavioural factors that influence energy balance, while more upstream environmental 

factors are overlooked. We examined gene-environment interactions between genetic risk 

of obesity and two neighbourhood characteristics likely to be associated with obesity 

(proximity to takeaway/fast-food outlets and availability of physical activity facilities) and 

genetic risk of obesity. 

Methods: We used data from 335,046 adults aged 40-70 in the UK Biobank cohort to 

conduct a population-based cross-sectional study of interactions between neighbourhood 

characteristics and genetic risk of obesity, in relation to BMI. Proximity to a fast-food 

outlet was defined as distance from home address to nearest takeaway/fast-food outlet, 

and availability of physical activity facilities as the number of formal physical activity 

facilities within one kilometre of home address. Genetic risk of obesity was operationalised 

by 91-SNP and 69-SNP weighted genetic risk scores, and by six individual SNPs considered 

separately. Multivariable, mixed effects models with product terms for the gene-

environment interactions were estimated. 

Results: After accounting for likely confounding, the association between proximity to 

takeaway/fast-food outlets and BMI was stronger among those at increased genetic risk of 

obesity, with evidence of an interaction with polygenic risk scores (P=0.018 and P=0.028 

for 69-SNP and 91-SNP scores, respectively) and in particular with a SNP linked to MC4R 

(P=0.009), a gene known to regulate food intake. We found no evidence of a gene-

environment interaction for availability of physical activity facilities.  

Conclusions: Individuals at an increased genetic risk of obesity may be more sensitive to 

exposure to the local fast-food environment.  Ensuring that neighbourhood residential 

environments are designed to promote a healthy weight may be particularly important for 

those with greater genetic susceptibility to obesity. 
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BACKGROUND 

Obesity has a heritable component1, but the rapid rise in global obesity prevalence 

suggests an important role for environmental influences2. However, individuals may have 

differing physiological or behavioural responses to the increasingly ‘obesogenic’ 

environment, suggesting that a complex interplay between genetic and non-genetic 

factors affects weight3,4.  

Advances in genotyping technologies have enabled the investigation of gene-environment 

(GxE) interactions4,5. For obesity outcomes, the ‘environment’ in GxE studies is often 

operationalised as the lifestyle or behavioural factors that influence energy balance6, 

rather than more upstream features of the built and social environments; the settings 

where behavioural ‘choices’ are made and constrained. Despite long being recognised in 

social epidemiology as potentially important determinants of weight status, these ‘socio-

ecological’ environmental factors have been examined in only a small number of GxE 

studies7–12. 

The residential neighbourhood environment comprises many features that potentially 

influence energy balance. These include the proximity, density and relative proportions of 

healthy and unhealthy food retailers13–15, and resources for physical activity (PA), such as 

leisure centres, swimming pools, gyms and sports fields16–19. Other neighbourhood features 

linked to energy balance include walkability, access to public transport and local resources 

such as public parks and greenspace20,21. If the genetic risk of obesity modifies the influence 

of these neighbourhood exposures, we would expect to observe differential effects of the 

residential environment on body mass index (BMI) according to level of genetic risk. The 

influence of the environment may be strongest in people with high genetic risk due to 

increased sensitivity to external factors22,23, or it may be strongest in people with low 

genetic risk, who maximise their genetic ‘advantage’ within a healthier environment while 

those at greater risk express a higher BMI phenotype regardless of environmental factors6. 

In this study we use the UK Biobank cohort to examine whether genetic risk of obesity 

modifies the effect of two residential environment exposures likely to influence BMI: 

proximity to fast-food and availability of formal PA facilities. We operationalise genetic 

risk in two ways. First, using polygenic risk scores derived from single nucleotide 

polymorphisms (SNPs) linked to BMI, and second, using the individual SNPs most 

strongly linked to BMI and thought to be involved in diet or PA pathways.  



137 

METHODS 

Data 

We used baseline data from UK Biobank24. Data were potentially available from 502,656 

individuals who visited 22 UK Biobank assessment centres across the UK between 2006 

and 2010. Individuals aged 40–69 years living within 25 miles of an assessment centre and 

listed on National Health Service (NHS) patient registers were invited to participate.  

Linked to UK Biobank is the UK Biobank Urban Morphometric Platform (UKBUMP), a 

high-resolution spatial database of objectively measured characteristics of the physical 

environment surrounding each participant’s residential address, derived from multiple 

national spatial datasets25. Environmental measures include densities of various land uses 

and proximity to various health-relevant resources. Measures for the current study are 

available for 96% of the UK Biobank sample.  

Genome-wide genetic data are available for 488,363 participants. Genetic data are missing 

from 3% of the sample as insufficient DNA was extracted from blood samples for 

genotyping assays. SNP genotypes not directly assayed were imputed. Procedures used to 

derive the genetic data and undertake quality assurance are reported in Bycroft et al26. 

Genetic data for the relevant SNPs were downloaded, decrypted and linked to participant 

IDs to facilitate analysis.  

Outcome  

Body Mass Index (BMI, kg/m2) was calculated from weight and height measurements 

collected by trained staff using standard procedures24. The variable was normally 

distributed and analysed as a continuous outcome variable. 

Neighbourhood exposures  

We examined interactions between genetic risk and two neighbourhood characteristics 

likely to influence BMI: availability of formal PA facilities (number of indoor and outdoor 

sporting and leisure facilities within a one-kilometre street-network distance of an 

individual’s home) and fast-food proximity (distance in metres to nearest takeaway/fast-

food outlet). Greater neighbourhood availability of PA facilities may influence BMI 

through increased opportunities for physical activity, and greater distances from home to 

fast-food outlets may influence BMI by reducing access to fast food27,28.  In prior analyses 

we found both were associated with BMI in the expected direction – that is, living further 
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from a fast-food outlet, or having more PA facilities near home, was associated with having 

a lower BMI16. Both exposures were analysed as continuous variables, with higher values 

of each (more facilities; greater distance to nearest fast-food outlet) representing lower 

exposure. Due to the positively skewed distribution of these variables, number of PA 

facilities was capped at 15 (<1% recoded from >15) and distance to nearest fast-food outlet 

was log transformed (base 10) such that regression coefficients were interpreted as the 

mean difference in BMI associated with a 10-fold increase in distance to nearest fast-food 

outlet e.g. 100 metres to one kilometre.   

Genetic risk scores and individual SNPs  

A recent genome-wide association study (GWAS) identified 97 SNPs associated with 

BMI29. We constructed a genetic risk score (GRS) based on 91 of these SNPS, excluding six 

SNPs identified elsewhere30 as being in linkage disequilibrium with other included SNPs 

(rs17001654, rs2075650 and rs9925964) or having pleiotropic effects (rs11030104, rs3888190, 

rs13107325), both of which may produce bias in associations between the genetic risk score 

and the outcome, and in interaction analyses31. We also constructed an alternative GRS, 

the same as one by used Tyrrell and colleagues30 in a study of UK Biobank participants of 

White British ancestry, in which they tested interactions between genetic risk and 

behavioural exposures using a GRS derived from 69 of the SNPs identified in the recent 

GWAS. Their GRS excluded SNPs from secondary meta-analyses of studies of regional, 

sex-stratified or non-European-descent populations29, and one SNP (rs2033529) that was 

unavailable at the time of their study. Full lists of the SNPs included in each of the 91-SNP 

and 69-SNP risk scores are provided in Supplementary Table 4 (Appendix Two). The GRSs 

were constructed by summing the number of BMI-increasing alleles across the set of 69 

or 91 loci, and weighting the allele count at each SNP by its published effect size29. For 

imputed SNP genotypes we used the imputed allelic dosages.       

From the literature we identified individual SNPs with a well-established link to obesity 

and the largest published effect sizes (rs1558902 rs6567160 rs13021737, markers of the FTO, 

MC4R and TMEM18 genes respectively)1,29, and three SNPs recently linked to physical 

activity (rs13078960, rs10938397 and rs7141420, markers of CADM2, GNPDA2 NRXN3)32,33. 

We tested for interactions between the number of BMI-increasing alleles at each of these 

loci, and each neighbourhood variable. We hypothesise that if GxE interactions are 

observed for these SNPs, those SNPs implicated in dietary behaviour will only interact 

with the fast-food environment, and those implicated in PA behaviour will only interact 

with the PA environment.  
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Covariates  

Models were adjusted for potential confounding by age, sex, educational attainment, 

household income, employment status, area deprivation (Townsend score), urban/non-

urban status, and neighbourhood residential density and mutually adjusted for the other 

neighbourhood exposure. We also corrected for population stratification by adjusting for 

the first ten of 40 UK Biobank-provided genetic ancestry principal components from a 

genome-wide PCA of UK Biobank’s genetic data26. 

Statistical analysis & analytic sample 

Accounting for the nested structure of the data (individuals within assessment areas), we 

used mixed effects models with a random coefficient for the neighbourhood exposure and 

assuming an unstructured variance/covariance matrix. Models included an interaction 

term between the neighbourhood exposure and the genetic risk score, with both analysed 

as continuous variables. BMI difference per unit change in the exposure was estimated for 

each quintile of genetic risk. The p-value for the additive interaction term was interpreted 

as strength of evidence of effect modification. The marginal predicted values of BMI 

associated with different levels of each neighbourhood exposure from these models were 

plotted for the top and bottom quintile of genetic risk, to visualise observed effect 

heterogeneity according to genetic risk. A complete case analysis was used, restricted to 

UK Biobank participants of White British ancestry (defined by concordant self-report and 

PCA results for White British/Caucasian ancestry) for the primary analyses (N=335,046) 

because the smaller GRS was limited to SNPs associated with BMI in analyses of 

individuals with European ancestry. Analysis was performed using Stata SE v14.2 (Stata 

Corp, Texas USA). 

Sensitivity analyses  

As the 91-SNP GRS included SNPs associated with BMI in populations of non-European 

descent, we undertook a sensitivity analysis that tested for an interaction with the 91-SNP 

GRS in a sample unrestricted by ethnicity to test generalisability to the wider source 

population. To explore the possibility that results might be biased by latent genetic 

structure in the sample – a concern regarding genetic analyses involving UK Biobank34 – 

we also performed sensitivity analyses in which models were adjusted for all 40 genetic 

ancestry principal components, and for birth location. Finally, although weighting of the 

polygenic risk scores is appropriate due to the varying degree to which each SNP is 

associated with BMI, we performed sensitivity analyses using an unweighted version of 
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each GRS.  Evidence of a GxE interaction using unweighted scores is expected to be 

weaker, due to dilution of the effects of the more influential SNPs. 

Ethics 

UK Biobank has ethical approval from the North West Multi-centre Research Ethics 

Committee (reference 16/NW/0274), the Patient Information Advisory Group (PIAG), and 

the Community Health Index Advisory Group (CHIAG). Additional ethical approval for 

the specific study was obtained from the London School of Hygiene and Tropical 

Medicine’s Research Ethics Committee in September 2016 (reference 11897). 

RESULTS 

The sample was 52.2% female, with a mean age of 56.5 years (range 40-70 years at baseline). 

Mean BMI was 27.4 kg/m2 (SD=4.7), median distance to nearest fast-food outlet was 1171 

metres and median number of PA facilities within one kilometre of home was one. Sample 

characteristics are summarised in Table 5.1.  

Using the two alternative weighted genetic risk scores, we observed evidence of an 

interaction between fast-food proximity and genetic risk (P=0.028 for the 91-SNP GRS, 

P=0.018 for the 69-SNP GRS). The magnitude of the estimated effect between fast-food 

proximity and BMI was small at all levels of genetic risk, but increased as genetic risk 

increased. In the highest quintile of genetic risk of obesity (based on the 91-SNP GRS), 

each 10-fold increase in distance to the nearest fast-food store was associated with a 

0.194kg/m2 lower mean BMI (95%CI: -0.326,-0.062), which was twice the magnitude of 

association in the lowest risk quintile (β=-0.081; 95%CI: -0.213,0.052) (Table 5.2; Figure 5.1).    
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Table 5.1 Characteristics of total sample and top and bottom quintile of 91-SNP 
genetic risk score 

 
91-SNP genetic risk score 

Total sample 
 Quintile 1 

(lowest risk of 
obesity) 

Quintile 5 
(highest risk of 

obesity) 
Total number of participants 64269 69577 335046     
BMI (kg/m2) (mean, SD) 26.5 (4.3) 28.3 (5.1) 27.4 (4.7)     
Distance to nearest fast-food outlet (m) 
(median, IQR) 

1172 (634 - 2302) 1169 (626 - 2290) 1171 (630-2301) 
    
Number of PA facilities within 1km of 
home address (median, IQR) 

1 (0 - 3) 1 (0 - 3) 1 (0 - 3) 
    
Age (mean, SD) 56.5 (8.0) 56.5 (8.0) 56.5 (8.0) 
    
Sex (female) 33876 (52.7%) 35923 (51.6%) 174872 (52.2%) 
    
Income    
Less than 18,000 14154 (22.0%) 15734 (22.6%) 74556 (22.3%) 
18,000 to 30,999 16497 (25.7%) 18270 (26.3%) 86917 (25.9%) 
31,000 to 51,999 17013 (26.5%) 18374 (26.4%) 88721 (26.5%) 
52,000 to 100,000 13269 (20.7%) 13738 (19.8%) 67908 (20.3%) 
Greater than 100,000 3336 (5.2%) 3461 (5.0%) 16944 (5.1%) 
    
Education    
College or University degree 21462 (33.4%) 22412 (32.2%) 110153 (32.9%) 
A levels/AS levels or equivalent 7635 (11.9%) 7961 (11.4%) 39017 (11.7%) 
O levels/GCSEs or equivalent 14262 (22.2%) 15779 (22.7%) 74966 (22.4%) 
CSEs or equivalent 3500 (5.5%) 3933 (5.7%) 18722 (5.6%) 
NVQ or HND or HNC or equivalent 4266 (6.6%) 4782 (6.9%) 22892 (6.8%) 
Other professional qualifications 3302 (5.1%) 3527 (5.1%) 16954 (5.1%) 
None of the above 9842 (15.3%) 11183 (16.1%) 52342 (15.6%) 
    
Employment status    
Paid employment or self-employed 38217 (59.5%) 41326 (59.4%) 199280 (59.5%) 
Retired 21330 (33.2%) 23096 (33.2%) 111113 (33.2%) 
Unable to work 1756 (2.7%) 2055 (3.0%) 9457 (2.8%) 
Unemployed 769 (1.2%) 878 (1.3%) 4238 (1.3%) 
Home duties/carer/student/other 2197 (3.4%) 2222 (3.2%) 10958 (3.3%)  

   
Urbanicity (% urban dwelling) 54560 (84.9%) 59018 (84.8%) 284471 (84.9%) 
    
Area deprivationa (mean, SD) -1.6 (2.9) -1.6 (2.9) -1.6 (2.9) 
    
Residential densityb (median, IQR) 1794 (1041 - 2934) 1801 (1043 - 2911) 1798 (1044 - 2918) 

a 2001 Townsend index score 
b Residential address points per 1km street-network buffer 
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There was less evidence that the association between availability of PA facilities and BMI 

was modified by genetic risk. The magnitude of the association between number of formal 

PA facilities within 1km of home and BMI was similar at all levels of genetic risk, and while 

effect estimates did increase slightly with increasing genetic risk, differences between risk 

groups were small with little evidence of interaction for both the 91-SNP GRS (P=0.530) 

and 69-SNP GRS (P=0.178). For both environmental exposures, the results obtained from 

the two different weighted GRSs were substantively similar, but evidence of an interaction 

with the 69-SNP GRS was somewhat stronger (Table 5.2;Figure 5.1). The plots in Figure 5.1 

also demonstrate that the BMI difference between the highest and lowest risk quintiles is 

greater for the 91-SNP GRS than the 69-SNP GRS, reflecting the fact that the larger GRSs 

captures more of the genetic variation in BMI. 

Examination of interactions between neighbourhood variables and specific SNPs revealed 

strong evidence of one interaction: among people with higher risk allele counts at the 

marker of MC4R, which encodes the melanocortin-4 receptor previously shown to be 

important in the regulation of food intake, living nearer to a fast-food store was more 

closely associated with higher BMIs than it was among people with fewer risk alleles at 

this locus (Pinteraction=0.009; Table 5.3 and Figure 5.2). Some evidence of an interaction 

between fast-food proximity and rs1558902, the marker of the FTO gene (P=0.067), where 

again the higher risk group showed a stronger association between fast-food proximity 

and BMI was observed. We also observed some evidence of a GxE interaction between the 

availability of PA facilities and rs13021737 (in the TMEM18 gene) (P=0.076). In this case, 

increased genetic risk attenuated the association between availability of PA facilities and 

BMI slightly, but the difference in magnitude between high and low risk groups was small 

(Figure 5.2). 
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Table 5.2 Associations between neighbourhood variables and BMI, by quintile of genetic risk based on 91-SNP and 69-SNP risk scores 

  91-SNP GRS 69-SNP GRS 

  

Quintile of 
genetic risk 

Mean BMI difference for 
unit increase in 

neighbourhood exposure 
P-interaction 

Quintile of 
genetic risk 

Mean BMI difference for 
unit increase in 

neighbourhood exposure 
P-interaction 

Fast-food proximitya,b 
(beta represents BMI difference for 
a 10-fold increase in distance (m) to 
nearest fast-food outlet) 

Q1 -0.081 (-0.213, 0.052) 

0.028 

Q1 -0.080 (-0.214, 0.055) 

0.018 
Q2 -0.115 (-0.239, 0.009) Q2 -0.117 (-0.243, 0.009) 

Q3 -0.137 (-0.259, -0.014) Q3 -0.140 (-0.264, -0.017) 

Q4 -0.158 (-0.282, -0.035) Q4 -0.164 (-0.289, -0.039) 

Q5 -0.194 (-0.326, -0.062) Q5 -0.204 (-0.337, -0.070) 

Availability of PA facilitiesa,c  
(beta represents BMI difference for 
each additional facility) 

Q1 -0.074 (-0.100, -0.047) 

0.530 

Q1 -0.070 (-0.097, -0.044) 

0.178 
Q2 -0.075 (-0.101, -0.049) Q2 -0.074 (-0.099, -0.048) 

Q3 -0.076 (-0.101, -0.050) Q3 -0.076 (-0.101, -0.050) 

Q4 -0.077 (-0.103, -0.051) Q4 -0.078 (-0.103, -0.052) 

Q5 -0.078 (-0.105, -0.052) Q5 -0.081 (-0.106, -0.054) 

a Regression models were adjusted for age (years), sex (male/female), highest education level attained (Degree; A level or equivalent; O level or equivalent; CSE or 
equivalent; NVQ/HND/HNC; other professional qualification; none of the above), annual household income (<£18,000; £18,000-£30,999; £31,000-£51,999; £52,000-
£100,000; >£100,000), employment status (paid work, retired, unable to work, unemployed, other), area deprivation (Townsend score), urbanicity (urban/non-
urban), neighbourhood residential density (count of residential features within a one-km street network buffer of home address, log transformed).  
b Also adjusted for availability of PA facilities.  
c Also adjusted for fast-food proximity.  
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Figure 5.1 Association between neighbourhood variables and BMI in the highest and lowest quintiles of genetic risk, based on (a) 69-
SNP Genetic Risk Score, and (b) 91-SNP Genetic Risk Score  
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Table 5.3 Association between neighbourhood variables and BMI, testing interaction 
with number of risk alleles at selected loci 

 rs1558902 (FTO) 

 P-interaction 
Homozygous low risk 

(0 risk alleles) 
Heterozygous 
(1 risk allele) 

Homozygous high risk 
(2 risk alleles) 

Fast-food 
proximity 

0.067 -0.099 (-0.198, -0.001) -0.148 (-0.238, -0.059) -0.197 (-0.305, -0.088) 

PA facilities  0.933 -0.077 (-0.104, -0.050) -0.077 (-0.103, -0.051) -0.076 (-0.104, -0.049) 

 rs6567160 (MC4R) 

 P-interaction 
Homozygous low risk 

(0 risk alleles) 
Heterozygous 
(1 risk allele) 

Homozygous high risk 
(2 risk alleles) 

Fast-food 
proximity 

0.009 -0.096 (-0.188, -0.003) -0.177 (-0.271, -0.083) -0.258 (-0.386, -0.130) 

PA facilities  0.606 -0.078 (-0.104, -0.051) -0.075 (-0.102, -0.049) -0.073 (-0.103, -0.043) 

 rs13021737  (TMEM18) 

 P-interaction 
Homozygous low risk 

(0 risk alleles) 
Heterozygous 
(1 risk allele) 

Homozygous high risk 
(2 risk alleles) 

Fast-food 
proximity 

0.993 -0.135 (-0.226, -0.043) -0.135 (-0.234, -0.036) -0.135 (-0.279, 0.008) 

PA facilities  0.076 -0.080 (-0.106, -0.053) -0.071 (-0.098, -0.043) -0.061 (-0.093, -0.030) 

 rs13078960 (CADM2) 

 P-interaction 
Homozygous low risk 

(0 risk alleles) 
Heterozygous 
(1 risk allele) 

Homozygous high risk 
(2 risk alleles) 

Fast-food 
proximity 

0.114 -0.159 (-0.252, -0.066) -0.108 (-0.205, -0.010) -0.056 (-0.192, 0.081) 

PA facilities  0.419 -0.076 (-0.102, -0.049) -0.079 (-0.106, -0.053) -0.083 (-0.114, -0.053) 

 rs10938397 (GNPDA2) 

 P-interaction 
Homozygous low risk 

(0 risk alleles) 
Heterozygous 
(1 risk allele) 

Homozygous high risk 
(2 risk alleles) 

Fast-food 
proximity 

0.328 -0.115 (-0.215, -0.015) -0.141 (-0.230, -0.052) -0.167 (-0.274, -0.061) 

PA facilities  0.694 -0.076 (-0.102, -0.049) -0.077 (-0.103, -0.051) -0.079 (-0.106, -0.051) 

 rs7141420 (NRXN3) 

 P-interaction 
Homozygous low risk 

(0 risk alleles) 
Heterozygous 
(1 risk allele) 

Homozygous high risk 
(2 risk alleles) 

Fast-food 
proximity 

0.520 -0.152 (-0.257, -0.048) -0.135 (-0.227, -0.043) -0.118 (-0.224, -0.012) 

PA facilities  0.125 -0.071 (-0.097, -0.044) -0.077 (-0.102, -0.051) -0.083 (-0.110, -0.056) 
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Figure 5.2 Association between neighbourhood variables and BMI according to number of risk alleles at individual SNPs where 
Pinteraction<0.10 (rs1558902 & rs6567160 for fast-food proximity; rs13021737 for availability of PA facilities)
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In sensitivity analyses, interactions between fast-food proximity and genetic risk were – as 

expected – weaker when the genetic risk scores were not weighted by the effect sizes of 

the component SNPs, with mean differences in BMI more similar across levels of genetic 

risk than we observed using the weighted score (Supplementary Table 5). Expanding the 

sample to include non-White ethnicities, we observed slightly increased P-values for the 

interaction terms but otherwise no substantive difference from the primary analysis 

(Supplementary Table 6). For all models, the impact of adjusting for 40 rather than 10 

genetic ancestry principal components was negligible, while some attenuation of the 

interaction between fast-food proximity and polygenic risk occurred when adjusting for 

birth location (Supplementary Table 7). 

DISCUSSION 

In UK Biobank we found evidence that genetic risk of obesity modifies sensitivity to the 

neighbourhood food environment, though effects are small. We found that people at 

higher genetic risk of obesity have higher average BMI the closer they live to a fast-food 

outlet, whereas for those at low genetic risk of obesity, distance to the nearest fast-food 

outlet does not appear to be associated with BMI. In contrast, an overall negative 

association between neighbourhood availability of PA facilities and BMI varies very little 

across levels of polygenic risk. 

The observed gene-environment interaction for fast-food proximity using polygenic risk 

scores was supported by stronger evidence of an interaction between fast-food proximity 

and a specific SNP near MC4R, a gene known to be involved in regulation of food intake35. 

Previous research has linked MC4R specifically to binge eating36 although this remains 

contested37. We also observed some evidence of a possible interaction with a SNP marker 

of FTO, a gene with well-established links to obesity. While FTO has long been recognised 

as an obesity-associated locus, and has been implicated in central nervous system 

regulation of appetite, its exact function remains poorly understood1. In a study of gene-

diet interactions, genetic risk scores for BMI were found to be associated with fried food 

consumption, and, consistent with our results, individual loci in or near both MC4R and 

FTO contributed to this38.  

Limited evidence for an interaction between genetic risk and the PA environment is 

consistent with findings from a recent study in adolescents that found that availability of 

recreation facilities did not contribute to the attenuation by PA of genetic risk of obesity32. 
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While overall genetic risk of obesity did not interact with the PA environment in our study, 

the weaker association we observed between the availability of PA facilities and BMI in 

those with more risk alleles at the TMEM18 locus suggests that some specific SNPs might. 

Further examination of other SNPs is warranted.  Lack of interaction with specific SNPs 

might be explained by the pathways they influence being less sensitive to environmental 

exposures. As the functional pathways by which most BMI-associated loci influence BMI 

remain poorly understood, it is difficult to speculate further. 

Stronger evidence for interactions with specific SNPs highlights the lack of specificity of 

polygenic risk scores. While useful in exploratory studies, grouping all SNPs statistically 

associated with a complex phenotype such as BMI into a single score, regardless of the 

function of the genes they represent, may dilute or obscure important interactions. Scores 

based on known or putative biological mechanisms may prove more valuable, particularly 

for elucidating causal relationships. We observed very similar results for both the 69-SNP 

and 91-SNP genetic risk scores, although the smaller GRS yielded stronger evidence of 

interaction. It may be that the additional SNPs in the larger GRS diluted the interaction 

due to being associated with BMI only in some population subgroups, and some having 

been linked to BMI only in more ethnically diverse populations than our primary sample.  

We have reported elsewhere that the main association between fast-food proximity and 

BMI in UK Biobank may be attenuated due to measurement error in the exposure16, and 

because the exposure does not account for other, healthier elements of the food 

environment39. Compared with other measures of the fast-food environment, proximity 

measures may also produce more conservative estimates of association with relevant 

outcomes40. In a regional sub-sample of UK Biobank, others have recently improved on 

this measurement of the food environment and found stronger associations41. In this 

study, where the main effect sizes are relatively small, even the reasonably strong 

interaction effects we observed translate to small differences between high and low risk 

groups. However, given the likely measurement error and the distal and complex nature 

of the relationships under investigation, detecting even weak associations and small 

differences might point to potentially important processes. Here we examined only two 

characteristics of neighbourhood environments; others may also interact with genetic risk. 

For example, GxE interactions have recently been reported for neighbourhood walkability 

and obesity11, and neighbourhood deprivation and BMI10. Given that unhealthy 

characteristics of neighbourhoods often cluster together42, the combined effects of 
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multiple ‘obesogenic’ features on those at increased genetic risk of obesity may be 

substantial. 

Our findings provide evidence for a potentially important GxE interaction, but further 

confirmatory studies are required. Another recent study found a strong GxE interaction 

between genetic risk of obesity and socioeconomic status, and while our analyses are 

adjusted for several socioeconomic indicators, if there remains any residual confounding 

by SES it may be contributing to the GxE interactions we observed. Geographical genetic 

structure in the sample remains a risk, even after adjustment for ancestry components and 

geography. Such structure may induce spurious associations with polygenic risk scores in 

particular34. In sensitivity analyses we found that adjustment for additional ancestry 

principal components had negligible impact on the strength of evidence for the GxE 

interactions we tested, but evidence for a genetic interaction with fast-food proximity was 

slightly weaker following adjustment for birth location. Further investigation of the effect 

of the residual genetic structure in the sample is warranted. GxE interactions are also 

sensitive to the scaling of environmental variables, and the power to detect a GxE 

interaction can depend on the main effect sizes, and distribution and measurement quality 

of the genetic and environmental variables43. Studies using UK Biobank are also at risk of 

selection bias due to a low response rate44. It is important these analyses are replicated in 

other samples at lower risk of these biases.  

It is widely accepted that environmental factors are important in explaining the recent rise 

in the global prevalence of overweight and obesity. In this study, we find evidence that 

people at higher genetic risk of obesity may more sensitive to exposure to the residential 

fast-food environment. Ensuring that neighbourhood residential environments are 

designed to promote a healthy weight may be particularly important for those with genetic 

susceptibility to obesity.   
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 INTERACTIONS BETWEEN NEIGHBOURHOOD 
CHARACTERISTICS IN RELATION TO 
ADIPOSITY 

6.1. Introduction 

Associations between one neighbourhood exposure and an outcome such as obesity might 

vary according to other neighbourhood factors. Some features of a neighbourhood might 

matter more (or only) in the presence or absence of other features, e.g. because of 

synergistic or antagonistic effects.  

Building on the results of Chapter 4, where I observed an association between availability 

of formal physical activity facilities and three measures of adiposity, I consider whether 

this association is constant regardless of other features of the neighbourhood, or, as seems 

plausible and perhaps likely, whether the relationship with adiposity varies according to 

the concurrent level of exposure to fast-food outlets and informal resources for physical 

activity, such as parks. I hypothesise that among people with limited exposure to parks 

near home, the role of formal PA facilities will be greater, and therefore the association 

between their availability and adiposity will be stronger than it is among people with 

greater local access to parks and other public green and open spaces. I also hypothesise 

that among people with the highest level of exposure to fast-food outlets near home 

(measured as proximity, as in Chapter 4), the association between PA facilities and 

adiposity will be weaker than it is among those who live further from a fast-food outlet, 

because unhealthy effects of the food environment will dampen the beneficial effects of 

greater access to PA resources. 

I focus on PA facilities as the primary exposure because of the potential for their 

association with adiposity to be influenced in these two different ways – via alternative 

resources that might drive energy expenditure, and via an effect on adiposity through 

energy intake pathways.   

At the time of thesis submission I am finalising the paper manuscript in this chapter for 
submission to Social Science and Medicine.  
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6.2. Research Paper 3 

Do neighbourhood characteristics act together to influence BMI? A cross-
sectional study of urban parks and takeaway food stores as modifiers of the 
effect of physical activity facilities 

 

Note: Supplementary material for this research paper is included in Appendix Three. 
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Do neighbourhood characteristics act together to influence BMI? 
A cross-sectional study of urban parks and takeaway food stores 
as modifiers of the effect of physical activity facilities 

ABSTRACT 

Background: Studies exploring associations between neighbourhood environment and 

obesity often overlook the fact that neighbourhoods are multi-dimensional and that the 

effects of one environmental exposure may be modified by another. We examine whether 

associations between neighbourhood availability of formal PA facilities and body mass 

index (BMI) are modified by neighbourhood availability of public green spaces and 

proximity to fast-food outlets.  

Methods: We used cross-sectional data from the UK Biobank cohort and linked UK 

Biobank Urban Morphometric Platform (UKBUMP) for 345,254 urban-dwelling adults 

aged 40-69. We examined associations between objectively measured BMI and the 

number of formal PA facilities (gyms, pools, etc.) within 1km of each individual’s home, 

testing separately for interactions with the number of local public green spaces, and 

distance to nearest fast-food/takeaway store. We estimated modifier-stratified 

associations using multivariable, multilevel regression models to account for a clustered 

sampling design and potential confounding. Likelihood ratio tests were used to assess 

statistical interactions.  

Results: An inverse association between the number of local PA facilities and BMI was 

somewhat stronger among people with fewer urban green spaces in their neighbourhood 

than among those with more green spaces (Pinteraction=0.079). The same relationship 

between PA facilities and BMI was noticeably attenuated among those who lived closest 

(<500m) to a fast-food store, compared with people living further away (Pinteraction<0.0001).  

Conclusions: Formal PA facilities may buffer against a lack of informal, green resources 

for PA in areas where the latter are scarce. However, the potential benefits of formal PA 

facilities in terms of obesity risk may be undermined by an unhealthy food environment 

close to home. Locating formal PA facilities in places with fewer public green resources 

and reducing the prevalence of fast-food stores in areas with formal PA resources, may 

maximise the health benefits to be derived from these neighbourhood resources. 
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BACKGROUND 

Characteristics of neighbourhood environments, such as access to physical activity 

facilities, green space and fast-food outlets, may be linked to obesity risk. However, the 

evidence base remains inconsistent for many of these neighbourhood exposures1–4. Most 

studies have tended to focus on exploring associations between single neighbourhood 

exposures, obesity5 and obesity-related behaviours6,7. One possible explanation for the 

inconsistencies across studies is that the effects of specific neighbourhood environmental 

risks may not be universal, but instead vary according to other neighbourhood factors. For 

example, formal physical activity (PA) facilities are a potentially health-promoting 

neighbourhood resource8. Such facilities (e.g. gyms, swimming pools, sports fields) may 

play a larger role in areas with fewer informal resources that encourage PA (e.g. parks and 

other public green space). Conversely, the potentially health-promoting influence of the 

neighbourhood physical activity environment on energy balance and resulting adiposity 

may be dampened or overridden by the potentially ‘obesogenic’ influence of a 

neighbourhood food environment dominated by fast-food stores.  Put another way, 

neighbourhood characteristics such as the availability of parks, and the proximity of fast 

food outlets may act as effect-measure modifiers of the relationship between the formal 

PA environment and obesity. 

There is growing recognition that recent increases in obesity prevalence can be viewed as 

an emergent property of a complex system9–11 , and it is therefore important to consider 

any given exposure or risk factor for obesity within its wider context. The presence of effect 

modification between neighbourhood characteristics is an example of where context 

might matter – ignoring the underlying distribution of other, effect-modifying 

neighbourhood characteristics may obscure important effects in some places, and give rise 

to heterogeneity in findings across different settings. This need to take context into 

account has been highlighted in a number of recent publications, with respect to 

population health12 and the determinants of the major behavioural risks to health13,14. 

Recognising the importance of context and the complexity of obesity and its determinants, 

it follows that attempts to isolate effects of individual neighbourhood characteristics on 

health can only ever paint an incomplete picture of how environmental factors influence 

the health of local residents15,16.  

While there have been many studies in the past decade seeking to unpack some of this 

complexity in various ways, very few have explicitly examined how multiple dimensions 
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of the neighbourhood built environment interact with one another such that one 

neighbourhood characteristic may modify or moderate the effect of another17. Instead, 

efforts have been focussed on characterising overall neighbourhood ‘obesogenicity’  by 

combining multiple neighbourhood attributes into a single composite measure18,19 or using 

methods such as cluster analysis to identify neighbourhood typologies20–22. By 

understanding whether the effect of one neighbourhood characteristic is modified by the 

presence of other neighbourhood characteristics, we may better describe how 

neighbourhoods shape health and behaviour. We may also start to identify settings in 

which interventions targeting a particular feature of the built environment may have 

greater (or lesser) potential for reducing or preventing obesity in the populations residing 

there, and optimise future interventions accordingly23.   

In this paper we focus on potential modification of the relationship between 

neighbourhood availability of formal PA facilities and adiposity by neighbourhood 

availability of parks, and neighbourhood fast-food environment. Many formal PA facilities 

are businesses, and as such they are potentially modifiable via regulatory and commercial 

levers. Some are run by local authorities, and thus are potentially also amenable to other 

policy interventions aimed at locating these facilities where they may have the greatest 

benefit to local populations. In a recent cross-sectional study using UK Biobank, we 

observed a pattern of lower mean waist circumference, BMI and body fat associated with 

increasing number of PA facilities in the neighbourhood24. Within the same dataset, 

measures of neighbourhood parks and fast food outlets are available and, as described 

above, are potential effect modifiers: parks because they can provide alternative 

opportunities for informal outdoor PA that may be more accessible and appealing than 

formal PA facilities, and fast-food outlets because unhealthy food environments may 

negate healthy PA environments. With respect to obesity, the formal PA environment has 

received less research attention than some other neighbourhood characteristics, 

particularly in Europe, and findings have been inconsistent4,8. Thus, a deeper examination 

of its relationship with BMI and other measures of adiposity may shed light on settings 

where intervening on the formal PA environment may be more beneficial, or, alternatively, 

other modifiable neighbourhood attributes that may boost the potential for local residents 

to benefit from local formal PA facilities.   

We assess these possible environmental effect-modification relationships among adults 

living in urban residential areas in the United Kingdom by testing the following 
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hypotheses. First, that the availability of formal PA facilities will be more strongly 

associated with BMI among people with no parks or other public open/green spaces near 

their home, than it is among those with greater park availability. Second, that the 

association between formal PA resources and BMI will be weaker among people who live 

close to a fast-food outlet, than it is among those who live further from a fast-food outlet. 

METHODS 

Study design and data collection 

We used baseline data from UK Biobank, the scientific rationale, study design and survey 

methods for which have been described elsewhere25. Data were potentially available from 

502,656 individuals who visited one of 22 UK Biobank assessment centres across the 

United Kingdom between 2006 and 2010. Individuals aged 40–69 years living within a 25-

mile radius of an assessment centre and listed on National Health Service (NHS) patient 

registers were invited to participate in the study. The age range was chosen by UK Biobank 

as an important period for the development of many chronic diseases.  

Local environment data 

Linked to UK Biobank is a high-resolution spatial database of objectively measured 

characteristics of the physical environment surrounding each participant’s exact 

residential address known as the UK Biobank Urban Morphometric Platform (UKBUMP). 

Environmental data in UKBUMP are derived from multiple national spatial datasets using 

automated processes26. The available measures of the local environment include densities 

of various land uses; proximity to various health-relevant destinations (e.g. GP practices, 

industrial sites, fast-food outlets); street network accessibility metrics; and attributes of 

the natural environment. The metrics in UKBUMP were constructed using data collected 

during the baseline individual assessment phase. No environmental data were collected 

for the Stockport assessment area, which was the UK Biobank pilot site, leaving 21 

assessment areas in scope. 

Outcomes 

Our primary outcome of interest was Body Mass Index (BMI, kg/m2). Height and weight 

measurements were made by trained staff using standard procedures25 and BMI was 

centred around its mean and treated as a continuous variable. In sensitivity analyses, waist 

circumference (in centimetres, measured manually by trained nurses) and body fat 
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percentage (measured using a bioimpedance machine) were examined as secondary 

outcomes, to assess the consistency of the results across alternative measures of adiposity. 

Primary exposure 

Our primary exposure was the neighbourhood availability of formal PA facilities, defined 

as the total number within a 1000 m street-network buffer around each individual’s place 

of residence (categorised as 0, 1, 2-3, 4 or more, to account for the data being positively 

skewed). Formal PA facilities were defined at address level as any land use classified in the 

Commercial-Leisure subcategory of the UK Ordnance Survey AddressBase Premium 

database. This subcategory comprises a range of indoor and outdoor facilities designed for 

sporting and leisure activities, such as gyms, swimming pools and playing fields (for details 

see Supplementary Material, Appendix Three). 

Potential effect-measure modifiers 

To test hypothesis 1, we examined effect modification by urban park availability, measured 

as the number of parks or other public open/green spaces in a 1000 m street-network 

buffer around a participant’s home address. As with formal PA facilities, this measure is 

derived from the UK Ordnance Survey AddressBase Premium database. We included any 

land use categorised as Park; Public Park/Garden; Public Open Space/Nature Reserve; 

Open Space/Heath/Moorland; or Playground. The distribution of the number of these 

sites per buffer was highly positively skewed, so for this analysis was categorised as 0, 1, or 

2 or more. 

To test hypothesis 2, we examined possible effect modification by fast-food store proximity, 

measured by the street-network distance (m) from each individual’s residential address to 

the nearest ‘hot/cold fast-food outlet/takeaway’, as defined in the UK Ordnance Survey 

AddressBase Premium database26. Distance was then categorised as <500 m, 500-1499 m, 

or at least 1500 m.  

Statistical analysis 

We first examined the distributions of each neighbourhood characteristic across the 

sample by cross-tabulating categories of neighbourhood availability of formal PA facilities 

with categories of each of the potential modifiers (urban park availability and fast-food 

store proximity). To test each effect modification hypothesis, we compared multilevel 

linear models of the independent association between the formal PA environment and 
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BMI with and without interaction terms for the product of the formal PA environment and 

each potential modifier. We used likelihood ratio tests to compare the models and we 

report p-values from these tests to indicate the strength of the evidence against the null 

hypothesis of no effect modification on the additive scale. We then stratified the sample 

by the potential effect modifier and estimated stratum-specific mean differences (and 95% 

CIs) in BMI for categories of increasing availability of formal PA facilities, relative to people 

with no PA facilities within one kilometre of home.  

Multilevel models were used to account for the clustering by assessment area in the 

sampling design, and were estimated with random intercepts and random coefficients for 

the main exposure, with  adjustment for potential confounding by age (years), sex 

(male/female), self-reported ethnicity (white, south Asian, black, other Asian, mixed white 

and black, mixed white and Asian, mixed other, or other), highest education level attained 

(college or university degree; post compulsory education; higher secondary education; 

secondary education; vocational qualifications; other professional qualification; or none 

of the above), annual household income (<£18,000, £18,000–30,999, £31,000–51,999, 

£52,000–100,000, or >£100,000), employment status (paid work, retired, unable to work, 

unemployed, or other), area deprivation (Townsend score), and neighbourhood 

residential density (count of residential dwellings within a 1-km street-network buffer of 

home address, log transformed). Participants without complete covariate data were 

excluded. The focus of the analysis was to identify moderation or enhancement of the 

estimated effect of the formal PA environment by other neighbourhood features 

(specifically parks/fast-food stores). Therefore, we adjusted each model for the set of 

covariates representing potential confounders of the relationship between the primary 

exposure and the outcome, and which we identified with the aid of a directed acyclic 

graph. While adjustment for confounders of the modifier-outcome associations was not 

essential27, those sets of confounders are, in this context, likely to be very similar.  

We also adjusted each model for the other potential modifier not under examination in 

that model (i.e. we included fast-food proximity as a covariate in the models testing for 

effect modification by number of parks, and controlled for number of parks in the model 

testing for effect modification by fast-food proximity). This made no substantive difference 

to the point estimates but slightly improved precision of the estimates. In a previous 

analysis of the association between the formal PA environment and adiposity, we also 

found that adjustment for diet (total energy intake) did not lead to substantively different 
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conclusions, but did artificially inflate point estimates due to extensive missing data, 

therefore we deemed it inappropriate to adjust the models in this paper for diet, 

particularly as we identified an additional risk of inducing collider bias by adjusting for 

diet24. 

Missing data and sample restrictions 

Perceptions of proximity of food outlets and public amenity of parks and other public 

open/green spaces are both likely to differ in urban residential areas compared with non-

urban areas28,29. For example, to a person living in a rural area, many facilities will be 

relatively far away so proximity to a fast-food store won’t mean the same thing as it does 

to someone living in an urban area if both are measured on the same scale. And in rural 

areas close to natural landscapes, parks in the immediate neighbourhood may be less 

important as a potential site of PA than they are for people in the middle of a city. We 

therefore restricted the analysis to the 86% of the UK Biobank cohort living in areas that 

are classified by the Office of National Statistics as urban (specifically, where a person’s 

home postcode is located within a city or a town with a population of at least 10,000 

people). 

Approximately 3% of individuals were missing data on their neighbourhood environment. 

Data for all other variables were missing at a frequency of <2%, with the exception of 

income (14.9%  missing). The final complete case sample comprised 345,254 individuals.   

Sensitivity analyses 

To check for consistency across alternative measures of adiposity, we repeated the analyses 

using waist circumference and body fat percentage rather than BMI. To examine the 

impact of our exclusion of non-urban participants, we repeated the primary analyses on 

the full urban and non-urban sample combined, adjusting for urban/non-urban status. 
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RESULTS 

The mean BMI of the analytical sample was 27·5kg/m², and the median number of formal 

PA facilities within a 1000m street-network distance of participants’ homes was two, with 

just over a quarter of participants having no facilities close to home (Table 6.1). 

Participants had a median of one park or other public green space within one kilometre of 

home, and 41% had no parks near home. Median distance to the nearest fast-food store 

was 1033m, with 20% of the sample living within 500m of their nearest store. 

There is a strong positive correlation between number of parks and number of formal PA 

facilities, with 58% of people who have no formal PA facilities within 1km of home also 

having no parks close to home, while more than half of those with at least four PA facilities 

nearby also have at least two parks nearby (Table 6.2). Fast-food proximity is also 

correlated with access to formal PA facilities, reflecting the clustering of commercial and 

public services in more densely populated areas. Forty-nine percent of people with no 

nearby PA facilities also live at least 1500m from their nearest fast-food outlet, compared 

to only 19% of people with at least four PA facilities living that far from a fast-food outlet 

(Table 6.2). 

Comparison of models with and without a product term for the interaction between 

formal PA facilities and parks suggests the number of parks within one kilometre of a 

person’s home may weakly modify the association between the formal PA environment 

and BMI (Pinteraction=0.079). Figure 6.1 shows estimates of the association between formal 

PA facilities and BMI within strata of urban park availability. As hypothesised, 

stratification shows that the association between PA facilities and BMI is weak in the areas 

with the most urban parks, while in contrast there is a clear inverse association between 

BMI and density of formal PA facilities in the areas with no parks (Figure 6.1). Those living 

in areas with no parks have a mean BMI 0.21 kg/m2 smaller if they have 2-3 formal PA 

facilities near home, and 0.48kg/m2 smaller if they have at least four PA facilities near 

home, when compared with those with no PA facilities as well as no parks. 
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Table 6.1 Summary of sample characteristics (N=345,254) 

Sample characteristic   
BMI (kg/m2) Mean (SD) 27.5 (4.8) 
Formal PA environment   

Number of facilities in 1km buffer Median (IQR) 2 (0 - 4) 
0 n (%) 94 693 (27.4) 
1 n (%) 67 573 (19.6) 
2-3 n (%) 86 004 (24.9) 
4 or more n (%) 96 984 (28.1) 

Park availability   

Number of parks and other public/open green spaces in 1km 
buffer Median (IQR) 1 (0 - 3) 

0 n (%) 142 464 (41.3) 
1 n (%) 66 713 (19.3) 
2 or more n (%) 136 077 (39.4) 

Fast food environment   

Distance to nearest outlet (m) Median (IQR) 1 033 (577–1 813) 
Closer than 500m n (%) 69 755 (20.2) 
500-1499m n (%) 162 682 (47.1) 
At least 1500m n (%) 112 817 (32.7) 

Covariates   

Age Mean (SD) 56.1 (8.1) 
Sex (female) n (%) 181 887 (52.7) 
Ethnicity   

White n (%) 327 568 (94.9) 
South Asian/South Asian British n (%) 5295 (1.5) 
Black/Black British n (%) 5323 (1.5) 
Chinese/other(non-South)Asian n (%) 2 209 (0.6) 
Mixed: White/Black n (%) 733 (0.2) 
Mixed: White/Asian n (%) 598 (0.2) 
Mixed - detail unknown n (%) 709 (0.2) 
Other n (%) 2819 (0.8) 

Income   

Less than 18,000 n (%) 81 547 (23.6) 
18,000 to 30,999 n (%) 88 752 (25.7) 
31,000 to 51,999 n (%) 89 786 (26.0) 
52,000 to 100,000 n (%) 68 045 (19.7) 
Greater than 100,000 n (%) 17 124 (5.0) 

Education   

College or University degree n (%) 117 430 (34.0) 
A levels/AS levels or equivalent n (%) 39 523 (11.5) 
O levels/GCSEs or equivalent n (%) 74 020 (21.4) 
CSEs or equivalent n (%) 19 594 (5.7) 
NVQ or HND or HNC or equivalent n (%) 23 405 (6.8) 
Other professional qualifications n (%) 17 389 (5.0) 
None of the above n (%) 53 893 (15.6) 

Employment status   

Paid employment or self-employed n (%) 210 587 (61.0) 
Retired n (%) 106 497 (30.9) 
Unable to work n (%) 10 785 (3.1) 
Unemployed n (%) 5340 (1.6) 
Home duties/carer/student/volunteer/other n (%) 12 045 (3.5) 

Area deprivation (2001 Townsend index) Median (IQR) -2.0 (-3.6 - 0.7) 
Residential density (residential addresses per 1km street 
network buffer) 

Median (IQR) 2152 (1352–3344) 
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Table 6.2 Bivariate associations between neighbourhood characteristics 

Formal PA 
facilities 

Availability of parks and other open/green spaces 
No parks One park ≥2 parks Total 

n % n % n % n % 

0 54513 57.6 16737 17.7 23443 24.8 94693 100.0 
1 31683 46.9 13000 19.2 22890 33.9 67573 100.0 
2-3 32031 37.2 17925 20.8 36048 41.9 86004 100.0 
4 or more 24237 25.0 19051 19.6 53696 55.4 96984 100.0 
Total 142464 41.3 66713 19.3 136077 39.4 345254 100.0 

Formal PA 
facilities 

Distance to nearest fast-food store 
<500m 500-1499m At least 1500m Total 

n % n % n % n % 

0 8338 8.8 39710 41.9 46645 49.3 94693 100.0 
1 10126 15.0 32573 48.2 24874 36.8 67573 100.0 
2-3 18762 21.8 43964 51.1 23278 27.1 86004 100.0 
4 or more 32529 33.5 46435 47.9 18020 18.6 96984 100.0 
Total 69755 20.2 162682 47.1 112817 32.7 345254 100.0 

 

 

Figure 6.1 Association between number of formal PA facilities and BMI, stratified 
by park availability 

Figure shows park availability-stratified, fully adjusted mean differences in BMI and associated 95% CIs from 
multilevel linear regression models. The dashed line at zero represents the reference category (no physical 
activity facilities with 1km of home). Models are adjusted for age, sex, ethnicity, area deprivation, individual 
socioeconomic characteristics (income, education, and employment status), residential density, and fast-food 
store proximity.  
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There is strong statistical evidence that the PA environment-BMI association is modified 

by proximity to a fast-food store (Pinteraction<0.0001). In line with our second hypothesis, 

stratified results showed that among people living within 500m of a fast-food/takeaway 

store, the association between density of nearby formal PA facilities and BMI is 

considerably less apparent than it is among those who live further from a fast-food store 

(Figure 6.2).  

Results were broadly consistent across alternative measures of adiposity: the same 

patterns of effect modification we observed for BMI were also present for waist 

circumference and body fat percentage (see Supplementary Material, Appendix Three). 

When we included respondents living in non-urban areas, and adjusted for urban/non-

urban status, the patterns across stratum-specific models mirrored those observed in the 

urban-only sample, but statistical evidence of an interaction with park availability was 

weaker (see Supplementary Material, Appendix Three).  

 

Figure 6.2 Association between number of formal PA facilities and BMI, stratified 
by distance to nearest fast-food/takeaway store 

Figure shows fast-food proximity-stratified, fully adjusted mean differences in BMI and associated 95% CIs 
from multilevel linear regression models. The dashed line at zero represents the reference category (no 
physical activity facilities with 1km of home). Models are adjusted for age, sex, ethnicity, area deprivation, 
individual socioeconomic characteristics (income, education, and employment status), residential density, 
and park availability.  
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DISCUSSION 

This study provides evidence to support the presence of environmental effect modification 

in this large sample of mid-life adults from across the UK.  In stratified models we observed 

that the relationship between access to formal PA facilities and BMI is much weaker 

among people living close to a fast-food store than it is among those living further away 

from such a store. The association between the formal PA environment and BMI is also 

somewhat stronger among people living in areas with fewer urban parks and other public 

open/green spaces than it is among people living in areas with more of these, where there 

is likely to be greater opportunity for informal, outdoor PA.  

These findings suggest that locating formal PA facilities close to residential areas has 

potential to reduce BMI among local residents, but that other contextual features of the 

neighbourhood are likely to influence these potential benefits. While we cannot infer 

causality from this cross-sectional study, our results suggest that increasing the availability 

of formal PA facilities may have the most potential to reduce population obesity in areas 

that have the lowest densities of parks and, in particular, least exposure to fast-food stores. 

This is consistent with the hypothesis that in areas with fewer parks and other green 

spaces, formal PA facilities provide valuable opportunities for PA that are otherwise 

lacking. Meanwhile, formal PA facilities may have limited influence in areas with fast-food 

stores close to people’s homes – even if they do serve to increase PA there, our findings 

suggest the positive benefits for body weight may be dampened by the influence of an 

unhealthy food environment. As a public health intervention, the introduction of PA 

resources such as gyms, swimming pools and other sports facilities in the neighbourhoods 

of people in close proximity to fast-food stores may be ineffective unless coupled with 

interventions aimed at minimising the influence of fast-food stores. In urban areas well 

served by parks, interventions involving formal PA facilities may not be a priority and a 

focus on other environmental interventions may be more effective in improving 

population health.  More causally focused study designs are needed to confirm these 

implications. 

Our findings also highlight the possibility that effect heterogeneity patterns such as these 

may also apply to relationships between other neighbourhood characteristics and a range 

of health outcomes. Such heterogeneity may, at least partially, explain inconsistent results 

across studies and settings. We examined only three neighbourhood characteristics, 
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motivated by two plausible effect modification hypotheses. Similar interactions may also 

exist between other neighbourhood characteristics. 

PA environment effects on obesity in the UK have sometimes been shown to be 

concentrated in individuals with higher incomes24 or more education30. While we have not 

examined an additional interplay with socioeconomic status in this paper, it is likely that 

an important caveat applies to our findings: that the potential for the benefits of local 

access to formal PA facilities to be maximised via a supportive broader neighbourhood 

environment relies on PA facilities being accessible and affordable for all.  

Strengths and limitations 

These findings are a novel contribution to this area of research. To our knowledge, no 

other studies in the UK, and few outside it, have explicitly examined modification of the 

association between the formal neighbourhood PA environment and adiposity (or any 

other obesity-related outcome) by other neighbourhood built environment 

characteristics. One similar study in the United States concluded that combined changes 

to the food and PA environments would have stronger and more consistent effects on BMI 

than changes that addressed only one dimension or the other. Our findings provide similar 

evidence in a European context17. Others have examined composite measures of 

neighbourhood obesogenicity or other similar constructs, and while such research 

importantly recognises and draws attention to the complex and multidimensional nature 

of neighbourhood environments, it lends itself to more general conclusions about the 

importance of holistic healthy urban planning, rather than moving towards specific policy 

recommendations. Furthermore, these studies typically rely on data-driven approaches 

such as latent class analysis, and this makes generalising to other populations challenging. 

Here, although our findings require confirmation using longitudinal data and more 

causally focussed methods, and could be tested by evaluating real-world interventions in 

different places, the results provide evidence in support of two clearly defined and 

theoretically grounded effect modification hypotheses, and point to prioritisation of built 

environment interventions that take into account local context. Our findings were also 

consistent across multiple adiposity measures, and robust to various modelling choices, as 

shown in the sensitivity analyses we performed. 

UK Biobank is a very large and geographically diverse cohort, providing unique 

opportunities in this field of research. However, the sample is based on only a 5.5% 
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response rate, and does show some evidence of ‘healthy volunteer’ bias31. A further 

potential source of selection bias is the exclusion of a large number of observations 

without data on household income. Due to the cross-sectional nature of this study it is 

impossible to draw strictly causal inferences about these patterns of association, but the 

results do lend support to two a priori hypotheses about plausible interactive effects of 

multiple aspects of the neighbourhood environment. There remains the possibility that 

the observed main associations are driven by people with lower BMIs self-selecting into 

‘healthier’ neighbourhoods. Studies that have directly examined the influence of self-

selection on neighbourhood-health effects have reached inconsistent conclusions about 

the likely bias this may induce32–34. For those fortunate enough to have substantial choice 

over where they live, the presence of formal PA facilities alone is unlikely to be a major 

governing factor in that choice, but the presence of such facilities is likely to coincide with 

other facilities that may enhance the desirability of a neighbourhood, including parks and 

other green space (as we observed in Table 6.2). That said, in this sample the individuals 

living in neighbourhoods with high densities of parks and PA facilities are, contrary to 

expectation, not necessarily those with the highest incomes, or living in the least deprived 

postcodes in the study. 

Due to the size of the sample and the breadth of the neighbourhood characterisation, 

large-scale automated processes were used to derive the environmental metrics on which 

we have relied here26, and while the best readily available for conducting these analyses at 

scale, those metrics are of varying quality, accuracy and suitability. It should be noted that 

the fast-food proximity measure in particular may be susceptible to some misclassification 

error, and that the measure of park availability does not account for the quality of those 

spaces. There is also a possibility that if any of the main associations are confounded in 

one stratum of the potential effect modifier and not another, we may erroneously infer 

effect modification when none is present35. 

These findings therefore provide preliminary observational evidence for plausible 

interplay between multiple aspects of the built environment in the UK, but further 

research using more causally focussed approaches such as longitudinal or quasi-

experimental study designs is needed. An additional implication of our findings is that 

evaluations of PA environment interventions, particularly those pertaining to formal PA 

facilities, may be underestimating the impact of the intervention if possible moderation 

by local park availability and food environments is ignored. 
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Residential neighbourhoods are complex and multidimensional and the examination of 

the effect of individual environmental characteristics on obesity in isolation overlooks this 

complexity. Here we examined whether some neighbourhood characteristics modify the 

effect of others to better understand how they may operate in concert to influence BMI. 

Our findings suggest that formal PA facilities may buffer against a lack of informal, green 

resources for PA such as parks, in areas where the latter are scarce, but that potential 

benefits of formal PA facilities in terms of adiposity may be undermined by the presence 

of fast-food stores close to home. Reducing the prevalence of fast-food outlets in areas 

with formal PA resources, and prioritising the location of formal PA facilities in places 

without public parks, may maximise the potential for PA facilities to influence adiposity. 

An approach to urban planning that takes into account moderating effects of other 

neighbourhood characteristics is required in order to maximise the population health 

benefits of the urban built environment.  
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 GEOGRAPHICAL HETEROGENEITY IN 
ASSOCIATIONS BETWEEN NEIGHBOURHOOD 
BUILT ENVIRONMENTS AND ADIPOSITY 

7.1. Introduction  

Having observed in Chapter 6 that the extent to which one neighbourhood characteristic 

matters for adiposity depends on other characteristics of the neighbourhood, we might 

also conceive of similar types of modifying, contextual factors operating at other 

geographical scales. Rather than assuming effects of the neighbourhood environment 

apply uniformly across space, we might anticipate that the magnitude of neighbourhood 

effects will vary geographically, and might be moderated by characteristics of the wider 

contexts in which neighbourhoods are located. 

In this next chapter, I first examine whether the associations between two neighbourhood 

characteristics (availability of PA facilities and proximity to fast food) and adiposity 

(specifically BMI) vary geographically across Local Authorities of England. Evidence of 

geographical heterogeneity across a large area within a single study would suggest this as 

one possible explanation for inconsistent results from studies in different settings.  I then 

investigate whether any such geographical heterogeneity observed is explained by locally 

varying, macro-environmental factors. 

I focus on two dimensions of the neighbourhood environment, and Local Authorities as 

the geographical unit by which their relationships with BMI might vary. These particular 

relationships can be considered as case studies of sorts. It is possible to conceive of any 

neighbourhood characteristic (or indeed some other exposure) having a differential effect 

on health depending on where you look – be that from one local authority or city to the 

next, one country to another, etc. And while administrative units such as Local 

Authorities, countries, etc. are in some sense arbitrary, they may be meaningful if local 

policies or cultural factors are at least roughly determined or delineated by these 

boundaries. For the purposes of analysis, administrative units also provide ready access to 

data on potentially relevant area-level modifiers (as I demonstrate using two such 

variables).  

Through the examination of geographical heterogeneity in neighbourhood-health 

relationships, and possible drivers of that heterogeneity, this chapter uses observational 

data to highlight the need for an awareness of context and the importance of context-
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specific adaptation of built environment interventions for health. I am preparing the paper 

manuscript in this chapter for submission to Health and Place. 
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7.2. Research Paper 4  

 

Geographical heterogeneity in associations between the neighbourhood 
built environment and BMI  

 

Note: Supplementary material for this research paper is included in Appendix Four. 
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Geographical heterogeneity in associations between the 
neighbourhood built environment and BMI  

ABSTRACT 

Background: The effects of residential neighbourhood environments on health may vary 

across geographical space, and differences in local contexts could influence how much a 

given neighbourhood characteristic matters for the health of local residents.  

Methods: Linking UK Biobank data from 302,952 urban-dwelling adults in England to 

publicly available Local Authority-level data, we examine (a) whether associations 

between BMI and two characteristics of the neighbourhood built environment (availability 

of formal physical activity facilities, and fast-food proximity) vary by Local Authority 

District, and (b) whether cross-level interactions with local authority-level physical 

features (natural landcover) and socio-cultural attributes (local descriptive obesity norms) 

reveal evidence of effect modification by these features of the wider contexts in which 

neighbourhoods are located.   

Results: We found that the relationship between availability of neighbourhood physical 

activity facilities and BMI does vary between Local Authority Districts across urban 

England. Though differences were small, there was some evidence that the association was 

stronger among people living in areas with less natural landcover and potentially therefore 

a greater reliance on/normalisation of the use formal physical activity facilities, especially 

in areas outside of London. We also found that the relationship between proximity of fast-

food stores to people’s homes and BMI varied geographically across England. There was 

little evidence that local descriptive obesity norms is an important modifier of this 

association.  

Conclusions: This paper highlights the importance of considering potential geographical 

heterogeneity in relationships between the built environment and health, and the 

implications for generalisability of research findings. By seeking to understand sources of 

heterogeneity, we may be able to better tailor and target built environment interventions 

for health.  
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BACKGROUND 

The built environment in residential neighbourhoods can affect the weight status of the 

residents who live there, by influencing diet and physical activity (PA) behaviours. The 

makeup of the retail food environment, availability of places to engage in recreational 

physical activity, and how ‘walkable’ a neighbourhood is, have all been linked to diet or 

PA, and to obesity risk1–3. However, recent systematic reviews of the literature on the 

neighbourhood environment and obesity have concluded that, despite a wealth of 

research, the current body of evidence “does not tell a clear story”4 and “does not allow 

robust identification of ways in which [the] physical environment influences adult weight 

status”5. One possible reason for the inconsistency of the evidence base is that 

neighbourhood effects may not be uniform across geographical space. Neighbourhood 

effects may be stronger in some places than others, and particular characteristics of a 

neighbourhood may have more or less influence depending on features of the broader 

local context.   

1.1 Geographical heterogeneity in the evidence for relationships between neighbourhood 

environments and health 

There is growing evidence that relationships between residential neighbourhood 

characteristics and obesity are stronger is some settings than in others. While it has been 

noted that relationships between food environment and obesity appear to be stronger in 

North America than in other settings6,7, less well recognised is the fact that very mixed 

findings are observed even within a single region or country. Considering the influence of 

the PA environment, for example, a recent review reported that across European studies, 

evidence for the influence of parks and PA facilities and their association with obesity is 

too mixed to draw conclusions5. Even within the UK the evidence is inconsistent: some 

recent studies have found that local access to recreation facilities is negatively associated 

with adiposity8, and with obesity9, while others have found no association between access 

to parks and PA facilities and either obesity or change in BMI over time10,11. The same is 

true of the food environment and obesity in the UK: studies in London12, Leicester13, 

Cambridgeshire14,15 and Norfolk16 found greater exposure to fast-food outlets was 

associated with higher BMI or greater odds of obesity, yet studies in the North East of 

England17 and in Leeds18,19 showed no such association. In the United States, two recent 

studies of cross-sectional relationships between objective and perceived measures of 

neighbourhood built environments and BMI across the US found that significant 

geographical variation existed20,21. The authors of those studies concluded that this may 
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explain why inconsistent findings often emerge across studies in single geographical areas, 

and why built environment interventions do not consistently work in reducing population 

obesity. 

1.2 Contextual influences on health, operating at multiple scales 

The residential neighbourhood can be defined in various ways22 but broadly refers to the 

local area in which a person lives. Neighbourhoods are themselves nested within wider 

geographical and administrative settings (cities, counties, nations, etc.), and just as 

neighbourhood characteristics may influence obesity-related health behaviours and 

health outcomes, so too can physical, political, economic, and socio-cultural factors 

operating at the macro-environmental scale of those larger units within which 

neighbourhoods are nested23. Such factors may include quality of local government and 

public sector expenditure24,25; climate and weather26,27; economic prosperity28,29; 

greenspace30; and social norms regarding health behaviours and obesity31,32.  

With factors operating at multiple levels to influence health, macro-environmental 

attributes of the larger geographical units in which neighbourhoods are nested are 

potential modifiers of more local neighbourhood effects on health33. Variation in macro-

environmental factors may explain some of the observed heterogeneity in the magnitude 

of neighbourhood-health associations from one study setting to another. Although 

conceptual models recognising these complex and multilevel relationships have existed 

for some time23,34, the potentially modifying roles of wider contextual factors are typically 

ignored. Most studies of associations between neighbourhood environments and health 

assume – implicitly, at least – that neighbourhood effects are both uniform across space 

and potentially generalisable to other settings. It is plausible, however, that variation in 

wider contextual factors undermines both these assumptions. This may explain the 

abundance of inconsistent findings from studies conducted in different settings, including 

different parts of the same country.  

There have been calls in recent years to recognise and empirically examine likely 

modification of built environment health effects35,36, partly in response to observed 

inconsistency of findings, partly driven by theory, and increasingly made possible by larger 

sample sizes. As yet, very few studies have examined whether and how neighbourhood-

obesity associations vary geographically or according to explicitly place-based, macro-

environmental variables.   
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One way to examine both the presence and correlates of possible geographical 

heterogeneity in relationships between neighbourhood characteristics and health 

outcomes such as obesity, is to conduct studies with broad geographical coverage 

spanning a wider spectrum of contexts, for example across multiple cities within one 

country. In contrast with meta-analytical approaches, which have been hampered by the 

substantial methodological heterogeneity of existing studies37,38, this approach allows 

explicit comparison of effect estimates across different areas within the same study, while 

holding constant methods that may otherwise vary across separate studies and make 

comparison difficult. This approach also provides an opportunity to examine interactions 

with variables at multiple scales other than the individual or the neighbourhood, 

potentially providing insights into the interplay of health determinants at multiple scales.  

If patterns of association are similar across space, then results of other studies of that 

relationship are likely to be broadly generalisable from one setting to another. Taken a 

step further, findings from natural experiments or intervention studies might also be 

assumed to be transferable to similar populations in other settings if the relationship is 

stable across geographical space. On the other hand, heterogeneity in associations from 

place to place would undermine the generalisability of findings from studies with narrow 

geographical coverage. Furthermore, if heterogeneous effects are driven by attributes of 

some larger areal unit of analysis, then an understanding of such effect modification would 

ultimately be important for informing the tailoring and targeting of interventions based 

on local context39.  

In this chapter I provide two worked examples of how an association between a 

neighbourhood characteristic and adiposity might vary geographically and how this might 

be partly explained by locally varying macro-environmental effect modifiers. 

1.3 Example 1: neighbourhood availability of formal PA facilities and BMI  

As noted above, previous studies in the UK have examined the association between the 

availability of PA facilities close to home and obesity-related measures such as BMI, with 

some inconsistent findings. Taking that relationship as our first example of a 

neighbourhood-health relationship, we hypothesise that the relationship between 

neighbourhood availability of PA facilities and BMI varies geographically across the 

country. If that is the case, it may arise because macro-environmental factors operating at 

a sub-national scale within which neighbourhoods are nested may modify the relationship. 

Such factors could be socio-cultural or economic in nature, or may reflect features of the 

physical landscape or climate.  In this first example we focus on a potential modifier from 



184 

the physical landscape. Residents of cities and towns surrounded by a lot of natural 

landcover (woodland, moors, beaches, etc.) have enhanced opportunities for outdoor, 

informal PA even if those natural spaces are not within one’s immediate neighbourhood. 

This increased exposure to natural landcover may also contribute to a local culture of 

outdoor recreation. In such places, a weaker reliance on or normalisation of using formal 

PA facilities such as gyms and leisure centres close to home may exist, reducing the 

magnitude of association between the neighbourhood availability of these facilities and 

BMI.  

1.4 Example 2: fast-food proximity and BMI 

A relationship with BMI has also been demonstrated in some but not all studies of 

exposure to fast-food outlets. We previously identified a weak association between 

proximity of home address to nearest fast-food/takeaway store in the UK Biobank cohort, 

while findings from smaller and geographically narrower samples in various settings across 

the UK have yielded inconsistent results. It may be that our weak association overall 

masked localised heterogeneity in the magnitude of the association. Such geographical 

variation might contribute to inconsistent findings from studies in different settings. In 

our second example we therefore test the hypothesis that the association between the 

proximity of fast-food outlets to people’s homes and BMI varies geographically across the 

country. And, just as for the earlier example of PA facilities, if such heterogeneity exists, it 

may arise as a result of effect modification by locally varying macro-environmental factors. 

In this second example, we consider a socio-cultural attribute of the macro environment 

as a potential modifier. Spatial variation in the prevalence of particular traits (e.g. obesity) 

or behaviours (e.g. diet) creates what are known as local descriptive social norms40. 

Theoretically, in areas where obesity is ‘normalised’ due to a high prevalence of obesity, 

the influence of unhealthy food environments on BMI may be unfettered by social pressure 

to be a healthy weight. In contrast, where obesity prevalence is lower, we would expect 

stronger social pressure to maintain a healthy weight, and such pressure may act as a 

counter to easy access to fast food, thereby attenuating the main association. We therefore 

test the hypothesis that the association between the fast-food environment and BMI is 

weaker in local authorities where there is a lower prevalence of adult obesity.  

Macro-environmental factors may operate at various scales, and for the purposes of 

analysis the choice of scale is important. One potentially relevant scale is the scale at which 

local government is organised. With respect to our examples, planning regulations and 

resource allocation decisions determined by local government influence the local 

authority area as a whole (e.g. local authorities often contribute to the management of 
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natural areas in the UK, and local public health teams and others in the LA enact various 

strategies to curb obesity) and on the neighbourhoods located within that area (e.g. UK 

local authorities provide funding for local PA facilities, and regulate planning decisions 

about the food environment). While the boundaries of such areas are somewhat arbitrary, 

they nonetheless define the scale at which many health-relevant decisions are made. They 

are also a scale at which considerable data are collected, which may be used to inform 

decision making. Consequently, understanding if and how factors operating at the local 

government level modify neighbourhood-health relationships could be important for 

informing local planning decisions and targeting built environment interventions more 

effectively; for instance, improving access to PA facilities in contexts where they are 

expected to have greater influence, while focusing efforts on improving neighbourhood 

food environments in settings where PA environments have less influence on BMI.  

The principles underlying the two worked examples we provide here may also apply in 

general terms to other health-relevant neighbourhood exposures and other macro-

environmental modifiers.  

1.4 Study aims  

We make use of a very large and geographically diverse sample of mid-aged adults from 

the UK Biobank cohort to examine whether the relationship between (a) the 

neighbourhood PA environment and BMI, and (b) neighbourhood fast-food proximity and 

BMI, vary between local authority districts across England. We use local authority district 

(LAD) boundaries to delineate the wider context within which neighbourhoods are nested. 

LADs are the 326 sub-national units of local governance in England. For each of the two 

associations between the neighbourhood characteristics and BMI, we explore potential 

effect modification by a different attribute of the wider LAD context, as a demonstration 

of how physical and socio-cultural macro-environmental factors might interact with 

neighbourhood factors to influence health. For the neighbourhood PA environment, we 

examine the potential modifying role of the percentage of land cover classified as ‘natural’ 

in the surrounding LAD, and for the fast-food environment, we explore the potential 

modifying role of local descriptive obesity norms in the LAD, represented by adult obesity 

prevalence.    
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METHODS 

2.1 UK Biobank and UK Biobank Urban Morphometric Platform 

We used baseline data from UK Biobank, the details of which are reported elsewhere41. 

Briefly, 502,656 adults aged 40-69 and registered with the National Health Service (NHS) 

were recruited from 25-mile radius assessment areas in 22 locations across England, 

Scotland and Wales, and underwent detailed baseline assessment spanning health, 

lifestyle, demographic and socioeconomic characteristics, between 2006 and 2010. Linked 

to UK Biobank via the home address of each participant is the UK Biobank Urban 

Morphometric Platform (UKBUMP), a high-resolution spatial database of a wide range of 

objectively measured characteristics of the physical environment surrounding each 

individuals’ residential address, derived from multiple national spatial datasets42. Local 

environment metrics include, among others, the densities of various land use types, and 

street-network distances to health-relevant destinations, both derived from the Ordnance 

Survey AddressBase Premium database. We used the land-use densities data in UKBUMP 

to derive a measure of neighbourhood availability of formal PA facilities, and the distance-

to-nearest-destination data to derive a measure of proximity to a takeaway/fast-food 

outlet.  

2.2 Outcome: Body Mass Index 

Body Mass Index (BMI, kg/m2) was calculated from weight and height measurements 

made by trained staff using standard procedures41. BMI was normally distributed and 

treated as a continuous outcome variable. 

2.3 Exposure 1: Availability of PA facilities 

Availability of PA facilities was operationalised as the number of formal PA facilities within 

a one-kilometre street-network distance of a person’s home. These facilities included 

gyms, swimming pools, leisure centres, playing fields and others detailed in 

Supplementary Table 1. The measure was included in models as a continuous variable, to 

enable estimation of a single coefficient for each LAD and visual representation of these 

to display geographical heterogeneity. It also had the additional benefit of allowing more 

parsimonious random effects models in the second stage of the analysis, as only a single 

random effect for the exposure was required. Assuming a linear relationship with BMI is 

consistent with results of our previous analyses using these data, where a categorical 

operationalisation of the exposure was found to have an approximately linear relationship 
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with BMI. Due to the highly positively skewed distribution of this variable, we top-coded 

the number of facilities at 15. 

2.4 Exposure 2: Fast-food proximity 

Proximity to a fast-food store was defined as the street-network distance (metres) from 

each individual’s residential address to the nearest ‘hot/cold fast-food outlet/takeaway’, as 

defined in the UK Ordnance Survey AddressBase Premium database 42. Distances were 

log10-transformed for ease of interpretation, so that a one-unit increase represented a 10-

fold increase in distance to the nearest outlet (e.g. 100m to 1000m). 

2.4 Assignment to Local Authority Districts and linkage of effect modifier data 

The UKBUMP local environment metrics are based on exact home address locations and 

then linked to the UK Biobank cohort and made available to approved researchers. Due to 

privacy restrictions, the exact address coordinates of participants are not themselves 

routinely available to researchers; instead approximate coordinates (rounded to the 

nearest 1 km) are available. We used these approximate coordinates to geocode 

participants and assign them to the LAD in which they reside, using QGIS v2.14 (2016). We 

identified 91 address points that appeared to be incorrect because they were well outside 

the geographical scope of the UK Biobank study, and excluded these from this analysis. 

Following the assignment of participants to LADs, we undertook additional linkage based 

on the LAD boundaries to three external, publicly available data sources. As administrative 

units, LADs are well described in publicly available datasets spanning multiple domains, 

enabling us to obtain the following LAD-level variables for analysis: (1) percentage of land 

cover in the LAD classified as ‘natural’ based on Corine Land Cover data from 201243, as 

compiled in the Land Cover Atlas of the UK44; (2) estimated adult obesity prevalence in 

2003-05 derived from the Health Survey for England45; and (3) gross disposable household 

income (GDHI) per capita for 200646. Natural land cover was examined as a potential 

modifier of the effect of the availability of PA facilities, obesity prevalence was examined 

as a potential modifier of the effect of proximity to a fast-food outlet, and GDHI was 

included as a possible confounding variable in the multilevel analyses for both exposures.  

The ‘natural’ land cover definition is based on the Corine Land Cover classifications and 

includes all land cover that is neither ‘artificial’ (urban, industrial, commercial, transport, 

mining etc) nor ‘agricultural’. The ‘natural’ classification spans land cover types such as 

forests, grasslands, moorland, beaches, wetlands, and water bodies. It does not include 

farmland such as pastures, which is classified as ‘agricultural’ or urban green areas such as 
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parks and sport and leisure facilities, which are classified in Corine as ‘artificial’ and in the 

Land Cover Atlas of the UK as their own category of ‘urban green’. Corine Land Cover data 

are accurate to approximately 25 metres. Natural landcover percentage was positively 

skewed so it was square-root transformed prior to analysis. As people living in rural areas 

may have a different relationship to the natural environment47,48, we restricted the analysis 

to the 86% of the UK Biobank cohort living in areas that are classified by the Office of 

National Statistics as urban (specifically, where a person’s home postcode is located within 

a city or a town that has a population of at least 10,000 people). 

Obesity prevalence estimates were only available for LADs in England, so we restricted all 

our analysis in this paper to UK Biobank participants residing in England. This also 

reduced the risk of confounding due to contextual differences that might arise from 

historical or current differences between the devolved nations of the UK.  

2.5 Statistical analysis 

For the primary association between each of the two neighbourhood exposures and BMI, 

we estimated a separate linear regression model for each LAD, with robust standard errors. 

Models were adjusted for potential confounding by age (years), sex (male/female), highest 

education level attained (Degree; A level or equivalent; O level or equivalent; CSE or 

equivalent; NVQ/HND/HNC; other professional qualification; none of the above), annual 

household income (<£18,000; £18,000-£30,999; £31,000-£51,999; £52,000-£100,000; 

>£100,000), employment status (paid work, retired, unable to work, unemployed, other), 

area deprivation (Townsend score), and neighbourhood residential density (count of 

residential features within a 1km street-network buffer of home address, log transformed). 

Residential density has been shown to be associated with obesity-related outcomes35, and 

may also serve as a proxy for the density or proximity of other neighbourhood resources 

that will be correlated with the exposures of interest. Models of the availability of PA 

facilities were also adjusted for fast-food proximity, while models of fast-food proximity 

were adjusted for availability of PA facilities. We excluded 30 LADs with fewer than 200 

study participants (1006 observations in total) to avoid estimating LAD-stratified effects 

based on small numbers of people in an area. The LAD-specific estimates were plotted, 

and also mapped using QGIS to visualise the geographic variation in the estimated 

association. 

Prior to testing for interactions with LAD-level variables we calculated the overall 

proportion of variation in BMI that was attributable to differences between local 

authorities rather than within-LA differences between individuals. This was done by 
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estimating a random intercept model clustered at the level of Local Authority, but without 

the inclusion of any local authority variables in the model, and using the estat icc 

postestimation command to estimate the variance partition coefficient (VPC). 

To examine cross-level interactions between each neighbourhood exposure and our 

selected attributes of the wider LAD context, we used multilevel models with random 

intercepts and random effects allowing the association to vary by Local Authority, and 

interaction terms between the exposure and potential modifier. These models were 

adjusted for the same covariates as the single-level LAD-specific models, plus LAD-level 

gross household disposable income per capita to control for possible confounding effects 

of the wider socioeconomic context.  The exposure variables were cluster-mean centred49 

so that the effect estimates represent the mean difference in BMI for each unit change in 

the exposure relative to the LAD mean of the exposure.  While the effect modifiers were 

modelled as continuous variables, results of the regression models were plotted to show 

mean BMI difference per unit change in the exposure according to tertile of the effect 

modifier, to aid visualisation.   

2.6 Sensitivity analysis 

It may be that London exerts a strong influence over the nation-wide model of cross-level 

interactions, so we repeated that stage of each analysis on a sample that excluded the 20 

Local Authorities represented in UK Biobank located in London. 

2.7 Ethics 

UK Biobank has ethics approval from the North West Multi-centre Research Ethics 

Committee (reference 16/NW/0274), the Patient Information Advisory Group (PIAG), and 

the Community Health Index Advisory Group (CHIAG). Additional institutional ethics 

approval was granted to this particular study by the London School of Hygiene and 

Tropical Medicine’s Research Ethics Committee in September 2016 (reference 11897). 

RESULTS 

3.1 Descriptive statistics 

The complete case sample used in this analysis was made up of 302,952 UK Biobank 

participants from 122 of the 326 local authority districts in England. Across the individual-

level sample, the median number of PA facilities in a person’s neighbourhood was two, the 

median distance to nearest fast-food/takeaway store was 996 metres, and the mean BMI 

was 27.5 kg/m2. Across the 122 LADs, the percent of land cover classified as ‘natural’ ranged 
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from zero to 49.7% and the median value was 4.9%. The majority of LADs (73%) had less 

than 10% of land cover classified as natural. Adult obesity prevalence across included LADs 

ranged from 13.1% to 29.9%, with a mean of 22.8%. (Table 7.1) The random intercept model 

showed that 1.7% of the variance in BMI was attributable to between-LAD rather than 

within-LAD differences. 

Table 7.1 Summary of key variables 

Individual-level characteristics of sample (n=302,952)  
BMI, mean (SD) 27.5 (4.8) 
Number of PA facilities, median (IQR) 2 (0-4) 
Distance (m) to nearest fast-food/takeaway store (median, IQR) 996 (560-1726) 
Age (years), mean (SD) 56.1 (4.1) 
% female 52.6% 
% Black Asian or Minority Ethnicity 5.6% 
% in paid employment 60.9% 
% with household income <£18,000 23.9% 
% educated to College or University degree level 33.4% 
Area deprivation (Townsend score) , mean (SD) -1.2 (3.0) 
Residential density, median residential addresses per km2 (IQR) 2197 (1393 - 3388) 
  
Local Authority District attributes (n=122)  
‘Natural’ land cover as % of LAD, median (IQR) 4.9 (0.9 – 10.5) 
Obesity prevalence, mean (SD) 22.8% (SD=3.9%) 
Gross Disposable Household Income per capita (£ annual), median (IQR) 14981 (12393 – 17862) 

 

3.2 Geographical heterogeneity 

Example 1: Neighbourhood PA environment and BMI 

Averaged across the LAD-specific models, the mean difference in BMI for each additional 

PA facility within a one-kilometre street-network distance of participants’ homes was  

-0.05 kg/m2, but the magnitude of the association between number of neighbourhood PA 

facilities and BMI varied across England (Figure 7.1, & Supplementary Figure 10, Appendix 

Four). In 92 of the 122 local authority districts, the estimated association was in the 

expected negative direction. This association was statistically significant at the (arbitrary) 

5% threshold in 32 areas, although in several other areas the 95% CI only failed to exclude 

zero by a small margin. Upon visual inspection, no regional patterning was apparent 

(Supplementary Figure 10, Appendix Four). For example, areas where the mean BMI 

difference associated with each additional PA facility near a person’s home was at least 

one standard deviation (0.08) more than average (i.e. a difference of at least 0.13kg/m2) 

were distributed across the South West, South East, Greater Manchester and the Midlands. 



191 

Example 2: Fast-food proximity and BMI 

Across LADs, the mean difference in BMI for a 10-fold increase in distance to the nearest 

fast-food/takeaway store was -0.24 kg/m2, and here too the magnitude of the association 

varied across England (Figure 7.2). The direction of the estimated association was in the 

expected negative direction in two-thirds of all areas (n=77), however only in 12 districts 

did the 95% CI around the point estimate exclude zero. There was no obvious regional 

patterning (Supplementary Figure 11, Appendix Four). 

3.3 Effect modification by attributes of the macro environment 

Example 1: ‘Natural’ land cover as a potential modifier of the association between 
neighbourhood PA environment and BMI 

There was some evidence that percentage of land cover classified as ‘natural’ in a LAD 

weakly modifies the association between neighbourhood availability of formal PA facilities 

and BMI. Models testing this cross-level interaction showed the primary association to be 

stronger among people living in areas with the lowest proportion of natural landcover, for 

whom each additional PA facility close to home is associated with 0.054 kg/m2 lower BMI 

(95% CI:-0.070, -0.038; P<0.001) compared with a mean BMI difference of -0.032 kg/m2 per 

additional PA facility in those areas with the most natural land cover (95% CI:-0.051, -0.012; 

P=0.001) (Pinteraction=0.087; Figure 7.3). The fanning out of the lines in Figure 7.3 shows the 

strengthening association as percentage natural land cover decreases.  

Example 2: Obesity prevalence as a potential modifier of the association between fast-food 
proximity and BMI  

There was far weaker evidence that local descriptive obesity norms modify the association 

between fast-food proximity and BMI. Models testing the cross-level interaction between 

fast-food proximity and local obesity prevalence estimated the primary association to be 

slightly stronger among people living in areas with the highest prevalence of adult obesity, 

for whom a 10-fold increase in the distance to a fast-food store was associated with 0.29 

kg/m2 lower BMI (95% CI -0.42, -0.17; P<0.001), compared with a mean difference in BMI 

of -0.21 kg/m2 for those in areas where adult obesity was least prevalent (95% CI -0.31, -

0.10; P<0.001) (Pinteraction =0.261; Figure 7.4). As can be seen in Figure 7.4, the gradient for 

the main association becomes only slightly flatter as obesity prevalence decreases. 

Sensitivity analysis 

Excluding the 20 Local Authorities represented in UK Biobank that are located in London, 

we found stronger evidence of a cross-level interaction between neighbourhood 

availability of PA facilities and the percentage of land cover classified as ‘natural’ in a LAD 
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(Pinteraction=0.044). Among people living in the areas with the lowest proportion of natural 

landcover, each additional PA facility close to home was associated with 0.063 kg/m2 lower 

BMI (95% CI:-0.084, -0.042, P<0.001), which was twice the magnitude of the association 

among people in areas with the most natural land cover (mean BMI difference = -0.031; 

95% CI:-0.052, -0.009, P=0.006). 

Concerning the association between fast-food proximity and BMI, there was no evidence 

outside London that adult obesity prevalence in the local authority acted as an effect 

modifier (Pinteraction=0.730). Across all levels of obesity prevalence, mean BMI was between 

0.23 and 0.26 kg/m2 lower with each 10-fold increase in distance to nearest fast-food store. 

Any effect modification by obesity norms in this population appears to be localised to 

London.    
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Figure 7.1 Local Authority-specific estimates of mean BMI difference associated with each additional PA facility near home  
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Figure 7.2 Local Authority-specific estimates of mean BMI difference associated with proximity to a fast-food outlet 
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Figure 7.3 Association between neighbourhood availability of PA facilities and 
BMI, by tertile of percentage ‘natural’ land cover in local authority 

  

Figure 7.4 Association between neighbourhood fast-food proximity and BMI, by 
tertile of adult obesity prevalence in local authority 
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DISCUSSION 

In this paper we have demonstrated that associations between the built environment and 

obesity risk may not be uniform across geographical space, using the examples of 

neighbourhood availability of PA facilities and neighbourhood fast-food proximity and 

BMI. Furthermore, we explored the possibility that geographical heterogeneity in these 

associations may be driven by attributes of the wider contexts in which people live, and 

found some evidence that the extent to which a given neighbourhood characteristic 

matters for the health of its residents may depend on features of the larger administrative 

area in which a neighbourhood is located. 

4.1 Interpretation of results 

We found that relationships between availability of neighbourhood PA facilities and BMI, 

and fast-food proximity and BMI, varied from place to place across urban England. While 

across the sample as a whole we have previously observed a clear, graded, negative 

association between the availability of PA facilities and adiposity8, stratification by local 

authority district reveals that this exists only in a subset of areas, and is of greater 

magnitude in some areas than others. In some LADs there is no evidence of any such 

association, while in many others the estimated effect was in the expected direction and 

the 95% CI only just included the null. Similarly, a strong positive association between 

fast-food proximity and BMI appears to be present in some areas but not others. 

For both relationships, no obvious regional patterning was apparent from visual 

inspection of geographical heterogeneity; rather, areas with a particularly strong 

association were dispersed across the country. If the associations had been consistent 

across space, then we could infer that results of other studies of these relationship are 

likely to be broadly generalisable from one setting to another, at least within England.  

However, if as our findings suggest, the associations are geographically heterogeneous, 

then the generalisability of findings from studies with narrow geographical coverage is 

undermined, and we should infer that the potential for built environment interventions 

to be effective might not be universal without careful consideration of context. 

Given that we observed the primary associations to vary by a higher-level geographical 

unit in which neighbourhoods are nested (LADs), we explored the possibility that this may 

be driven by variation in attributes of those larger areas. In each of our two worked 

examples, we tested an interaction with a plausible, place-based modifier of the main 

exposure effect, for which data were publicly available. We observed that a measure of the 
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physical landscape showed some evidence of modifying the individual-level association 

between the formal neighbourhood PA environment and BMI, after accounting for 

covariates at the individual- and area-level. The estimated magnitude of the association 

was somewhat weaker among people living in areas with more natural landcover. This 

aligns with our hypothesis that because greater land coverage with natural landscape types 

provides more opportunities and alternative spaces for PA and may contribute to social 

norms around PA, less natural landcover may result in greater reliance on and 

normalisation of the use of formal PA facilities.  

With respect to the fast-food environment and BMI, we found little evidence of effect 

modification by LAD-level adult obesity prevalence – a measure of local descriptive norms. 

Very few studies have examined the role of local descriptive norms (spatially-defined local 

prevalence of a trait or behaviour) rather than subjective norms (behaviours or traits of 

social networks) on health outcomes and behaviours, but those studies we are aware of 

suggest they may be important32,50, and they have also been shown to be influential in 

other domains (e.g. pro-environmental behaviour). We hypothesised that where obesity 

is less ‘normalised’, social pressure to maintain a healthy weight might be greater and act 

to suppress the influence of an unhealthy food environment. Our findings here do not 

provide strong support for our hypothesis that where obesity prevalence is lower, the 

association between the fast-food environment and BMI would be weaker, although 

sensitivity analyses did suggest a different relationship might exist in London areas 

compared with other areas. Further work to test and isolate any mechanisms such as these 

is therefore warranted. The influence of local descriptive norms might also be weaker than 

the influence of subjective norms (e.g. via actual social networks), which need not be 

constrained by administrative boundaries (or indeed by geography at all)40, and which we 

could not examine in this study.  

We note that our results indicated that only a small percentage of the total variance in 

BMI was attributable to differences at the LAD level. Whilst not surprising (most of the 

variation in BMI would be expected to be explained by individual-level factors, including 

in this study egocentric neighbourhood characteristics), this does remind us that LAD-

level factors are only likely to be one small part of a larger system of determinants.    
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4.2 Strengths and limitations 

Despite the well-known inconsistency of research findings from various settings, and 

increasing calls for the examination of effect modification in studies of the built 

environment and health35,36, this is one of  few studies we are aware of that has examined 

whether and how neighbourhood-obesity associations vary geographically and according 

to explicitly contextual variables.  To our knowledge, this is the first paper to examine 

geographical heterogeneity across the UK using a single study population and empirically 

examine possible drivers of that heterogeneity. The paper serves as an exploratory 

demonstration of the possible presence and drivers of geographical heterogeneity within 

relationships between built environments and health. Feasibility constraints on large-scale 

studies of the built environment are likely one reason this phenomenon has rarely been 

closely examined; UK Biobank and the UKBUMP provided the opportunity to work with a 

sample sufficiently large to draw comparisons between numerous administrative areas, 

and link publicly available data for those areas to examine possible effect modification 

relationships in a way not done before.  

This analysis does, however, have numerous limitations, and the results should therefore 

be viewed principally as a demonstration that geographical heterogeneity in these 

associations is, in general, a phenomenon requiring closer attention. We provide two 

examples of the type of investigations that may prove fruitful for understanding drivers of 

any such heterogeneity.  Limitations of this particular study and the data used include 

possible temporal mismatch between the various data sources used. The UK Biobank 

baseline assessment period was 2006-2010, and while we matched the external datasets as 

closely as was possible, and while physical features such as land cover are unlikely to 

change substantially over just a few years, the various data sources used in this analysis do 

nonetheless span the period 2005 to 2012. For the purposes of identifying the LAD in which 

each individual resides, we had to rely on approximate address coordinates, which may 

have led to some individuals residing near the boundary of a LAD being incorrectly 

assigned to a neighbouring LAD. While this may introduce some misclassification bias, it 

is likely that neighbouring LADs are similar to one another in terms of natural landcover 

and obesity prevalence. Additionally, people living on the edges of LADs may be 

influenced by characteristics of neighbouring LADs, yet we ignore these potential ‘edge 

effects’51. 

We used pre-classified secondary data to assess the landscape context of each local 

authority, and were therefore constrained by the classification scheme used there. In the 

Land Cover Atlas of the UK, urban parks and sport and leisure facilities are jointly 
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classified as ‘urban green’, meaning the ‘natural’ landcover category excludes urban parks. 

There is an inverse correlation between proportion of urban green and proportion of 

natural land cover in the data, so if urban parks at the LAD level have a similar modifying 

effect on the influence of neighbourhood formal PA facilities, we may have 

underestimated the interaction with ‘natural’ land cover by not being able to factor in the 

influence of urban parks.     

Our results may also be affected by the uncertain geographic context problem (UGCoP)52, 

such that local authority scale may not be the relevant scale for assessing the particular 

effect modifiers we considered. Our decision to use Local Authority as the scale at which 

to assess geographical heterogeneity and examine effect modification was partly one of 

pragmatism – this is a scale at which relevant data are available. But it is also the scale at 

which many planning and resourcing decisions are made, and the LAD is therefore a 

potential locus of intervention. So for example, if a local authority was considering a public 

health intervention that involved increasing the availability of PA facilities on the basis of 

evidence from UK-wide observational studies or intervention research conducted in 

another LAD, our results suggest decision makers may be wise to consider LAD-level 

characteristics that may differ from national averages or from the setting of key studies 

where evidence has been generated previously. Whether or not the LAD is an aetiologically 

relevant scale, it is likely to be a relevant scale for planning and resource allocation 

decisions. One important caveat to the use of LADs is that there are multiple types of LADs 

in England; some are single towns or cities, others are subdivisions of large cities and urban 

conurbations, and others still represent less urbanised parts of larger counties. The 

responsibilities, governance structures and size of each varies. By restricting our analysis 

to study participants living in urban postcodes, we may have avoided some of the issues 

this presents, but further research should examine geographical heterogeneity and 

contextual effect modification at alternative scales and non-administrative boundaries.  

Other possible sources of bias include selection bias in UK Biobank as a whole, arising 

from a low response fraction, the cross-sectional study design adopted here, and structural 

confounding due to residential segregation and selective migration. If these sources of bias 

apply differentially across space, they may have given rise to a spurious appearance of 

geographical heterogeneity. Finally, we assumed a linear relationship between our 

exposures and outcome, and while this is valid across the sample as a whole, within local 

authorities it may take other functional forms.  
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4.3 Future research directions 

This paper examines one potentially important scale at which heterogeneity may exist, 

and two measures of the wider context that might plausibly moderate neighbourhood-

BMI associations, but other scales and other place-based variables should be investigated 

in future research. Other potential contextual modifiers of associations between 

neighbourhood environments and obesity might include the presence or absence of city-

wide initiatives (e.g. around active commuting or healthy food environments), or 

dominant cultural meanings of PA and food in a region. Further, building on the important 

contributions to our understanding of neighbourhoods and health that have come from 

studies of perceived neighbourhood safety and other similar factors53, examination of city-

wide perceptions of safety, crime etc. may also help explain geographical heterogeneity of 

associations between the objectively observed neighbourhood built environment and 

health outcomes, especially in relation to PA. Climatic variation between areas may also 

be an important modifier of the effect of the PA environment.  

4.4 Conclusions 

Most studies of neighbourhood effects implicitly assume that such effects are universal. 

We found the relationship between the neighbourhood PA environment and BMI varies 

from place to place across urban England. If, even in a relatively small country such as 

England, neighbourhood effects are genuinely not uniform across geographical space, this 

may have important implications for the generalisability of studies with a narrow 

geographical focus. However, the possibility – demonstrated in the second part of this 

paper – that some attributes of the wider context may be important modifiers of 

neighbourhood effects on health, opens up research avenues for making sense of this 

geographical heterogeneity. Seeking a deeper understanding of these complex 

relationships has the potential to inform effective and cost-effective targeting and tailoring 

of built environment interventions. 
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 NEIGHBOURHOOD BUILT ENVIRONMENT 
CHARACTERISTICS, SOCIOECONOMIC 
POSITION AND CARDIOVASCULAR DISEASE 
AND CANCER  

8.1. Introduction 

In the four preceding empirical chapters I undertook cross-sectional analyses of the UK 

Biobank baseline data, and I focussed on adiposity because of its role along the pathways 

to health from plausibly 'obesogenic' neighbourhood characteristics related to diet and 

physical activity. In this final empirical chapter, I make use of administrative health 

records linked to UK Biobank to conduct longitudinal analyses (thereby seeking to 

strengthen causal inference), and I expand my focus to more distal outcomes: incident 

CVD and cancer over a ten-year follow up period. For these outcomes I also consider that 

neighbourhood environments may exert an influence through pathways other than diet 

and PA. On those grounds I additionally examine neighbourhood greenspace as an 

exposure that may also influence, for example, psychosocial pathways to health. 

Continuing my examination of effect heterogeneity, here I investigate whether 

socioeconomic factors modify these associations between neighbourhood environment 

characteristics and prospectively ascertained outcomes. 
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8.2. Research Paper 5 

 

Neighbourhood built environments, socioeconomic position, and hospital 
admissions for cardiovascular disease and cancer: a prospective study using 
UK Biobank and linked administrative records 

 

Note: Supplementary material for this research paper is included in Appendix Five. 



207 

 

  



208 



209 

Neighbourhood built environments, socioeconomic position, 
and hospital admissions for cardiovascular disease and cancer: a 
prospective study using UK Biobank and linked administrative 
records 

ABSTRACT 

Background: Neighbourhood environments may influence risk of cardiovascular disease 

(CVD) and cancer, via diet and physical activity (PA) behaviours. However, if the effects 

of these neighbourhood risk exposures vary by socioeconomic position, efforts to improve 

population health by improving neighbourhood built environments may widen health 

inequalities.  

Methods: In the UK Biobank cohort we used linked records of hospital admissions to 

assess the relative hazard of being admitted to hospital with a primary diagnosis of CVD 

or cancer, according to three characteristics of the neighbourhood built environment: 

availability of formal PA facilities, proximity of a takeaway/fast-food store, and 

neighbourhood greenspace. We then examined whether there is evidence of effect 

modification of the main associations by household income and area deprivation. We used 

Cox proportional hazards models, adjusted for likely confounding, and calculated relative 

excess risks due to interaction (RERI) to assess effect modification on the additive scale. 

We also examined the combined modifying role of income and deprivation.  

Results: Mean follow up time was 6.8 years. There were 13,809 incident CVD admissions 

and 13,935 incident cancer admissions in the sample. Ignoring effect modification, 

associations between the neighbourhood exposures and CVD- or cancer-related hospital 

admissions were weak to null. However, there was good evidence of effect modification by 

both area deprivation and household income. Greater availability of PA facilities close to 

home was associated with lower risk of CVD-related admissions in more deprived areas, 

but only among those with higher household incomes. More greenspace was associated 

with lower risk of cancer-related hospital admission among people in deprived areas, but 

was not associated with lower risk of CVD-related admission for any group. Area 

deprivation and household income both modified the association between fast-food 

proximity and CVD admissions, such that people in low-income households further from 

a fast-food store had lower risk, but this association was stronger in more affluent areas. 

Some differences in these results were observed between women and men. Findings were 
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largely robust to alternative specification of time at risk, and adjustment for additional 

covariates for which there was some ambiguity about temporal precedence. 

Conclusions: Improving deprived neighbourhoods by increasing the number of formal 

PA facilities, while also ensuring access to these is free or affordable, and increasing the 

amount of public and private greenspace and limiting the proximity of fast-food outlets to 

residential areas, may improve health outcomes in the population. Pathways from 

greenspace to cancer risk require further elucidation and should not be assumed to 

operate primarily through physical activity. By examining effect modification by multiple 

socioeconomic indicators in parallel, greater insight can be gained into the potentially 

different ways in which different aspects of the socioeconomic conditions of people’s lives 

influence their relationship with the built environment and its effects on their health. 

Understanding this better may help to avoid generating or perpetuating health 

inequalities when neighbourhood-based built environment interventions are designed. 

BACKGROUND 

Inadequate physical activity (PA), poor diet and chronic stress are risk factors for 

conditions such as heart disease, stroke, and various cancers1–4. Features of neighbourhood 

environments have the potential to either support or hamper healthy diet and PA 

behaviours, and to mitigate or exacerbate the stresses of daily life. Unequal access to 

healthy neighbourhood resources may therefore result in differential risk of hospital 

admission due to cardiovascular disease or cancer.  

Over the past 25 years, cross-sectional studies have produced inconsistent evidence 

linking neighbourhood built environment characteristics to cardiovascular disease 

outcomes5,6, adiposity and obesity7, mental health8, and health behaviours such as PA and 

diet9,10. Recently, findings from longitudinal studies have also contributed to the evidence 

base (e.g.11,12), and these study designs may help to better elucidate the true causal 

relationships between neighbourhood environments and these outcomes. Longitudinal 

studies provide greater certainty about the temporal sequence of exposures and outcomes 

of interest, eliminating the possibility of reverse causation. Linkage of hospital records and 

mortality registers to population-based cohorts with geographical data on neighbourhood 

environments provides opportunities to examine whether environmental characteristics 

of neighbourhoods are associated with objectively recorded, prospective outcomes, 

consistent with hypothesised relationships.  
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Numerous features of the neighbourhood built environment are widely hypothesised to 

influence obesity and, by extension, risk of health outcomes such as CVD and cancer, via 

either diet or PA. These include, but are not limited to, the retail food environment 

(including proximity or density of healthy and unhealthy food stores), accessibility of 

recreation facilities for physical activity (such as public swimming pools, gyms, sports 

fields), and green spaces such as public parks and private gardens (which may facilitate 

recreational PA, or functional PA such as gardening or active travel). Greenspace may also 

offer additional health benefits via other pathways relating to the regulation of stress 

hormones, improved immune function through exposure to diverse microorganisms, and 

reduced exposure to air pollution13, all of which may influence risk of cardiovascular 

disease, cancer and other chronic diseases. The evidence base for these neighbourhood 

effects on health remain inconclusive, and the relative importance of different 

neighbourhood exposures is unclear. If causal neighbourhood effects on health do exist, 

they are likely to be small, and part of a broader swathe of environmental, social and 

structural drivers of health behaviours and outcomes, each contributing incrementally to 

the complex physical and social environments that constrain our ability to make healthy 

lifestyle choices and mitigate the stresses of modern life.   

An important aspect of understanding these relationships is the possibility that they are 

not uniform across the population, but that some people in some places are more sensitive 

to their neighbourhood environment than others. Important effects concentrated in 

particular population subgroups or particular places may be masked by average, 

population-wide estimates. Socioeconomic differences may be one source of such effect 

heterogeneity. Results of some studies suggest differential neighbourhood health effects 

by individual socioeconomic status14,15 or neighbourhood deprivation16,17. These may arise 

if there is differential access to particular neighbourhood resources in more deprived areas 

compared with less deprived areas18, or if there are differential preferences for particular 

neighbourhood resources according to individual socioeconomic status, regardless of the 

physical availability of neighbourhood resources e.g. if low-income households tend to 

make more use of fast-food/takeaway stores, or if access to gyms and leisure centres is 

restricted to people from high-income households because of membership fees. In the case 

of greenspace effects on health, differences may arise according to area-level deprivation 

(rather than individual/household socioeconomic position) if more deprived areas have 

poorer quality greenspace. On the other hand, if greenspace promotes health without an 

attendant increase in financial costs to the individual, then access to greenspace may offset 

inequitable access to formal PA facilities, and therefore have a larger effect in deprived 
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areas or for low-income households. Regardless of the direction of any such heterogeneity 

of effect, it remains a poorly understood aspect of the relationships between 

neighbourhood environments and health. If differential benefits or harms of 

neighbourhood characteristics are observed by household income, or other measures of 

individual socioeconomic status, or by neighbourhood deprivation, then any efforts to 

improve population health by improving neighbourhood built environments (e.g. 

increasing availability of PA facilities or reducing the number of fast-food outlets near 

residential areas) may widen health inequalities if they are blind to socially differential 

impacts19.  

In this paper we use baseline UK Biobank data on neighbourhood exposures to PA 

facilities, greenspace and fast-food stores, linked to records of hospital admissions up to 

January 2016, to examine (1) the relative hazard of being admitted to hospital with a 

primary diagnosis of cardiovascular disease or cancer, according to exposure to each of the 

neighbourhood characteristics, and (2) whether there is evidence of effect modification of 

those associations by household income and/or area deprivation.  

METHODS 

Study design and data collection 

We used data from UK Biobank (project 17380), the scientific rationale, study design and 

survey methods for which have been described elsewhere20. More than half a million 

individuals were recruited to visit one of 22 UK Biobank assessment centres across the UK 

between 2006 and 2010. All individuals aged 40–69 years living within a 25-mile radius of 

an assessment centre and listed on National Health Service (NHS) patient registers were 

invited to participate in the study. The age range was chosen by UK Biobank as an 

important period for the development of many chronic diseases.  

Neighbourhood environment data 

Linked to UK Biobank is a high-resolution spatial database of a range of objectively 

measured characteristics of the physical environment surrounding each participant’s exact 

residential address, known as the UK Biobank Urban Morphometric Platform (UKBUMP). 

Environmental data in UKBUMP were derived, using automated processes, from multiple 

pre-existing sources roughly contemporaneous with the individual baseline assessment21. 

Over time, as researchers work with UK Biobank, new linked data are being made available 
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to the research community, including additional environmental measures of greenspace22 

that we have used here in addition to measures from the original UKBUMP.  

Linked hospital admissions data 

Ongoing prospective linkage of the cohort to administrative health records is a key feature 

of the UK Biobank resource. At the time of analysis, linked Hospital Episode Statistics were 

available up to January 2016. These contain information on hospital admissions coded 

using the International Statistical Classification of Diseases and Related Health Problems, 

10th Revision (ICD-10). We used these data to identify incident admissions to hospital for 

cardiovascular disease and for cancer. 

Outcomes  

Outcomes were any hospital admission for which the primary diagnosis is recorded as 

cardiovascular disease (ICD-10 codes I10-I25, I46,I48,I50,I60-79) or cancer (ICD-10 codes 

C00-C97). CVD and cancer were examined separately. In a set of secondary analyses we 

examine breast cancer and colorectal cancers specifically, as these have some of the 

strongest links to physical activity23 and, to a lesser extent, diet24, two of the most likely 

mediators of the neighbourhood effects being examined. 

Neighbourhood exposures  

Three measures of the neighbourhood built environment were examined. To account for 

skewed distributions and to facilitate a categorical approach to the analysis of effect 

modification25, each exposure was split into four categories. The exposures we examined 

were: 

(1) Availability of PA facilities: number of formal PA facilities within a one-kilometre 

street-network distance of each participant’s home address, categorised as 0, 1, 2-3, or 4 or 

more. 

(2) Fast-food proximity: street-network distance in metres from participants’ home 

address to the nearest ‘hot/cold fast-food outlet/takeaway’, categorised as <500 m, 500-

999 m, 1000-1999 m, 2000 m+.  

(3) Greenspace: percentage of 300 m Euclidean buffer around home address classified as 

‘greenspace’ or ‘domestic garden’ in the Generalised Land Use Database. Combining 

‘greenspace’ and ‘gardens’ is consistent with previous research using the GLUD to examine 

relationships with health11. A 300 m buffer was chosen to capture greenspace in the 
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immediate vicinity of a person’s home. There is some evidence that 300 m is a distance 

from home beyond which the use of green spaces quickly declines26,27, and it has been 

proposed in the UK as a benchmark for greenspace provision28. Greenspace was grouped 

into quartiles. 

Exposures (1) and (2) were derived in the UKBUMP from OS AddressBase Premium 201221, 

while (3) was derived by Wheeler et al from the Generalised Land Use Database 200522. 

We restricted the analyses to people residing in England, because the greenspace data for 

exposure (3) were not available for UK Biobank participants in Wales and Scotland.  

Potential effect modifiers 

We examined whether the association between each neighbourhood exposure and each 

outcome was modified by binary indicators for annual, pre-tax household income 

(<£31,000 or ≥£31,000) and area deprivation (most deprived 40% of UK census output areas 

vs least deprived 60%, based on the Townsend index). When testing for effect 

modification, household income and area deprivation were combined with each primary 

exposure into a categorical variable capturing all combinations of levels of the exposure 

and potential modifier, with a single reference category (see below for details). We also 

examined the combined modifying role of income and deprivation. Area-based and 

individual indicators of socioeconomic disadvantage have been shown to contribute to 

health outcomes independently of one another, providing a rationale for examining them 

both in parallel and in combination29. 

Potential confounders 

We identified potential confounders of the primary associations as age (years), sex 

(binary), ethnicity (White/non-White), educational qualifications (College or University 

degree/A levels/AS levels or equivalent/O levels or below/other), employment status (paid 

work, retired, unable to work, unemployed, or other), urban/non-urban status, UK 

Biobank assessment centre, and neighbourhood residential density (count of residential 

dwellings within a 1-km street-network buffer of home address, log transformed). Annual 

household income (<£18,000, £18,000–30,999, £31,000–51,999, at least £52,000) and area 

deprivation (Townsend score) were also included as possible confounders in any models 

where they were not being tested as a potential effect modifier. We also adjusted models 

for smoking status (current/previous/never), alcohol intake frequency (less than/at least 

3 times per week) as these are important risk factors for the outcomes and may be 

correlated with neighbourhood, and number of years living at current (baseline) address 
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to at least partially condition on pre-baseline exposure to neighbourhood environment, 

which could act as a confounder.  

Statistical analysis 

Of the 502,617 participants in UK Biobank for whom some data were available, 502,544 

remained after withdrawals were excluded, and 355,691 of these individuals lived in 

England and had complete data on covariates and data for at least one measure of the 

neighbourhood environment. Of these, we excluded 19,535 individuals who had reported 

prior cardiovascular events from analyses involving CVD outcomes, and 29,112 individuals 

with a previous cancer diagnosis at baseline from analyses involving cancer outcomes. This 

left a possible N= 336,156 for the analyses of CVD outcomes and N=326,579 for the analyses 

of cancer outcomes (Figure 8.1). The final analytic sample sizes varied according to 

availability of the neighbourhood variable under examination. The maximum follow-up 

time after baseline assessment was 9.8 years, but varied according to the date of an 

individual’s recruitment to the study. 

 

 

 

Figure 8.1 UK Biobank sample for analyses 
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Baseline characteristics were summarised by the mean (and standard deviation) or median 

(and interquartile range) for continuous variables and number (and percent) for 

categorical variables. We then examined associations between neighbourhood exposure 

and incident hospital admission due to CVD or cancer following baseline assessment using 

multivariable Cox proportional hazard models, with adjustment for potential confounders 

and censoring for death. Results are expressed as hazard ratios (HRs) and 95% confidence 

intervals (95% CI). The proportional hazards assumption was tested by visual inspection 

of adjusted log-log plots (Supplementary Figure 15, Appendix Five). The reference 

categories for each neighbourhood exposure are the hypothetically least health-promoting 

(lowest availability of PA facilities, shortest distance to nearest fast-food store, least 

greenspace).  

We examined whether the primary associations were modified by area deprivation and 

household income. In line with STROBE recommendations30 and using the method 

described by Li and Chambless31 and VanderWeele25, the relative excess risk due to 

interaction (RERI) was calculated to assess effect modification on the additive scale. When 

dealing with binary and time-to-event outcomes, the decision to examine effect 

modification on either the multiplicative or the additive scale has implications for 

interpretation. The additive scale provides important information about the potential 

public health consequence of intervening on the exposure, for different strata of the effect 

modifier. This is not information we can glean directly from an examination of effect 

modification on the multiplicative scale, because measures of effect modification on the 

multiplicative scale ignore potentially different baseline risks within strata of the effect 

modifier25. The RERI is calculated by estimating the HR for each combination of the 

exposure and potential modifier values relative to a single reference category, in this case 

the least hypothetically health-promoting level of the respective neighbourhood variable 

(no PA facilities; <500 m from nearest fast-food store; or quartile with least greenspace), 

and either low income (<£31,000) or more deprived area (home address located in a census 

output area in the most deprived 40% of all UK areas). In other words, the reference 

category in each analysis is the group expected to have the highest baseline risk of the 

outcome. From this model, the RERI is calculated as:  

RERI = HR11 – HR10 – HR01 + 1 

For the model assessing effect modification of PA facility availability by household income, 

for example, HR11 represents the HR (relative to the reference category) for people in high-

income households (at least £31,000 per year) and who have the highest level of 
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neighbourhood availability of PA facilities (4 or more within 1000 m of home); HR10 

represents the HR for people in low-income households with 4 or more PA facilities near 

home; and HR01 is the HR for people in high-income households with no PA facilities near 

home.  

For the models of the other neighbourhood exposures, and models of effect modification 

by area deprivation, subscript 1 represents those most exposed to the potentially health-

promoting neighbourhood exposure and less deprived areas, respectively. As such, a RERI 

value greater than zero – which implies a positive departure from additivity – suggests that 

in this case any estimated protective effect of the neighbourhood variable among people 

in low-income households or in more deprived areas is greater than the estimated 

protective effect among people from high-income households or less deprived areas. In 

contrast, a RERI<0 suggests any protective effect of the neighbourhood variable is greater 

in the high-income/less deprived group. 

All analyses were conducted using Stata v14.2 (StataCorp LP, College Station, TX, USA). 

Sensitivity analyses 

The spatial data used in the creation of the UKBUMP to ascertain the neighbourhood food 

and physical activity exposures were recorded in 2012, just after the baseline data 

collection period21, and while it is assumed that neighbourhood exposure will be 

sufficiently constant over this period as to not unduly influence the results, we check this 

assumption by conducting a sensitivity analysis in which follow-up is restricted to the 

period from 2012 onwards for all participants, rather than from the baseline assessment 

date (which could be as early as 2006).  

The primary analyses were not adjusted for baseline hypertension or BMI, or medications 

for hypertension or cholesterol, because of ambiguity regarding temporal precedence. 

Although these are important risk factors for CVD especially, rather than being 

confounders they may be on the causal pathways from neighbourhood environment to 

CVD or cancer if neighbourhood exposure predates them, which it is likely to in this 

largely residentially stable population (median time living at baseline address was 16 

years). We instead conduct sensitivity analyses to examine whether adjusting for these 

variables influences the primary findings. We also report the main associations stratified 

by sex. 
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RESULTS  

Descriptive 

Table 8.1 summarises the characteristics of the study participants at the baseline 

assessment. The sample has a mean age of 56 years at baseline and was predominantly of 

White ethnicity and urban dwelling. Reflecting the age of the sample, just over half were 

educated to no higher than O levels, and six in every ten were employed at baseline. 

Participants were evenly distributed across income categories, with roughly half living in 

households with an annual gross income below £31,000, while 29% lived in the more 

deprived 40% of areas in the UK.   

The mean follow-up time for participants was 6.8 years. Over the follow-up period, 13,809 

individuals (4.11%) were admitted to hospital with CVD, and 13,935 (4.27%) were admitted 

with cancer (Table 8.2). Proportionally, there were more hospital admissions for both 

outcomes among people from low-income households, whereas admissions were similar 

across levels of area deprivation.  
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Table 8.1 Sample characteristics 

 
CVD analysis Cancer 

analysis 
Total N 336,156 326,579 

% female 53.94% 51.65% 
Age (years) (mean, SD) 55.94 (8.07) 55.96 (8.09) 
Ethnicity (% non-White) 4.94% 5.16% 
% Urban 85.48% 85.67% 
Education (%)   

College or University degree 34.95% 34.34% 
A levels/AS levels or equivalent 11.80% 11.65% 
O levels or below/other 53.26% 54.01% 

Employment status   
Paid work 62.06% 61.76% 
Retired 30.29% 30.31% 
Unable to work 2.44% 2.74% 
Unemployed 1.53% 1.57% 
Other 3.68% 3.62% 

Residential density (residential sites per 1000m buffer) (median, IQR) 
1915 

(1102–3129) 
1921 

(1109–3130) 
Years at current address (median, IQR) 15 (7–25) 15 (7–25) 
Area deprivation (mean Townsend score) -1.46 (2.95) -1.42 (2.97) 
Area deprivation (% in two most deprived quintiles of the UK) 28.86% 29.34% 
Household income   

<£18,000 21.48% 22.18% 
£18 000–30 999  25.46% 25.37% 
£31 000–51 999 26.56% 26.29% 
£52 000 or more 26.50% 26.17% 

Smoking status   
Current 10.13% 10.35% 
Previous 34.42% 34.82% 
Never 55.45% 54.83% 

Frequency of alcohol consumption (% ≥3 times per week) 45.44% 45.27% 
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Table 8.2 Hospital admissions by household income and area deprivation 

  CVD  Cancer 

 N Admissions (%) N Admissions (%) 

Total 336,156 13,809 (4.11) 326,579 13,935 (4.27) 

Household income (annual pre-tax)     

<£31,000 157,818 8185 (8.19) 155,283 8126 (5.23) 

£31,000 or more 178,338 5624 (3.16) 171,296 5809 (3.39) 

Area deprivation     

More deprived 97,005 4183 (4.31) 95,818 4043 (4.22) 

Less deprived 239,151 9626 (4.03) 230,761 9892 (4.29) 

* Self-reported average total household income before tax 

** 'More deprived' refers to people living in areas in the top two most deprived quintiles of the UK, 
based on the Townsend index. 

 

The remainder of this results section is split into two parts: first are the results of the 

analyses for the three exposures and CVD-related hospital admissions, followed by the 

results of the analyses for the three exposures and cancer-related hospital admissions.  

Cardiovascular disease admissions 

a) Associations between neighbourhood characteristics and CVD admissions  

Figure 8.2 summarises the hazard ratios for hospital admissions due to CVD associated 

with each of the three neighbourhood environment measures, across the sample as a 

whole. While 95% CIs for all associations included the null value of 1.0, there was some 

indication of a weak trend toward decreasing hazard of CVD-related hospital admission 

with increasing distance to the nearest takeaway/fast-food store. With each category 

decrease in proximity, the HR for hospital admission moved further away from 1.0, and 

those living further from a fast food store had a 4% reduced hazard compared with those 

living closest (HR=0.96; 95%CI: 0.91-1.02). For neighbourhood availability of PA facilities 

and greenspace, there was little to no evidence of an association with risk of CVD-related 

admission when averaging across the study population as a whole. 
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Figure 8.2 Adjusted hazard ratios for hospital admission due to CVD, by availability of formal PA facilities, proximity to nearest fast-
food/takeaway store, and neighbourhood greenspace 

Note: Models are adjusted for age, sex, ethnicity, education, household income, employment status, urban/non-urban, assessment area, residential density, smoking 
status, alcohol intake, and number of years living at home address.  Plots from sex-stratified models can be found in supplementary material (Appendix Five) 
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b) Modification of the associations between neighbourhood characteristics and CVD-

related hospital admissions, by income and area deprivation 

Table 8.3 shows results of the analyses of effect modification by household income and 

area deprivation, for the associations between each neighbourhood exposure and CVD-

related hospital admissions. For availability of PA facilities within a kilometre of home, 

there was some evidence of effect modification by area deprivation on the additive scale, 

with a RERI of 0.088 indicating a departure from additivity and a stronger association 

among people from more deprived areas. Among those living in areas in the two quintiles 

of greatest deprivation, the stratum-specific hazard ratio for those with at least four PA 

facilities near home was 0.90 (95%CI: 0.82–0.99), while we observed no association among 

people in less deprived areas (HR=1.01; 95%CI: 0.95–1.07), suggesting a greater protective 

effect in more deprived areas. The RERI for effect modification by household income, 

whilst not as large (RERI=-0.077), indicated a negative departure from additivity, 

suggesting effect modification in the other direction and a stronger association between 

PA facilities and CVD among those from higher income households. In stratified models 

the hazard ratio for those in higher income households with at least four PA facilities near 

home compared with none was 0.93 (95%CI: 0.85–1.00), while no such association was 

observed among people in lower income households (HR=1.00; 95%CI: 0.94–1.07). 

For fast-food proximity, we observed effect modification by both household income 

(RERI=0.076) and area deprivation (RERI=-0.104), but in the opposite direction from what 

was observed for PA facilities (Table 8.3). Reduced access to fast-food/takeaway stores 

might have the biggest impact for low-income households rather than higher income 

households, and mostly in less deprived areas. In stratified models, for people in low-

income households, living at least 2 km from a fast-food store was associated with a 7% 

reduction in the hazard of CVD-related hospital admission compared with living within 

500 m of a fast-food store  (HR-0.93; 95% CI: 0.86-1.00), while no such association was 

observed among higher income households (HR=1.01; 95% CI: 0.92-1.11). But for people 

living in more deprived areas, there was no observed protection afforded by living further 

from a fast-food store, whereas for those in more affluent areas, living at least 2km from a 

store was associated with an 8% reduced hazard of hospitalisation for CVD (HR=0.92; 95% 

CI: 0.85-0.99).  

Household income and area deprivation did not appear to modify associations between 

greenspace and CVD-related hospital admissions. There was some weak evidence of effect 
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modification by income (RERI=0.070), but the stratum-specific HRs were null in both 

income groups (Table 8.3).  

Combining area deprivation and household income, the hazard ratio for at least four PA 

facilities (compared with none) is smallest among people from high-income households 

living in more deprived areas (Table 8.4). Among this group, the hazard of being 

hospitalised for CVD was 22% lower for people who had at least four PA facilities within a 

kilometre of their home, compared with having no nearby PA facilities (HR=0.78, 95% CI: 

0.65-0.94).  

For fast-food proximity, a beneficial association of living further from a fast-food/takeaway 

store was only observed among low-income households in affluent areas, where the hazard 

of CVD-related admission was 12% lower among people living ≥2km from a fast-food store 

than among people living <500 m from one (HR=0.88, 95%CI:0.80-0.97; Table 8.4). 

For neighbourhood greenspace, confidence intervals around all HRs were too wide to 

conclude that there was a CVD-related benefit of more greenspace in any of the 

income/deprivation combinations (Table 8.4). 

c) Sex differences   

Examining sex differences in the primary results, we found that for the population as a 

whole, an association between the formal PA environment and CVD admissions was 

observed among women but not men (Supplementary Table 8, Appendix Five). No effect 

modification was observed for women. The lack of association among men, however, 

obscured socioeconomic differences: men in deprived areas and men in higher income 

households had reduced hazard of CVD-related hospital admission when they had greater 

neighbourhood availability of PA facilities. 

For fast-food proximity and CVD-related admission, the primary results were reflected in 

men, but no associations were observed for women, for any socioeconomic group 

(Supplementary Table 9, Appendix Five). The lack of evidence for any association between 

neighbourhood greenspace and CVD-related admissions, across all socioeconomic strata, 

was consistent for men and women (Supplementary Table 10, Appendix Five). 

 

 

 



224 

Table 8.3 Modification of the association between built environment variables and 
hospital admissions due to CVD, by household income and area deprivation 

 CVD-related admissions 
  

Annual household income* Area deprivation** 

< £31,000 At least £31,000 More deprived Less deprived 

  HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 
Number of PA facilities     

None (ref) 1.00 0.99 (0.92, 1.05) 
P=0.666 

1.00 0.88 (0.81, 0.95) 
P=0.001 

One 
1.00 (0.94, 1.07) 

P=0.956 
0.94 (0.87, 1.01) 

P=0.086 
0.93 (0.84, 1.03) 

P=0.152 
0.88 (0.81, 0.95) 

P=0.002 

2-3 
1.04 (0.98, 1.10) 

P=0.214 
0.99 (0.92, 1.07) 

P=0.834 
0.98 (0.90, 1.07) 

P=0.696 
0.92 (0.85, 1.00) 

P=0.040 

4 or more 
1.00 (0.94, 1.07) 

P=0.886 
0.92 (0.85, 0.98) 

P=0.015 
0.92 (0.84, 1.00) 

P=0.051 
0.88 (0.81, 0.96) 

P=0.004 
  

    

Stratum-specific HRs  
(4+ facilities vs 0) 

1.00 (0.94, 1.07) 
P=0.957 

0.93 (0.85, 1.00) 
P=0.062 

0.90 (0.82, 0.99) 
P=0.038 

1.01 (0.95, 1.07) 
P=0.821 

          
Relative excess risk due to 
interaction (RERI) (95% CI) 

-0.077 (-0.167, 0.013) P=0.092 0.088 (-0.004, 0.181) P=0.061 

Fast-food proximity     

Closer than 500m (ref) 
1.00 0.92 (0.84, 1.00) 

P=0.041 
1.00 0.98 (0.91, 1.06) 

P=0.615 

500-999m 0.97 (0.91, 1.03) 
P=0.353 

0.90 (0.84, 0.98) 
P=0.009 

1.01 (0.94, 1.09) 
P=0.771 

0.92 (0.86, 0.99) 
P=0.026 

1000-1999m 0.97 (0.91, 1.03) 
P=0.308 

0.91 (0.84, 0.98) 
P=0.012 

0.97 (0.90, 1.06) 
P=0.548 

0.93 (0.87, 1.00) 
P=0.055 

At least 2000m 
0.93 (0.87, 1.00) 

P=0.048 
0.92 (0.85, 1.00) 

P=0.046 
1.03 (0.93, 1.14) 

P=0.595 
0.90 (0.84, 0.98) 

P=0.011 
  

    

Stratum-specific HRs  
(≥2000m vs <500m) 

0.93 (0.86, 1.00) 
P=0.047 

1.01 (0.92, 1.11) 
P=0.854 

1.03 (0.93, 1.16) 
P=0.547 

0.92 (0.85, 0.99) 
P=0.019 

          
Relative excess risk due to 
interaction (RERI) (95% CI) 

0.076 (-0.020, 0.171) P=0.122 -0.104 (-0.225, 0.017) P=0.093 

Greenspace     

Q1 (least greenspace) (ref) 
1.00 0.91 (0.84, 0.98) 

P=0.015 
1.00 0.98 (0.91, 1.05) 

P=0.547 

Q2 
1.00 (0.94, 1.06) 

P=0.897 
0.94 (0.87, 1.01) 

P=0.094 
1.02 (0.95, 1.10) 

P=0.560 
0.94 (0.88, 1.00) 

P=0.070 

Q3 
0.99 (0.93, 1.06) 

P=0.790 
0.95 (0.88, 1.02) 

P=0.154 
1.05 (0.95, 1.15) 

P=0.340 
0.93 (0.87, 1.00) 

P=0.036 

Q4 (most greenspace) 0.98 (0.90, 1.05) 
P=0.529 

0.95 (0.88, 1.04) 
P=0.275 

0.98 (0.87, 1.11) 
P=0.761 

0.94 (0.87, 1.01) 
P=0.104 

      
Stratum-specific HRs  
(Q4 vs Q1) 

0.99 (0.91, 1.08) 
P=0.844 

1.02 (0.91, 1.13) 
P=0.747 

0.96 (0.83, 1.12) 
P=0.605 

0.96 (0.88, 1.04) 
P=0.295 

      
Relative excess risk due to 
interaction (RERI) (95% CI) 

0.070 (-0.023, 0.164) P=0.142 -0.019 (-0.154, 0.115) P=0.778 

* Self-reported average total household income before tax. ** 'More deprived' refers to people living in areas 
in the top two most deprived quintiles of the UK, based on the Townsend index.    Q= quartile 

Note: RERI>0 indicates positive effect modification and a departure from additivity. Here, because the 
reference category is people with the hypothetically least-healthy level of neighbourhood exposure and with 
low household income or living in more deprived areas, a positive departure from additivity suggests any 
estimated protective effect of the neighbourhood variable is weaker among people in higher income 
households or in less deprived areas than it is among people from low income households or more deprived 
areas, and therefore that the latter stand to gain more from an intervention. In contrast, a RERI<0 suggests 
any protective effect of the neighbourhood variable is stronger in the high-income/less deprived group. 
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Table 8.4 Association between neighbourhood characteristics and CVD-related 
hospital admissions, stratified by household income and area deprivation in 
combination 

CVD-related 
admissions  

Combined household income and area deprivation 

Less than £31,000 
& more deprived 

At least £31,000 & 
more deprived 

Less than £31,000 
& less deprived 

At least £31,000 & 
less deprived 

  HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Number of PA 
facilities 

    

None (ref) 1.00 1.00 1.00 1.00 

One 
0.96 (0.85, 1.08) 

P=0.461 
0.84 (0.69, 1.03) 

P=0.103 
1.02 (0.95, 1.10) 

P=0.574 
0.96 (0.88, 1.05) 

P=0.372 

2-3 
1.00 (0.90, 1.11) 

P=0.977 
0.90 (0.75, 1.08) 

P=0.267 
1.06 (0.98, 1.14) 

P=0.144 
1.01 (0.93, 1.10) 

P=0.745 

4 or more 
0.95 (0.85, 1.07) 

P=0.398 
0.78 (0.65, 0.94) 

P=0.010 
1.03 (0.95, 1.12) 

P=0.481 
0.96 (0.88, 1.05) 

P=0.390 

      

Fast-food proximity     

Closer than 500m 
(ref) 

1.00 1.00 1.00 1.00 

500-999m 
1.03 (0.94, 1.13) 

P=0.547 
0.99 (0.85, 1.14) 

P=0.872 
0.93 (0.85, 1.01) 

P=0.085 
0.97 (0.88, 1.08) 

P=0.613 

1000-1999m 
0.96 (0.87, 1.07) 

P=0.481 
1.04 (0.88, 1.23) 

P=0.670 
0.95 (0.87, 1.04) 

P=0.298 
0.96 (0.87, 1.07) 

P=0.454 

At least 2000m 
1.00 (0.88, 1.14) 

P=0.969 
1.12 (0.90, 1.39) 

P=0.301 
0.88 (0.80, 0.97) 

P=0.013 
0.98 (0.88, 1.09) 

P=0.724 

  

    

Greenspace     

Q1 (least 
greenspace) (ref) 

1.00 1.00 1.00 1.00 

Q2 
1.01 (0.92, 1.11) 

P=0.798 
1.10 (0.95, 1.28) 

P=0.210 
0.99 (0.90, 1.08) 

P=0.803 
0.96 (0.86, 1.07) 

P=0.467 

Q3 
1.05 (0.93, 1.17) 

P=0.428 
1.06 (0.86, 1.29) 

P=0.600 
0.97 (0.88, 1.07) 

P=0.550 
0.98 (0.88, 1.10) 

P=0.728 

Q4 (most 
greenspace) 

0.93 (0.78, 1.12) 
P=0.449 

1.08 (0.81, 1.44) 
P=0.591 

0.98 (0.88, 1.10) 
P=0.786 

0.99 (0.87, 1.12) 
P=0.832 

  

    

* Self-reported average total household income before tax 

** 'More deprived' refers to people living in areas in the top two most deprived quintiles of the UK, 
based on the Townsend index. 

Q = quartile 

 

 

 

 



226 

Cancer admissions 

a) Associations between neighbourhood characteristics and cancer admissions 

Figure 8.3 summarises the hazard ratios for hospital admissions due to cancer associated 

with each of the three neighbourhood environment measures, across the sample as a 

whole. While 95% CIs for all associations included the null value of 1.0, there was some 

indication of a slightly lower hazard of cancer-related hospital admission among those 

people with at least four PA facilities within one kilometre of their home, compared to 

people with no nearby formal PA facilities (HR=0.96; 95%CI: 0.91-1.01), but no evidence 

that one, two or three facilities offers a benefit over none. For fast-food proximity and 

neighbourhood greenspace, we observed no association with risk of CVD-related 

admission when averaging across the study population as a whole. 

b) Modification of the associations between neighbourhood characteristics and cancer-

related hospital admissions, by income and area deprivation 

The association between PA facilities and cancer does not appear to be modified by income 

or by area deprivation. Stratum-specific HRs were similar across socioeconomic groups, 

and RERIs were close to zero for both potential effect modifiers (Table 8.5).  

In contrast, there was some evidence of effect modification by socioeconomic conditions 

for the associations between the other neighbourhood exposures and cancer. The most 

marked evidence was for a modifying effect of area deprivation on the association between 

greenspace and cancer-related admissions. In that case, the positive departure from 

additivity indicated by the RERI of 0.170 suggests the public health benefits of increased 

exposure to neighbourhood greenspace may be greater in more deprived areas (Table 8.5). 

In more deprived areas, the stratum-specific HRs estimate a 16% lower hazard of cancer-

related hospitalisation among those in the most green quartile compared with those from 

the least green quartile (HR=0.84; 95% CI: 0.71-0.98), while no association was observed 

among people living in more affluent areas. A similar pattern was observed for fast-food 

proximity and cancer-related admissions, albeit with a smaller and non-significant 

departure from additivity (RERI=0.070) and a smaller estimated reduction in hazard 

among the more deprived areas (HR=0.93; 95% CI: 0.83-1.04). For household income, 

although the RERIs for both fast-food proximity and greenspace did indicate some 

departure from additivity, the stratum-specific HRs suggested there was no meaningful 

association between these neighbourhood exposures and cancer-related admissions in 

either income group (Table 8.5).  
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Figure 8.3 Adjusted hazard ratios for hospital admission due to cancer, by availability of formal PA facilities, proximity to nearest fast-
food/takeaway store, and neighbourhood greenspace 

Note: Models are adjusted for age, sex, ethnicity, education, household income, employment status, urban/non-urban, assessment area, residential density, smoking 
status, alcohol intake, and number of years living at home address.  Plots from sex-stratified models can be found in supplementary material (Appendix Five). 
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Table 8.5 Modification of the association between built environment variables and 
hospital admissions due to cancer, by household income and area deprivation 

Cancer-related admissions  

Annual household income* Area deprivation** 
< £31,000 At least £31,000 More deprived Less deprived 

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 
Number of PA facilities     

None (ref) 1.00 0.96 (0.90, 1.02) 
P=0.209 

1.00 1.02 (0.94, 1.11) 
P=0.605 

One 
0.98 (0.92, 1.05) 

P=0.588 
0.98 (0.91, 1.06) 

P=0.608 
1.07 (0.97, 1.19) 

P=0.175 
1.00 (0.92, 1.09) 

P=0.961 

2-3 
1.00 (0.94, 1.06) 

P=0.918 
0.94 (0.87, 1.00) 

P=0.066 
1.06 (0.96, 1.16) 

P=0.249 
0.99 (0.91, 1.08) 

P=0.844 

4 or more 
0.99 (0.93, 1.05) 

P=0.676 
0.89 (0.83, 0.96) 

P=0.001 
1.01 (0.92, 1.11) 

P=0.846 
0.98 (0.90, 1.06) 

P=0.581 
  

    

Stratum-specific HRs  
(4+ facilities vs 0) 

0.97 (0.91, 1.04) 
P=0.395 

0.95 (0.87, 1.03) 
P=0.184 

1.02 (0.92, 1.13) 
P=0.673 

0.95 (0.89, 1.01) 
P=0.110 

      

Relative excess risk due to 
interaction (RERI)  

-0.058 (-0.145, 0.030) P=0.197 -0.055 (-0.163, 0.053) P=0.320 

Fast-food proximity     

Closer than 500m (ref) 
1.00 0.89 (0.82, 0.97) 

P=0.006 
1.00 0.92 (0.85, 0.99) 

P=0.029 

500-999m 0.94 (0.88, 1.00) 
P=0.053 

0.93 (0.86, 1.00) 
P=0.039 

0.90 (0.83, 0.97) 
P=0.009 

0.94 (0.88, 1.01) 
P=0.083 

1000-1999m 0.98 (0.92, 1.04) 
P=0.472 

0.90 (0.84, 0.97) 
P=0.008 

0.99 (0.91, 1.08) 
P=0.843 

0.92 (0.85, 0.98) 
P=0.017 

At least 2000m 
0.94 (0.88, 1.01) 

P=0.098 
0.91 (0.84, 0.99) 

P=0.021 
0.93 (0.84, 1.03) 

P=0.165 
0.92 (0.85, 0.99) 

P=0.024 
  

    

Stratum-specific HRs  
(≥2000m vs <500m) 

0.97 (0.90, 1.05) 
P=0.451 

0.97 (0.89, 1.07) 
P=0.591 

0.93 (0.83, 1.04) 
P=0.187 

1.00 (0.93, 1.07) 
P=0.966 

      

Relative excess risk due to 
interaction (RERI)  

0.082 (-0.012, 0.176) P=0.088 0.070 (-0.042, 0.182) P=0.218 

Greenspace     

Q1 (least greenspace) (ref) 
1.00 0.86 (0.80, 0.93) 

P=0.000 
1.00 0.93 (0.87, 1.01) 

P=0.070 

Q2 
0.98 (0.92, 1.05) 

P=0.595 
0.91 (0.84, 0.98) 

P=0.012 
0.99 (0.92, 1.07) 

P=0.764 
0.95 (0.89, 1.01) 

P=0.129 

Q3 
0.96 (0.90, 1.03) 

P=0.249 
0.94 (0.87, 1.01) 

P=0.112 
1.00 (0.91, 1.10) 

P=0.976 
0.95 (0.89, 1.01) 

P=0.094 

Q4 (most greenspace) 0.95 (0.87, 1.02) 
P=0.166 

0.96 (0.88, 1.04) 
P=0.287 

0.86 (0.75, 0.98) 
P=0.024 

0.96 (0.89, 1.04) 
P=0.325 

  
    

Stratum-specific HRs  
(Q4 vs Q1) 

0.97 (0.89, 1.06) 
P=0.490 

1.05 (0.95, 1.17) 
P=0.336 

0.84 (0.71, 0.98) 
P=0.027 

1.04 (0.96, 1.13) 
P=0.332 

      

Relative excess risk due to 
interaction (RERI) 

0.149 (0.060, 0.238) P=0.001 0.170 (0.045, 0.296) P=0.008 

* Self-reported average total household income before tax 

** 'More deprived' refers to people living in areas in the top two most deprived quintiles of the UK, 
based on the Townsend index. 

Q = quartile 
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Combining area deprivation and household income, a beneficial association of having 

greater exposure to greenspace within 300 m of home was observed only among low-

income households in deprived areas, where the hazard of cancer-related hospital 

admission was 24% lower among people living in the greenest quartile than among people 

living in the least green quartile (HR=0.76, 95% CI: 0.63-0.92, Table 8.6). Intermediate 

quartiles showed no significant difference from the least green quartile, but all HRs were 

less than one. 

People from low-income households in deprived areas were also the group where living at 

least 2 km from a fast-food store seemed to have the greatest impact on cancer-related 

admissions (HR=0.88, 95% CI: 0.77-1.01), but there was no clear trend of decreasing hazard 

with decreasing proximity (Table 8.6). 

No income/deprivation combined subgroup appeared to experience a substantial cancer-

related benefit of having more PA facilities near home, although there was some evidence 

that those in low income households in more affluent areas had a somewhat reduced 

hazard (6%) if they had at least four PA facilities with a kilometre of home, compared with 

no facilities (HR=0.94, 95% CI: 0.86-1.02, Table 8.6). 

c) Sex differences 

For the relationships between all three neighbourhood exposures and cancer-related 

admission, the primary findings were generally consistent for women and men 

(Supplementary Tables 11-13, Appendix Five).  
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Table 8.6 Association between neighbourhood characteristics and cancer-related 
hospital admissions, stratified by household income and area deprivation in 
combination 

  Cancer-related 
admissions 

Combined household income and area deprivation 

Less than £31,000 
& more deprived 

At least £31,000 & 
more deprived 

Less than £31,000 
& less deprived 

At least £31,000 & 
less deprived 

 
 HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Number of PA 
facilities 

    

None 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

One 
1.05 (0.93, 1.18) 

P=0.452 
1.14 (0.93, 1.40) 

P=0.212 
0.95 (0.88, 1.03) 

P=0.203 
1.02 (0.94, 1.10) 

P=0.694 

2-3 
1.07 (0.95, 1.19) 

P=0.256 
1.05 (0.87, 1.28) 

P=0.598 
0.96 (0.89, 1.03) 

P=0.258 
0.98 (0.90, 1.07) 

P=0.656 

4 or more 
1.05 (0.93, 1.18) 

P=0.434 
0.98 (0.81, 1.19) 

P=0.850 
0.94 (0.86, 1.02) 

P=0.152 
0.96 (0.87, 1.05) 

P=0.324 

      

Fast-food proximity     

Closer than 500m 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

500-999m 
0.89 (0.81, 0.98) 

P=0.015 
0.93 (0.80, 1.08) 

P=0.347 
1.00 (0.92, 1.10) 

P=0.945 
1.06 (0.96, 1.18) 

P=0.254 

1000-1999m 
0.97 (0.87, 1.08) 

P=0.569 
1.01 (0.86, 1.20) 

P=0.899 
1.03 (0.94, 1.12) 

P=0.572 
0.98 (0.88, 1.09) 

P=0.733 

At least 2000m 
0.88 (0.77, 1.01) 

P=0.063 
1.06 (0.85, 1.32) 

P=0.607 
1.02 (0.93, 1.13) 

P=0.655 
0.98 (0.88, 1.10) 

P=0.743 

  

    

Greenspace     

Q1 (least greenspace) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

Q2 
0.98 (0.90, 1.08) 

P=0.720 
0.97 (0.83, 1.13) 

P=0.654 
1.02 (0.93, 1.13) 

P=0.612 
1.03 (0.93, 1.15) 

P=0.566 

Q3 
0.96 (0.85, 1.08) 

P=0.456 
1.03 (0.84, 1.26) 

P=0.768 
1.01 (0.92, 1.12) 

P=0.803 
1.05 (0.94, 1.18) 

P=0.357 

Q4 (most greenspace) 
0.76 (0.63, 0.92) 

P=0.005 
1.05 (0.78, 1.40) 

P=0.752 
1.04 (0.93, 1.16) 

P=0.543 
1.08 (0.95, 1.22) 

P=0.233 

  

    

* Self-reported average total household income before tax 

** 'More deprived' refers to people living in areas in the top two most deprived quintiles of the UK, 
based on the Townsend index. 

Q = quartile 
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d) Secondary outcomes: Breast and colorectal cancer 

When we explored whether the results for cancer hospitalisations were driven by either of 

the two cancers most strongly linked to some of the plausible pathways by which 

neighbourhood characteristics might influence cancer risk (i.e. breast and colorectal 

cancer) we found that the evidence of effect modification by area deprivation of the 

association between greenspace and cancer was magnified for breast cancer (RERI=0.316, 

Supplementary Table 14) and the same was true for effect modification by household 

income (RERI=0.307). In deprived areas, the hazard of being admitted to hospital with a 

primary diagnosis of breast cancer was reduced by 31% among women with the greatest 

exposure to neighbourhood greenspace, compared with women who had the least 

greenspace near home (HR=0.69, 95% CI: 0.47 - 0.99, Supplementary Table 14). No such 

association was observed for women living in less deprived areas, and no association was 

observed between greenspace and breast cancer for the sample as a whole. For women 

from lower-income households who also lived in deprived areas, risk of a breast cancer-

related admission was reduced by 39% among women with the greatest exposure to 

greenspace, compared with women who had the least exposure (HR=0.61, 95% CI: 0.38 - 

0.97, Supplementary Table 15).  

For formal PA facilities, no overall association was observed with either cancer subtype, 

just as was the case for all cancers combined. There was some indication of effect 

modification by income for breast cancer, such that women from higher income 

households may benefit from some protection against breast cancer if they have at least 

four PA facilities near home. Conversely, and consistent with the results for all cancer 

subtypes collectively, reduced colorectal cancer risk appeared to associated with greater 

availability of PA facilities among people living in more affluent areas, and in particular 

among people from lower-income households within more affluent areas (Supplementary 

Tables 16 & 17). 

For fast-food proximity, neither cancer type showed an association with this 

neighbourhood exposure and there was limited evidence of any effect modification by 

either income or deprivation. 
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Sensitivity analyses 

In general and for both outcomes, restricting follow-up to the period from 2012 onwards 

for all participants, rather than from the baseline assessment date, reduced precision 

around point estimates, but made minimal difference to the overall direction and 

magnitude of most coefficients and RERI estimates (Supplementary Tables 19–22). The 

main exception to this was that the departure from additivity due to area deprivation for 

the association between fast-food proximity and CVD-related admissions was far less 

when follow-up was restricted (RERI=-0.058 cf. RERI=-0.104). The RERI for effect 

modification by area deprivation of the association between PA facilities and CVD was also 

somewhat attenuated (RERI=0.070, cf. RERI=0.088), but in contrast effect modification of 

the same relationship by household income was amplified (RERI=-0.113 cf. RERI=-0.077), 

and the overall finding for the combination of income and deprivation was, if anything, 

stronger when follow-up was restricted to 2012 onwards. Sensitivity analyses adjusting for 

baseline BMI, hypertension and medications for cholesterol and hypertension, yielded 

very similar point estimates to the primary results (Supplementary Tables 23-26). 

DISCUSSION  

Across this very large sample of mid-aged adults in the UK, we examined the relationship 

between three characteristics of the neighbourhood built environment and hospital 

admissions due to CVD or cancer, over almost 10 years of follow up. We then examined 

whether these associations were modified by area deprivation and  household income, 

with the aim of identifying which neighbourhood characteristics might best be intervened 

on to improve health without widening existing health inequalities.  

For the sample as a whole, we observed a weak trend of reducing hazard of hospital 

admission due to CVD with increasing distance to the nearest takeaway/fast-food store, 

and some protection for people with the greatest availability of PA facilities within one 

kilometre of home; however, the 95% confidence intervals did not exclude the null value 

of no hazard reduction. No such association was apparent between neighbourhood 

greenspace coverage and CVD, and we observed very little evidence that any of the three 

neighbourhood exposures were associated with hospitalisations due to cancer in the 

sample as a whole.   

More noteworthy, however, are the findings for effect modification by household income 

and area deprivation, where we observed some interesting patterns that may help to 

illuminate important elements of the links between the neighbourhood built environment 
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and health. The largely null associations in the sample as a whole appeared to be masking 

potentially important variation in the strength and magnitude of some of those 

associations according to socioeconomic conditions. 

CVD-related hospital admissions 

For the availability of formal PA facilities and CVD outcomes, we observed evidence of 

effect modification on the additive scale by area deprivation, suggesting that intervening 

to improve access to formal PA facilities in deprived areas is likely to have a greater public 

health impact than it would in less deprived areas. At the same time, we also observed 

evidence of effect modification on the additive scale by household income, but in this case 

the association was stronger among higher-income households (after controlling for area 

deprivation). Although the magnitude of the departure from additivity was slightly smaller 

than that observed in the other direction for area deprivation, and the 95% CIs for both 

RERIs include zero, the direction of the RERI for income is consistent with the fact that 

most formal PA facilities impose some financial cost on users. We would therefore be 

surprised if we did not observe the hypothesised health benefits of greater neighbourhood 

availability of these facilities accruing disproportionally to higher-income households. The 

contrasting directions of the additive measures of effect modification by (higher) income 

and (less) deprivation imply that greater availability of formal PA facilities is particularly 

beneficial in deprived areas, but only for the those who can afford to access those facilities.  

Consistent with this we found that when we considered household income and area 

deprivation together, the estimated benefits of greater availability of neighbourhood PA 

facilities was indeed largely restricted to high-income households in deprived areas, 

among whom we observed a one-fifth reduction in the hazard of being admitted to 

hospital with CVD for people living near at least four PA facilities, compared with those 

people who had no local PA facilities. If the CVD-related benefits of greater availability of 

PA facilities accrue primarily to high-income households in deprived areas, the policy 

implications are obvious: locating more PA facilities in deprived areas may reduce CVD 

risk, but the greatest gains stand to be made if facilities in those areas are accessible to all, 

regardless of income. Otherwise, health benefits in deprived areas may be concentrated 

among the well-off living there, thus widening health inequalities. A recent quasi-

experimental study in a deprived local authority in the north west of England32 showed 

improved outcomes following the introduction of universal free access to council leisure 

facilities, indicating that this is indeed a potentially effective approach to adopt.  
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With respect to fast-food proximity and risk of CVD-related hospital admission, again the 

largely null main associations appear to conceal stronger associations in some subgroups. 

The findings for effect modification by income and area deprivation on the additive scale 

suggest that reducing access to fast-food stores may have the greatest impact for low-

income households, especially men in those households, but mostly in relatively affluent 

areas. The RERI for area deprivation as a modifier of the association with CVD is less than 

zero, and stratified analysis shows that greater distances from home to the nearest fast-

food store are more strongly associated with reduced risk of CVD-related hospital 

admissions among people living in less deprived areas. This may imply a greater range of 

alternatives to fast food available to residents of more affluent areas. If so, this supports 

other evidence for the importance of considering the whole retail food environment – 

healthy and unhealthy stores – when making planning decisions.  And as was seen for PA 

facilities, there was evidence of a contrasting role of income: but in this case the impact of 

fast-food proximity seems to be stronger among people in low-income households. The 

latter finding is consistent with as similar recent study using UK Biobank but 

concentrating only on participants in London15 and makes sense because lower income 

households are likely to be more sensitive to price and perceived value for money offered 

by fast-food stores, and may also rely more on small, frequent shopping trips close to home 

rather than large weekly shopping trips to a large supermarket further away, and on the 

convenience of food outlets near home33.  

Unlike for fast-food proximity and availability of formal PA facilities, there was little 

evidence of an association between neighbourhood greenspace – operationalised as 

domestic gardens and public greenspace with 300 m of home – and CVD-related hospital 

admissions for any income or deprivation subgroup. Instead, the null association observed 

for the sample as a whole was largely preserved across household income and area 

deprivation levels, with no evidence of effect modification. The observation of area 

deprivation driving a positive departure from additivity for formal PA facilities but not for 

greenspace may reflect poorer quality greenspace34 or perceived safety concerns in 

deprived areas17, or other factors making greenspaces less suitable for PA. It is worth noting 

that the number of observations in the most deprived, most green combination was small, 

leading to a lack of precision around that hazard ratio, and correspondingly around the 

RERI. Thus, we should be cautious about drawing conclusions about whether or not area 

deprivation modifies the estimated effect of greenspace on CVD risk.  
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Cancer-related hospital admissions 

With respect to all cancer-related hospital admissions, we found no evidence of any 

association between formal PA facilities and cancer, overall or within any income or area 

deprivation subgroup (and conflicting patterns of effect modification for breast and 

colorectal cancer). In contrast, there did appear to be an association between 

neighbourhood greenspace and cancer for people living in more deprived areas, which was 

masked when looking at the sample as a whole. This was especially the case for breast 

cancer-related admissions. The strong evidence of effect modification by area deprivation 

was the largest we observed and indicates a greater protective influence of more 

greenspace against cancer in more deprived areas than in less deprived areas. This finding 

is consistent with other studies that have previously found that relationships between 

greenspace and health appear to be stronger in more deprived communities in the UK35,36. 

One pathway through which greenspace is hypothesised to influence health is via physical 

activity. The fact that in deprived areas we observed a relationship between greenspace 

and cancer but no relationship between greenspace and CVD is therefore interesting, and 

suggests greenspace might influence cancer risk through pathways unrelated to PA. This 

is backed up by the lack of evidence in this study of an association between PA facilities 

and cancer, including in deprived areas. That we see more evidence of an association 

between PA facilities and CVD in deprived areas but more evidence of an association 

between greenspace and cancer in deprived areas, may indicate that these two 

neighbourhood resources influence health via different pathways. While formal PA 

facilities are unlikely to influence health via pathways other than through physical activity 

itself, there is emerging evidence that greenspace may influence health via multiple 

pathways, including mental wellbeing, immune function, and respiratory health13, as well 

as PA. Several studies have concluded that greenspace-health relationships, if causal, are 

mediated by pathways other than PA, most notably psychosocial ones37–39. One of the 

principal mechanisms by which greenspace is thought to influence health is the regulation 

of cortisol secretion40. Cortisol secretion is an indicator of stress and its dysregulation is 

associated with various health outcomes including both cancer and CVD risk41. A recent 

study in a deprived setting in Scotland found that the presence of more greenspace near 

the home was associated with lower levels of stress across objective cortisol secretion 

measures and subjective measures of stress, but this relationship did not appear to be 

mediated by physical activity40. Access to greenspace near home may also plausibly 

mitigate other biological pathways through which chronic psychological stress (more 

prevalent in deprived populations) influences cancer risk, such as oxidative stress-induced 



236 

DNA damage and telomere shortening42,43. Similarly, greenspace may mitigate some of the 

effects on cancer risk of air and noise pollution (also often higher in deprived areas),  

operating through these and related inflammatory and oxidative stress pathways44,45. 

For fast-food proximity and cancer, there was no evidence of an interaction with income, 

but some evidence that area deprivation modifies the effect of fast-food proximity, 

although in the opposite direction to what we observed for CVD. The measure of fast-food 

proximity we have used is somewhat problematic, however, and these results may not be 

reliable for either outcome. An ideal measure would capture both proximity and density 

of facilities in an area, and take into account the wider neighbourhood food environment, 

in terms of access to both healthy and unhealthy food, which are often highly correlated46.  

There is likely to be some systematic misclassification, random error, and geographical 

inconsistency in quality in the proximity measure we have used, due to our reliance on an 

off-the shelf measure based on local authority data sources collected for non-research 

purposes. This highlights some of the trade-offs made in the use of big data and 

administrative data for the purposes of epidemiological research. Further research 

repeating this UK-wide analysis using improved measures of the fast-food environment 

may clarify this relationship.   

Our findings for the overall associations between these neighbourhood exposures and 

CVD and cancer are generally small in magnitude and in most cases null. An important a 

priori rationale for examining effect modification by factors such as income and area 

deprivation, when a study is sufficiently powered to do so, is that it is plausible that some 

groups of people will be more sensitive to their neighbourhood environment than others, 

and that some may be almost completely insensitive for various reasons. Population-wide, 

average effect estimates smooth out these differences and potentially lead to erroneous 

conclusions about the importance of neighbourhood environments for some people in 

some places. We would only expect small effect sizes, given the complexity and multitude 

of causes of these health outcomes, and how distal they are from the exposures, but in 

some cases the null or very weak findings contradict what we might expect based on 

previous research. In particular, evidence from food environment research in the UK has 

been mounting of a detrimental effect of excessive exposure to unhealthy food outlets15,47–

49. Limitations of the fast-food proximity measure are described above, and are also likely 

to have led to conservative estimates. Similarly, the greenspace measure may also not 

adequately capture the full extent of relevant greenness of one’s neighbourhood, as it does 

not include smaller parcels of greenspace such a street trees, or reflect ‘quality’ of 

greenspace. Related to this, because the greenspace measure is based on 2005 data, it may 
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better reflect the true exposure to neighbourhood greenspace for those participants 

recruited earlier in the baseline phase than those recruited later. 

There are several other limitations of the current study. First, the hospital admissions data 

only captures inpatient care, so any early detection of CVD and cancer that occurs in 

primary care settings after baseline and is then effectively treated without admission to 

hospital will not be counted. Such cases are probably more likely to occur in higher income 

or less deprived subgroups50, and this may have contributed to lower risk of the outcome 

in those groups, potentially distorting the magnitude of effect modification on the additive 

scale. In the future, when GP records are fully linked to the UK Biobank cohort, it will be 

possible to examine this potential source of bias. Related to this, if some types of health 

care have shifted to outpatient settings over the course of the follow-up period, it may 

result in some dilution of the true association overall and between subgroups.  

Second, it is unclear what period of follow-up is likely to be necessary to capture the effect 

of interest, given that people will have been exposed to their baseline neighbourhood 

conditions for varying lengths of time depending on how long they have lived at that 

address, and whether relevant changes had occurred in their neighbourhood during that 

time, and the nature of previous neighbourhood exposures. We adjusted our analyses for 

years living at baseline address to attempt to deal with this, and are reassured by the long 

average time people have lived at the address we are using (median=15 years), but there 

may be remaining imprecision, and potential bias of estimates in either direction, that we 

cannot overcome using observational data of this kind. Longer follow up may prove to be 

more revealing, and that will become possible in future years, but ideally future work 

would also account for changes in the built environment over that period. UK Biobank 

would be made richer by the addition of measurement of neighbourhood exposures at one 

or more post-baseline time points. Our sensitivity analyses using a shorter follow-up 

period to account for the timing of the exposure ascertainment showed that most point 

estimates were robust to this specification, but there was a loss of precision presumably 

driven by the substantial reduction in the number of hospital admissions occurring during 

the shortened follow-up period (Supplementary Table 18).  

Finally, we cannot rule out self-selection into more health promoting neighbourhoods by 

people more disposed to healthy behaviours. We can, however, by the longitudinal nature 

of the study and exclusion of people with prevalent disease at baseline, rule out active self-

selection prior to baseline into neighbourhoods on the basis of prevalent disease (e.g. 

following a cardiac event earlier in life, deciding to relocate to a neighbourhood more 
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supportive of a healthy lifestyle). This means that we likely minimise masking of the true 

effect via this avenue, but may still have some residual positive confounding that could 

bias the association away from the null, despite our comprehensive adjustment for 

observed potential confounders. However, UK Biobank is a residentially very stable 

sample, and most of our strongest findings were within more deprived subgroups, where 

financial resources enabling relocation for health purposes are presumably the least.   

Overall, despite no estimated protective effect of greenspace on cancer and CVD across 

the mid-aged English population taken as a whole, subgroup effects were observed. Living 

in a neighbourhood with a greater percentage of greenspace is associated with lower risk 

of cancer-related hospitalisation among people living in more deprived areas. There is 

some evidence of the same being true for reduced fast-food proximity and cancer, though 

the opposite was observed for fast-food proximity and CVD. Greater availability of PA 

facilities close to home is associated with lower risk of CVD admissions in more deprived 

areas, but also only among those with higher household incomes. Improving deprived 

neighbourhoods by increasing the number of formal PA facilities, while also ensuring 

access to these is free or affordable, and by increasing the amount of public and private 

greenspace and limiting the proximity of fast-food outlets to residential areas, may 

improve health outcomes in the population.  

Taken together, these results suggest that improving access to both greenspace and PA 

facilities may have a greater public health impact in more deprived areas, but the pathways 

by which these benefits might arise require further elucidation and should not be assumed 

to be restricted to the promotion and facilitation of physical activity. In other words, 

increasing access to both is likely to be more beneficial to health overall than focusing on 

one or the other.  We also show that by examining effect modification by multiple 

socioeconomic indicators in parallel, potentially important insights can be gained that 

may be missed when we focus only on a single measure of either household or area-level 

socioeconomic conditions. Understanding the potentially different ways in which 

different aspects of the socioeconomic conditions of people’s lives influence their 

relationship with the built environment and its effects on their health may help to avoid 

intervention-generated inequalities when neighbourhood-based built environment 

interventions are designed. 
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 DISCUSSION & CONCLUSIONS 

In this concluding chapter I summarise and synthesise the key findings, and outline the 

strengths and limitations of the project as a whole. I conclude with a discussion of the 

overall contribution of the work to the field and discuss policy implications and directions 

for future research that emerge from this work.  

9.1. Summary of study rationale, aims and objectives 

 Rationale and aims 

Socio-ecological models of health posit that determinants of health operate at various 

scales, from the individual through to the macro-environmental1,2. Local residential areas, 

or neighbourhoods, are one such scale3. Various built environment resources in 

neighbourhoods are likely to influence health, and neighbourhoods are a potentially 

valuable site for public health interventions. Yet the evidence base regarding 

neighbourhood effects on health remains equivocal. A possible explanation for this is that 

some people may be more sensitive than others to their neighbourhood built 

environment, and neighbourhoods may matter more for health in some places than in 

others – in other words, neighbourhood effects may be heterogeneous rather than 

universal3. Furthermore, although socio-ecological models of health conceptualise 

determinants of health operating at multiple levels, interactions between neighbourhood 

characteristics and factors operating at other scales remain underexplored4.  

In this thesis I have therefore undertaken a multi-scalar examination of sources of 

potential effect heterogeneity in neighbourhood-health relationships. In doing so I have 

endeavoured to contribute to our understanding of how, where and for whom the 

neighbourhood built environment matters for health. Improving this understanding may 

serve two purposes: (1) yielding new insights into the ways neighbourhood environments 

contribute to a complex, multi-level system of influences, operating together to produce 

complex health outcomes; and (2) helping to guide and target future interventions to 

maximise public health impact. 

Specifically, in a very large sample of UK adults at a critical stage of the life course, I 

investigated associations between multiple characteristics of the neighbourhood built 

environment and outcomes relating to obesity, cardiovascular disease and cancer, with a 

focus on characterising potential sources of effect heterogeneity operating at the 

individual, neighbourhood and macro-environmental level. The breadth and depth of the 

UK Biobank resource, including the associated UKBUMP database and other 
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environmental data, linked health records, and comprehensive genotyping of individuals, 

enabled robust analysis of numerous hypothesised effect modification relationships, in 

addition to an examination of the primary associations of interest.  

Good epidemiological practice avoids post hoc subgroup analysis, so it is important that 

research focussing on effect heterogeneity is theoretically grounded and hypothesis 

driven. Therefore, after the initial paper in which I examined main associations averaged 

across the population, I designed the rest of this study around a series of specific effect 

modification hypotheses, some of which already had some support in the literature, and 

others that had not previously been tested, but which were biologically plausible and 

identified in conceptual models or theoretical discussions. In the introduction to this 

thesis I presented a conceptual model (Figure 1.1, p.19), adapted from similar ones by 

Kremers5 and Schneider6 and drawing on the ANGELO framework7. It shows the pathways 

from neighbourhood exposures to health as potentially being modified by other factors 

operating at various scales. This model provided a framework for the hypotheses I have 

tested in the five research papers in this thesis, addressing potential modification of 

neighbourhood effects on important health outcomes by individual, neighbourhood and 

macro-environment variables. 

 Study objectives 

Using observational data from UK Biobank – a uniquely large sample of adults in a critical 

period of the life course for the development of chronic disease – I sought to address the 

following objectives: 

1. To assess whether characteristics of the food and physical activity environments 

near an individual's place of residence are independently associated with 

objectively measured adiposity (BMI, waist circumference and % body fat), and 

whether this varied by sex and household income. (Chapter 4) 

2. To assess whether genetic risk of obesity modifies associations between 

neighbourhood characteristics and body mass index. (Chapter 5) 

3. To assess whether the association between availability of formal physical activity 

facilities and adiposity is modified by other features of the neighbourhood 

environment, namely proximity to fast-food outlets and availability of public green 

spaces. (Chapter 6) 

4. To examine possible geographical heterogeneity in the associations between the 

neighbourhood physical activity and fast-food environments and BMI across 

England, and explore whether any such heterogeneity might be explained by 

locally varying factors. (Chapter 7) 



245 

5. To assess whether characteristics of neighbourhood environments are associated 

with being admitted to hospital with a primary diagnosis of CVD or cancer, and 

whether these associations are modified by household income and area 

deprivation. (Chapter 8) 

Each objective was addressed in a separate empirical chapter, centred around a research 

paper (either published, under review or ready for submission to a journal). Across the 

study, I used a mix of regression modelling techniques, informed by careful consideration 

of potential sources of bias in the estimation of the associations of interest. Secondary 

objectives of the thesis were therefore to examine how robust the main findings were to 

some of the methodological choices I made, and whether the main results were likely to 

be affected by bias, especially residual confounding. In each chapter I presented various 

sensitivity analyses that I designed to meet these objectives.  

In addressing objectives 1-4, I used cross-sectional data from the UK Biobank baseline 

study, and focussed on adiposity measures as important intermediate health outcomes for 

which there are clear plausible pathways to health from what are often referred to as 

'obesogenic' neighbourhood characteristics. If food and physical activity environments 

influence dietary and physical activity behaviours, this should in turn be reflected in BMI 

and other measures of adiposity such as waist circumference and percent body fat. Then, 

because excess adiposity (i.e. overweight and obesity) is an important risk factor for many 

non-communicable diseases, objective 5 expands the earlier focus to include more distal 

health outcomes, making use of linked administrative health records to examine incident 

CVD and cancer over a ten-year follow up period. For these more distal outcomes I also 

considered that neighbourhood environments may exert an influence through pathways 

other than diet and physical activity, so I additionally examined neighbourhood 

greenspace as an exposure. 

9.2. Summary of findings  

Chapter 1 of the thesis provided a background to the project and outlined the aims and 

objectives. In Chapters 2 and 3 I introduced the data and methods I have used.  In Chapter 

4 I began the empirical work of the thesis by establishing the independent associations 

between adiposity and two residential environmental exposures likely to influence 

adiposity via distinct pathways: fast-food proximity, via energy intake; and availability of 

PA facilities, via energy expenditure. Following that, the remaining empirical work of the 

thesis presents a systematic, theoretically grounded exploration of potential heterogeneity 

of these and related relationships, considering modifiers at multiple scales, from the 

individual (genetic, socioeconomic) to the neighbourhood (physical and social 
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environments), and the wider contexts in which neighbourhoods are nested (physical and 

socio-cultural attributes of local authority districts).   

In summary, the main findings of the five research papers that form the basis of Chapters 

4-8 were as follows: 

Characteristics of the neighbourhood food and physical activity environment are 

independently associated with objectively measured adiposity. In Chapter 4 I found that 

local access to formal PA facilities such as leisure centres, gyms and sports fields is 

independently associated with adiposity. As the density of formal PA facilities increased, 

BMI, waist circumference and percentage body fat all decreased. A similar but weaker 

association was observed between proximity to fast-food/takeaway outlets and the same 

adiposity measures. There was strong evidence of effect modification by sex and income, 

with stratified models showing modestly larger estimates of effects of both neighbourhood 

exposures on women's adiposity than on men's, and larger effects of formal PA facility 

availability among people from higher-income households. No association was observed 

between neighbourhood greenspace and adiposity. 

Individuals at increased genetic risk of obesity may be more sensitive to their local food 

environment, but no gene-environment interaction was observed for the physical activity 

environment. In Chapter 5 I considered genetic risk of obesity as a potential individual-

level modifier of associations between BMI and the two neighbourhood exposures 

examined in Chapter 4. This made use of the genotype data available for the UK Biobank 

cohort, to explore a novel research question. While I found very limited evidence that 

genetic risk of obesity modifies the association between availability of physical activity 

facilities and BMI, there was good evidence of a gene-environment interaction for 

proximity to a fast-food/takeaway outlet. The association between fast-food proximity and 

BMI was stronger among those at increased genetic risk of obesity, both when genetic risk 

was measured by polygenic risk scores, and in particular for a single genetic marker linked 

to MC4R, a gene known to regulate food intake. This suggests individuals at increased 

genetic risk of obesity may be more sensitive to their local food environment.   

Other resources in the neighbourhood built environment modify the association between the 

availability of formal PA facilities and adiposity. In Chapter 6 I hypothesised that the 

negative association between the neighbourhood availability of formal PA facilities and 

BMI observed in Chapter 4 would vary according to the fast-food environment (which 

might negate any beneficial impacts of a healthy PA environment) and the informal 

physical activity environment (operationalised as availability of parks and other public 

spaces near home, which provide alternative sites for PA). Indeed, the association was 



247 

somewhat stronger among people with fewer urban parks and other open/green spaces in 

their neighbourhood than among those with more of these resources, and was noticeably 

attenuated among those who lived closer (<500 m) to a fast-food store, compared with 

people living further away. This suggests formal physical activity facilities may buffer 

against a lack of informal, green resources for physical activity in areas where the latter 

are scarce. However, the potential benefits of physical activity facilities in terms of obesity 

risk may be undermined by an unhealthy food environment close to home. 

There is considerable geographical heterogeneity across England in the magnitude and 

direction of the relationship between neighbourhood PA and fast-food environments and 

BMI, and locally varying factors of the wider context may explain some of this heterogeneity. 

In Chapter 7 I widened the scale and considered effect modifiers operating at the level of 

the local authority, having first described geographical heterogeneity at that level. To 

facilitate investigation of these cross-level interactions I geolocated the UK Biobank 

participants in England in their respective Local Authority Districts and then linked 

multiple externally sourced datasets that described physical and socio-cultural attributes 

of the local authority districts. The association between availability of neighbourhood PA 

facilities and BMI showed considerable heterogeneity between local authorities across 

urban England, from strong associations in some districts through to no association in 

others. The same was true for the association between fast-food proximity and BMI. This 

may have implications for the generalisability of studies with a narrow geographical focus. 

Although differences weren't large, the association between the formal PA environment 

and BMI was weak among people in local authorities with the most natural land cover, but 

stronger among people living in local authorities with less natural land cover, possibly 

indicating a greater reliance on or normalisation of the use of formal physical activity 

facilities there. Evidence of  this effect modification relationship was more apparent 

outside London.  

Potentially important differences between socioeconomic subgroups are obscured when 

examining only population-wide estimates of the effects of neighbourhood characteristics of 

CVD and cancer. In Chapter 8 I extended my focus from adiposity outcomes to hospital 

admissions caused by two of the NCDs for which adiposity is a major risk factor: CVD and 

cancer. I assessed effect modification of these relationships by household income and area 

deprivation. I also examined neighbourhood greenspace as a third potentially important 

exposure. I found that the association between availability of PA facilities and CVD (but 

not cancer) outcomes appears to be modified on the additive scale by both area 

deprivation and household income, suggesting that intervening to improve access to PA 
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facilities is likely to have a greater public health impact in more deprived areas, but also 

that higher-income households are more likely to benefit than low-income households. I 

also observed evidence of an additive interaction between area deprivation and 

neighbourhood greenspace in relation to cancer (but not CVD) such that greenspace 

appears to be more protective against cancer in more deprived areas than in less deprived 

areas. These findings suggest that in populations where the formal PA environment and 

greenspace influence health, they may do so via different pathways. These subgroup-

specific relationships were obscured in analyses that ignored possible interactions with 

socioeconomic circumstances. In those models without interactions, I observed only very 

weak associations between fast-food proximity and both CVD and cancer hospital 

admissions and between availability of PA facilities and cancer, and no evidence of any 

associations between neighbourhood greenspace and either outcome.   

9.3. Synthesis of findings 

Overall, the findings of this thesis highlight the importance of being attentive to possibly 

heterogeneous effects, and of considering any given neighbourhood exposure or risk factor 

within its broader context. Where evidence for beneficial effects of a neighbourhood 

characteristic exists, we should infer that those benefits may not be distributed equally, 

and recognise the implications of that for intervention. Where effect estimates are small 

or consistent with no effect, global averages may be masking important subgroup effects, 

and thereby concealing potentially informative evidence about the underlying 

mechanisms by which neighbourhoods influence health. 

As mentioned earlier in this chapter and discussed in Chapter 1, the rationale for studying 

effect heterogeneity and its sources in this thesis (and in general) is twofold: (1) to gain a 

deeper aetiological understanding of how factors at multiple levels interact to shape 

health, and (2) to help determine which subpopulations would benefit most from 

intervention – an issue of considerable public health importance. Subject to confirmatory 

studies, the work of this thesis contributes to both these ends. Here, I synthesise the key 

findings of the project as they relate to these two purposes, drawing out several cross-

cutting themes that emerged in relation to each purpose. 
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 Exploring effect heterogeneity to improve understanding of health 
and disease 

 Effect heterogeneity underlines the complexity of relationships between 
neighbourhood environments and health 

It is increasingly being acknowledged that upstream factors are key to today's high 

prevalence of obesity and non-communicable diseases such as CVD and cancer, and that 

the established narrative of individual responsibility ignores the reality that individual 

behavioural choices are made in a context of ready availability of unhealthy food options, 

physical barriers and structural disincentives to being physically active, pervasive industry 

marketing, financial pressures and social norms8. In addition, these behavioural choices 

are made against a backdrop of individual risk factors (e.g. genetic risk) and personal 

circumstances (e.g. socioeconomic position) over which individuals have little or no 

control.  

The combination of multi-layered environmental and social context, and individual risk, 

creates complex systems of the kind comprehensively illustrated in the UK's Foresight 

report in 20079. While much research has been and continues to be done to understand 

the role of separate components of these systems, we are a long way from understanding 

the dynamics of these systems, the synergisms and antagonisms within them, their 

feedback loops and their emergent properties10. I have not gone so far as to adopt a 

complex systems modelling approach in this thesis; rather I have sought to use traditional 

social epidemiological methods to understand some of the interacting relationships within 

those systems. This approach has been called for in the social epidemiology and 

neighbourhood effects literatures in recent years4,11–13, in the hope that it may help to make 

sense of the many inconsistent findings in the literature.  

The fact that in research to date we do not consistently observe strong associations in the 

expected directions for any characteristics of the neighbourhood built environment, 

coupled with an abundance of null findings, might lead us to conclude neighbourhood 

environments don't matter after all. A more compelling conclusion, however, is that 

because these environments are part of a complex, multi-level system of influences 

operating in different settings and over the whole of the lifecourse, they are unlikely to 

have a uniform effect across the population. Each empirical chapter within this thesis 

provides evidence to support this conclusion. Building on existing literature, I report 

evidence of relationships between neighbourhood characteristics and either adiposity or 

NCDs, that vary across population subgroups or geographical space, with effect modifiers 

operating at scales from the genetic right through to the macro-environment. Further 
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discerning for whom and where specific neighbourhood characteristics matter remains of 

critical importance for the understanding of how neighbourhoods influence health. 

 Individual-level factors moderate sensitivity to the health-promoting and 
health-damaging influences of neighbourhood environments 

Various characteristics of individuals might plausibly interact with neighbourhood factors 

to influence obesity and NCD risk, and understanding these interactions can shed new 

light on how the built environment becomes, as Krieger puts it, embodied14. Yet research 

to date has concentrated on only a small subset of these. One important but 

underexamined variable is genetic risk. Contributing to an improved understanding of 

how neighbourhoods influence health, in Chapter 5 I found that individuals at increased 

genetic risk of obesity may be more sensitive to exposure to fast-food outlets. In particular, 

the strong evidence of an interaction between fast-food proximity and a specific SNP near 

MC4R, a gene known to be involved in regulation of food intake – but no such interaction 

between fast-food proximity and markers associated with physical activity, or between the 

MC4R marker and the PA environment – lends support to the biological plausibility of this 

potentially important gene-environment interaction. If unhealthy features of the 

neighbourhood food environment are confirmed to pose a greater obesity risk to those 

already genetically predisposed to higher BMI, this will shed light on the ways that genetic 

risk and neighbourhood environments individually and in concert contribute to obesity in 

the population. The novel evidence provided here on this question will hopefully prompt 

confirmatory studies and further exploration and elucidation of this relationship. The 

findings are consistent with other emerging evidence that the contexts in which we 

develop and live shape the way genetic factors influence our health. For example, one 

recent study reported that cohort of birth modified the effect of the obesity-associated 

FTO gene15, and another reported that perceptions of the neighbourhood environment 

may exacerbate genetic risk of diabetes16. Taken together, these findings suggest that GxE 

interactions of the kind I have explored here may exist across a range of contextual 

exposures and a range of health outcomes.  

Already relatively widely studied, gender differences in neighbourhood effects are another 

source of effect heterogeneity that offers insight into the mechanisms by which specific 

neighbourhood characteristics influence particular health outcomes. Confirming what 

some researchers have reported previously in the UK and elsewhere17,18, but contrasting 

with some other UK studies19,20, in both Chapter 4 and Chapter 8 I observed differences 

between women and men in the magnitude of associations. In Chapter 4, neighbourhood-

adiposity associations were of greater magnitude among women, especially with respect 

to PA facilities. In Chapter 8, associations with CVD and cancer also showed some 
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variation by sex, as did whether or not these associations were modified by socioeconomic 

factors. Whether men or women were most affected depended on which exposure was 

being considered. This makes sense, as for each exposure there will be distinct processes 

at work in the production of differential effects in women and men. CVD outcomes among 

low-income men appeared most sensitive to fast-food proximity, while cancer outcomes 

among women living in deprived areas were most sensitive to neighbourhood greenspace. 

If causal, these hint at gendered relationships with place. Qualitative research to unpack 

the different ways (some) men and (some) women engage with, perceive, act within, and 

are constrained or enabled by, neighbourhood environments, is likely to be informative. 

For example, Coen et al21 recently used qualitative methods to examine the gendering of 

physical activity in Canadian gyms, highlighting numerous ways in which gender 

influences physical activity .While evidence of sex and gender differences within this study 

and across other studies is mixed, it does suggest a need to take sex and gender into 

account in research on environmental determinants of obesity and related outcomes, and 

highlights the likely importance of seeking and applying a more nuanced understanding 

of how men and women interact with and experience their neighbourhoods differently.  

 Both individual- and area-level socioeconomic position can interact with the 
neighbourhood built environment to influence health, though not always in the 
same ways 

It is already well established that socioeconomic circumstances play an important role in 

determining health outcomes22. Indeed, this is central to the foundation of socio-

ecological models of health. Thus, my secondary findings in Chapter 4 – that the 

associations between the neighbourhood fast-food and formal PA environments and 

adiposity varied by household income – were largely confirmatory. In Chapter 8 I took 

fuller advantage of some of the longitudinal data available in UK Biobank, with the aim of 

building a stronger case for a tentative causal interpretation of those results. There, I 

expanded my focus to include more distal health outcomes (CVD- and cancer-related 

hospital admissions) and an additional exposure in the neighbourhood environment 

(greenspace). Building on the income-stratified analysis in Chapter 4, I assessed effect 

modification of these relationships by household income and area deprivation. I found 

that weak or null findings in the sample as a whole appear to obscure potentially important 

effects in some population subgroups, particularly people living in more deprived areas. 

Again, these results for effect modification by deprivation and income add to the rich, 

existing evidence base on the important role socioeconomic circumstances play in 

determining health. 



252 

Perhaps more importantly however, the results of Chapter 8 suggest that examining effect 

modification by multiple socioeconomic indicators in parallel and in combination, rather 

than in isolation, can yield greater insight into the potentially different ways in which 

various aspects of the socioeconomic circumstances of people’s lives influence their 

relationship with the built environment and its effects on their health. Area-level 

socioeconomic characteristics are known to have an independent effect on health, over 

and above individual-level socioeconomic position23, providing a rationale for considering 

both. The results from Chapter 8 reinforce this point and remind us that using area 

deprivation as a proxy for individual socioeconomic status will not always be appropriate. 

This may be especially true when assessing the health effects of specific features of the 

neighbourhood built environment. Personal socioeconomic resources will likely moderate 

those effects differently from how neighbourhood socioeconomic conditions will. 

Furthermore, the two in combination may be particularly important for determining an 

individual’s sensitivity to the health-promoting and health-damaging characteristics of 

their neighbourhood built environment. 

 Context matters, and does so at various scales 

Chapter 7 highlights the importance of considering potential geographical heterogeneity 

in any relationship between built environment and health – i.e. where do neighbourhoods 

matter? – and the implications for generalisability (or possible lack thereof) of findings 

from single-site studies if they are not carefully contextualised. These findings are 

consistent with similar evidence that has begun emerging from other recent studies – 

studies in a range of settings, that use various techniques to examine geographical 

heterogeneity in various neighbourhood health relationships24–26. For example, a study in 

the US showed substantial regional variation in the direction and magnitude of the 

relationship between an established measure of the neighbourhood food environment and 

BMI26. Another study in France examined geographical heterogeneity in the relationship 

between summary measures of the neighbourhood environment (derived from principal 

component analysis of a mix of perceived and objective characteristics) and active 

commuting, and again found variation in both the magnitude and direction of the 

estimated effect27. Whilst probably best interpreted as preliminary, such evidence of 

geographical heterogeneity nonetheless demands an explanation. Just as the role of 

contextual determinants of health is highlighted by the failure of individual-level socio-

demographic factors to fully explain geographical variation in health28 and health 

behaviours29, similarly the persistence of variation across studies of associations between 

the neighbourhood built environment and health (after accounting for other 

neighbourhood-level and individual characteristics), suggests there are additional, 
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important contextual factors being overlooked. The “black box of places” described by 

Macintyre and colleagues28 in 2002 remains far from fully elucidated almost two decades 

on, and the presence of geographical heterogeneity in neighbourhood-health relationships 

further underlines how much we still don’t understand.  

Here I argue that examining contextual effect modifiers, operating at neighbourhood scale 

and beyond, may offer additional insights. In Chapters 6 and 7 I examined greenspace in 

the neighbourhood and wider local authority as one such possible modifier of the 

influence of formal PA facilities on adiposity. I observed that, as hypothesised, 

neighbourhood availability of formal physical activity facilities was more strongly 

associated with adiposity in settings that lacked informal, green resources that might 

encourage and facilitate physical activity, and less strongly associated when informal, 

green resources were more abundant. It is not possible to determine whether these are 

causal interactions between formal PA resources and 'green' or 'natural' ones, but these 

results provide some support for that plausible explanation. Frohlich and colleagues30 

argue that epidemiological approaches are inherently limited, both methodologically and 

epistemologically, in their ability to explain how the contexts of people’s lives influence 

health outcomes. While there is undoubtedly truth to this assertion, findings such as those 

I report in Chapters 6 and 7, as well as in Chapter 8 with respect to area deprivation, are 

examples of ways that epidemiological methods can bring to light potentially important 

interactions between contextual factors, and point to complex relationships that may 

warrant further investigation using both epidemiological and non-epidemiological 

methods.      

The findings from Chapters 6, 7 and 8 support the idea that context matters for 

understanding relationships between specific neighbourhood characteristics and health, 

a notion described by Myers et al as the “context of context”31. The findings presented in 

Chapter 7, also suggest that the contexts in which neighbourhood-health relationships 

play out matter at various scales. This is one important element of the ‘relational’ 

perspective on understanding how place influences health advocated by Cummins and 

colleagues11 in a seminal paper in the field, yet to the best of my knowledge it is rarely 

considered in the empirical epidemiological literature. The results of Chapter 7 indicate 

that not only do we need to consider the multi-dimensionality of the neighbourhood 

environment itself, as demonstrated in Chapter 6 and in studies in other settings (e.g.32,33); 

we should also consider the wider macro environment, i.e. the physical and socio-cultural 

contexts in which neighbourhoods are located (and arguably also the political and 

commercial contexts34). At the very least, we fall short if we stop at the point where we 
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identify an average association between some characteristic of the built environment and 

obesity, and infer from there that if we intervene on that characteristic we might expect 

to see improvements to population obesity risk. If these relationships vary over 

geographical space, influenced by the other features in a person's neighbourhood or by 

the wider context(s) in which that neighbourhood is located, such as a city or nation, then 

we cannot assume that interventions will be effective in all places. A more nuanced 

understanding of how, where and when the built environment influences obesity is needed 

in order to intervene effectively on it. 

 Understanding effect modification to guide public health 
intervention  

Resources are always finite, and intervening in one place or in one way inevitably entails 

opportunity costs, so it is important to identify the settings and population subgroups in 

which a given intervention is likely to have the greatest impact. An examination of effect 

modification (on the additive scale) can inform us about this35, and this is the approach I 

have taken throughout the thesis. Ignoring the modifying roles of other contextual 

features, whether they be other neighbourhood characteristics (as in Chapter 6) or 

attributes of the wider geographical area (Chapter 7), could lead to ineffective 

interventions and a waste of resources. It may also lead to 'failed' interventions when these 

are evaluated, and thereby undermine broader efforts to highlight and tackle 

contextual/socio-ecological/upstream determinants of health.  

 Understanding SES as a modifier points to ways to reduce health inequalities 
and avoid intervention-generated inequalities  

In Chapter 8, I found that area deprivation and household income modified, on the (public 

health-relevant) additive scale, the association between availability of formal PA facilities 

and CVD-related outcomes, but did so in opposite directions. The results implied that 

greater availability of formal PA facilities may be particularly beneficial in deprived areas, 

but only for the those who can afford to access them. In terms of intervention, this suggests 

the greatest public health benefit would come from locating more PA facilities in deprived 

areas and ensuring they are low cost or free to use for those in low-income households. 

This conclusion is supported by evidence from a natural experiment in deprived areas of 

the North West of England, which found that free access to council leisure facilities was 

linked to improved health outcomes36. 

Similarly, results from Chapter 4 also indicate that while an association with adiposity was 

observed for all levels of household income, greater availability of formal PA facilities 

appeared, unsurprisingly, to disproportionately benefit wealthier households. Planners or 
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policy makers tempted to promote physical activity by investing in or incentivising the 

opening of more formal PA facilities may inadvertently produce intervention-generated 

inequalities37 if they fail to address socioeconomic barriers to access. To avoid widening 

health inequalities it is critical that built environment interventions that increase 

availability of facilities such a leisure centres, gyms, sports fields and swimming pools offer 

genuinely affordable access for those with the most constrained household budgets.  

Tailoring interventions to the local context to maximise health outcomes 

In Chapter 6, I found evidence that formal PA facilities may buffer against a lack of 

informal, green resources for physical activity in areas where the latter are scarce, but that 

the potential benefits of formal PA facilities in terms of obesity risk may be undermined 

by an unhealthy food environment close to home. These results suggest that locating 

formal PA facilities in places with fewer public green resources and reducing the 

prevalence of fast-food stores in areas with formal physical activity resources, may 

maximise the health benefits to be derived from these neighbourhood resources. To my 

knowledge, this is an aspect of neighbourhood-health relationships that has not previously 

been studied in this way in the UK, and only rarely outside it. The findings regarding an 

interaction between the PA and fast-food environments and the conclusions I’ve drawn 

from those, are consistent with a similar study in the United States33, in which the authors 

concluded that combined changes to the food and PA environments would have stronger 

and more consistent effects on BMI than changes to only one dimension or the other. 

In Chapter 7, evidence of geographical heterogeneity in the magnitude of associations 

between the neighbourhood availability of formal PA facilities and BMI, and fast-food 

proximity and BMI, suggests that these two (and presumably other) neighbourhood 

characteristics might matter more in some settings than in others. The variation amongst 

English local authorities suggests the possibility of effect modifying factors operating at a 

larger scale. I tested two of these, and in keeping with Chapter 6's results but on a different 

scale, I found some indication that the availability of green spaces, in this case 'natural' 

land cover as opposed to urban parks, might be one such modifier of the formal PA 

environment. Importantly, modification by attributes of the wider context could 

theoretically apply to any neighbourhood characteristic.  

Where evaluation of neighbourhood built environment interventions or natural 

experiments demonstrate (or fail to demonstrate) effectiveness in terms of population 

health outcomes, such results should therefore be interpreted in the context of the wider 

setting of the neighbourhoods involved, and the features therein that may have supported 

the success of the intervention. In a recent review of environmental interventions to 
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promote physical activity, Panter and colleagues38 found that authors of intervention 

studies often noted the importance of context (variously defined) and cited features of the 

specific setting of an intervention that contributed to their evaluation results. However, 

these ‘contexts’ appeared to typically be compositional aspects of the study setting (e.g. 

demographic makeup of the population), while far fewer studies were reported as 

reflecting on contextual moderators in the physical environment, for example. Another 

recent review of population health intervention research concluded that recognition of 

‘context’ was usually superficial and that intervention research would “immediately 

benefit from a more systematic and serious treatment of context”39. 

While the role of context may be recognised post hoc by evaluators, explicit examination 

of cross-level interactions between neighbourhoods and their wider context (geographical 

or otherwise) using both observational and experimental data offers the promise of a more 

robust understanding of where neighbourhood interventions might be most effective. This 

points to an avenue for further research that might identify important modifiers of built 

environment-health relationships at city or regional scales. Such new knowledge of 

contextual moderation could then inform future evaluations, and guide the targeting and 

prioritisation of interventions and local planning decisions, in order to maximise health in 

any specific setting. 

9.4. Limitations 

Each research paper in the thesis has its own limitations, and these have been discussed 

in the respective chapters. In this section I will discuss more broadly the sources of 

potential bias and error in the project overall. I then specifically discuss some of the 

challenges to causal inference faced by studies of this kind, what I have done to address 

them, and the implications for the findings of this thesis.  

 Selection bias 

As with any cohort study relying on volunteers to participate, UK Biobank may suffer from 

selection bias, and this risk may have been heightened by the response rate of only 5.5%. 

Indeed the sample does show some evidence of 'healthy volunteer' bias40. Additionally, a 

substantial number of participants were missing data on key covariates, resulting in them 

being excluded from my analyses. This too may have caused selection bias. UK Biobank 

participants are slightly less ethnically diverse than the general UK population, and more 

socioeconomically advantaged, but non-representativeness is not unusual in large cohort 

studies, and is not necessarily undesirable41. However, unintentional non-

representativeness such as in UK Biobank may increase the risk of selection bias42. In any 
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study – whether representative or not43 – if the probability of participation in the study 

(i.e. selection) is influenced by either the outcome or the exposure and either a mediator 

or an unmeasured (or imperfectly observed) confounder of the exposure-outcome 

association, this will result in collider bias44. How large a bias and in which direction is 

difficult to gauge, although it has been suggested that if the exposure is not associated 

with selection, then collider bias is unlikely43. However, especially with cross-sectional 

analyses of baseline cohort data, it does pose at least a theoretical risk of spurious 

associations being detected43,44. For this reason it is important, just as it always is, that 

attempts are made to replicate novel findings and that results are interpreted cautiously 

and in the context of the wider evidence base, and triangulated with other forms of 

evidence45. Importantly given my focus on effect heterogeneity, the large sample size of 

UK Biobank ensured sufficiently large subgroups across various third variables that 

represented potential effect modifiers. As Rothman and colleagues46 have pointed out, 

balanced numbers of study participants across levels of a hypothesised modifying variable 

is more efficient than overall representativeness when it comes to assessing effect 

heterogeneity.  

 Information bias/measurement error 

 Measurement error and misclassification in environmental measures 

The reliance in this thesis on the environmental measures available in UKBUMP, and to a 

lesser extent, the additional off-the-shelf greenspace measures from the GLUD, introduce 

some concerns about measurement error and the risk of misclassification bias. 

Unfortunately, the source documentation associated with UKBUMP provides only limited 

information about the dates and other details of primary data collection, and the accuracy 

and validity of the underlying databases cannot readily be assessed. Of particular concern 

is the risk of measurement error in the food environment measure. The food outlet 

classification in the source database is supplied by local authorities and may include 

misclassification of some outlets as restaurants rather than fast-food outlets, potentially 

overstating the true distance to the nearest fast-food outlet. If the quality of the 

environmental data varied geographically, as is plausible given its origins in local authority 

records, this could have magnified errors.  

The neighbourhood exposure measures may also suffer from misclassification arising from 

the timing of their measurement. The UKBUMP source documentation cites the 2012 

version of the source database (OS AddressBase Premium), but is somewhat ambiguous 

about the precise timing of the recording of the relevant land use types in that database. 

There is therefore a risk that the measured exposures may not reflect true baseline 
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neighbourhood exposure, especially for those recruited in the early stages of the study, if 

there have been changes to the neighbourhood environment in that time.  

If any measurement error in the environmental exposures was random, it would be 

expected to attenuate observed associations47, meaning the weak associations detected for 

proximity to fast-food outlets and adiposity (Chapters 4 and 5), and in Chapter 8 for 

associations with CVD and cancer, may be conservative estimates of the true effect. As 

Smith and colleagues48 have pointed out in the context of their use of UKBUMP, by 

categorising the exposure measures (as I have) some of the risk of measurement error may 

have been mitigated.  

Measurement error in any of the effect modifiers may have led to misidentification of the 

presence or absence of effect modification. Genetic risk, sex, and area deprivation should 

all be highly accurate. Fast-food proximity in Chapter 6 may be misclassified as discussed 

earlier. In Chapter 7, allocation of individuals to the wrong local authority due to the 

reliance on imprecise address coordinates may have introduced random error into the 

analysis of the two macro-environmental variables as potential effect modifiers. 

With respect to the measure of neighbourhood greenspace used in Chapter 8, this measure 

may not adequately capture the full extent of the relevant greenness of one's 

neighbourhood, because the GLUD classification scheme does not include smaller parcels 

of greenness such a street trees. Some alternative measures of greenspace, such as NDVI, 

are more sensitive to overall greenness, and these have been analysed with respect to 

adiposity in another UK Biobank study49, but this measure is only available for participants 

recruited to a subset of the UK Biobank assessment centres. As the GLUD measure is based 

on 2005 data, it may more accurately reflect the true exposure to neighbourhood 

greenspace for those participants recruited earlier in the baseline phase than those 

recruited later. 

 Spatial misclassification 

Earlier in the thesis (Chapter 3) I raised the issue of spatial misclassification in its various 

forms, including the 'residential trap'50 and the Uncertain Geographic Context Problem51. 

With respect to conclusions about the assessment of effect modification, for a given form 

of spatial misclassification of a health-relevant exposure to be a meaningful problem, it 

would need to qualitatively impede assessment of whether the primary exposure-outcome 

association varies according to values of some third variable. This might arise if all 

subgroup estimates were biased toward the null, leading us to make a Type 2 error i.e. 

erroneously conclude there was no effect modification when there actually was. It could 

also arise if misclassification systematically biases the estimated effects of the exposure 
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more in one category of a potential effect modifier than in another. What would this 

entail? If we think about one of the primary exposures in this thesis, the availability of 

formal PA facilities, defined as the number within a 1-km buffer around the home, then in 

Chapter 5 it would mean that at some levels of genetic risk of obesity, a 1-km 

neighbourhood was a more accurate representation of a causally-relevant geographical 

context than it was at other levels of genetic risk. It is not obvious that there is any a priori 

reason to expect this to be true. In Chapter 6 it would mean that a 1-km buffer would have 

to be a less appropriate delineation of neighbourhood for people in one category of fast-

food proximity than those in another category, or in one category of park access than 

another. Again, it is not obvious that this would be the case. We may, however, think that 

the boundaries of a health-relevant neighbourhood might be different for some population 

groups. An obvious example is age: the size of the health-relevant neighbourhood area 

might be different for older people compared with younger people. It may also vary along 

socioeconomic lines, if for example car ownership, employment status, or social capital 

expand the area of one's causally relevant physical environment. If the latter is true, it is 

possible that the analyses of effect modification by household income and area deprivation 

in Chapters 4 and 8 may be biased, although it is not necessarily clear whether subgroup 

differences would be artificially widened or narrowed as a consequence.   

 Confounding 

The breadth of the UK Biobank resource allowed for comprehensive adjustment for 

possible confounding variables, but like all observational studies, there is always a risk of 

residual confounding, either through omitted confounder variables or misclassification of 

measured confounders. Chapter 4 included a negative control analysis (using height as a 

control for adiposity) to check whether the estimated main associations between either 

the food or physical activity environment and adiposity were likely to be residually 

confounded. The results for the availability of PA facilities indicated possible residual 

confounding. Comparison of standardised coefficients across the relevant models suggests 

this residual confounding would only partially account for the observed effect, but that 

leaves the possibility that the estimates for that exposure are overestimated. Interestingly, 

the food environment models did not appear residually confounded. It may be that height 

is an imperfect control for adiposity, with respect to either or both the exposures 

examined. Adult height should be independent of neighbourhood environment in mid-

life, but there is a possibility that adult neighbourhood is correlated with childhood 

determinants of height (e.g. inadequate nutrition, adverse events). Height is negatively 
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correlated with low birth weight in this sample, but low birth weight doesn't show 

substantial bivariate correlation with either the physical activity or fast-food environment.  

I can identify four main potential sources of residual confounding in this thesis. First, a 

commonly identified problem for neighbourhood effects studies is the possibility for self-

selection of healthier individuals into more health-promoting neighbourhoods in order to 

meet their lifestyle preferences or needs. If factors that drive selection into a particular 

neighbourhood type also predict the outcome, this may introduce confounding, and this 

is not something that I was able to adjust for in the analyses presented here. I expect that 

at least some of this risk will be mitigated by the residential stability of the UK Biobank 

cohort (>60% of the sample have lived at their current address for at least 10 years, with a 

mean of 18 years). Furthermore, for those with substantial choice over where they live, the 

presence of PA facilities alone is unlikely to drive that choice, and empirically there is not 

a strong correlation between household income and neighbourhood availability of PA 

facilities in this cohort. That said, the negative control analyses showing some residual 

confounding of associations with the PA environment but not of fast-food environment 

might indicate that physical activity preferences are a stronger driver of residential self-

selection than food preferences are. Studies that have directly examined the influence of 

self-selection on neighbourhood-health effects have reached inconsistent conclusions 

about the likely bias this may induce52–54, and most have been focused on transport-related 

physical activity and in other settings, so it is not clear how large a threat this is.  

Second, a related source of confounding, referred to elsewhere as indirect self-selection55 

may arise if 'deprivation amplification' is operating in the UK. Deprivation amplification 

is the idea that in more economically deprived areas the availability of health-promoting 

neighbourhood resources is lower56. But with respect to the distribution of PA facilities 

across social gradients, previous research in the UK has revealed a mixed picture57,58. I 

adjusted models for area deprivation and three measures of individual socioeconomic 

status (income, education and employment) in an attempt to overcome this. 

Third, I observed in Chapter 4 that where intermediate models were not adjusted for 

individual socioeconomic characteristics, coefficients were biased away from the null. If 

in the final, fully adjusted models I have not been able to adequately control for individual 

socioeconomic position (e.g. because of lack of specificity in the categorical, non-

equivalised income variable), the main effects may be slightly overestimated.  

Fourth, and of particular concern with respect to the fast-food exposure measure, are the 

possible confounding effects of unobserved characteristics of the neighbourhood 

environment. While absolute measures of neighbourhood access to fast-food outlets are 
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common in the literature, it is increasingly being recognised that the relative opportunity 

to access healthy or unhealthy food options may be of greater consequence for diet and 

health59. Several studies have found that simultaneously accounting for healthy and 

unhealthy food outlets in an area yields larger and more precise estimates of health effects 

than when considering only a single dimension of the food environment19,60,61. It was not 

possible to account for other dimensions of the food environment using UKBUMP, and 

this means the regression coefficients may be biased – probably towards the null because 

healthy and unhealthy food stores tend to cluster together.  

In terms of confounding, there is also a possibility that if any of the main associations are 

confounded in one stratum of the potential effect modifier and not another, I may have 

erroneously inferred effect modification when none is present. Alternative negative 

control analyses might shed more light on how much of a risk residual confounding truly 

is in these (and other) analyses, although suitable controls are difficult to find. 

 Reverse causation 

The possibility of reverse causation in the cross-sectional analyses in this thesis (Chapters 

4-7) must also be considered, because like any cross-sectional studies there may be 

uncertainty with respect to the temporal sequence of the exposure and the outcomes. 

Movement of people between neighbourhoods over time may give rise to reverse causation 

in cross-sectional analyses if, for example, individuals with lower adiposity choose to live 

in areas with more PA facilities. Current adiposity may also reflect exposure to 

neighbourhood environments earlier in life, posing a further challenge for establishing the 

necessary temporal ordering of the exposure before the outcome. Furthermore, as 

mentioned in Chapter 4 the relationship between commercial features in a neighbourhood 

(including takeaways and gyms) and health is likely to be bi-directional, if retailers target 

their businesses at areas of higher demand, meaning the estimated magnitude of an 

association may overstate the effect of the neighbourhood characteristic on the health 

outcome. It is likely that both supply of and demand for neighbourhood-based food and 

PA resources drives the use of these resources. Interestingly, evidence from the US 

suggests that supply of fast-food outlets is a greater driver of increased fast-food 

consumption than demand for them is62. Nonetheless, demand-driven location of 

neighbourhood resources is also likely to some extent – with retailers selecting sites for 

new fast-food outlets of PA facilities in places where they expect demand to be high. But 

this also presupposes that availability of neighbourhood resources will influence 

behaviours such as diet and physical activity, reinforcing the idea that the relationships 

being examined in this thesis are to some extent bi-directional and self-reinforcing. These 
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issues highlight the need for longitudinal studies that capture changes in the 

neighbourhood environment as well as changes in health outcomes, and the potential 

value of taking a systems approach to modelling these relationships63. 

Whether these issues might be more or less pertinent for a residentially stable population 

such as the UK Biobank cohort, is very difficult to assess. Almost certainly any information 

available to retailers about a local population is more likely to be accurate for a 

residentially stable population. However, it does not necessarily follow that a residentially 

stable population is more (or less) likely to be a target for new resources. Arguably, a less 

stable population (younger, less established in place) may be more appealing to businesses 

establishing a new fast-food outlet or new sports facility, because they may be more likely 

to change their behaviour in response to new stimuli. Further complicating the picture, 

the main explanation for the residential stability of the UK Biobank cohort is likely to be 

its relatively older age64,65. The cohort is geographically distributed across a wide range of 

neighbourhood types, and (whilst somewhat more socioeconomically advantaged than the 

target population) spans the breadth of middle-aged UK society. As such, participants in 

the study are embedded within a range of mixed-age neighbourhood populations, and 

while they may themselves tend to be long-term residents of their area due to their age 

(and so be less likely to have been exposed to other causally relevant residential 

neighbourhoods in recent years), they may not be representative of the residential stability 

of their local community more broadly, and therefore of the likelihood that their area is 

targeted by retailers based on local demand for particular resources. 

Within this project it has not been possible to examine these risks, but the theory behind 

neighbourhood effects posits that neighbourhood causing adiposity is likely to be the 

dominant pathway. 

 Distal vs proximal outcomes 

In this thesis I have chosen to focus on outcomes that are relatively distal from the 

exposure in terms of the assumed underlying causal process. There are several reasons for 

this. The first is that I wanted to look at exposures on both sides of the energy balance 

equation (and in the case of greenspace in Chapter 8, exposures that might influence other 

pathways to health). This is an attempt to recognise the complexity of both chronic disease 

and of neighbourhood environments. Rather than attempting to isolate single, linear 

pathways from one exposure to a health behaviour (already the aim of the majority of 

studies), I was more interested in how factors across multiple levels might work in concert 

to influence complex outcomes such as obesity. Second, the behavioural data (dietary 

intake, physical activity) in UK Biobank that are available for the full sample are 
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subjectively measured, while the outcomes I have used are objectively measured adiposity, 

and linked administrative health records. The IPAQ short form (the measure of physical 

activity available) has been shown to substantially overestimate physical activity 

compared to objective measures24, and the dietary data are very incomplete and recorded 

only for a biased subsample, as I showed in Chapter 4. Nonetheless, by focussing on distal 

outcomes where the presumed causal relationships are mediated by behavioural and 

cognitive processes, inference and interpretation can be more problematic, and the risk of 

random error is greater, making it harder to detect effects.  

9.5. Implications for causal inference  

Like the bulk of this PhD research, most research on the influence of neighbourhood 

environments on health is observational and cross-sectional66, limiting the ability of 

researchers to draw causal inferences about neighbourhood effects. Randomised trials are 

very difficult to implement for the study of neighbourhood effects, so we usually have little 

choice but to rely on observational data. While as good researchers we always include the 

mandatory caveats about not inferring causality from observational data, and the 

estimates being associational, the often unspoken aim of these studies remains to estimate 

something approximating a causal effect, albeit while acknowledging the challenges to 

doing so, and the unavoidable risk of confounding. Curtailing our language to avoid causal 

claims, we nonetheless tend to implicitly interpret results, at least tentatively, as if they 

point to a causal effect67. The same is true in this thesis: within the limits of the data 

available, and the inevitable risk of confounding, I have sought to minimise bias in the 

estimates produced, so that the direction (if not the precise magnitude) of the associations 

might be cautiously interpreted as reflecting an underlying causal effect. 

 Challenges to the main assumptions required for causal inference 

 Causal inference rests on three main assumptions: exchangeability (no unmeasured 

confounding); positivity (sufficient overlap between exposed and unexposed within strata 

of all covariates); and consistency (the exposure is sufficiently specific that different 

variants of it cannot have different effects on the outcome)68.  

Observational studies are especially at risk of exchangeability violations, because of the 

risk that important confounders are not fully observed. I summarised the likely sources of 

residual confounding in the preceding pages. I sought to overcome this by using DAGs – 

informed by background knowledge – to help identify likely confounders and thereby 

inform my covariate selection for regression modelling. The negative control analysis in 

Chapter 4 was designed to identify whether residual confounding was likely to remain. In 
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each chapter, where there was doubt about adequate confounder control, I attempted to 

include a considered discussion of the possible impact on the results. 

The positivity assumption has been identified as particularly challenging for 

neighbourhood effects studies, with violations potentially arising when residential 

segregation occurs along socioeconomic and racial lines69 or where there is strong self-

selection (as described above) into areas. This can lead to the dataset containing 'exposed' 

individuals for whom there is no equivalent 'unexposed' individual, and models relying on 

extrapolation and “off-support” inference70. The problem is sometimes referred to as 

structural confounding, and it can only be partially mitigated by model adjustment for 

individual predictors of residence69,70. Fortunately, the very large sample size of UK 

Biobank should mitigate against severe non-positivity. Where I used categorical variables 

with more than a few groups (e.g. ethnicity), I undertook preliminary analyses to ensure 

model estimates were not sensitive to the number of categories, as this might have 

indicated sparsity issues that could lead to non-positivity.  

Finally, the consistency assumption requires that an exposure is defined with sufficient 

specificity that different variants of it do not have different effects on the outcome68. 

‘Bundled’ or ‘compound’ exposures – such as neighbourhood typologies – can violate this 

assumption because changes to components of the exposure may have different effects on 

the outcome68,71. In Chapter 6 I avoid this problem by considering how the estimated effect 

on adiposity of one neighbourhood characteristic is modified by another neighbourhood 

characteristic, rather than how a bundle of neighbourhood characteristics influences 

adiposity. But other kinds of neighbourhood measures used routinely may also violate the 

consistency assumption. To use an example from this thesis, having two formal PA 

facilities in a one-kilometre neighbourhood buffer might equate to having one gym and 

one swimming pool for one person, but two public football fields for someone else. In a 

strictly causal sense, it is not then clear what it means to say that having two PA facilities 

in the neighbourhood causes a lower BMI than having none. Facilities of differing quality, 

affordability or capacity raise similar issues. Interpreting results using these measures for 

policy, it's not clear what intervention the findings imply would have an impact on 

population BMI. This is not something I've been able to address, due to my reliance on 

secondary data, but as discussed earlier, the lack of precision in measures used in this 

thesis is likely to have resulted in non-differential misclassification, leading to 

conservative point estimates of the main associations47. If such misclassification is also 

non-differential across levels of effect modifiers, I may also have underestimated the 

magnitude of differences between those subgroups. 
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 Causal effects or close enough? 

New studies that may be better placed to estimate true causal effects of neighbourhoods 

are emerging: as causal inference methods develop; as large, population-based panel 

surveys mature and provide rich longitudinal data; and as quasi-experimental study 

designs are embraced by social epidemiologists. So far, a number of these more causally 

focussed studies suggest no truly causal effects of neighbourhood over and above the 

composition of the populations living there (e.g.72,73). However, such studies often impose 

far stricter inclusion criteria than studies such as mine, for example restricting analysis to 

'movers' – people who relocate between neighbourhoods during the course of a 

longitudinal study. While this approach has appeal, it is also the case that movers are likely 

to be different from non-movers in important ways. If neighbourhood effects are 

heterogeneous across population subgroups, and movers are less likely to belong to those 

groups that are more sensitive to the built environment, effects will be underestimated if 

we look only at movers. Or rather, findings will not be generalisable to non-movers, who 

comprise a far larger segment of the population. 

Whether we can ever really estimate anything resembling a causal effect in neighbourhood 

studies using observational data remains unclear74. Certainly this thesis suggests there is 

no such thing as a single effect of a given neighbourhood characteristic – rather there are 

probably many, depending on the distribution of effect modifiers in the population. But 

through triangulation75, inference to best explanation76, and transparency about the 

assumptions and likely bias in our studies77, we might at least settle upon 'good enough' 

evidence on which to base highly plausible working hypotheses about the causes of 

complex health conditions78. These can then be used judiciously to guide public policy and 

urban planning decisions, the real-world impacts of which can then be evaluated against 

our hypotheses, and our hypotheses updated accordingly. This process was described by 

the Foresight report as a "virtuous circle"9 and recognised as necessary given the pressing 

need to tackle obesity.  

9.6. Overall strengths 

The strengths of this project fall into three categories: strengths of the data used, novelty, 

and methodological rigour. 

 Strengths of UK Biobank and the UKBUMP 

In this project, I have made use of a unique cohort that is large and heterogeneous enough 

to explore multiple effect modification hypotheses. Feasibility constraints on large-scale 

studies of the built environment are likely to be an important reason for the relative 
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scarcity of effect modification analyses or explorations of geographical heterogeneity. 

With upwards of 300,000 individuals available with complete data for each analysis in this 

project, UK Biobank and the UKBUMP provided the opportunity to work with a sample 

sufficiently large to draw reliable conclusions.  

Setting aside the limitations of the UKBUMP data described earlier, the UKBUMP 

nonetheless represents a unique and valuable resource for the investigation of the health 

influences of neighbourhood environments. It has provided the opportunity in this thesis 

to simultaneously examine multiple neighbourhood exposures that were objectively 

derived from detailed, routinely collected national data, and ascertained for each 

individual on the basis of their precise home address. Person-centred residential 

environment data of this kind for such a large sample is unprecedented in the UK. In the 

first research paper of the thesis (Chapter 4), I therefore started by taking advantage of 

this dataset to replicate studies done on smaller scales and in other settings.  

UK Biobank has deliberately sampled a population at an important stage of the lifecourse: 

mid-life is a critical time for the development of chronic disease, and it is where the burden 

of obesity, cardiometabolic disease, and many cancers – and their associated healthcare 

and wider economic costs – are concentrated.  

The wealth of objectively ascertained outcome measures in UK Biobank strengthens the 

internal validity of the study, by minimising measurement error. In Chapters 4-7 of this 

thesis I used measures of adiposity collected by trained staff using standardised 

techniques, including data collection with bioelectrical impedance machines that 

transferred weight and body fat measurements directly to the assessment database, 

eliminating the risk of human error in the data entry phase. The consistency of findings 

across multiple objective measures of adiposity lends additional validity. In Chapter 8 I 

used official NHS records of hospital admissions, again minimising the risk of random or 

non-random error in ascertainment of the outcomes.  

The breadth of the UK Biobank resource, spanning clinical outcomes and genotypes, 

health behaviours, anthropometry and detailed socio-demographic data, combined with 

multiple environmental measures and the opportunity to link additional spatial data, also 

ensured I was able to comprehensively adjust regression models for a wide range of 

potential sources of confounding.    

 Novelty  

Despite an increase in research considering potentially differential neighbourhood effects 

according to sociodemographic factors, there has been limited investigation of other 
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potentially important modifiers, particularly across multiple levels of influence. Some of 

the evidence gaps exist because of limited availability of appropriate data. While UK 

Biobank is subject to its own weaknesses, it does, with its size and scope, present a unique 

opportunity to examine sources of effect heterogeneity that other studies have been 

unable to consider empirically. In this thesis, I have made use of the UK Biobank resource 

to contribute novel evidence addressing some of these evidence gaps. 

In Chapter 5, I presented novel evidence suggesting that genetic risk of obesity may modify 

the response of individuals to their local food environment. While these findings need to 

be confirmed by other studies, they contribute to a small, emerging body of evidence for 

GxE interactions in relation to obesity where the 'E' is a truly environmental variable. 

Understanding GxE interactions of this kind may have implications for understanding the 

aetiology of obesity and the biological pathways by which obesogenic environments get 

'under the skin'. Chapter 5 can therefore be seen as contributing to what Galea & Link79(p.4) 

describe as important research at "the intersection of factors that matter inside and 

outside the skin". 

Chapter 6 is a surprisingly rare example of an investigation of interactions between 

multiple dimensions of the neighbourhood environment. Despite being grounded in a 

theoretical perspective that recognises and indeed brings to the fore the role of local 

contexts as part of a complex set of obesity determinants, research on relationships 

between the built environment and obesity has largely neglected to explicitly examine the 

way the various dimensions of neighbourhood environments operate in concert. The 

exceptions are studies that look at composite measures of neighbourhood obesogenicity, 

or similar constructs such as neighbourhood typologies. However, such measures pose 

challenges for the consistency assumption on which causal inference relies71; in terms of 

both aetiology and identifying the contexts where intervention might be most effective, 

they lend themselves to more general conclusions about the importance of holistic urban 

planning for health. Here I have sought to take a more explicit approach to a similar 

question, and show specifically that the association between availability of formal PA 

facilities and adiposity is somewhat stronger among people living in places lacking parks 

and other open green spaces, and weaker among people living closest to a fast-food store. 

Both findings lend support to the hypotheses I set out to test in Chapter 6.  

In Chapter 7 I explored, for the first time across a large area of the UK rather than within 

a single city, whether neighbourhood-health associations vary geographically. Having 

established that such geographical heterogeneity does seem to exist for the two 
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relationships I used as examples, I then demonstrate one approach to exploring possible 

contextual drivers of geographical variation.  

Each of these novel investigations adds detail and complexity to existing theoretical 

models of how neighbourhoods influence health, and the findings establish a rationale for 

exploring these relationships further. 

 Methodological rigour 

Most of the evidence I present in this thesis is based on careful cross-sectional analysis of 

observational data, but it is not strictly possible to draw inferences about causality. I have, 

however, carefully selected and applied appropriate analytical strategies that included a 

rigorous approach to identifying and mitigating likely sources of bias. I examined these 

possible biases with sensitivity analyses, and reflected on them when discussing the 

results, so that the findings I report serve as a solid foundation on which future studies 

might be based using data that supports more causally focussed study designs. I discuss 

some of these possibilities later in this chapter, and I covered some of the issues around 

causal inference earlier in this chapter. 

In the research paper in Chapter 4, the main associations between each of the fast-food 

and PA environment exposures and adiposity were estimated after controlling for the 

influence of the other environmental exposure, in recognition of the fact that the two may 

be correlated and share a common causal antecedent, as well as both potentially 

influencing the outcome80,81. Importantly, this adjustment, along with adjustment for 

residential density resulted in the estimated associations being larger in magnitude, 

suggesting that failure to adjust for confounding by other environmental variables may 

attenuate model estimates. Many studies of these relationships do not adjust for potential 

confounding by other factors in the local environment, so this is an important secondary 

finding of the study.  

While we must be cautious about overinterpreting subgroup/interaction analyses from a 

single sample, especially using cross-sectional data, these analyses were based on a priori 

hypotheses about plausible modifying relationships, and the conclusions are internally 

consistent within the thesis. At the very least, they provide preliminary support for the 

idea that relationships between the food and physical activity environments and obesity-

related outcomes are very likely to be modified by numerous influences at individual and 

environmental levels. These findings are not surprising, but they provide an empirical base 

on which to build more evidence to inform tailored built environment interventions.   

 



269 

9.7. Policy implications 

Translation of research evidence into policy relies on assumptions of generalisability. Such 

assumptions can be undermined by a failure to recognise heterogeneity of effect across 

population subgroups and geographical space, and the likely drivers of that heterogeneity. 

Policy responses based on studies ignoring effect heterogeneity may fail if average 

estimated effects conceal important information about where and for whom an 

intervention is likely to work82,83. Ignoring effect heterogeneity also opens up the risk of 

widening health inequalities, wasting resources (e.g. by concentrating resources in places 

that need them least or where competing influences in the built environment will dilute 

their potential impact) or intervening in places where the need is smallest. Dahlgren & 

Whitehead84(p.22) argue that "a comprehensive health strategy… [should] include both 

downstream and upstream determinants of health and the relationships between the two, 

as they are often interlinked closely". Some of the nuance of the relationships between 

upstream and downstream determinants of health has been elucidated in this thesis, and 

emphasises the importance of the interplay between health determinants at multiple 

levels of influence. The importance of taking context into account when designing 

interventions and intervention research has been highlighted elsewhere85,86, and this 

thesis reinforces that point. 

This thesis provides cross-sectional evidence that the influence of particular 

characteristics of residential neighbourhood environments varies across a range of factors 

at multiple levels, and therefore cannot be assumed to be uniform. In terms of policy and 

interventions, there are two ways to respond to evidence that the influence of the built 

environment is not uniform across the population: 

1. Ensure equal allocation of healthy resources so that everyone has access to the 

same opportunities to engage in healthy behaviours. 

2. Allocate healthy resources differentially, to support people to overcome unequal 

risks arising from other factors (an equity approach). 

The results of the GxE analysis in Chapter 5 give support to Approach (1) - making 

environments healthy for everyone so those at greater genetic risk are not further 

disadvantaged. On the other hand, the results of Chapters 4 and 8 point to some practical 

ways that Approach (2) could be applied, e.g. improving the physical activity environment 

in deprived areas to maximise population health benefits, and ensuring affordable access 

to recreation facilities. The results of Chapters 6 and 7 show either approach should also 

take into account physical attributes of the local and wider context. 

Some policy implications relating to specific exposures are discussed below. 
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 Formal physical activity environment 

As detailed earlier in the synthesis of key findings, several findings relating to the 

availability of PA facilities point towards some specific policy recommendations. In all five 

research papers, a clear inverse association was seen with either adiposity, CVD or cancer, 

in at least some places or subgroups. This suggests that increasing availability of local PA 

facilities may be an effective strategy for improving population health. Critically though, 

those health benefits appear unlikely to accrue uniformly across the UK or its mid-aged 

adult population. The results in Chapter 8 suggest that the greatest public health benefit 

would come from locating more PA facilities in deprived areas, but only if access was 

affordable for those on low incomes. Otherwise, failure to ensure equity of access could 

widen health inequalities. The findings in Chapter 4, that PA environment effects appear 

to be stronger among those with higher incomes, also imply that PA facilities need to be 

accessible to all. This could be achieved through subsidised access fees and incentives for 

low-cost operators to open in deprived neighbourhoods. Greater central funding to local 

authorities for leisure and recreation services, tied to a requirement to provide affordable 

access, may be another approach. Research has shown that free access to council leisure 

facilities can produce improved health outcomes in deprived areas of the UK36.  

The findings from Chapter 6 suggest that locating formal PA facilities in places with fewer 

public green resources and reducing the prevalence of fast-food stores in areas with formal 

PA resources, may maximise the health benefits to be derived from these neighbourhood 

resources. Further research on macro-environmental factors that might also be important 

modifiers may provide additional policy guidance to local authorities and regional 

planning authorities, to help target interventions. 

Finally, the fact that no GxE interaction was observed involving the formal PA 

environment suggests that, other modifiers aside, we may all (irrespective of genetic risk) 

be equally positioned to benefit from making our neighbourhoods places where it is easier 

to be physically active.  

Summary of recommendations for the formal physical activity environment: 

 Increase availability of affordable formal physical activity facilities in deprived 

areas. 

 Consider wider context and other dimensions of the neighbourhood when 

intervening on the residential built environment to improve health.  

 

 



271 

 Fast-food environment 

The findings from Chapter 5 suggest that reducing the proximity of fast-food outlets to 

residential areas may be more beneficial for those at increased genetic risk of obesity. That 

some of us may, due simply to our genetic make-up, be more sensitive than others to 

elements of the local food environment, only serves to underline the importance of taking 

steps to ensure our neighbourhood environments promote, rather than inhibit, good 

health. These results do not imply that environmental interventions should target those 

at higher genetic risk – this is obviously not possible – but rather that we should recognise 

that variation in genetic risk may leave some of us more vulnerable than others to 

unhealthy environmental conditions. As we cannot control our genetic makeup, it is 

unreasonable to demand and expect that people at greater genetic risk work harder than 

others to overcome the influence of unhealthy food environments.  

In the era of a move towards 'precision medicine', evidence of GxE interactions is 

sometimes framed as holding great promise for customising behaviour change 

interventions to match a person's individual genotype87,88. This runs counter to the goals 

of most who take a socio-ecological perspective on health. By focussing further upstream, 

on truly environmental (rather than behavioural) factors that might interact with 

genotype, a different framing of the usefulness of GxE interaction studies becomes 

possible. If people at increased genetic risk of, for example, obesity, are shown to be more 

sensitive to environmental cues, it may help explain why some people are "better" at taking 

"personal responsibility" in an obesogenic environment (to use the language of the 

dominant narrative). If genetic risk can be compounded by an unsupportive food 

environment, which may also interact with a lack of socioeconomic resources, that may 

well be a cocktail for poor health. GxE interactions may help us develop more complex 

models of obesity and other important chronic diseases. In the long run this might help 

shift the narrative away from one of blame and individual responsibility. Results such as 

these offer a strong argument for a population-wide approach: if those with greater 

susceptibility to high BMI are most sensitive to an unhealthy food environment, then 

population-level environmental interventions might be of most benefit to those at greatest 

genetic risk. 

Summary of recommendations for the fast-food environment: 

 Recognise the burden placed by unhealthy neighbourhood food environments on 

individuals who are at increased genetic risk of obesity, and limit the presence of 

unhealthy food outlets close to all residential areas. 

 Move away from policies and rhetoric that focus on individual responsibility. 
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 Neighbourhood greenspace 

Neighbourhood greenspace was a secondary focus of the thesis. Consistent with the 

emerging evidence from many other studies, the findings from Chapter 8 suggest that 

greenspace near home may influence health outcomes other than cardiometabolic ones, 

though in this study the only evidence of an association appeared to be with cancer, among 

people in deprived areas. Other evidence also suggests greenspace is important for health 

in deprived areas89-91. My findings therefore lend further weight to calls for improving 

access to greenspace in deprived areas.  Increasing availability of greenspace can also 

provide additional benefits and ecosystem services, such as providing habitat for other 

species, mitigating against pollution and flooding, and moderating temperature and 

noise92. Unfortunately, safety and aesthetic concerns mean the particular management 

strategies of public green spaces to maximise use by humans do not always align with the 

best management strategies for maximising other ecosystem services (e.g. biodiversity 

conservation)93. These tensions need to be managed with an eye to balancing priorities 

and maximising benefits across a range of important outcomes. 

Summary of recommendations for neighbourhood greenspace: 

 Improve access to quality greenspace in deprived areas. 

 Manage greenspace in a way that maximises health benefits without compromising 

ecosystem health and services. 

 Global challenges for policy  

The increasing urbanisation of our world is exposing more people every day to the various 

features of urban living that may influence our risk of chronic health conditions94,95. 

Understanding how the environments in which we live influence our health is critical to 

managing the growing burden of obesity and non-communicable disease. Most of the 

growth in urban areas is occurring in low- and middle-income countries, yet most of the 

research on the health effects of urban living environments is conducted in already highly 

urbanised high-income countries. On the one hand we might argue that by learning as 

much as we can from highly urbanised countries such as the UK, about the processes by 

which 'obesogenic' and other health-damaging features of our cities interact with other 

factors to cause ill health, we should hopefully be able to apply those lessons in rapidly 

urbanising areas around the world. But on the other hand, this thesis demonstrates that 

even within a single country research findings are likely to be context-dependent and not 

necessarily generalisable from one setting to another. There is therefore a need for a 

greater investment in this kind of research in a wider range of settings globally, including 
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the creation of appropriate data resources such a cohort studies with linked environmental 

measures. It may also be valuable to conduct cross-national studies across a wider range 

of settings, with the explicit aim of understanding more about when findings about the 

effects of built environment on health are generalisable to other settings and populations, 

when they need to be adapted for the local context and supplemented with new local data 

collection and knowledge generation, and ultimately, what that means for policy action. 

Perhaps most importantly, the policy solutions to address complex problems like the high 

prevalence of obesity will inevitably be themselves complex and multidimensional9,10. Built 

environment interventions are likely to be a part of that, but will need to be accompanied 

by a coordinated suite of other changes across multiple policy domains and all levels of 

society, informed by multidisciplinary evidence and led by government. 

9.8. Future research directions 

Various research gaps and challenges remain in the field of neighbourhoods and health. 

The work of this PhD draws attention to some in particular, and also opens up new 

questions. In this section, I highlight some of these directions for future research, 

classifying them into two broad categories: (1) further explication of potentially 

heterogeneous neighbourhood effects (and drivers thereof) within a socio-spatial 

epidemiological framework; and (2) potential contributions from other disciplines and 

methodological traditions. I then identify some suggestions for specific additional studies 

using the UK Biobank resource, and specific extensions to UK Biobank that would enable 

future research in the field of neighbourhoods and health.  

 Directions for future research  

 Further socio-spatial epidemiological examination of heterogeneous 
neighbourhood effects 

First, further studies attempting to refute the findings presented in this thesis are needed, 

utilising other existing and future cohorts. In light of the likely selection bias in the UK 

Biobank arising from the low response fraction, it is especially important that replication 

studies are done in more representative samples. It would also be valuable to see if some 

of the specific findings were replicable in a local setting, based on the expectations from 

this project (e.g. within a single city with detailed data, is the association between formal 

physical activity facilities and BMI modified by proximity to fast-food outlets, as I observed 

in Chapter 6 for the UK as a whole).  

Further research to identify additional, contextual macro-environmental modifiers of 

neighbourhood effects is also warranted, especially given those I examined in Chapter 7 
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showed only weak evidence of interaction, implying there are other factors driving the 

geographical heterogeneity observed in that chapter. Consideration of other scales is also 

needed. It has been suggested that greater attention be paid to the political and economic 

contexts in which geographical inequalities in health are produced: for example, Bambra 

and colleagues34 recently laid out a strong case for adopting a political economy approach 

to the study of place and health, in which the structural forces of politics and economics 

that operate at national and international scales are recognised as shaping the more 

traditional, and proximate, social determinants of health. In this vein, we might also 

expect these structural forces to influence how and where more local, neighbourhood level 

factors influence health outcomes.  

There are also additional, related studies that would contribute to the objectives of this 

thesis but were not possible within the constraints of the available data in UK Biobank. 

For example, neighbourhood influences across the life course are likely to be important96, 

but there were no data on these in UK Biobank.  

As mentioned above, rapidly growing urban areas in low- and middle-income countries 

present opportunities to avoid making the same mistakes again, by applying existing and 

emerging knowledge to new cities. The generation of locally relevant, setting-specific 

evidence is important. But alongside this, there are rich extant data resources in high-

income countries amenable to further interrogation and linkage to geospatial 

environmental data, providing immediate, low-cost opportunities for additional research. 

Bearing in mind the need to consider context and possibly heterogeneous effects, these 

resources should continue to be leveraged to deepen and strengthen the evidence base, in 

parallel with new data generation in understudied areas globally.  

Population health intervention research that builds on the evidence base(s) to which this 

thesis makes a small contribution is much needed. Observational research, especially 

cross-sectional studies like Chapters 4-7 here, can suggest, but not clearly identify, which 

interventions or policies may have the biggest benefits for health. More studies are needed 

that explicitly test the effects of planning and land management policies and local built 

environment interventions. To this end, there is also scope to take advantage of natural 

experiments97. These can raise issues of generalisability posed by possible effect 

heterogeneity, as they tend to be context-specific or may only target particular population 

subgroups82, so comparison of similar or related natural experiments in different contexts 

may provide richer insights in terms of contextual modifiers.   
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 Contributions from other disciplines and methodological traditions 

Contributions from other disciplines and methodological traditions would deepen our 

understanding of the social processes driving some of the effect modification relationships 

observed in this thesis. Sociology and anthropology, for example, offer theoretical and 

methodological frameworks that are invaluable for understanding the social meanings of 

health-related behaviours such as eating and exercising, and how these interact with 

physical, place-based resources. Qualitative, participatory and ethnographic methods can 

reveal aspects of people’s lived experiences of their neighbourhood environments that are 

inaccessible to the quantitative researcher98,99. This has been demonstrated by various 

studies of how people engage with and navigate the food environment, and how these 

processes are informed or constrained by individuals’ identities and socioeconomic 

resources100-103. As well as standing alone, such approaches help to make sense of 

quantitative findings, illuminating why neighbourhood characteristics matter for health, 

and may generate further hypotheses along the lines of those tested in this thesis104.  

Sociological, political and economic theory and methods may provide further useful 

perspectives on understanding the ways that various structural forces at the national and 

international level influence social and physical determinants of health at the 

neighbourhood and individual level34, and how commercial and industrial forces take 

advantage of the social meanings we attach to health-related behaviours105. 

Systems thinking offers another way to approach this area of research10,106. Complex health 

outcomes such as obesity and NCDs, and the inequalities in their distributions, have been 

viewed (by some) in these terms for several years, with neighbourhoods recognised as part 

of these systems107-109. Traditional epidemiological methods struggle to deal with dynamic 

neighbourhood phenomena such as gentrification, and the relational and adaptive 

processes by which the residents and resources in neighbourhoods influence each other 

over time110. Complex systems modelling techniques appear to hold considerable promise 

for examining the multi-dimensional and dynamic interactions that link places – such as 

neighbourhoods – and the individuals within them, to these outcomes111. 

 Potential for using and extending the UK Biobank resource in further 
research 

Considerable further research using the UK Biobank resource could be designed to build 

on the work of this thesis. With the release of linked primary care data imminent, it will 

soon be possible to examine other prospective outcomes such as Type 2 diabetes, similar 

to the way I have used the hospital episodes data in Chapter 8. Following on from Chapter 

5's analysis of gene-neighbourhood interactions, the genetic data could be further utilised 
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to construct risk scores more specific to the neighbourhood exposure (e.g. group together 

only those SNPs linked specifically to dietary intake). While I have focussed throughout 

the thesis only on two-way interactions, it may be that important 3-way (or n-way) 

interactions have been overlooked, bearing in mind challenges for interpretation.  

Alongside these suggestions for future research, the process of undertaking this PhD has 

highlighted for me several ways that the UK Biobank resource could be extended to make 

it more useful for this kind of research. These include the addition of purpose-designed 

exposure measures to UK Biobank to reduce the impact of information bias (e.g. exposure 

misclassification), particularly for measurement of the food environment. Enrichment of 

the UKBUMP with other data sources could also enable disaggregation of PA facilities to 

allow greater specificity in exposure definition. While activity space data may not have 

been feasible on the scale of UK Biobank, one improvement on the street-network buffers 

and distances used in UKBUMP might have been what Adams et al refer to as "pedestrian-

enhanced" network buffers112, which take into account footpaths in addition to roads. For 

the distance measures in UKBUMP, reliance on distance to only the single nearest 

destination of a type (fast-food/takeaway outlet in the case of this thesis) may not be as 

appropriate as average distance to multiple (e.g. five) nearest destinations of that type113,114. 

Inconsistent results have been reported in comparisons of those two kinds of distance 

measures of fast-food proximity in relation to BMI114. 

Even more useful would be to add measures of neighbourhood exposure at additional time 

points, to capture change in exposure over time. Options for doing this include: 

a) repeating the existing metric-generation process on updated address points (e.g. 15 

years post-baseline); 

b) linking small area environmental data to both the baseline address points and updated 

address points (recognising that small area data rather than ego-centric data are less than 

ideal, but it may be a less resource-intensive approach than (a)); 

c) linkage of historical environmental data based on baseline addresses, for the subset of 

long-term residents at baseline address; 

d) additional data requests for historical addresses of cohort members, followed by 

retrospective ascertainment of pre-baseline exposure.  
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9.9. Conclusion 

In this thesis I have sought to contribute novel evidence about sources of potential effect 

heterogeneity in relationships between neighbourhood built environments and health, as 

well as to replicate results of other studies, using a new and very large dataset. The findings 

highlight effect modification relationships with potentially important policy and public 

health implications, and which, with further research, will advance our understanding of 

how, where and for whom neighbourhoods matter for health.  

In a very large sample of UK adults at a critical stage of the life course for the development 

of chronic disease, I investigated associations between three characteristics of the 

residential neighbourhood environment and obesity- and NCD-related outcomes, with a 

focus on characterising potential sources of effect heterogeneity operating at multiple 

scales. In summary, I found that greater availability of formal physical activity facilities 

near home is associated with lower adiposity across multiple measures, but is less clearly 

related to lower risk of CVD and cancer outcomes. Importantly, these relationships appear 

to vary according to several other factors, in particular individual and area-level 

socioeconomic factors, sex, and other characteristics of the neighbourhood built 

environment, with population-wide average associations concealing substantial 

heterogeneity of estimated effects. Living further away from a fast-food outlet was only 

weakly associated with lower BMI and lower risk of CVD and cancer in the sample as a 

whole but the association with BMI was substantially modified by sex, and by genetic risk 

of obesity, with evidence that higher risk individuals may be more sensitive to their food 

environment. Both exposures were more strongly associated with adiposity outcomes in 

some parts of England than in others, but further research is needed to identify the factors 

driving the observed geographical heterogeneity. Neighbourhood greenspace was not 

associated with any of the examined outcomes across the sample as a whole, but increased 

greenspace did appear to provide some protection against cancer outcomes in more 

deprived areas. 

The UK Biobank resource provides unique opportunities to explore the complexity of 

relationships between neighbourhood environments and health in the UK, and in this PhD 

I have taken some of those opportunities to contribute to knowledge in this field. 

Extensions to the UK Biobank resource to enrich these opportunities, alongside work in 

other cohorts, contributions from other disciplines, and targeted intervention research, 

are needed to further deepen our understanding of these relationships. This thesis 

highlights the importance of all such work taking into account the study context and the 

distribution of a range of effect modifiers in the study population.  
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In their 2015 paper, Keyes & Galea115(p.308) argue that "variation in the magnitudes of our 

associations across time and place are a critical part of the epidemiology of our outcomes, 

and by drawing on this variation, we may be able to acquire a stronger foothold into how 

we can shift population health more dramatically in the contexts in which we study". I 

contend that beyond variation across time and place, we stand to acquire an even deeper 

understanding – a yet stronger foothold – by investigating variation in the magnitudes of 

associations across a wider spectrum of factors that might shape the way neighbourhoods 

influence health. This will contribute to our understanding of how factors operating at 

multiple levels jointly shape health. I demonstrate in this thesis that the factors that 

modify neighbourhood effects can span the genetic right through to the macro-

environmental forces that influence the way we engage with the world. This advances the 

field both conceptually and empirically, and has important implications for the translation 

of research evidence into public health policy, a process that rests on assumptions of 

generalisability. By better understanding sources of effect heterogeneity, we will be able 

to better target built environment interventions for health at the places where they will be 

most effective, and tailor them to benefit the people who stand to, and need to, gain the 

most.  

  

 



279 

REFERENCES 

1 Egger G, Swinburn B. An ‘ecological’ approach to the obesity pandemic. Br Med 
J 1997; 315: 144–80. 

2 Dahlgren G, Whitehead M. Policies and strategies to promote social equity in 
health Background document to WHO Strategy paper for Europe. World Health 
Organization. 1991. 

3 Macintyre S, Ellaway A. Neighborhoods and Health: an overview. In: Kawachi I, 
Berkman LF, eds. Neighborhoods and Health. Oxford: Oxford University Press, 
2003: 20–42. 

4 Leal C, Chaix B. The influence of geographic life environments on 
cardiometabolic risk factors: a systematic review, a methodological assessment 
and a research agenda. Obes Rev 2011; 12: 217–30. 

5 Kremers SPJ, de Bruijn G-J, Visscher TLS, van Mechelen W, de Vries NK, Brug J. 
Environmental influences on energy balance-related behaviors: a dual-process 
view. Int J Behav Nutr Phys Act 2006; 3: 9. 

6 Schneider S, Diehl K, Görig T, et al. Contextual influences on physical activity 
and eating habits: options for action on the community level. BMC Public Health 
2017; 17: 760. 

7 Swinburn B, Egger G, Raza F. Dissecting obesogenic environments: the 
development and application of a framework for identifying and prioritizing 
environmental interventions for obesity. Prev Med 1999; 29: 563–70. 

8 Ralston J, Brinsden H, Buse K, et al. Time for a new obesity narrative. Lancet 
2018; 392: 2016–8. 

9 Butland B, Jebb S, Kopelman P, et al. Foresight Tackling Obesities: Future 
Choices – project report. London, UK, 2007 

10 Rutter H, Savona N, Glonti K, et al. The need for a complex systems model of 
evidence for public health. Lancet 2017; 390: 2602–4. 

11 Cummins S, Curtis S, Diez-Roux A V., Macintyre S. Understanding and 
representing ‘place’ in health research: a relational approach. Soc Sci Med 2007; 
65: 1825–38. 

12 Glymour MM, Osypuk TL, Rehkopf DH. Invited commentary: Off-roading with 
social epidemiology--exploration, causation, translation. Am J Epidemiol 2013; 
178: 858–63. 

13 Diez Roux A V. Conceptual approaches to the study of health disparities. Annu 
Rev Public Health 2012; 33: 41–58. 

14 Krieger N. Embodiment: a conceptual glossary for epidemiology. J Epidemiol 
Community Health 2005; 59: 350–5. 

15 Rosenquist JN, Lehrer SF, O’Malley AJ, Zaslavsky AM, Smoller JW, Christakis NA. 
Cohort of birth modifies the association between FTO genotype and BMI. Proc 
Natl Acad Sci USA 2015; 112: 354–9. 



280 

16 Robinette JW, Boardman JD, Crimmins EM. Differential vulnerability to 
neighbourhood disorder: a gene×environment interaction study. J Epidemiol 
Community Health 2019; 73: 388-92. 

17 Mercille G, Richard L, Gauvin L, et al. The food environment and diet quality of 
urban-dwelling older women and men: assessing the moderating role of diet 
knowledge. Can J Public Heal 2016; 107: 34. 

18 Stafford M, Cummins S, Macintyre S, Ellaway A, Marmot M. Gender differences 
in the associations between health and neighbourhood environment. Soc Sci 
Med 2005; 60: 1681–92. 

19 Burgoine T, Forouhi NG, Griffin SJ, Wareham NJ, Monsivais P. Associations 
between exposure to takeaway food outlets, takeaway food consumption, and 
body weight in Cambridgeshire, UK: population based, cross sectional study. 
BMJ 2014; 348: g1464. 

20 Sarkar C, Webster C, Gallacher J. Are exposures to ready-to-eat food 
environments associated with type 2 diabetes? A cross-sectional study of 347 551 
UK Biobank adult participants. Lancet Planet Heal 2018; 2: e438–50. 

21 Coen SE, Rosenberg MW, Davidson J. “It’s gym, like g-y-m not J-i-m”: exploring 
the role of place in the gendering of physical activity. Soc Sci Med 2018; 196: 29–
36. 

22 CSDH. Closing the gap in a generation: health equity through action on the 
social determinants of health. Final Report of the Commission on Social 
Determinants of Health. Geneva, 2008. 

23 Davey Smith G, Hart C, Watt G, Hole D, Hawthorne V. Individual social class, 
area-based deprivation, cardiovascular disease risk factors, and mortality: the 
Renfrew and Paisley Study. J Epidemiol Community Heal 1998; 52: 399–405. 

24 Adachi-Mejia AM, Lee C, Lee C, et al. Geographic variation in the relationship 
between body mass index and the built environment. Prev Med 2017; 100: 33–40. 

25 Clary C, Lewis DJ, Flint E, Smith NR, Kestens Y, Cummins S. The local food 
environment and fruit and vegetable intake: a geographically weighted 
regression approach in the ORiEL study. Am J Epidemiol 2016; 184: 837–46. 

26 Chen M, Creger T, Howard V, Judd SE, Harrington KF, Fontaine KR. Association 
of community food environment and obesity among US adults: a geographical 
information system analysis. J Epidemiol Community Health 2019; 73: 148–55. 

27 Feuillet T, Charreire H, Menai M, et al. Spatial heterogeneity of the relationships 
between environmental characteristics and active commuting: towards a locally 
varying social ecological model. Int J Health Geogr 2015; 14: 12. 

28 Macintyre S, Ellaway A, Cummins S. Place effects on health: how can we 
conceptualise, operationalise and measure them? Soc Sci Med 2002; 55: 125–39. 

29 Shelton NJ. Regional risk factors for health inequalities in Scotland and England 
and the ‘Scottish effect’. Soc Sci Med 2009; 69: 761–7. 



281 

30 Frohlich KL, Corin E, Potvin L. A theoretical proposal for the relationship 
between context and disease. Sociol Heal Illn 2001; 23: 776–97. 

31 Myers CA, Denstel KD, Broyles ST. The context of context: examining the 
associations between healthy and unhealthy measures of neighborhood food, 
physical activity, and social environments. Prev Med 2016; 93: 21–6. 

32 Saelens BE, Sallis JF, Frank LD, et al. Obesogenic neighborhood environments, 
child and parent obesity: the neighborhood impact on kids study. Am J Prev Med 
2012; 42: e57–64. 

33 Boone-Heinonen J, Diez-Roux A V., Goff DC, et al. The neighborhood energy 
balance equation: does neighborhood food retail environment + physical activity 
environment = obesity? The CARDIA study. PLoS One 2013; 8: e85141. 

34 Bambra C, Smith KE, Pearce J. Scaling up: The politics of health and place. Soc 
Sci Med 2019; 232: 36-42. 

35 VanderWeele TJ, Knol MJ. A tutorial on interaction. Epidemiol Method 2014; 3: 
33–72. 

36 Higgerson J, Halliday E, Ortiz-Nunez A, Brown R, Barr B. Impact of free access 
to leisure facilities and community outreach on inequalities in physical activity: 
a quasi-experimental study. J Epidemiol Community Heal 2018; 0: 1–7. 

37 Lorenc T, Petticrew M, Welch V, Tugwell P. What types of interventions 
generate inequalities? Evidence from systematic reviews. J Epidemiol Community 
Health 2013; 67: 190–3. 

38 Panter J, Guell C, Prins R, Ogilvie D. Physical activity and the environment: 
conceptual review and framework for intervention research. Int J Behav Nutr 
Phys Act 2017; 14: 156. 

39 Shoveller J, Viehbeck S, Di Ruggiero E, Greyson D, Thomson K, Knight R. A 
critical examination of representations of context within research on population 
health interventions. Crit Public Health 2016; 26: 487–500. 

40 Fry A, Littlejohns TJ, Sudlow C, et al. Comparison of sociodemographic and 
health-related characteristics of UK Biobank participants with those of the 
general population. Am J Epidemiol 2017; 186: 1026–1034. 

41 Rothman KJ, Gallacher JEJ, Hatch EE. Why representativeness should be 
avoided. Int J Epidemiol 2013; 42: 1012–4. 

42 Richiardi L, Pizzi C, Pearce N. Commentary: Representativeness is usually not 
necessary and often should be avoided. Int J Epidemiol 2013; 42: 1018–22. 

43 Richiardi L, Pearce N, Pagano E, Di Cuonzo D, Zugna D, Pizzi C. Baseline 
selection on a collider: a ubiquitous mechanism occurring in both representative 
and selected cohort studies. J Epidemiol Community Health 2019; 73: 475-80. 

44 Munafò MR, Tilling K, Taylor AE, Evans DM, Davey Smith G. Collider scope: 
when selection bias can substantially influence observed associations. Int J 
Epidemiol 2017; : 1–10. 



282 

45 Ebrahim S, Smith GD. Commentary: Should we always deliberately be non-
representative? Int J Epidemiol 2013; 42: 1022–6. 

46 Rothman KJ, Hatch EE, Gallacher JEJ. Representativeness is not helpful in 
studying heterogeneity of effects across subgroups. Int J Epidemiol 2014; 43: 633–
4. 

47 Hutcheon JA, Chiolero A, Hanley JA. Random measurement error and regression 
dilution bias. BMJ 2010; 340: 1402–6 

48 Smith L, Panter J, Ogilvie D. Characteristics of the environment and physical 
activity in midlife: findings from UK Biobank. Prev Med 2018; 118: 150–8. 

49 Sarkar C. Residential greenness and adiposity: Findings from the UK Biobank. 
Environ Int 2017; 106: 1–10. 

50 Chaix B, Merlo J, Evans D, Leal C, Havard S. Neighbourhoods in eco-
epidemiologic research: delimiting personal exposure areas. A response to Riva, 
Gauvin, Apparicio and Brodeur. Soc Sci Med 2009; 69: 1306–10. 

51 Kwan MP. The uncertain geographic context problem. Ann Assoc Am Geogr 2012; 
102: 958–68. 

52 James P, Hart JE, Arcaya MC, Feskanich D, Laden F, Subramanian S V. 
Neighborhood self-selection: the role of pre-move health factors on the built and 
socioeconomic environment. Int J Environ Res Public Health 2015; 12: 12489–504. 

53 McCormack GR, Shiell A. In search of causality: a systematic review of the 
relationship between the built environment and physical activity among adults. 
Int J Behav Nutr Phys Act 2011; 8: 125. 

54 Grafova IB, Freedman VA, Lurie N, Kumar R, Rogowski J. The difference-in-
difference method: assessing the selection bias in the effects of neighborhood 
environment on health. Econ Hum Biol 2014; 13: 20–33. 

55 Mackenbach JD, Matias de Pinho MG, Faber E, et al. Exploring the cross-
sectional association between outdoor recreational facilities and leisure-time 
physical activity: the role of usage and residential self-selection. Int J Behav Nutr 
Phys Act 2018; 15: 1–11. 

56 Macintyre S. Deprivation amplification revisited; or, is it always true that poorer 
places have poorer access to resources for healthy diets and physical activity? Int 
J Behav Nutr Phys Act 2007; 4: 32. 

57 Lamb KE, Ferguson NS, Wang Y, Ogilvie D, Ellaway A. Distribution of physical 
activity facilities in Scotland by small area measures of deprivation and 
urbanicity. Int J Behav Nutr Phys Act 2010; 7: 76. 

58 Panter J, Jones A, Hillsdon M. Equity of access to physical activity facilities in an 
English city. Prev Med 2008; 46: 303–7. 

59 Cummins S, Clary C, Shareck M. Enduring challenges in estimating the effect of 
the food environment on obesity. Am J Clin Nutr 2017; 106: 445–6. 



283 

60 Clary CM, Ramos Y, Shareck M, Kestens Y. Should we use absolute or relative 
measures when assessing foodscape exposure in relation to fruit and vegetable 
intake? Evidence from a wide-scale Canadian study. Prev Med 2015; 71: 83–7. 

61 Mason KE, Bentley RJ, Kavanagh AM. Fruit and vegetable purchasing and the 
relative density of healthy and unhealthy food stores: evidence from an 
Australian multilevel study. J Epidemiol Community Health 2013; 67: 231–6. 

62 Jekanowski MD, Binkley JK, Eales J. Convenience, Accessibility, and the Demand 
for Fast Food. J Agric Resour Econ 2001; 26: 58–74. 

63 Gordon-Larsen P. Food availability/convenience and obesity. Adv Nutr 2014; 5: 
809–17. 

64 Yee W, Van Arsdol MD. Residential mobility, age, and the life cycle. Journals 
Gerontol 1977; 32: 211–21. 

65 Coulter R, Ham M Van, Coulter R, Ham M Van. Contextualised Mobility 
Histories of Moving Desires and Actual Moving Behaviour. Institute for the 
Study of Labor Discussion Papers. 2011; Discussion Paper 6146.  

66 Arcaya M, Tucker-Seeley R, Kim R, Schnake-Mahl A, So M, Subramanian SV. 
Research on neighborhood effects on health in the United States: a systematic 
review of study characteristics. Soc Sci Med 2016; 168: 16–29. 

67 Hernán MA. The C-Word: scientific euphemisms do not improve causal 
inference from observational data. Am J Public Health 2018; 108: 616–9. 

68 Rehkopf DH, Glymour MM, Osypuk TL. The consistency assumption for causal 
inference in social epidemiology: when a rose is not a rose. Curr Epidemiol 
Reports 2016; 3: 63–71. 

69 Oakes JM. Commentary: Advancing neighbourhood-effects research: selection, 
inferential support, and structural confounding. Int J Epidemiol 2006; 35: 643–7. 

70 Messer LC, Oakes JM, Mason S. Effects of socioeconomic and racial residential 
segregation on preterm birth: a cautionary tale of structural confounding. Am J 
Epidemiol 2010; 171: 664–73. 

71 Hernán MA, Vanderweele TJ. Compound treatments and transportability of 
causal inference. Epidemiology 2011; 22: 268–77.  

72 Ou S. Are some neighborhoods bad for your waistline? A test of neighborhood 
exposure effects on BMI. J Health Econ 2018; 63: 52–63. 

73 Jokela M. Are neighborhood health associations causal? A 10-year prospective 
cohort study with repeated measurements. Am J Epidemiol 2014; 180: 776–84. 

74 Oakes JM. The (mis)estimation of neighborhood effects: causal inference for a 
practicable social epidemiology. Soc Sci Med 2004; 58: 1929–52. 

75 Lawlor DA, Tilling K, Smith GD. Triangulation in aetiological epidemiology. Int 
J Epidemiol 2016; 45: 1866–86. 



284 

76 Krieger N, Davey Smith G. The tale wagged by the DAG: broadening the scope 
of causal inference and explanation for epidemiology. Int J Epidemiol 2016; : 
dyw114. 

77 Glymour MM, Rudolph KE. Causal inference challenges in social epidemiology: 
bias, specificity, and imagination. Soc Sci Med 2016; 166: 258–65. 

78 Vandenbroucke JP, Broadbent A, Pearce N. Causality and causal inference in 
epidemiology: the need for a pluralistic approach. Int J Epidemiol 2016; 45: 1776–
86. 

79 Galea S, Link BG. Six paths for the future of social epidemiology. Am J Epidemiol 
2013; 178: 843–9. 

80 Hobbs M, Griffiths C, Green MA, Jordan H, Saunders J, McKenna J. 
Neighbourhood typologies and associations with body mass index and obesity: 
a cross-sectional study. Prev Med 2018; 111: 351–7. 
 

81 Leal C, Bean K, Thomas F, Chaix B. Multicollinearity in associations between 
multiple environmental features and body weight and abdominal fat: using 
matching techniques to assess whether the associations are separable. Am J 
Epidemiol 2012; 175: 1152–62. 

82 Osypuk TL. Shifting from policy relevance to policy translation: do housing and 
neighborhoods affect children’s mental health? Soc Psychiatry Psychiatr 
Epidemiol 2015; 50: 215–7. 

83 Richardson EA, Mitchell R. Gender differences in relationships between urban 
green space and health in the United Kingdom. Soc Sci Med 2010; 71: 568–75. 

84 Dahlgren G, Whitehead M. European strategies for tackling social inequities in 
health: Levelling up Part 2. Copenhagen: WHO Regional Office for Europe; 2006. 

85 Craig P, Di Ruggiero E, Frohlich KL, Mykhalovskiy E and White M, on behalf of 
the Canadian Institutes of Health Research (CIHR)–National Institute for Health 
Research (NIHR) Context Guidance Authors Group. Taking account of context 
in population health intervention research: guidance for producers, users and 
funders of research. Southampton: NIHR Evaluation, Trials and Studies 
Coordinating Centre; 2018. 

86 Watts P, Phillips G, Petticrew M, Harden A, Renton A. The influence of 
environmental factors on the generalisability of public health research evidence: 
physical activity as a worked example. Int J Behav Nutr Phys Act 2011; 8: 128. 

87 Bryan AD, Hutchison KE. The role of genomics in health behavior change: 
challenges and opportunities. Public Health Genomics 2012; 15: 139–45. 

88 McBride CM, Bryan AD, Bray MS, Swan GE, Green ED. Health behavior change: 
can genomics improve behavioral adherence? Am J Public Health 2012; 102: 401–
5. 

89 Mitchell R, Popham F. Effect of exposure to natural environment on health 
inequalities: an observational population study. Lancet 2008; 372: 1655–60. 



285 

90 Roe J, Aspinall PA, Thompson CW. Understanding relationships between health, 
ethnicity, place and the role of urban green space in deprived urban 
communities. Int J Environ Res Public Health 2016; 13.  

91 Markevych I, Schoierer J, Hartig T, et al. Exploring pathways linking greenspace 
to health: theoretical and methodological guidance. Environ Res 2017; 158: 301–
17. 

92 Rigolon A. A complex landscape of inequity in access to urban parks: a literature 
review. Landsc Urban Plan 2016; 153: 160–9. 

93 van Heezik Y, Brymer E. Nature as a commodity: what’s good for human health 
might not be good for ecosystem health. Front Psychol 2018; 9: 1–5. 

94 Stuckler D. Population causes and consequences of leading chronic diseases: a 
comparative analysis of prevailing explanations. Milbank Q 2008; 86: 273-326.  

95 Wagner KH, Brath H. A global view on the development of non communicable 
diseases. Prev Med 2012; 54: S38-41. 

96 Pearce JR. Complexity and Uncertainty in Geography of Health Research: 
Incorporating Life-Course Perspectives. Ann Am Assoc Geogr 2018; 4452: 1–8. 

97 Schmidt NM, Nguyen QC, Osypuk TL. Experimental and quasi-experimental 
designs in neighborhood health effects research: strengthening causal inference 
and promoting translation. In: Duncan DT, Kawachi I, eds. Neighborhoods and 
Health, 2nd edn. New York: Oxford University Press, 2018. 

98 Blacksher E, Lovasi GS. Place-focused physical activity research, human agency, 
and social justice in public health: taking agency seriously in studies of the built 
environment. Health Place 2012; 18: 172–9. 

99 Williams GH. The determinants of health: structure, context and agency. Sociol 
Health Illn 2010; 25: 131–54. 

100 Cannuscio CC, Tappe K, Hillier A, Buttenheim A, Karpyn A, Glanz K. Urban food 
environments and residents’ shopping behaviors. Am J Prev Med 2013; 45: 606–
14. 

101 Cannuscio CC, Hillier A, Karpyn A, Glanz K. The social dynamics of healthy food 
shopping and store choice in an urban environment. Soc Sci Med 2014; 122: 13–
20. 

102 Walton E. Vital places: facilitators of behavioral and social health mechanisms 
in low-income neighborhoods. Soc Sci Med 2014; 122: 1–12. 

103 Thompson C, Cummins S, Brown T, Kyle R. Understanding interactions with the 
food environment: an exploration of supermarket food shopping routines in 
deprived neighbourhoods. Health Place 2013; 19: 116–23. 

104 Keene DE. Qualitative methods and neighborhood health research. In: Duncan 
DT, Kawac, eds. Neighborhoods and Health, 2nd edn. New York: Oxford 
University Press, 2018. 



286 

105 Kelly MP, Russo F. Causal narratives in public health: the difference between 
mechanisms of aetiology and mechanisms of prevention in non-communicable 
diseases. Sociol Heal Illn 2018; 40: 82–99. 

106 Naimi AI. Integrating complex systems thinking into epidemiologic research. 
Epidemiology 2016; 27: 843–7. 

107 Huang TT, Drewnosksi A, Kumanyika S, Glass TA. A systems-oriented multilevel 
framework for addressing obesity in the 21st century. Prev Chronic Dis 2009; 6: 
A82. 

108 Diez Roux A V. Complex systems thinking and current impasses in health 
disparities research. Am J Public Health 2011; 101: 1627–34. 

109 Homer JB, Hirsch GB. System dynamics modeling for public health: background 
and opportunities. Am J Public Health 2006; 96: 452–8. 

110 Heaton B, El-Sayed A, Galea S. Agent-based models. In: Duncan DT, Kawachi I, 
eds. Neighborhoods and Health, 2nd edn. Oxford University Press, 2018. 

111 Luke DA, Stamatakis KA. Systems science methods in public health: dynamics, 
networks, and agents. Annu Rev Public Health 2012; : 357–76. 

112 Adams MA, Frank LD, Schipperijn J, et al. International variation in 
neighborhood walkability, transit, and recreation environments using 
geographic information systems: the IPEN adult study. Int J Health Geogr 2014; 
13: 17. 

113 Duncan DT, Kawachi I, Subramanian S V, Aldstadt J, Melly SJ, Williams DR. 
Examination of how neighborhood definition influences measurements of 
youths’ access to tobacco retailers: a methodological note on spatial 
misclassification. Am J Epidemiol 2013; 179: 373-81. 

114 Block JP, Christakis NA, O’Malley AJ, Subramanian S V. Proximity to food 
establishments and body mass index in the framingham heart study offspring 
cohort over 30 years. Am J Epidemiol 2011; 174: 1108–14. 

115 Keyes K, Galea S. What matters most: quantifying an epidemiology of 
consequence. Ann Epidemiol 2015; 25: 305–11. 

 

 



287 

Appendix One.  

SUPPLEMENTARY MATERIAL: Research Paper 1 

 

1. Directed Acyclic Graphs for Relationships between Neighbourhood 
Environments (fast-food proximity and density of local formal PA facilities) and 
Adiposity 

 

 

Supplementary Figure 1. Formal physical activity environment – adiposity DAG 

Yellow = exposure  Blue = outcome      White = adjusted potential confounders 

Grey = unadjusted or unobserved potential confounders Green line = causal pathway  

Red line = potential biasing pathway (absence of red line indicates that adjustment for minimal 
sufficient set of confounders is achieved) 
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Supplementary Figure 2. Fast food environment – adiposity DAG 

Yellow = exposure Blue = outcome      White = adjusted potential confounders 

Grey = unadjusted or unobserved potential confounders Green line = causal pathway  

Red = potential biasing pathway 
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2. Classification of Formal Physical Activity Facilities 

Formal PA facilities were defined as any land use classified in the Commercial-Leisure 
subcategory (CL06) of the UK Ordnance Survey AddressBase Premium database 
(https://www.ordnancesurvey.co.uk/business-and-government/help-and-

support/products/addressbase-premium.html). The data are contributed by local authorities, 
and covers municipal and private facilities for all sporting activities. This subcategory 
comprises any Indoor/Outdoor Leisure/Sporting Activity/Centre not further defined, as 
well as the following more specific categories of land use: 

 Bowls Facility 
 Cricket Facility 
 Diving / Swimming Facility 
 Equestrian Sports Facility 
 Football Facility 
 Golf Facility 
 Activity / Leisure / Sports Centre 
 Playing Field 
 Racquet Sports Facility 
 Rugby Facility 
 Recreation Ground 
 Skateboarding Facility 
 Civilian Firing Facility 
 Tenpin Bowling Facility 
 Water Sports Facility 
 Winter Sports Facility 

Full details of the classification scheme and the types of facilities covered can be found via 
the link above.  
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3. Details of Sensitivity Analyses (results summarised in main text) 

Adjustment for behavioural confounders (Supplementary Table 1) 

Diet is a strong predictor of adiposity but inclusion of total energy intake as a covariate in 
PA environment-adiposity models would potentially induce selection bias through 
substantial sample size restriction, as well as confounding bias through other backdoor 
pathways (Fig 1a, main report) Therefore, we further adjusted PA environment models for 
dietary intake (using a continuous measure of total energy intake (KJ), based on 24-hour 
recall dietary assessment). For consistency, additional models of the food environment 
were adjusted for physical activity. PA was operationalised as self-reported total energy 
expenditure through physical activity, captured with the self-reported International 
Physical Activity Questionnaire (IPAQ), expressed in terms of metabolic equivalent (MET) 
minutes per week, calculated and then categorised (to overcome skewness) according to 
the IPAQ short form guidelines to reflect low, moderate or high levels of PA. 

Sample restriction based on diet and PA data (Supplementary Table 1) 

As dietary data were only collected from a subset of 42% of the sample, we also explored 
whether any effect size attenuation in models adjusted for diet was being driven by 
selection bias due to missing dietary data, rather than adjustment, by comparing results 
for the main PA environment models with results from the same model run using only the 
subsample with dietary data. 

PA was missing for 9% of the sample, and for consistency we also ran the fast food 
environment model on the subsample with PA data, for comparison with the main food 
environment model. 

This enabled us to assess whether any observed differences in estimates when adjusting 
for behaviours (diet or PA) were being driven by the adjustment (i.e. confounding is 
present) or by selection bias due to missing data.  

Bioimpedance BMI only (Supplementary Table 2) 

5580 participants had their BMI calculated from weight measurements taken using 
standard scales rather than the impedance machine. To test the sensitivity of our results 
to this, we also estimated models using a version of the BMI measure in which these 
observations were excluded. Results were almost identical to the primary models. 

Sample sizes for the sensitivity analyses varied depending on data completeness for the 
specific outcome and covariates. Ns are shown in the tables. 
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Supplementary Table 1. Results from sensitivity analyses examining impact of adjusting PA environment models for diet and food 
environment models for physical activity 

 

 

 

 Adjusted for diet 
Restricted to subsample with dietary data 

(but no adjustment for diet) 

Number of PA resources 
in 1km street network 
buffer 

WC BMI (kg/m2) % body fat WC BMI (kg/m2) % body fat 

n=177,288 n=177,143 n=174,780 n=177,288 n=177,143 n=174,780 

0 ref ref ref ref ref ref 

1 -0.21 (-0.44, 0.01) -0.11 (-0.20, -0.02) -0.20 (-0.31, -0.08) -0.21 (-0.44, 0.01) -0.11 (-0.20, -0.02) -0.20 (-0.32, -0.08) 

2-3 -0.47 (-0.75, -0.20) -0.24 (-0.35, -0.13) -0.32 (-0.48, -0.16) -0.47 (-0.74, -0.20) -0.24 (-0.35, -0.13) -0.32 (-0.49, -0.16) 

4-5 -0.82 (-1.18, -0.45) -0.41 (-0.56, -0.27) -0.60 (-0.79, -0.41) -0.81 (-1.18, -0.45) -0.41 (-0.56, -0.27) -0.61 (-0.80, -0.41) 

6 or more -1.24 (-1.69, -0.79) -0.57 (-0.74, -0.41) -0.83 (-1.05, -0.60) -1.24 (-1.69, -0.79) -0.57 (-0.74, -0.41) -0.83 (-1.05, -0.60) 

       

 Adjusted for PA 
Restricted to subsample with PA data 

(but no adjustment for PA) 
Distance to nearest fast-
food outlet (m) 
 

WC BMI (kg/m2) % body fat WC BMI (kg/m2) % body fat 

n=373,624 n=373,286 n=368,181 n=373,624 n=373,286 n=368,181 

<500m ref ref ref ref ref ref 

500-999m -0.18 (-0.33, -0.03) -0.09 (-0.16, -0.03) -0.09 (-0.17, -0.01) -0.17 (-0.32, -0.02) -0.09 (-0.15, -0.02) -0.09 (-0.17, 0.00) 

1000-1999m -0.28 (-0.49, -0.06) -0.12 (-0.22, -0.02) -0.09 (-0.21, 0.02) -0.24 (-0.46, -0.02) -0.11 (-0.21, -0.01) -0.07 (-0.19, 0.05) 

At least 2000m -0.31 (-0.54, -0.07) -0.12 (-0.25, 0.02) -0.13 (-0.27, 0.02) -0.27 (-0.52, -0.01) -0.10 (-0.24, 0.04) -0.10 (-0.25, 0.05) 



292 

 

Supplementary Table 2. Results from sensitivity analyses excluding BMI 
measurements taken using standard scales rather than bioimpedance machine 

 
Impedance-only BMI 

Number of PA resources in 1km street network 
buffer 

BMI (kg/m2) 

n=395,855 

0 ref 

1 -0.08 (-0.15, 0.00) 

2-3 -0.18 (-0.28, -0.07) 

4-5 -0.33 (-0.47, -0.20) 

6 or more -0.56 (-0.73, -0.39) 

  
Distance to nearest fast-food outlet (m) n=395,855 

<500m ref 

500-999m -0.08 (-0.15, -0.02) 

1000-1999m -0.11 (-0.20, -0.01) 

At least 2000m -0.10 (-0.24, 0.04) 
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4. Fast-food environment and adiposity: effect modification by annual household income 

 

 

Supplementary Figure 3. Association between distance to nearest fast-food outlet and adiposity, by annual household income 

Figure shows annual-household-income-stratified, fully adjusted mean differences in adiposity and associated 95% confidence intervals. The red line at zero 
represents the reference category (living <500m from nearest fast-food outlet).  
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5. Standardised coefficients for direct comparison of adiposity and negative 
control outcomes 

The negative control analysis for the PA environment (but not the fast-food environment) 
in the published paper above indicates possible residual confounding, because an 
unexpected association with height was observed. As stated in the paper, but not shown, 
comparison of standardised coefficients across the primary models and the negative 
control model suggest this residual confounding would only partially account for the 
observed association between the availability of PA facilities and adiposity. These results 
are shown in Supplementary Table 3) below. The magnitude of the standardised point 
estimates for height are not as large as for the adiposity outcomes, especially BMI, for 
which the standardised estimates are twice the magnitude of those for height. 

 

Supplementary Table 3. Standardised coefficients 

 WC (cm) BMI (kg/m2) % body fat 
Height (%) 

(negative control) 

Number of PA 
resources in 1km 
street network buffer 

(n=401,917) (n=401,435) (n=395,640) (n=401,675) 

0 ref ref ref ref 
1 -0.01 (-0.02, 0.00) -0.02 (-0.03, 0.00) -0.01 (-0.02, 0.00) 0.01 (0.00, 0.02) 
2-3 -0.03 (-0.05, -0.01) -0.04 (-0.06, -0.02) -0.03 (-0.05, -0.01) 0.02 (0.01, 0.03) 
4-5 -0.05 (-0.07, -0.02) -0.07 (-0.10, -0.04) -0.06 (-0.08, -0.03) 0.04 (0.03, 0.05) 
6 or more -0.09 (-0.12, -0.06) -0.12 (-0.16, -0.08) -0.10 (-0.12, -0.07) 0.06 (0.04, 0.07) 
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Appendix Two.  

SUPPLEMENTARY MATERIAL: Research Paper 2 
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Supplementary Table 4. SNPs included in each polygenic risk score 

SNP Chr Position Gene BMI-
increasing 
allele 

Effect size  
(β coefficient per effect 
allele, SD units of BMI) 

Included in 
69-SNP risk 
score 

Included 
in 91-SNP 
risk score 

Reason for exclusion1,2 

rs1558902 16 52,361,075 FTO A 0.0818 Yes Yes  
rs17024393 1 109,956,211 GNAT2 C 0.0658 Yes Yes  
rs13021737 2 622,348 TMEM18 G 0.0601 Yes Yes  
rs6567160 18 55,980,115 MC4R C 0.0556 Yes Yes  
rs11847697 14 29,584,863 PRKD1 T 0.0492 Yes Yes  
rs16851483 3 142,758,126 RASA2 T 0.0483 Yes Yes  
rs543874 1 176,156,103 SEC16B G 0.0482 Yes Yes  
rs13107325 4 103,407,732 SLC39A8 T 0.0477 No No Possible pleiotropy 
rs1516725 3 187,306,698 ETV5 C 0.0451 Yes Yes  
rs2207139 6 50,953,449 TFAP2B G 0.0447 Yes Yes  
rs11030104 11 27,641,093 BDNF A 0.0414 No No Possible pleiotropy 
rs12446632 16 19,842,890 GPRC5B G 0.0403 Yes Yes  
rs10938397 4 44,877,284 GNPDA2 G 0.0402 Yes Yes  
rs7899106 10 87,400,884 GRID1 G 0.0395 Yes Yes  
rs2287019 19 50,894,012 QPCTL C 0.0360 Yes Yes  
rs11727676 4 145,878,514 HHIP T 0.0358 Yes Yes  
rs16907751 8 81,538,012 ZBTB10 C 0.0350 No Yes Identified in secondary meta-analyses only 
rs12429545 13 53,000,207 OLFM4 A 0.0334 Yes Yes  
rs3101336 1 72,523,773 NEGR1 C 0.0334 Yes Yes  
rs2245368 7 76,446,079 DTX2P1 C 0.0317 Yes Yes  
rs7138803 12 48,533,735 BCDIN3D A 0.0315 Yes Yes  
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SNP Chr Position Gene BMI-
increasing 
allele 

Effect size  
(β coefficient per effect 
allele, SD units of BMI) 

Included in 
69-SNP risk 
score 

Included 
in 91-SNP 
risk score 

Reason for exclusion1,2 

rs16951275 15 65,864,222 MAP2K5 T 0.0311 Yes Yes  
rs3888190 16 28,796,987 ATP2A1 A 0.0309 No No Possible pleiotropy 
rs11191560 10 104,859,028 NT5C2 C 0.0308 Yes Yes  
rs10182181 2 25,003,800 ADCY3 G 0.0307 Yes Yes  
rs11057405 12 121,347,850 CLIP1 G 0.0307 Yes Yes  
rs17001654 4 77,348,592 SCARB2 G 0.0306 No No Linkage disequilibrium 
rs9581854 13 26,915,782 MTIF3 T 0.0298 Yes Yes  
rs13078960 3 85,890,280 CADM2 G 0.0297 Yes Yes  
rs3810291 19 52,260,843 ZC3H4 A 0.0283 Yes Yes  
rs13191362 6 162,953,340 PARK2 A 0.0277 Yes Yes  
rs3817334 11 47,607,569 MTCH2 T 0.0262 Yes Yes  
rs2112347 5 75,050,998 POC5 T 0.0261 Yes Yes  
rs2075650 19 50,087,459 TOMM40 A 0.0258 No No Linkage disequilibrium 
rs10968576 9 28,404,339 LINGO2 G 0.0249 Yes Yes  
rs17094222 10 102,385,430 HIF1AN C 0.0249 Yes Yes  
rs2121279 2 142,759,755 LRP1B T 0.0245 Yes Yes  
rs12566985 1 74,774,781 FPGT G 0.0242 Yes Yes  
rs7141420 14 78,969,207 NRXN3 T 0.0235 Yes Yes  
rs7903146 10 114,748,339 TCF7L2 C 0.0234 No Yes Not included in Tyrrell et al's GRS (reason unclear) 
rs13201877 6 137,717,234 IFNGR1 G 0.0233 No Yes Identified in secondary meta-analyses only 
rs10132280 14 24,998,019 STXBP6 C 0.0230 Yes Yes  
rs1016287 2 59,159,129 LINC01122 T 0.0229 Yes Yes  
rs657452 1 49,362,434 AGBL4 A 0.0227 Yes Yes  
rs758747 16 3,567,359 NLRC3 T 0.0225 Yes Yes  
rs17405819 8 76,969,139 HNF4G T 0.0224 Yes Yes  
rs205262 6 34,671,142 C6orf106 G 0.0221 Yes Yes  
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SNP Chr Position Gene BMI-
increasing 
allele 

Effect size  
(β coefficient per effect 
allele, SD units of BMI) 

Included in 
69-SNP risk 
score 

Included 
in 91-SNP 
risk score 

Reason for exclusion1,2 

rs7599312 2 213,121,476 ERBB4 G 0.0220 Yes Yes  
rs11165643 1 96,696,685 PTBP2 T 0.0218 Yes Yes  
rs12286929 11 114,527,614 CADM1 G 0.0217 Yes Yes  
rs7243357 18 55,034,299 GRP T 0.0217 Yes Yes  
rs12401738 1 78,219,349 FUBP1 A 0.0211 Yes Yes  
rs17203016 2 207,963,763 CREB1 G 0.0210 No Yes Identified in secondary meta-analyses only 
rs4256980 11 8,630,515 TRIM66 G 0.0209 Yes Yes  
rs11126666 2 26,782,315 KCNK3 A 0.0207 Yes Yes  
rs12885454 14 28,806,589 PRKD1 C 0.0207 Yes Yes  
rs2650492 16 28,240,912 SBK1 A 0.0207 Yes Yes  
rs1167827 7 75,001,105 HIP1 G 0.0202 Yes Yes  
rs9914578 17 1,951,886 SMG6 G 0.0201 No Yes Identified in secondary meta-analyses only 
rs2365389 3 61,211,502 FHIT C 0.0200 Yes Yes  
rs2176598 11 43,820,854 HSD17B12 T 0.0198 Yes Yes  
rs1460676 2 164,275,935 FIGN C 0.0197 No Yes Identified in secondary meta-analyses only 
rs2820292 1 200,050,910 NAV1 C 0.0195 Yes Yes  
rs17724992 19 18,315,825 PGPEP1 A 0.0194 Yes Yes  
rs1000940 17 5,223,976 RABEP1 G 0.0192 Yes Yes  
rs2033732 8 85,242,264 RALYL C 0.0192 Yes Yes  
rs9925964 16 31,037,396 KAT8 A 0.0192 No No Linkage disequilibrium 
rs9641123 7 93,035,668 CALCR C 0.0191 No Yes Identified in secondary meta-analyses only 

rs2033529 6 40,456,631 TDRG1 G 0.0190 No Yes 
Not included in Tyrrell et al's GRS because 
unavailable 

rs1928295 9 119,418,304 TLR4 T 0.0188 Yes Yes  
rs3849570 3 81,874,802 GBE1 A 0.0188 Yes Yes  
rs6091540 20 50,521,269 ZFP64 C 0.0188 No Yes Identified in secondary meta-analyses only 
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SNP Chr Position Gene BMI-
increasing 
allele 

Effect size  
(β coefficient per effect 
allele, SD units of BMI) 

Included in 
69-SNP risk 
score 

Included 
in 91-SNP 
risk score 

Reason for exclusion1,2 

rs9400239 6 109,084,356 FOXO3 C 0.0188 Yes Yes  
rs9374842 6 120,227,364 LOC285762 T 0.0187 No Yes Identified in secondary meta-analyses only 
rs6804842 3 25,081,441 RARB G 0.0185 Yes Yes  
rs12940622 17 76,230,166 RPTOR G 0.0182 Yes Yes  
rs29941 19 39,001,372 KCTD15 G 0.0182 Yes Yes  
rs7164727 15 70,881,044 LOC100287559 T 0.0180 No Yes Identified in secondary meta-analyses only 
rs4740619 9 15,624,326 C9orf93 T 0.0179 Yes Yes  
rs1528435 2 181,259,207 UBE2E3 T 0.0178 Yes Yes  
rs11583200 1 50,332,407 ELAVL4 C 0.0177 Yes Yes  
rs3736485 15 49,535,902 DMXL2 A 0.0176 Yes Yes  
rs1441264 13 78,478,920 MIR548A2 A 0.0175 No Yes Identified in secondary meta-analyses only 
rs10733682 9 128,500,735 LMX1B A 0.0174 Yes Yes  
rs6477694 9 110,972,163 EPB41L4B C 0.0174 Yes Yes  
rs11688816 2 62,906,552 EHBP1 G 0.0172 Yes Yes  
rs9540493 13 65,103,705 MIR548X2 A 0.0172 No Yes Identified in secondary meta-analyses only 
rs2080454 16 47,620,091 CBLN1 C 0.0168 No Yes Identified in secondary meta-analyses only 
rs1808579 18 19,358,886 C18orf8 C 0.0167 Yes Yes  
rs977747 1 47,457,264 TAL1 T 0.0167 No Yes Identified in secondary meta-analyses only 
rs6465468 7 95,007,450 ASB4 T 0.0166 No Yes Identified in secondary meta-analyses only 
rs2836754 21 39,213,610 ETS2 C 0.0164 No Yes Identified in secondary meta-analyses only 
rs7239883 18 38,401,669 LOC284260 G 0.0164 No Yes Identified in secondary meta-analyses only 
rs7715256 5 153,518,086 GALNT10 G 0.0163 No Yes Identified in secondary meta-analyses only 
rs4787491 16 29,922,838 INO80E G 0.0159 No Yes Identified in secondary meta-analyses only 
rs492400 2 219,057,996 USP37 C 0.0158 No Yes Identified in secondary meta-analyses only 
rs2176040 2 226,801,046 LOC646736 A 0.0141 No Yes Identified in secondary meta-analyses only 

Note: This table is derived from Locke et al (2015), with additional information from Tyrrell et al (2017). 
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Supplementary Table 5. Results of sensitivity analyses using unweighted genetic risk scores 

  69-SNP unweighted imputed GRS 91-SNP unweighted imputed GRS 

  

Quintile of 
genetic risk 

Mean BMI difference for unit 
increase in neighbourhood 

exposure 

P-
interaction 

Quintile of 
genetic risk 

Mean BMI difference for unit 
increase in neighbourhood 

exposure 
P-interaction 

Fast-food proximity Q1 -0.090 (-0.223, 0.043) 

0.070 

Q1 -0.102 (-0.235, 0.031) 

0.171 

 Q2 -0.119 (-0.243, 0.005) Q2 -0.124 (-0.248, 0.000) 

 Q3 -0.137 (-0.259, -0.014) Q3 -0.137 (-0.260, -0.015) 

 Q4 -0.155 (-0.278, -0.031) Q4 -0.151 (-0.274, -0.027) 

  Q5 -0.184 (-0.316, -0.051) Q5 -0.173 (-0.305, -0.041) 

PA facilities  Q1 -0.074 (-0.101, -0.048) 

0.700 

Q1 -0.076 (-0.103, -0.050) 

0.981 

 Q2 -0.075 (-0.101, -0.050) Q2 -0.076 (-0.102, -0.051) 

 Q3 -0.076 (-0.102, -0.050) Q3 -0.076 (-0.102, -0.051) 

 Q4 -0.076 (-0.102, -0.051) Q4 -0.076 (-0.102, -0.051) 

  Q5 -0.077 (-0.104, -0.051) Q5 -0.076 (-0.103, -0.050) 
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Supplementary Table 6. Results of sensitivity analyses using an expanded sample 
including observations from UK Biobank participants of non-White ethnicities 

  91-SNP weighted imputed GRS (N=393,993) 

 Quintile of 
genetic risk 

Mean BMI difference for unit increase 
in neighbourhood exposure P-interaction 

Fast-food proximity Q1 -0.086 (-0.208, 0.036) 

0.042 

(log (base 10) of distance (m) to 
nearest fast-food outlet) 

Q2 -0.119 (-0.233, -0.005) 

 
Q3 -0.140 (-0.252, -0.028) 

 
Q4 -0.161 (-0.274, -0.047) 

 
Q5 -0.195 (-0.318, -0.073) 

Availability of PA facilities Q1 -0.068 (-0.095, -0.041) 

0.270 

(number of formal PA facilities 
within 1km of home address) Q2 -0.071 (-0.097, -0.046) 

 
Q3 -0.072 (-0.098, -0.046) 

 
Q4 -0.074 (-0.100, -0.048) 

 
Q5 -0.077 (-0.104, -0.050) 

 

Supplementary Table 7. Results of sensitivity analyses additionally adjusting for 
extra 30 genetic ancestry principal components and birth location 

 Fast-food proximity Availability of PA facilities 

P-for-interaction 

Adjusted for 40 
ancestral PCs 

Adjusted for 40 PCs 
& place of birth 

Adjusted for 40 
ancestral PCs 

Adjusted for 40 
PCs & place of 

birth 

69-SNP GRS 0.015 0.030 0.385 0.395 
91-SNP GRS 0.028 0.069 0.536 0.550 
rs1558902 (FTO) 0.066 0.088 0.928 0.904 
rs6567160 (MC4R) 0.009 0.025 0.617 0.766 
rs13021737  (TMEM18) 0.999 0.967 0.081 0.063 
rs13078960 (CADM2) 0.108 0.142 0.407 0.361 
rs10938397 (GNPDA2) 0.306 0.301 0.732 0.964 
rs7141420 (NRXN3) 0.519 0.665 0.114 0.155 
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insights for obesity biology. Nature. 2015;518(7538):197-206.  
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Appendix Three.  

SUPPLEMENTARY MATERIAL: Research Paper 3 

 

1. Classification of Formal Physical Activity Facilities 

Formal PA facilities were defined as any land use classified in the Commercial-Leisure 
subcategory (CL06) of the UK Ordnance Survey AddressBase Premium database 
(https://www.ordnancesurvey.co.uk/business-and-government/help-and-
support/products/addressbase-premium.html). The data are contributed by local 
authorities, and covers municipal and private facilities for all sporting activities. This 
subcategory comprises any Indoor/Outdoor Leisure/Sporting Activity/Centre not further 
defined, as well as the following more specific categories of land use: 

 
 Bowls Facility 
 Cricket Facility 
 Diving / Swimming Facility 
 Equestrian Sports Facility 
 Football Facility 
 Golf Facility 
 Activity / Leisure / Sports Centre 
 Playing Field 
 Racquet Sports Facility 
 Rugby Facility 
 Recreation Ground 
 Skateboarding Facility 
 Civilian Firing Facility 
 Tenpin Bowling Facility 
 Water Sports Facility 
 Winter Sports Facility 

 

Full details of the classification scheme and the types of facilities covered can be found via 
the link above.  
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2. Sensitivity analysis: Alternative adiposity measures 

To check for consistency across alternative measures of adiposity, we repeated the primary 
analyses for waist circumference and body fat percentage outcome measures rather than 
BMI. 

Effect modification by urban park availability  

As for BMI, there is some evidence that the number of parks within one kilometre of a 
person’s home modifies the association between the formal PA environment and both 
waist circumference (Pinteraction = 0.073) and body far percentage (Pinteraction = 0.095). 
Supplementary Figures 4 and 5 show estimates of these associations within strata of urban 
park availability. Stratification shows that the associations with the alternative measures 
of adiposity, just as for BMI, is weak in the areas with the most parks, whereas there is a 
clear inverse association between density of formal PA facilities and both waist 
circumference and body fat percentage in the areas with no parks. 

 

Supplementary Figure 4. Association between number of formal PA facilities and 
waist circumference, stratified by number of parks and other public open/green 
spaces 

Figure shows park availability-stratified, fully adjusted mean differences in waist circumference and 
associated 95% CIs from multilevel linear regression models. The dashed line at zero represents the 
reference category (no physical activity facilities with 1km of home). Models are adjusted for age, 
sex, ethnicity, area deprivation, individual socioeconomic characteristics (income, education, and 
employment status), residential density, and fast-food store proximity.    
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Supplementary Figure 5. Association between number of formal PA facilities and 
body fat percentage, stratified by number of parks and other public open/green 
spaces 

Figure shows park availability-stratified, fully adjusted mean differences in body fat percentage and 
associated 95% CIs from multilevel linear regression models. The dashed line at zero represents the 
reference category (no physical activity facilities with 1km of home). Models are adjusted for age, 
sex, ethnicity, area deprivation, individual socioeconomic characteristics (income, education, and 
employment status), residential density, and fast-food store proximity.    
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Effect modification by fast-food proximity 

As we observed for BMI, there is also strong statistical evidence that associations between 
the PA environment and both alternative adiposity measures are modified by proximity to 
a fast-food store (Pinteraction < 0.0001 for both waist circumference and body fat percentage). 
Stratified results showed that among people living within 500m of a fast-food store, the 
association between number of nearby formal PA facilities and these other adiposity 
measures is considerably less apparent than it is among those who live further from a fast-
food store (Supplementary Figures 6 and 7).  

 

 

Supplementary Figure 6. Association between number of formal PA facilities and 
waist circumference, stratified by distance to nearest fast-food store 

Figure shows fast-food proximity-stratified, fully adjusted mean differences in waist circumference 
and associated 95% CIs from multilevel linear regression models. The dashed line at zero represents 
the reference category (no physical activity facilities with 1km of home). Models are adjusted for 
age, sex, ethnicity, area deprivation, individual socioeconomic characteristics (income, education, 
and employment status), residential density, and urban park availability.    
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Supplementary Figure 7. Association between number of formal PA facilities and 
body fat percentage, stratified by distance to nearest fast-food store 

Figure shows fast-food proximity-stratified, fully adjusted mean differences in body fat percentage 
and associated 95% CIs from multilevel linear regression models. The dashed line at zero represents 
the reference category (no physical activity facilities with 1km of home). Models are adjusted for 
age, sex, ethnicity, area deprivation, individual socioeconomic characteristics (income, education, 
and employment status), residential density, and urban park availability.  
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3. Sensitivity analysis: Including non-urban residents and adjusting for 
urban/non-urban status 

To examine the impact of our decision to exclude non-urban participants rather than 
adjust models for urbanicity, we repeated the primary analysis on the full urban and non-
urban sample combined, adjusting for urban/non-urban status. The results of this 
sensitivity analysis showed that the patterns across both sets of modifier-stratified models 
(Supplementary Figures 8 and 9) mirrored those observed in the urban-only sample. 
Statistical evidence of an interaction with fast-food proximity remained strong (Pinteraction 
<0.0001) but was weaker for the interaction with park availability (Pinteraction = 0.235) than it 
had been in the urban-only sample. 

 

 

Supplementary Figure 8. Association between number of formal PA facilities and 
BMI, stratified by park availability, including non-urban residents and adjusting 
for urban/non-urban status 

Figure shows park availability-stratified, fully adjusted mean differences in BMI and associated 95% 
CIs from multilevel linear regression models. The dashed line at zero represents the reference 
category (no physical activity facilities with 1km of home). Models are adjusted for age, sex, 
ethnicity, area deprivation, individual socioeconomic characteristics (income, education, and 
employment status), residential density, fast-food store proximity and urban/non-urban status.    

 

 

0.00

-0.11

-0.23

-0.50

0.00

-0.10

-0.18

-0.33

0.00

0.00

-0.08

-0.31

0

1

2-3

4 or more

N
u

m
b

e
r 

o
f 

P
A

 f
ac

ili
tie

s

-0.60 -0.40 -0.20 0.00 0.20

Body Mass Index (kg/m2)

No parks One park 2 or more parks



308 

 

Supplementary Figure 9. Association between number of formal PA facilities and 
BMI, stratified by distance to nearest fast-food store, including non-urban 
residents and adjusting for urban/non-urban status 

Figure shows fast-food proximity-stratified, fully adjusted mean differences in BMI and associated 
95% CIs from multilevel linear regression models. The dashed line at zero represents the reference 
category (no physical activity facilities with 1km of home). Models are adjusted for age, sex, 
ethnicity, area deprivation, individual socioeconomic characteristics (income, education, and 
employment status), residential density, park availability and urban/non-urban status.    
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Appendix Four.  

SUPPLEMENTARY MATERIAL: Research Paper 4 

 

 

 

Supplementary Figure 10. Geographical heterogeneity in the association between 
availability of formal PA facilities and BMI, from separate regression models of 122 
Local Authority Districts of England represented in UK Biobank 

Notes: Significance refers to arbitrary threshold of P<0.05. Grey areas in the map were not included 
in UK Biobank, or were non-urban, or had <200 study participants in the LAD. 
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Supplementary Figure 11. Geographical heterogeneity in the association between 
distance to nearest fast-food/takeaway store and BMI, from separate regression 
models of 122 Local Authority Districts of England represented in UK Biobank 

Notes: Significance refers to arbitrary threshold of P<0.05. Grey areas in the map were not included 
in UK Biobank, or were non-urban, or had <200 study participants in the LAD. 
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1. Primary analysis stratified by sex 

 

Supplementary Figure 12. Hazard ratios for associations between neighbourhood characteristics and CVD-related hospital admissions, 
stratified by sex 
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Supplementary Figure 13. Hazard ratios for associations between neighbourhood characteristics and cancer-related hospital admissions, 
stratified by sex 
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Supplementary Table 8. Modification of the association between neighbourhood availability of PA facilities and hospital admissions due 
to CVD, by household income and area deprivation, stratified by sex 

  Annual household income Area deprivation 

  WOMEN MEN WOMEN MEN 

  < £31,000 At least £31,000 < £31,000 At least £31,000 More deprived Less deprived More deprived Less deprived 

Number of PA facilities HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

         

None 1.00 (ref) 0.92 (0.82, 1.03) 
P=0.165 

1.00 (ref) 1.01 (0.93, 1.09) 
P=0.814 

1.00 (ref) 0.87 (0.76, 1.00) 
P=0.046 

1.00 (ref) 0.89 (0.80, 0.98) 
P=0.015 

One 0.96 (0.87, 1.06) 
P=0.435 

0.91 (0.80, 1.05) 
P=0.196 

1.03 (0.95, 1.11) 
P=0.539 

0.94 (0.86, 1.04) 
P=0.222 

0.93 (0.79, 1.10) 
P=0.415 

0.86 (0.75, 0.99) 
P=0.038 

0.93 (0.82, 1.05) 
P=0.235 

0.89 (0.80, 0.98) 
P=0.020 

2-3 1.05 (0.95, 1.15) 
P=0.353 

0.98 (0.87, 1.12) 
P=0.809 

1.03 (0.95, 1.11) 
P=0.449 

1.00 (0.91, 1.09) 
P=0.968 

1.09 (0.94, 1.26) 
P=0.261 

0.91 (0.79, 1.04) 
P=0.160 

0.93 (0.83, 1.04) 
P=0.179 

0.93 (0.84, 1.02) 
P=0.138 

4 or more 0.93 (0.84, 1.03) 
P=0.167 

0.83 (0.73, 0.95) 
P=0.006 

1.05 (0.97, 1.14) 
P=0.248 

0.95 (0.87, 1.04) 
P=0.286 

0.89 (0.77, 1.04) 
P=0.145 

0.83 (0.72, 0.95) 
P=0.009 

0.93 (0.83, 1.04) 
P=0.181 

0.92 (0.83, 1.02) 
P=0.095 

  

        

Stratum-specific HRs 

(4+ facilities vs 0) 

0.94 (0.84, 1.05) 
P=0.245 

0.88 (0.76, 1.04) 
P=0.129 

1.04 (0.96, 1.14) 
P=0.327 

0.94 (0.86, 1.04) 
P=0.227 

0.92 (0.78, 1.09) 
P=0.334 

0.94 (0.85, 1.05) 
P=0.308 

0.89 (0.79, 1.01) 
P=0.064 

1.04 (0.96, 1.12) 
P=0.315 

  

        

Relative excess risk due 
to interaction (RERI)  

-0.018 (-0.168, 0.132) 

P=0.813 

-0.105 (-0.218, 0.009) 

P=0.070 

0.061 (-0.096, 0.218) 

P=0.446 

0.102 (-0.012, 0.217) 

P=0.081 

 

  



315 

Supplementary Table 9. Modification of the association between fast-food proximity and hospital admissions due to CVD, by household 
income and area deprivation, stratified by sex 

  Annual household income Area deprivation 

  WOMEN MEN WOMEN MEN 

  < £31,000 At least £31,000 < £31,000 At least £31,000 More deprived Less deprived More deprived Less deprived 

Fast-food proximity HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

         

Closer than 500m 1.00 (ref) 0.96 (0.83, 1.11) 
P=0.609 

1.00 (ref) 0.90 (0.81, 0.99) 
P=0.039 

1.00 (ref) 0.93 (0.81, 1.05) 
P=0.246 

1.00 (ref) 1.01 (0.92, 1.11) 
P=0.851 

500-999m 0.97 (0.88, 1.07) 
P=0.539 

0.89 (0.78, 1.01) 
P=0.079 

0.97 (0.90, 1.05) 
P=0.521 

0.91 (0.83, 1.00) 
P=0.044 

0.99 (0.88, 1.13) 
P=0.934 

0.85 (0.76, 0.96) 
P=0.009 

1.02 (0.93, 1.12) 
P=0.661 

0.96 (0.88, 1.05) 
P=0.391 

1000-1999m 1.03 (0.93, 1.14) 
P=0.584 

0.90 (0.79, 1.02) 
P=0.111 

0.93 (0.86, 1.01) 
P=0.087 

0.91 (0.83, 1.00) 
P=0.044 

0.99 (0.86, 1.14) 
P=0.889 

0.91 (0.81, 1.03) 
P=0.120 

0.96 (0.87, 1.07) 
P=0.479 

0.95 (0.87, 1.03) 
P=0.225 

At least 2000m 0.95 (0.85, 1.07) 
P=0.395 

0.91 (0.79, 1.04) 
P=0.171 

0.92 (0.85, 1.01) 
P=0.086 

0.92 (0.84, 1.01) 
P=0.091 

1.01 (0.86, 1.20) 
P=0.868 

0.85 (0.74, 0.97) 
P=0.014 

1.03 (0.91, 1.17) 
P=0.616 

0.94 (0.85, 1.03) 
P=0.168 

  

        

Stratum-specific HRs 
(≥2000m vs <500m) 

0.93 (0.82, 1.05) 
P=0.226 

0.99 (0.82, 1.18) 
P=0.880 

0.92 (0.84, 1.02) 
P=0.107 

1.02 (0.91, 1.14) 
P=0.722 

0.98 (0.82, 1.18) 
P=0.857 

0.92 (0.81, 1.04) 
P=0.201 

1.06 (0.92, 1.22) 
P=0.394 

0.92 (0.84, 1.00) 
P=0.057 

  

        

Relative excess risk due 
to interaction (RERI) 

-0.007 (-0.183, 0.170) 

P=0.942 

0.098 (-0.017, 0.213) 

P=0.095 

-0.092 (-0.290, 0.106) 

P=0.361 

-0.107 (-0.259, 0.046) 

P=0.169 
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Supplementary Table 10. Modification of the association between neighbourhood greenspace and hospital admissions due to CVD, by 
household income and area deprivation, stratified by sex 

  Annual household income Area deprivation 

  WOMEN MEN WOMEN MEN 

  < £31,000 At least £31,000 < £31,000 At least £31,000 More deprived Less deprived More deprived Less deprived 

Greenspace HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

         

Q1 (least greenspace) 1.00 (ref) 0.91 (0.79, 1.04) 
P=0.154 

1.00 (ref) 0.91 (0.83, 1.00) 
P=0.046 

1.00 (ref) 0.86 (0.75, 0.97) 
P=0.016 

1.00 (ref) 1.05 (0.95, 1.15) 
P=0.339 

Q2 1.03 (0.93, 1.14) 
P=0.608 

0.97 (0.85, 1.11) 
P=0.702 

0.98 (0.90, 1.06) 
P=0.598 

0.92 (0.83, 1.01) 
P=0.067 

1.01 (0.89, 1.14) 
P=0.874 

0.90 (0.81, 1.00) 
P=0.057 

1.03 (0.94, 1.13) 
P=0.576 

0.97 (0.89, 1.05) 
P=0.389 

Q3 1.06 (0.95, 1.18) 
P=0.315 

0.99 (0.87, 1.14) 
P=0.941 

0.95 (0.88, 1.04) 
P=0.278 

0.92 (0.84, 1.01) 
P=0.083 

1.04 (0.89, 1.21) 
P=0.621 

0.92 (0.82, 1.02) 
P=0.116 

1.05 (0.93, 1.17) 
P=0.446 

0.94 (0.87, 1.02) 
P=0.154 

Q4 (most greenspace) 1.04 (0.91, 1.18) 
P=0.587 

0.93 (0.80, 1.08) 
P=0.330 

0.95 (0.86, 1.05) 
P=0.276 

0.95 (0.86, 1.05) 
P=0.331 

0.97 (0.79, 1.19) 
P=0.759 

0.89 (0.78, 1.01) 
P=0.070 

0.98 (0.84, 1.15) 
P=0.847 

0.97 (0.88, 1.06) 
P=0.497 

         

Stratum-specific HRs 
(Q4 vs Q1) 

1.03 (0.89, 1.19) 
P=0.691 

1.03 (0.84, 1.27) 
P=0.758 

0.97 (0.86, 1.08) 
P=0.565 

1.01 (0.89, 1.15) 
P=0.859 

0.86 (0.67, 1.11) 
P=0.244 

1.06 (0.91, 1.22) 
P=0.456 

1.02 (0.84, 0.23) 
P=0.878 

0.91 (0.82. 1.01) 
P=0.077 

         

Relative excess risk due 
to interaction (RERI) 

-0.015 (-0.186, 0.155) 

P=0.861 

0.096 (-0.017, 0.208) 

P=0.095 

0.063 (-0.155, 0.280) 

P=0.573 

-0.062 (-0.233, 0.109) 

P=0.475 
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Supplementary Table 11. Modification of the association between neighbourhood availability of PA facilities and hospital admissions due 
to cancer, by household income and area deprivation, stratified by sex 

  Annual household income Area deprivation 

  WOMEN MEN WOMEN MEN 

  < £31,000 At least £31,000 < £31,000 At least £31,000 More deprived Less deprived More deprived Less deprived 

Number of PA facilities HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

         

None 1.00 (ref) 0.89 (0.81, 0.98) 
P=0.018 

1.00 (ref) 1.03 (0.94, 1.13) 
P=0.482 

1.00 (ref) 1.08 (0.96, 1.21) 
P=0.217 

1.00 (ref) 0.97 (0.87, 1.09) 
P=0.602 

One 0.95 (0.87, 1.04) 
P=0.236 

0.96 (0.87, 1.07) 
P=0.501 

1.02 (0.93, 1.11) 
P=0.703 

1.00 (0.91, 1.11) 
P=0.932 

1.09 (0.94, 1.26) 
P=0.251 

1.05 (0.93, 1.19) 
P=0.407 

1.06 (0.92, 1.22) 
P=0.421 

0.95 (0.85, 1.07) 
P=0.415 

2-3 0.98 (0.90, 1.07) 
P=0.668 

0.85 (0.77, 0.94) 
P=0.002 

1.02 (0.93, 1.11) 
P=0.700 

1.02 (0.93, 1.13) 
P=0.652 

1.13 (0.99, 1.29) 
P=0.081 

0.99 (0.87, 1.12) 
P=0.876 

1.00 (0.88, 1.13) 
P=0.951 

0.99 (0.88, 1.11) 
P=0.865 

4 or more 0.96 (0.88, 1.05) 
P=0.401 

0.82 (0.74, 0.91) 
P=0.000 

1.01 (0.93, 1.11) 
P=0.742 

0.96 (0.87, 1.06) 
P=0.405 

1.00 (0.87, 1.14) 
P=0.959 

1.02 (0.90, 1.16) 
P=0.758 

1.02 (0.90, 1.16) 
P=0.745 

0.94 (0.83, 1.05) 
P=0.270 

  

        

Stratum-specific HRs 

(4+ facilities vs 0) 

0.94 (0.85, 1.03) 
P=0.181 

0.96 (0.85, 1.08) 
P=0.532 

1.01 (0.92, 1.11) 
P=0.864 

0.94 (0.84, 1.05) 
P=0.243 

1.03 (0.89, 1.19) 
P=0.711 

0.94 (0.86, 1.02) 
P=0.152 

1.02 (0.89, 1.17) 
P=0.808 

0.96 (0.88, 1.05) 
P=0.391 

  

        

Relative excess risk due 
to interaction (RERI) 

-0.034 (-0.154, 0.087) 

P=0.584 

-0.089 (-0.216, 0.039) 

P=0.172 

-0.054 (-0.213, 0.104) 

P=0.502 

-0.056 (-0.203, 0.091) 

P=0.454 
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Supplementary Table 12. Modification of the association between fast-food proximity and hospital admissions due to cancer, by 
household income and area deprivation, stratified by sex 

  Annual household income Area deprivation 

  WOMEN MEN WOMEN MEN 

  < £31,000 At least £31,000 < £31,000 At least £31,000 More deprived Less deprived More deprived Less deprived 

Fast-food proximity HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

 

        

Closer than 500m 1.00 (ref) 0.78 (0.69, 0.88) 
P=0.000 

1.00 (ref) 1.00 (0.89, 1.12) 
P=0.971 

1.00 (ref) 0.92 (0.82, 1.03) 
P=0.138 

1.00 (ref) 0.91 (0.82, 1.01) 
P=0.088 

500-999m 0.94 (0.86, 1.03) 
P=0.174 

0.90 (0.81, 1.00) 
P=0.050 

0.94 (0.86, 1.03) 
P=0.160 

0.95 (0.86, 1.06) 
P=0.349 

0.95 (0.85, 1.06) 
P=0.368 

0.97 (0.87, 1.07) 
P=0.527 

0.85 (0.77, 0.95) 
P=0.005 

0.91 (0.83, 1.00) 
P=0.058 

1000-1999m 0.97 (0.88, 1.06) 
P=0.461 

0.84 (0.76, 0.94) 
P=0.002 

0.99 (0.90, 1.08) 
P=0.762 

0.97 (0.87, 1.07) 
P=0.547 

0.95 (0.84, 1.08) 
P=0.452 

0.95 (0.86, 1.05) 
P=0.314 

1.03 (0.92, 1.15) 
P=0.649 

0.89 (0.80, 0.98) 
P=0.015 

At least 2000m 0.93 (0.84, 1.03) 
P=0.141 

0.88 (0.79, 0.99) 
P=0.028 

0.96 (0.87, 1.06) 
P=0.394 

0.95 (0.85, 1.05) 
P=0.311 

0.94 (0.81, 1.09) 
P=0.420 

0.95 (0.85, 1.06) 
P=0.320 

0.92 (0.79, 1.06) 
P=0.235 

0.89 (0.80, 0.98) 
P=0.024 

  

        

Stratum-specific HRs 

(≥2000m vs <500m) 

0.95 (0.85, 1.06) 
P=0.364 

1.08 (0.93, 1.24) 
P=0.314 

0.99 (0.89, 1.10) 
P=0.847 

0.90 (0.79, 1.02) 
P=0.101 

0.93 (0.79, 1.10) 
P=0.403 

1.03 (0.93, 1.15) 
P=0.521 

0.91 (0.78, 1.07) 
P=0.264 

0.97 (0.88, 1.07) 
P=0.515 

  

        

Relative excess risk due to 
interaction (RERI) 

0.174 (0.047, 0.301) 

P=0.007 

-0.010 (-0.149, 0.129) 

P=0.886 

0.087 (-0.075, 0.249) 

P=0.294 

0.059 (-0.095, 0.213) 

P=0.451 
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Supplementary Table 13. Modification of the association between neighbourhood greenspace and hospital admissions due to cancer, by 
household income and area deprivation, stratified by sex 

  Annual household income Area deprivation 

  WOMEN MEN WOMEN MEN 

  < £31,000 At least £31,000 < £31,000 At least £31,000 More deprived Less deprived More deprived Less deprived 

Greenspace HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)  

           

Q1 (least greenspace) 1.00 (ref) 0.79 (0.71, 0.88) 
P=0.000 

1.00 (ref) 0.93 (0.84, 1.04) 
P=0.216 

1.00 (ref) 0.97 (0.87, 1.08) 
P=0.538 

1.00 (ref) 0.90 (0.81, 1.00) 
P=0.049 

Q2 0.94 (0.86, 1.03) 
P=0.202 

0.88 (0.79, 0.98) 
P=0.020 

1.02 (0.93, 1.11) 
P=0.685 

0.94 (0.85, 1.05) 
P=0.258 

1.02 (0.91, 1.13) 
P=0.786 

0.96 (0.87, 1.05) 
P=0.347 

0.96 (0.87, 1.07) 
P=0.480 

0.94 (0.86, 1.03) 
P=0.191 

Q3 0.97 (0.89, 1.07) 
P=0.591 

0.84 (0.75, 0.94) 
P=0.002 

0.95 (0.86, 1.04) 
P=0.281 

1.04 (0.93, 1.15) 
P=0.495 

0.98 (0.86, 1.13) 
P=0.795 

0.97 (0.88, 1.06) 
P=0.498 

1.01 (0.89, 1.15) 
P=0.845 

0.92 (0.84, 1.01) 
P=0.078 

Q4 (most greenspace) 0.95 (0.85, 1.06) 
P=0.330 

0.96 (0.85, 1.08) 
P=0.461 

0.95 (0.85, 1.06) 
P=0.348 

0.96 (0.85, 1.08) 
P=0.492 

0.87 (0.72, 1.06) 
P=0.166 

1.02 (0.92, 1.14) 
P=0.681 

0.85 (0.71, 1.02) 
P=0.078 

0.91 (0.82, 1.01) 
P=0.066 

  

        

Stratum-specific HRs 

(Q4 vs Q1) 

0.98 (0.86, 1.11) 
P=0.756 

1.11 (0.95, 1.30) 
P=0.180 

0.96 (0.84, 1.09) 
P=0.503 

1.00 (0.87, 1.16) 
P=0.985 

0.83 (0.66, 1.04) 
P=0.112 

1.08 (0.96, 1.21) 
P=0.205 

0.85 (0.68, 1.05) 
P=0.131 

1.01 (0.90, 1.13) 
P=0.893 

             

Relative excess risk due to 
interaction (RERI) 

0.220 (0.097, 0.344) 

P<0.001 

0.077 (-0.052, 0.207) 

P=0.243 

0.182 (-0.002, 0.367) 

P=0.053 

0.158 (-0.013, 0.330) 

P=0.071 

 



320 

2. Secondary outcomes 

 

Supplementary Figure 14. Hazard ratios for associations between neighbourhood characteristics and hospital admissions for breast cancer 
(women only) and colorectal cancer (all)
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Supplementary Table 14. Modification of the association between built 
environment variables and hospital admissions due to breast cancer, by household 
income and area deprivation (women only) 

Breast cancer-related 
admissions  

Annual household income Area deprivation 
< £31,000 At least £31,000 More deprived Less deprived 

Number of PA facilities HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

None 
1.00 (ref) 1.00 (0.87, 1.15) 

P=0.977 
1.00 (ref) 1.15 (0.95, 1.38) 

P=0.142 

One 
1.03 (0.89, 1.19) 

P=0.683 
1.08 (0.92, 1.26) 

P=0.336 
1.16 (0.92, 1.46) 

P=0.196 
1.18 (0.97, 1.43) 

P=0.090 

2-3 
1.07 (0.94, 1.23) 

P=0.313 
0.99 (0.85, 1.15) 

P=0.889 
1.17 (0.95, 1.45) 

P=0.137 
1.14 (0.94, 1.38) 

P=0.183 

4 or more 
1.02 (0.88, 1.18) 

P=0.778 
0.86 (0.73, 1.00) 

P=0.056 
0.95 (0.77, 1.18) 

P=0.647 
1.10 (0.91, 1.34) 

P=0.315 
  

    

Stratum-specific HRs 
(4+ facilities vs 0) 

1.03 (0.88, 1.20) 
P=0.731 

0.86 (0.72, 1.01) 
P=0.071 

1.03 (0.81, 1.29) 
P=0.827 

0.94 (0.82, 1.07) 
P=0.331 

      
Relative excess risk due  
to interaction (RERI) -0.161 (-0.358, 0.036) P=0.109 0.004 (-0.239, 0.247) P=0.975 

  < £31,000 At least £31,000 More deprived Less deprived 
Fast-food proximity HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Closer than 500m 1.00 (ref) 0.77 (0.64, 0.93) 
P=0.006 

1.00 (ref) 0.98 (0.82, 1.16) 
P=0.801 

500-999m 
0.95 (0.82, 1.09) 

P=0.447 
1.01 (0.86, 1.17) 

P=0.942 
0.96 (0.81, 1.15) 

P=0.690 
1.14 (0.97, 1.33) 

P=0.113 

1000-1999m 
0.98 (0.84, 1.13) 

P=0.736 
0.94 (0.80, 1.10) 

P=0.449 
1.07 (0.89, 1.29) 

P=0.468 
1.07 (0.91, 1.26) 

P=0.405 

At least 2000m 
0.94 (0.80, 1.10) 

P=0.437 
0.88 (0.74, 1.04) 

P=0.126 
0.91 (0.72, 1.16) 

P=0.452 
1.04 (0.88, 1.24) 

P=0.645 
  

    

Stratum-specific HRs 
(≥2000m vs <500m) 

0.95 (0.80, 1.13) 
P=0.548 

1.12 (0.91, 1.36) 
P=0.291 

0.86 (0.66, 1.12) 
P=0.254 

1.08 (0.92, 1.26) 
P=0.334 

      
Relative excess risk due  
to interaction (RERI) 0.162 (-0.028, 0.353) P=0.094 0.151 (-0.103, 0.405) P=0.243 

  < £31,000 At least £31,000 More deprived Less deprived 
Greenspace HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Q1 (least greenspace) 1.00 (ref) 
0.82 (0.70, 0.97) 

P=0.019 
1.00 (ref) 

1.00 (0.86, 1.18) 
P=0.954 

Q2 
0.93 (0.80, 1.07) 

P=0.279 
0.95 (0.81, 1.11) 

P=0.525 
1.00 (0.84, 1.18) 

P=0.982 
1.06 (0.92, 1.22) 

P=0.432 

Q3 
0.98 (0.84, 1.14) 

P=0.784 
0.79 (0.67, 0.94) 

P=0.007 
0.95 (0.76, 1.18) 

P=0.629 
1.02 (0.88, 1.17) 

P=0.813 

Q4 (most greenspace) 
0.87 (0.73, 1.04) 

P=0.134 
1.00 (0.84, 1.20) 

P=0.958 
0.78 (0.57, 1.07) 

P=0.123 
1.10 (0.94, 1.30) 

P=0.240 
  

    

Stratum-specific HRs 
(Q4 vs Q1) 

0.84 (0.68, 1.03) 
P=0.097 

1.23 (0.99, 1.53) 
P=0.060 

0.69 (0.47, 0.99) 
P=0.044 

1.14 (0.96, 1.35) 
P=0.137 

      
Relative excess risk due  
to interaction (RERI) 0.307 (0.126, 0.488) P=0.001 0.316 (0.041, 0.591) P=0.024 
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Supplementary Table 15. Association between neighbourhood characteristics and 
breast cancer-related hospital admissions, stratified by household income and 
area deprivation in combination 

Breast cancer-related 
admissions 

Combined household income and area deprivation 

Less than £31,000 
& more deprived 

At least £31,000 & 
more deprived 

Less than £31,000 
& less deprived 

At least £31,000 & 
less deprived 

 
 HR (95% CI)  HR (95% CI)  HR (95% CI)  HR (95% CI) 

Number of PA facilities   
  

  

None 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

One 1.22 (0.92, 1.61) 
P=0.165 

1.13 (0.74, 1.73) 
P=0.581 

0.97 (0.81, 1.15) 
P=0.698 

1.08 (0.91, 1.27) 
P=0.385 

2-3 
1.29 (0.99, 1.68) 

P=0.055 
1.07 (0.71, 1.60) 

P=0.747 
0.97 (0.82, 1.16) 

P=0.757 
0.98 (0.82, 1.16) 

P=0.794 

4 or more 
1.11 (0.84, 1.48) 

P=0.450 
0.85 (0.56, 1.29) 

P=0.444 
1.01 (0.84, 1.22) 

P=0.912 
0.87 (0.72, 1.05) 

P=0.158 

Fast-food proximity   
  

  

Closer than 500m 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

500-999m 
0.87 (0.70, 1.09) 

P=0.234 
1.11 (0.82, 1.51) 

P=0.511 
1.00 (0.82, 1.22) 

P=0.985 
1.40 (1.12, 1.74) 

P=0.003 

1000-1999m 
1.00 (0.78, 1.27) 

P=0.977 
1.05 (0.73, 1.50) 

P=0.799 
0.99 (0.81, 1.21) 

P=0.955 
1.27 (1.02, 1.59) 

P=0.031 

At least 2000m 
0.85 (0.62, 1.17) 

P=0.321 
0.87 (0.53, 1.43) 

P=0.575 
0.99 (0.80, 1.22) 

P=0.902 
1.22 (0.96, 1.54) 

P=0.104 

Greenspace   
  

  

Q1 (least greenspace) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

Q2 
0.93 (0.75, 1.15) 

P=0.489 
0.99 (0.72, 1.37) 

P=0.973 
0.95 (0.77, 1.17) 

P=0.636 
1.13 (0.91, 1.41) 

P=0.252 

Q3 
0.94 (0.72, 1.23) 

P=0.639 
0.64 (0.40, 1.03) 

P=0.068 
1.05 (0.85, 1.30) 

P=0.629 
0.99 (0.79, 1.23) 

P=0.898 

Q4 (most greenspace) 
0.61 (0.38, 0.97) 

P=0.036 
0.80 (0.43, 1.50) 

P=0.486 
0.92 (0.72, 1.19) 

P=0.533 
1.35 (1.05, 1.73) 

P=0.017 
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Supplementary Table 16. Modification of the association between built 
environment variables and hospital admissions due to colorectal cancer, by 
household income and area deprivation 

Colorectal cancer-related 
admissions  

Annual household income Area deprivation 
Less than 
£31,000 

At least £31,000 More deprived Less deprived 

Number of PA facilities HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

None 
1.00 (ref) 0.85 (0.71, 1.02) 

P=0.077 
1.00 (ref) 1.31 (1.02, 1.70) 

P=0.035 

One 
0.95 (0.80, 1.13) 

P=0.566 
0.93 (0.75, 1.14) 

P=0.477 
1.34 (0.98, 1.83) 

P=0.068 
1.24 (0.95, 1.62) 

P=0.111 

2-3 0.92 (0.77, 1.10) 
P=0.352 

0.89 (0.73, 1.09) 
P=0.274 

1.18 (0.88, 1.59) 
P=0.268 

1.23 (0.95, 1.60) 
P=0.118 

4 or more 
0.92 (0.77, 1.10) 

P=0.381 
0.89 (0.72, 1.09) 

P=0.243 
1.26 (0.95, 1.67) 

P=0.112 
1.18 (0.91, 1.55) 

P=0.216 
  

    

Stratum-specific HRs 
(4+ facilities vs 0) 

0.87 (0.72, 1.06) 
P=0.169 

1.13 (0.89, 1.42) 
P=0.313 

1.33 (0.97, 1.81) 
P=0.073 

0.87 (0.73, 1.04) 
P=0.123 

      

Relative excess risk due to 
interaction (RERI) 

0.115 (-0.114, 0.345) P=0.325 -0.389 (-0.811, 0.033) P=0.071 

  
Less than 
£31,000 At least £31,000 More deprived Less deprived 

Fast-food proximity HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Closer than 500m 
1.00 (ref) 0.91 (0.71, 1.16) 

P=0.431 
1.00 (ref) 0.99 (0.78, 1.25) 

P=0.924 

500-999m 
1.12 (0.93, 1.34) 

P=0.225 
0.88 (0.71, 1.09) 

P=0.248 
0.94 (0.74, 1.19) 

P=0.582 
1.12 (0.91, 1.37) 

P=0.296 

1000-1999m 
1.03 (0.85, 1.25) 

P=0.744 
0.91 (0.73, 1.13) 

P=0.405 
1.12 (0.87, 1.43) 

P=0.368 
0.99 (0.80, 1.22) 

P=0.914 

At least 2000m 0.87 (0.71, 1.07) 
P=0.195 

1.00 (0.80, 1.25) 
P=0.984 

0.87 (0.63, 1.21) 
P=0.414 

0.99 (0.79, 1.24) 
P=0.917 

  
    

Stratum-specific HRs 
(≥2000m vs <500m) 

0.89 (0.71, 1.11) 
P=0.290 

1.06 (0.81, 1.40) 
P=0.650 

0.87 (0.61, 1.24) 
P=0.440 

1.00 (0.82, 1.23) 
P=0.967 

      

Relative excess risk due to 
interaction (RERI) 

0.220 (-0.048, 0.488) P=0.107 0.125 (-0.208, 0.457) P=0.462 

  
Less than 
£31,000 

At least £31,000 More deprived Less deprived 

Greenspace HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Q1 (least greenspace) 1.00 (ref) 0.87 (0.69, 1.09) 
P=0.214 

1.00 (ref) 0.96 (0.77, 1.20) 
P=0.745 

Q2 1.02 (0.85, 1.23) 
P=0.805 

0.88 (0.70, 1.10) 
P=0.248 

0.98 (0.78, 1.23) 
P=0.844 

1.02 (0.85, 1.23) 
P=0.825 

Q3 
0.99 (0.81, 1.20) 

P=0.911 
1.00 (0.81, 1.24) 

P=0.991 
1.04 (0.79, 1.38) 

P=0.760 
1.05 (0.87, 1.26) 

P=0.643 

Q4 (most greenspace) 
0.96 (0.77, 1.20) 

P=0.717 
0.89 (0.70, 1.14) 

P=0.367 
0.77 (0.51, 1.15) 

P=0.203 
1.01 (0.81, 1.25) 

P=0.962 
  

    

Stratum-specific HRs 
(Q4 vs Q1) 

1.04 (0.80, 1.34) 
P=0.779 

0.92 (0.68, 1.26) 
P=0.619 

0.69 (0.43, 1.12) 
P=0.135 

1.08 (0.86, 1.37) 
P=0.494 

      

Relative excess risk due to 
interaction (RERI) 

0.069 (-0.189, 0.327) P=0.601 0.272 (-0.083, 0.627) P=0.133 
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Supplementary Table 17. Association between neighbourhood characteristics and 
colorectal cancer-related hospital admissions, stratified by household income and 
area deprivation in combination 

Colorectal cancer-related 
admissions 

Combined household income and area deprivation 

Less than £31,000 
& more deprived 

At least £31,000 
& more deprived 

Less than £31,000 
& less deprived 

At least £31,000 
& less deprived 

 
 HR (95% CI)  HR (95% CI)  HR (95% CI)  HR (95% CI) 

Number of PA facilities   
  

  

None 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

One 
1.37 (0.95, 1.98) 

P=0.090 
1.33 (0.71, 2.48) 

P=0.373 
0.83 (0.67, 1.02) 

P=0.077 
1.10 (0.87, 1.39) 

P=0.421 

2-3 
1.28 (0.90, 1.83) 

P=0.173 
1.11 (0.61, 2.03) 

P=0.724 
0.80 (0.65, 0.99) 

P=0.043 
1.12 (0.88, 1.42) 

P=0.367 

4 or more 
1.38 (0.96, 1.99) 

P=0.084 
1.21 (0.67, 2.19) 

P=0.533 
0.72 (0.56, 0.91) 

P=0.006 
1.11 (0.86, 1.44) 

P=0.414 

Fast-food proximity     

Closer than 500m 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

500-999m 
1.01 (0.76, 1.34) 

P=0.949 
0.83 (0.53, 1.31) 

P=0.427 
1.22 (0.96, 1.56) 

P=0.111 
1.00 (0.74, 1.35) 

P=0.999 

1000-1999m 1.10 (0.81, 1.50) 
P=0.549 

1.25 (0.77, 2.03) 
P=0.359 

1.05 (0.81, 1.35) 
P=0.713 

0.93 (0.69, 1.26) 
P=0.638 

At least 2000m 0.84 (0.55, 1.27) 
P=0.400 

0.99 (0.51, 1.92) 
P=0.984 

0.92 (0.69, 1.21) 
P=0.539 

1.09 (0.80, 1.49) 
P=0.592 

Greenspace     

Q1 (least greenspace) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

Q2 
1.03 (0.79, 1.36) 

P=0.807 
0.68 (0.41, 1.12) 

P=0.132 
1.08 (0.82, 1.40) 

P=0.593 
1.07 (0.77, 1.47) 

P=0.697 

Q3 
1.05 (0.74, 1.48) 

P=0.797 
0.85 (0.47, 1.53) 

P=0.591 
1.06 (0.81, 1.40) 

P=0.659 
1.17 (0.85, 1.61) 

P=0.330 

Q4 (most greenspace) 
0.68 (0.37, 1.23) 

P=0.203 
0.67 (0.28, 1.59) 

P=0.366 
1.14 (0.83, 1.56) 

P=0.42 
1.05 (0.73, 1.50) 

P=0.802 
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3. Sensitivity analyses: Restricting follow-up time to January 2012 onwards 

 

Supplementary Table 18. Hospital admissions by household income and area 
deprivation (follow-up time restricted to January 2012 onwards) 

  CVD Cancer 

  N 
Admissions 

(%) 
N 

Admissions 
(%) 

Total 330045 7698 (2.3) 320812 8168 (2.5) 
Household income (annual pre-
tax) 

    

<£31,000 154130 4497 (2.9) 151885 4728 (3.1) 
£31,000 or more 175915 3201 (1.8) 168927 3440 (2.0) 

Area deprivation     

More deprived 95164 2342 (2.5) 94194 2419 (2.6) 
Less deprived 234881 5356 (2.3) 226618 5749 (2.5) 
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Supplementary Table 19. Modification of the associations between built 
environment variables and hospital admissions due to CVD, by household income 
and area deprivation (follow-up time restricted to January 2012 onwards) 

CVD-related admissions 
  

Annual household income Area deprivation 

< £31,000 At least £31,000 More deprived Less deprived 

Number of PA facilities 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

None 
1.00 (ref) 0.99 (0.92, 1.10) 

P=0.934 
1.00 (ref) 0.89 (0.80, 0.98) 

P=0.024 

One 
1.00 (0.91, 1.08) 

P=0.852 
0.94 (0.88, 1.08) 

P=0.577 
0.89 (0.77, 1.01) 

P=0.077 
0.90 (0.81, 1.01) 

P=0.061 

2-3 
1.04 (0.96, 1.13) 

P=0.290 
0.99 (0.92, 1.12) 

P=0.727 
1.01 (0.90, 1.14) 

P=0.852 
0.92 (0.82, 1.02) 

P=0.119 

4 or more 
1.00 (0.95, 1.13) 

P=0.393 
0.92 (0.84, 1.02) 

P=0.133 
0.94 (0.84, 1.06) 

P=0.326 
0.90 (0.80, 1.00) 

P=0.058 
      

Stratum-specific HRs (4+ 
facilities vs 0) 

1.03 (0.95, 1.13) 
P=0.466 

0.92 (0.83, 1.02) 
P=0.130 

0.94 (0.83, 1.07) 
P=0.354 

1.01 (0.93, 1.10) 
P=0.772 

      

Relative excess risk due to 
interaction (RERI)  

-0.113 (-0.236, 0.010) P=0.072 0.070 (-0.056, 0.197) P=0.274 

Fast-food proximity 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Closer than 500m 
1.00 (ref) 0.90 (0.80, 1.00) 

P=0.059 
1.00 (ref) 0.98 (0.88, 1.08) 

P=0.667 

500-999m 
0.94 (0.86, 1.02) 

P=0.141 
0.91 (0.82, 1.00) 

P=0.051 
1.01 (0.91, 1.12) 

P=0.864 
0.90 (0.82, 1.00) 

P=0.039 

1000-1999m 
0.95 (0.87, 1.04) 

P=0.247 
0.93 (0.85, 1.03) 

P=0.173 
0.98 (0.88, 1.10) 

P=0.766 
0.94 (0.86, 1.03) 

P=0.207 

At least 2000m 0.94 (0.85, 1.03) 
P=0.182 

0.92 (0.83, 1.02) 
P=0.132 

1.00 (0.87, 1.15) 
P=0.977 

0.92 (0.83, 1.02) 
P=0.118 

      

Stratum-specific HRs (≥2000m 
vs <500m) 

0.94 (0.85, 1.04) 
P=0.243 

1.02 (0.90, 1.16) 
P=0.725 

0.99 (0.85, 1.15) 
P=0.874 

0.95 (0.86, 1.04) 
P=0.263 

      

Relative excess risk due to 
interaction (RERI)  

0.087 (-0.040, 0.213) P=0.179 -0.058 (-0.217, 0.101) P=0.476 

Greenspace 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Q1 (least greenspace) 
1.00 (ref) 0.91 (0.83, 1.01) 

P=0.090 
1.00 (ref) 0.92 (0.84, 1.02) 

P=0.118 

Q2 
1.00 (0.92, 1.08) 

P=0.932 
0.94 (0.85, 1.04) 

P=0.209 
0.97 (0.88, 1.08) 

P=0.599 
0.94 (0.86, 1.02) 

P=0.134 

Q3 0.97 (0.89, 1.07) 
P=0.576 

0.99 (0.90, 1.10) 
P=0.892 

1.03 (0.91, 1.17) 
P=0.610 

0.93 (0.85, 1.01) 
P=0.088 

Q4 (most greenspace) 0.98 (0.88, 1.09) 
P=0.717 

0.95 (0.84, 1.06) 
P=0.338 

0.94 (0.80, 1.12) 
P=0.499 

0.92 (0.83, 1.02) 
P=0.120 

      

Stratum-specific HRs (Q4 vs 
Q1) 

0.99 (0.88, 1.12) 
P=0.908 

1.02 (0.89, 1.18) 
P=0.738 

0.88 (0.72, 1.08) 
P=0.228 

1.01 (0.90, 1.12) 
P=0.925 

      

Relative excess risk due to 
interaction (RERI) 

0.050 (-0.076, 0.176) P=0.435 0.056 (-0.119, 0.231) P=0.530 
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Supplementary Table 20. Modification of the associations between neighbourhood 
environment variables and hospital admissions due to cancer, by household 
income and area deprivation (follow-up time restricted to January 2012 onwards) 

Cancer-related admissions 
  

Annual household income Area deprivation 

< £31,000 At least £31,000 More deprived Less deprived 

Number of PA facilities 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

None 
1.00 (ref) 0.98 (0.90, 1.07) 

P=0.669 
1.00 (ref) 1.01 (0.91, 1.12) 

P=0.846 

One 
0.96 (0.88, 1.04) 

P=0.317 
0.94 (0.85, 1.04) 

P=0.212 
1.07 (0.94, 1.22) 

P=0.276 
0.93 (0.84, 1.04) 

P=0.220 

2-3 
0.99 (0.91, 1.07) 

P=0.781 
0.90 (0.82, 0.98) 

P=0.022 
1.00 (0.89, 1.13) 

P=0.971 
0.96 (0.86, 1.07) 

P=0.457 

4 or more 
0.96 (0.88, 1.04) 

P=0.328 
0.89 (0.81, 0.98) 

P=0.014 
0.96 (0.86, 1.08) 

P=0.538 
0.95 (0.85, 1.06) 

P=0.385 
      

Stratum-specific HRs (4+ 
facilities vs 0) 

0.93 (0.86, 1.02) 
P=0.131 

0.94 (0.84, 1.04) 
P=0.218 

0.94 (0.83, 1.07) 
P=0.346 

0.95 (0.87, 1.03) 
P=0.181 

      

Relative excess risk due to 
interaction (RERI)  

-0.053 (-0.166, 0.061) P=0.362 -0.022 (-0.157, 0.113) P=0.751 

Fast-food proximity 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Closer than 500m 
1.00 (ref) 0.86 (0.77, 0.96) 

P=0.008 
1.00 (ref) 0.93 (0.84, 1.03) 

P=0.188 

500-999m 
0.92 (0.85, 1.00) 

P=0.053 
0.91 (0.83, 1.01) 

P=0.065 
0.91 (0.82, 1.01) 

P=0.077 
0.94 (0.86, 1.03) 

P=0.170 

1000-1999m 
0.99 (0.91, 1.07) 

P=0.760 
0.91 (0.83, 1.01) 

P=0.065 
1.05 (0.95, 1.17) 

P=0.330 
0.93 (0.85, 1.02) 

P=0.133 

At least 2000m 0.94 (0.85, 1.03) 
P=0.163 

0.93 (0.84, 1.02) 
P=0.132 

0.91 (0.79, 1.05) 
P=0.184 

0.94 (0.85, 1.04) 
P=0.236 

      

Stratum-specific HRs (≥2000m 
vs <500m) 

0.97 (0.88, 1.07) 
P=0.576 

1.01 (0.89. 1.14) 
P=0.860 

0.93 (0.80, 1.08) 
P=0.315 

1.00 (0.91, 1.10) 
P=0.946 

      

Relative excess risk due to 
interaction (RERI)  

0.125 (0.004, 0.245) P=0.042 0.096 (-0.049, 0.242) P=0.196 

Greenspace 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Q1 (least greenspace) 
1.00 (ref) 0.87 (0.79, 0.96) 

P=0.006 
1.00 (ref) 0.94 (0.85, 1.04) 

P=0.218 

Q2 
0.98 (0.91, 1.07) 

P=0.668 
0.87 (0.79, 0.97) 

P=0.008 
0.98 (0.89, 1.09) 

P=0.740 
0.93 (0.86, 1.01) 

P=0.106 

Q3 0.93 (0.85, 1.02) 
P=0.109 

0.94 (0.85, 1.04) 
P=0.244 

0.96 (0.85, 1.09) 
P=0.567 

0.93 (0.86, 1.01) 
P=0.105 

Q4 (most greenspace) 0.93 (0.84, 1.04) 
P=0.199 

0.94 (0.85, 1.05) 
P=0.300 

0.86 (0.72, 1.02) 
P=0.081 

0.95 (0.86, 1.05) 
P=0.306 

      

Stratum-specific HRs (Q4 vs 
Q1) 

0.97 (0.86, 1.09) 
P=0.574 

1.02 (0.89, 1.17) 
P=0.768 

0.87 (0.70, 1.06) 
P=0.166 

1.01 (0.91, 1.23) 
P=0.789 

      

Relative excess risk due to 
interaction (RERI) 

0.139 (0.023, 0.255) P=0.019 0.150 (-0.014, 0.314) P=0.072 
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Supplementary Table 21. Association between neighbourhood characteristics and 
CVD-related hospital admissions, stratified by household income and area 
deprivation in combination (follow-up time restricted to January 2012 onwards) 

CVD-related 
admissions  
  

Combined household income and area deprivation 
Less than 

£31,000 & more 
deprived 

At least £31,000 
& more deprived 

Less than 
£31,000 & less 

deprived 

At least £31,000 
& less deprived 

Number of PA 
facilities 

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    

None (ref) 1.00 1.00 1.00 1.00 

One 
0.95 (0.81, 1.11) 

P=0.524 
0.75 (0.57, 0.97) 

P=0.030 
1.01 (0.91, 1.13) 

P=0.789 
1.01 (0.90, 1.13) 

P=0.847 

2-3 
1.08 (0.93, 1.25) 

P=0.338 
0.85 (0.68, 1.07) 

P=0.174 
1.03 (0.92, 1.14) 

P=0.627 
1.03 (0.92, 1.15) 

P=0.611 

4 or more 
1.04 (0.89, 1.22) 

P=0.593 
0.73 (0.57, 0.92) 

P=0.008 
1.03 (0.92, 1.16) 

P=0.572 
0.97 (0.86, 1.10) 

P=0.659 

      

Fast-food 
proximity 

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    
Closer than 500m 
(ref) 

1.00 1.00 1.00 1.00 

500-999m 
1.01 (0.89, 1.14) 

P=0.894 
1.03 (0.85, 1.24) 

P=0.795 
0.89 (0.79, 1.00) 

P=0.053 
0.99 (0.86, 1.14) 

P=0.864 

1000-1999m 
0.95 (0.83, 1.09) 

P=0.483 
1.08 (0.87, 1.34) 

P=0.493 
0.95 (0.84, 1.07) 

P=0.401 
1.00 (0.87, 1.15) 

P=0.977 

At least 2000m 
0.93 (0.78, 1.11) 

P=0.425 
1.15 (0.87, 1.52) 

P=0.334 
0.94 (0.82, 1.06) 

P=0.311 
0.99 (0.85, 1.15) 

P=0.866 

      

Greenspace 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    
Q1 (least 
greenspace) (ref) 

1.00 1.00 1.00 1.00 

Q2 
0.94 (0.83, 1.06) 

P=0.313 
1.08 (0.89, 1.31) 

P=0.425 
1.04 (0.92, 1.18) 

P=0.535 
1.00 (0.86, 1.16) 

P=0.993 

Q3 
1.03 (0.88, 1.20) 

P=0.695 
0.98 (0.76, 1.28) 

P=0.901 
0.97 (0.85, 1.11) 

P=0.649 
1.10 (0.95, 1.28) 

P=0.211 
Q4 (most 
greenspace) 

0.92 (0.72, 1.17) 
P=0.494 

0.81 (0.54, 1.20) 
P=0.289 

1.02 (0.87, 1.19) 
P=0.804 

1.05 (0.89, 1.25) 
P=0.543 
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Supplementary Table 22. Association between neighbourhood characteristics and 
cancer-related hospital admissions, stratified by household income and area 
deprivation in combination (follow-up time restricted to January 2012 onwards) 

Cancer-related 
admissions  

  

Combined household income and area deprivation 

Less than £31,000 
& more deprived 

At least £31,000 & 
more deprived 

Less than £31,000 
& less deprived 

At least £31,000 & 
less deprived 

Number of PA 
facilities 

 HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    

None (ref) 1.00 1.00 1.00 1.00 

One 
1.01 (0.87, 1.18) 

P=0.876 
1.18 (0.91, 1.53) 

P=0.203 
0.92 (0.83, 1.02) 

P=0.106 
0.94 (0.84, 1.04) 

P=0.232 

2-3 
1.00 (0.86, 1.15) 

P=0.964 
0.95 (0.74, 1.22) 

P=0.681 
0.96 (0.87, 1.07) 

P=0.488 
0.94 (0.84, 1.05) 

P=0.263 

4 or more 0.94 (0.80, 1.09) 
P=0.390 

0.95 (0.75, 1.22) 
P=0.702 

0.93 (0.83, 1.04) 
P=0.216 

0.95 (0.85, 1.07) 
P=0.425 

      

Fast-food proximity 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    

Closer than 500m 
(ref) 

1.00 1.00 1.00 1.00 

500-999m 
0.93 (0.82, 1.05) 

P=0.221 
0.90 (0.74, 1.08) 

P=0.267 
0.94 (0.84, 1.06) 

P=0.308 
1.10 (0.96, 1.27) 

P=0.153 

1000-1999m 
1.05 (0.92, 1.20) 

P=0.504 
1.09 (0.88, 1.34) 

P=0.432 
1.00 (0.89, 1.12) 

P=0.995 
1.01 (0.88, 1.16) 

P=0.862 

At least 2000m 0.89 (0.75, 1.06) 
P=0.206 

1.03 (0.78, 1.36) 
P=0.840 

1.00 (0.88, 1.13) 
P=0.968 

1.03 (0.90, 1.20) 
P=0.643 

  

    

Greenspace 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    

Q1 (least greenspace) 
(ref)_ 

1.00 1.00 1.00 1.00 

Q2 
1.00 (0.89, 1.13) 

P=0.965 
0.94 (0.77, 1.15) 

P=0.528 
1.03 (0.91, 1.16) 

P=0.675 
0.97 (0.84, 1.11) 

P=0.630 

Q3 
0.92 (0.79, 1.08) 

P=0.310 
1.08 (0.84, 1.39) 

P=0.556 
1.00 (0.88, 1.14) 

P=0.987 
1.02 (0.88, 1.17) 

P=0.805 

Q4 (most greenspace) 0.76 (0.59, 0.97) 
P=0.031 

1.17 (0.82, 1.67) 
P=0.388 

1.04 (0.90, 1.21) 
P=0.593 

1.02 (0.86, 1.19) 
P=0.850 
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4. Sensitivity analyses: Models additionally adjusted for baseline BMI, 
hypertension and medications for hypertension and high cholesterol 

Supplementary Table 23. Modification of the association between built 
environment variables and hospital admissions due to CVD, by household income 
and area deprivation (adjusted for additional risk factors) 

CVD-related admissions 
Annual household income Area deprivation 

Less than 
£31,000 

At least £31,000 More deprived Less deprived 

Number of PA facilities HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

None 1.00 (ref) 0.99 (0.93, 1.06) 
P=0.730 

1.00 (ref) 0.91 (0.85, 0.99) 
P=0.028 

One 1.00 (0.95, 1.08) 
P=0.793 

0.94 (0.87, 1.01) 
P=0.100 

0.93 (0.85, 1.03) 
P=0.191 

0.91 (0.84, 0.99) 
P=0.036 

2-3 1.04 (0.98, 1.11) 
P=0.140 

0.99 (0.93, 1.07) 
P=0.998 

0.99 (0.91, 1.09) 
P=0.912 

0.96 (0.88, 1.04) 
P=0.305 

4 or more 1.00 (0.97, 1.10) 
P=0.371 

0.92 (0.86, 1.00) 
P=0.046 

0.95 (0.87, 1.04) 
P=0.240 

0.93 (0.85, 1.01) 
P=0.087 

      
Stratum-specific HRs  
(4+ facilities vs 0) 

1.02 (0.96, 1.10) 
P=0.479 

0.94 (0.87, 1.02) 
P=0.140 

0.93 (0.84, 1.03) 
P=0.149 

1.02 (0.96, 1.09) 
P=0.531 

      
Relative excess risk due to 
interaction (RERI)  

-0.090 (-0.182, 0.002) P=0.055 0.066 (-0.030, 0.163) P=0.177 

Fast-food proximity 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Closer than 500m 1.00 (ref) 0.91 (0.84, 0.99) 
P=0.031 

1.00 (ref) 1.00 (0.92, 1.08) 
P=0.957 

500-999m 0.97 (0.91, 1.03) 
P=0.343 

0.91 (0.84, 0.98) 
P=0.009 

1.01 (0.93, 1.09) 
P=0.849 

0.95 (0.88, 1.02) 
P=0.133 

1000-1999m 0.97 (0.91, 1.03) 
P=0.346 

0.91 (0.84, 0.98) 
P=0.013 

0.97 (0.89, 1.06) 
P=0.500 

0.96 (0.89, 1.03) 
P=0.260 

At least 2000m 0.93 (0.87, 1.00) 
P=0.050 

0.92 (0.85, 1.00) 
P=0.049 

1.02 (0.92, 1.13) 
P=0.657 

0.93 (0.86, 1.00) 
P=0.064 

      
Stratum-specific HRs  
(≥2000m vs <500m) 

0.93 (0.86, 1.00) 
P=0.051 

1.01 (0.92, 1.12) 
P=0.767 

1.04 (0.93, 1.16) 
P=0.498 

0.92 (0.86, 0.99) 
P=0.030 

      
Relative excess risk due to 
interaction (RERI)  

0.081 (-0.015, 0.177) P=0.098 -0.092 (-0.214, 0.030) P=0.141 

Greenspace HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Q1 (least greenspace) 1.00 (ref) 0.91 (0.84, 0.98) 
P=0.015 

1.00 (ref) 0.99 (0.92, 1.07) 
P=0.879 

Q2 0.99 (0.93, 1.05) 
P=0.640 

0.93 (0.86, 1.00) 
P=0.058 

1.01 (0.94, 1.09) 
P=0.778 

0.96 (0.90, 1.02) 
P=0.197 

Q3 0.99 (0.92, 1.06) 
P=0.714 

0.94 (0.87, 1.01) 
P=0.089 

1.03 (0.94, 1.13) 
P=0.489 

0.96 (0.89, 1.02) 
P=0.171 

Q4 (most greenspace) 0.97 (0.90, 1.05) 
P=0.515 

0.95 (0.88, 1.04) 
P=0.266 

0.97 (0.85, 1.10) 
P=0.611 

0.97 (0.90, 1.04) 
P=0.401 

      
Stratum-specific HRs  
(Q4 vs Q1) 

0.99 (0.91, 1.09) 
P=0.883 

1.02 (0.91, 1.13) 
P=0.774 

0.96 (0.82, 1.12) 
P=0.596 

0.97 (0.89, 1.05) 
P=0.409 

      
Relative excess risk due to 
interaction (RERI) 

0.071 (-0.023, 0.165) P=0.141 0.006 (-0.129, 0.141) P=0.934 

 



331 

Supplementary Table 24. Modification of the association between neighbourhood 
environment variables and hospital admissions due to cancer, by household 
income and area deprivation (adjusted for additional risk factors) 

Cancer-related admissions 
  

Annual household income Area deprivation 

< £31,000 At least £31,000 More deprived Less deprived 

Number of PA facilities 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

None 1.00 (ref) 0.96 (0.90, 1.02) 
P=0.224 

1.00 (ref) 1.03 (0.95, 1.11) 
P=0.530 

One 0.98 (0.92, 1.05) 
P=0.594 

0.99 (0.92, 1.06) 
P=0.728 

1.08 (0.97, 1.20) 
P=0.145 

1.01 (0.93, 1.10) 
P=0.854 

2-3 1.00 (0.94, 1.06) 
P=0.939 

0.94 (0.88, 1.01) 
P=0.094 

1.06 (0.96, 1.16) 
P=0.238 

1.00 (0.92, 1.09) 
P=0.979 

4 or more 0.99 (0.93, 1.05) 
P=0.695 

0.90 (0.83, 0.97) 
P=0.004 

1.01 (0.92, 1.11) 
P=0.775 

0.98 (0.90, 1.07) 
P=0.722 

      

Stratum-specific HRs  
(4+ facilities vs 0) 

0.97 (0.91, 1.04) 
P=0.397 

0.96 (0.88, 1.04) 
P=0.277 

1.02 (0.93, 1.13) 
P=0.643 

0.96 (0.90, 1.02) 
P=0.152 

      

Relative excess risk due to 
interaction (RERI)  

-0.051 (-0.139, 0.038) P=0.261 -0.056 (-0.165, 0.053) P=0.316 

Fast-food proximity 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Closer than 500m 1.00 (ref) 0.89 (0.82, 0.97) 
P=0.007 

1.00 (ref) 0.92 (0.85, 0.99) 
P=0.028 

500-999m 0.93 (0.88, 1.00) 
P=0.035 

0.93 (0.86, 1.00) 
P=0.046 

0.90 (0.83, 0.97) 
P=0.006 

0.94 (0.87, 1.01) 
P=0.076 

1000-1999m 0.97 (0.91, 1.04) 
P=0.392 

0.91 (0.84, 0.98) 
P=0.010 

0.98 (0.90, 1.07) 
P=0.685 

0.92 (0.85, 0.99) 
P=0.019 

At least 2000m 0.94 (0.87, 1.01) 
P=0.076 

0.91 (0.84, 0.98) 
P=0.019 

0.92 (0.83, 1.03) 
P=0.137 

0.91 (0.85, 0.99) 
P=0.020 

      

Stratum-specific HRs  
(≥2000m vs <500m) 

0.97 (0.90, 1.04) 
P=0.369 

0.97 (0.88, 1.07) 
P=0.547 

0.92 (0.82, 1.03) 
P=0.150 

1.00 (0.93, 1.07) 
P=0.927 

      

Relative excess risk due to 
interaction (RERI)  

0.082 (-0.013, 0.176) P=0.090 0.073 (-0.039, 0.185) P=0.200 

Greenspace 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

Q1 (least greenspace) 1.00 (ref) 0.86 (0.80, 0.93) 
P=0.000 

1.00 (ref) 0.94 (0.87, 1.02) 
P=0.118 

Q2 0.98 (0.92, 1.04) 
P=0.464 

0.91 (0.84, 0.98) 
P=0.011 

0.99 (0.92, 1.07) 
P=0.783 

0.95 (0.89, 1.02) 
P=0.135 

Q3 0.96 (0.89, 1.02) 
P=0.192 

0.94 (0.87, 1.02) 
P=0.122 

1.00 (0.91, 1.10) 
P=0.985 

0.95 (0.89, 1.01) 
P=0.122 

Q4 (most greenspace) 0.94 (0.87, 1.02) 
P=0.132 

0.96 (0.88, 1.04) 
P=0.285 

0.85 (0.75, 0.97) 
P=0.019 

0.97 (0.90, 1.04) 
P=0.390 

      

Stratum-specific HRs  
(Q4 vs Q1) 

0.96 (0.88, 1.05) 
P=0.392 

1.05 (0.95, 1.17) 
P=0.339 

0.83 (0.71, 0.97) 
P=0.021 

1.04 (0.95, 1.12) 
P=0.393 

      

Relative excess risk due to 
interaction (RERI) 

0.151 (0.062, 0.241) P=0.001 0.172 (0.045, 0.298) P=0.008 
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Supplementary Table 25. Association between neighbourhood characteristics and 
CVD-related hospital admissions, stratified by household income and area 
deprivation in combination (adjusted for additional risk factors) 

CVD-related 
admissions  
  

Combined household income and area deprivation 

Less than £31,000 
& more deprived 

At least £31,000 & 
more deprived 

Less than £31,000 
& less deprived 

At least £31,000 & 
less deprived 

Number of PA 
facilities 

 HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    

None 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

One 
0.97 (0.86, 1.09) 

P=0.629 
0.82 (0.66, 1.00) 

P=0.050 
1.03 (0.95, 1.11) 

P=0.527 
0.97 (0.89, 1.05) 

P=0.468 

2-3 
1.01 (0.90, 1.13) 

P=0.880 
0.91 (0.76, 1.09) 

P=0.293 
1.07 (0.99, 1.15) 

P=0.109 
1.02 (0.94, 1.11) 

P=0.665 

4 or more 
0.99 (0.88, 1.11) 

P=0.846 
0.79 (0.65, 0.95) 

P=0.011 
1.04 (0.96, 1.14) 

P=0.330 
0.98 (0.89, 1.07) 

P=0.645 

      

Fast-food proximity 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    

Closer than 500m 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

500-999m 
1.02 (0.93, 1.12) 

P=0.614 
1.00 (0.86, 1.16) 

P=0.991 
0.93 (0.85, 1.01) 

P=0.101 
0.98 (0.88, 1.09) 

P=0.732 

1000-1999m 
0.96 (0.87, 1.07) 

P=0.467 
1.05 (0.88, 1.24) 

P=0.587 
0.96 (0.88, 1.05) 

P=0.366 
0.97 (0.87, 1.08) 

P=0.557 

At least 2000m 
1.00 (0.88, 1.14) 

P=0.998 
1.16 (0.94, 1.44) 

P=0.171 
0.89 (0.81, 0.98) 

P=0.018 
0.98 (0.88, 1.10) 

P=0.767 

  
    

Greenspace 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    
Q1 (least 
greenspace) 

1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

Q2 
1.00 (0.91, 1.10) 

P=0.956 
1.10 (0.95, 1.28) 

P=0.217 
0.99 (0.90, 1.08) 

P=0.753 
0.95 (0.85, 1.07) 

P=0.409 

Q3 
1.04 (0.93, 1.17) 

P=0.479 
1.05 (0.86, 1.29) 

P=0.632 
0.98 (0.88, 1.08) 

P=0.618 
0.97 (0.87, 1.09) 

P=0.622 
Q4 (most 
greenspace) 

0.92 (0.77, 1.11) 
P=0.381 

1.10 (0.83, 1.47) 
P=0.499 

0.99 (0.89, 1.11) 
P=0.913 

0.98 (0.87, 1.12) 
P=0.807 
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Supplementary Table 26. Association between neighbourhood characteristics and 
cancer-related hospital admissions, stratified by household income and area 
deprivation in combination (adjusted for additional risk factors) 

Cancer-related 
admissions  
  

Combined household income and area deprivation 
Less than £31,000 
& more deprived 

At least £31,000 & 
more deprived 

Less than £31,000 
& less deprived 

At least £31,000 & 
less deprived 

Number of PA 
facilities 

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    
None 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

One 1.06 (0.94, 1.19) 
P=0.377 

1.13 (0.92, 1.39) 
P=0.246 

0.95 (0.88, 1.02) 
P=0.182 

1.02 (0.94, 1.11) 
P=0.589 

2-3 1.07 (0.96, 1.20) 
P=0.228 

1.04 (0.85, 1.26) 
P=0.712 

0.96 (0.88, 1.03) 
P=0.252 

0.99 (0.91, 1.07) 
P=0.786 

4 or more 1.05 (0.93, 1.18) 
P=0.403 

0.98 (0.80, 1.19) 
P=0.804 

0.94 (0.86, 1.02) 
P=0.156 

0.97 (0.88, 1.06) 
P=0.449 

      

Fast-food proximity 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    
Closer than 500m 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

500-999m 
0.88 (0.80, 0.97) 

P=0.009 
0.93 (0.80, 1.08) 

P=0.352 
1.00 (0.91, 1.09) 

P=0.996 
1.06 (0.96, 1.18) 

P=0.249 

1000-1999m 
0.96 (0.86, 1.06) 

P=0.418 
1.01 (0.86, 1.20) 

P=0.880 
1.03 (0.94, 1.12) 

P=0.558 
0.98 (0.89, 1.09) 

P=0.742 

At least 2000m 
0.87 (0.76, 1.00) 

P=0.046 
1.06 (0.85, 1.32) 

P=0.597 
1.02 (0.93, 1.12) 

P=0.681 
0.98 (0.88, 1.09) 

P=0.702 
  

    

Greenspace 
HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI) 

    
Q1 (least greenspace) 1.00 (ref) 1.00 (ref) 1.00 (ref) 1.00 (ref) 

Q2 
0.99 (0.90, 1.08) 

P=0.778 
0.96 (0.82, 1.13) 

P=0.641 
1.01 (0.92, 1.11) 

P=0.859 
1.03 (0.92, 1.15) 

P=0.617 

Q3 
0.96 (0.85, 1.08) 

P=0.484 
1.04 (0.85, 1.27) 

P=0.729 
1.00 (0.91, 1.10) 

P=0.983 
1.05 (0.94, 1.18) 

P=0.365 
Q4 (most 
greenspace) 

0.75 (0.62, 0.91) 
P=0.003 

1.06 (0.79, 1.41) 
P=0.702 

1.02 (0.91, 1.15) 
P=0.687 

1.08 (0.95, 1.22) 
P=0.234 
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5. Examination of proportional hazards assumption 

 

Supplementary Figure 15. Log-log plots (adjusted for all covariates) for graphical examination of proportional hazards assumption 




