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ABSTRACT

Overproduced carboxylesterases A2 and B2 (EC 3.1.1.1.), involved in insecticide 

resistance in the mosquito Culex quinquéfasciatus were purified to homogeneity 

using 4,h instar larvae from a Sri Lankan resistant strain, PelRR. Esterase B2 

(Mr= 62,000 ) was characterized and compared with the esterase A2 

characterized previously. The kinetic constants for interaction with several 

insecticides indicate, as for the esterase A2, that the role of B2 in insecticide 

resistance is mainly sequestration. The bimolecular rate constant, ka, is the most 

important constant which correlates directly with the insecticide resistance ratios 

of the strain. A concentration of approximately 7.67 pmol of both A2 and B2 

esterases accounting for about 0.4% of the total protein could be estimated per 

4,h instar larva. Using several different methods an A2 : B2 ratio of 1 : 3 could 

be obtained for this strain.

A2, B2, Bj and susceptible non-amplified ‘A ’ and ‘B’ type esterases were purified 

from one susceptible and six more resistant strains of Cx quinquefasciatus, which 

originated from different geographical areas. Significant differences in the ka’s 

for insecticide kinetics were obtained for the enzymes from the different strains. 

The susceptible enzymes were markedly less reactive with insecticides than the 

resistant enzymes and this was shown even at the crude homogenate level. The 

qualitative differences observed among the resistant populations indicate the

3



presence of a greater number of amplified allelic forms for the esterase loci A2, 

B2 and Bj than previously has been suggested.

The A2 and B2 esterases were partially purified from three sub-colonies selected 

with three different insecticides from a single parental colony. Significant intra­

colony differences were observed in enzyme-insecticide interactions 

demonstrating the existence of different alleles of A2 and B2 within a single 

population.

Antiserum raised against PelRR A2 esterase cross-reacted with both enzymes 

from the other strains although the reactivity of the B2 enzyme was about 50-fold 

less than that of the A2 esterase. Also the A2 antiserum strongly cross-reacted 

with insect acetylcholinesterase, the target site of the insecticides. Esterase A2 did 

not show any significant immunological relationship with the other resistance 

associated esterases tested from other insects. Some of the commercially 

available vertebrate carboxylesterases and cholinesterases also cross-reacted with 

the A2 antiserum.

4



TABLE OF CONTENTS

Page

ACKNOWLEDGEMENTS 2

ABSTRACT 3

TABLE OF CONTENTS 5

LIST OF FIGURES 11

LIST OF TABLES 14

CHAPTER 1. GENERAL INTRODUCTION

1.1. HISTORICAL BACKGROUND 17

1.2. INSECTICIDES AND THEIR TARGET SITES 18

13. OTHER METHODS OF CONTROL 20

1.4. MECHANISMS OF INSECTICIDE RESISTANCE 21

1.4.1. Behavioural changes 21

1.4.2. Cuticular resistance (Reduced penetration) 21

1.4.3. Target site insensitivity 22

1.4.4. Metabolic resistance 24

1.4.4.1. Glutathione-S-Transferases (GSTs) 24

1.4.4.2. Oxidases 25

1.4.43. Carboxylesterases 27

1.5. CROSS-RESISTANCE AND MULTIPLE RESISTANCE 29

1.6. STAGE SPECIFICITY OF RESISTANCE 30

5



1.7. FITNESS OF THE RESISTANT INSECTS 31

1.8. ESTERASES 31

1.8.1. Classification 31

1.8.2. Localization 34

1.83. Genetics, Immunology and Molecular Biology of esterases 35

1.83.1. Genetics 35

1.83.2. Immunology 40

1.83.3. Molecular Biology 41

1.8.4. Physicochemical properties 46

1.8.4.1. Physical properties 46

1.8.4.2. Chemical properties 48

1.9. BACKGROUND AND AIMS OF THE PRESENT STUDY 52

1.9.1. Background of the study 52

1.9.2. Aims o f the study 52

CHAPTER 2. PURIFICATION AND CHARACTERIZATION OF 

THE CARBOXYLESTERASES A 2 A N D B2 FROM PELRR 

STRAIN

2.1. INTRODUCTION 55

2.2. MATERIALS AND METHODS 56

2.2.1. Mosquito colony maintenance 56

2.2.2. Chemicals and equipment 57

2.2.3. Enzyme assays 58

2.2.4. Protein determination 58

6



2.2.5. Purification of carboxylesterases 59

2.2.5.1. Purification of esterase A2 59

2.2.5.2. Purification of esterase B2 60

2.2.6. Characterization of esterases A2 and B2 61

2.2.6.1. Kinetic constants 61

2.2.6.1.1. Determination of the Michaelis constant (K,,,) and

the maximum velocity (V ^ J  for the substrates 62

2.2.6.1.2. Determination of kinetic constants for several

insecticides 62

2.2.6.2. Influence o f effectors 65

2.2.6.3. Polyacrylamide gel electrophoresis 66

2.2.6A Determination of molecular weight 66

2.2.6.5. N-terminal analysis 66

23. RESULTS AND DISCUSSION 67

2.3.1. Purification of esterases 67

2.3.2. Characterization of esterases A2 and B2 77

2.3.2.1. Physical Characterization 77

2.3.2.2. Chemical Characterization 77

2.3.2.2.1. Substrate specificity 77

2.3.2.2.2. Influence of effectors 81

2.3.2.2.3. Interaction of esterase B2 with insecticides 83

2.3.3. Determination of the proportions of esterases A2 and B2 per

PelRR larva 93

2.3.4. Summary of the role of A2 and B2 esterases in mosquito

7



larvae 94

2.4. SUMMARY 98

CHAPTER 3. CHARACTERIZATION OF ‘A’ A N D  B’ TYPE 

ESTERASES FROM DIFFERENT POPULATIONS OF C X  

QUINQUEFASCIA TUS

3.1. INTRODUCTION 101

3.2. MATERIALS AND METHODS 102

3.2.1. Mosquito strains 102

3.2.2. Purification and characterization of carboxylesterases 103

3.3. RESULTS AND DISCUSSION 104

3.3.1. Purification of carboxylesterases 104

3.3.2. Physical Characterization 107

3.3.3. Chemical Characterization 111

3.3.3.1. Interaction with substrates 111

3.3.3.2. Interaction with insecticides 113

3.3.33. Interaction of crude homogenates with insecticides 119

3.4. SUMMARY 121

CHAPTER 4. CHARACTERIZATION OF DIFFERENT A2 A N D  

B2 ESTERASES DERIVED FROM A SINGLE POPULATION OF 

C X  QUINQUEFASCIA TUS

4.1. INTRODUCTION 123

8



4.2. MATERIALS AND METHODS 124

4.2.1. Mosquito strains 124

4.2.2. Larval bioassays 124

4.23. Bioassays with piperonyl butoxide 125

4.2.4. Glutathione-S-transferase assay 126

4.2.5. Purification of carboxylesterases 126

4.2.6. Kinetic constants for carboxylesterases and

acetylcholinesterases 127

4.3. RESULTS AND DISCUSSION 128

4.3.1. Cross-resistance spectra of the sub-colonies 128

4.3.2. Differences among the carboxylesterases elevated in the

sub-colonies 130

4.33. The presence of other resistance mechanisms 136

4.33.1. Cytochrome P-450 mechanism 136

4.33.2. Glutathione-S-transferase mechanism 143

4.3.33. Altered acetylcholinesterase mechanism 143

4.4. SUMMARY 147

CHAPTER 5. IM MUNOLOGICAL CROSS-REACTIVITY OF THE  

ANTISERUM RAISED AGAINST PELRR A2

5.1. INTRODUCTION 149

5.2. MATERIALS AND METHODS 150

5.2.1. Materials 150

5.2.2. Immunoblotting techniques 151

9



5.2.2.1. Dot-blot assays 151

5.2.2.2. Western blotting 152

5.3. RESULTS AND DISCUSSION 153

5.3.1. Cross-reactivity with ‘A’ and ‘B’ type esterases 153

5.3.2. Cross-reactivity with other insect proteins 154

5.3.3. Cross-reactivity with vertebrate carboxylesterases and

cholinesterases 160

5.4. SUMMARY 162

CHAPTER 6. GENERAL DISCUSSION

6.1. ESTERASE-BASED RESISTANCE MECHANISMS 164

6.2. MOLECULAR HOMOLOGY OF THE MOSQUITO

CARBOXYLESTERASES TO OTHER SERINE HYDROLASES 166 

63. POLYMORPHISM OF MOSQUITO CARBOXYLESTERASES 171

6.4. THE THEORY OF MIGRATION 173

6.5. RELATED EVENTS IN OTHER RESISTANCE MECHANISMS 180

6.6. PROBLEMS IN THE NOMENCLATURE OF MOSQUITO

CARBOXYLESTERASES 186

6.7. CONCLUSIONS AND FUTURE STUDIES 187

REFERENCES 189

APPENDIX 213

10



LIST OF FIGURES

Page

1.1. Different types of insecticides 19

1.2. O-dealkylation of fenitrothion by GST 25

1.3. Formation of the oxon-analogue of malathion by oxidases 27

1.4. Hydrolysis of fenitrooxon by carboxylesterases 28

1.5. Proposed unrooted evolutionary tree describing the genetic divergence

of six esterase ‘B’ haplotypes 37

1.6. Orthologous chromosome regions of the mouse, the rat and the rabbit 39

1.7. Evolutionary tree representing possible divergence of mouse

carboxylesterase isozymes 41

2.1. Elution profile of Q-Sepharose chromatography for esterases A2 and

B2 purification 70

2.2. Elution profile of phenyl-Sepharose chromatography for esterases A2

and B2 71

2.3. Elution profile of hydroxylapatite chromatography for esterase A2 72

2.4. Elution profile of hydroxylapatite chromatography for esterase B2 73

2.5. SDS-PAGE of purified esterase A2 75

2.6. SDS-PAGE of purified esterase B2 76

2.7. Subunit molecular weight estimation of purified esterase B2 78

2.8. Time dependent inhibition of esterase B2 by malaoxon 86

2.9. Relationship between the inhibitor concentrations and their

values for malaoxon 87

11



2.10. Reactivation of the B2 esterases inhibited by fenitrooxon, malaoxon

and propoxur 89

2.11. Native PAGE of different amounts of purified A2 and B2 proteins 95

3.1. Equal amounts of crude homogenates from different strains on a

native PAGE gel stained for esterase activity 105

3.2. A native PAGE gel of purified ‘A’ type carboxylesterases stained for

esterase activity 108

3.3. A native PAGE gel of purified ‘B’ type carboxylesterases stained for

esterase activity 109

3.4. A native PAGE gel of purified Blt B2 and susceptible ‘B’

carboxylesterases stained for esterase activity 110

4.1. A native PAGE gel of crude homogenates from the insecticide-

selected sub-colonies of Pel stained for esterase activity 131

4.2. A native PAGE gel of A2 and B2 esterases partially purified from

insecticide-selected sub-colonies of Pel stained for esterase activity 132

4.3. Log-dosage probit mortality lines for the sub-colony Pel-Chi tested

with chlorpyrifos with and without piperonyl butoxide 137

4.4. Log-dosage probit mortality lines for the sub-colony Pel-Chl tested

with propoxur with and without piperonyl butoxide 138

4.5. Log-dosage probit mortality lines for the sub-colony Pel-Mal tested

with chlorpyrifos with and without piperonyl butoxide 139

4.6. Log-dosage probit mortality lines for the sub-colony Pel-Mal tested

with propoxur with and without piperonyl butoxide 140

4.7. Log-dosage probit mortality lines for the sub-colony Pel-Pro tested

12



with chlorpyrifos with and without piperonyl butoxide 141

4.8. Log-dosage probit mortality lines for the sub-colony Pel-Pro tested

with propoxur with and without piperonyl butoxide 142

4.9. Distribution pattern of GST specific activities of the sub-colony

crude homogenates for the substrate CDNB 144

4.10. Time dependent inhibition of acetylcholinesterases of the sub­

colony homogenates 146

5.1. Dot-blots of serial dilutions of the PelRR carboxylesterases A2

and B2 immunodetected with A2 antiserum 155

5.2. Equal amounts of crude homogenates on a native PAGE gel

immunodetected with A2 antiserum 156

5.3. Equal amounts of crude homogenates of An stephensi (Iraq and

STMal strains) and PelRR on a native PAGE gel immunodetected 

with A2 antiserum 159

5.4. Dot-blots showing the cross-reactivity of A2 antiserum with purified

A2 and vertebrate esterases 161

13



LIST OF TABLES

Page

1.1. Location and observed number of alleles for mouse esterases 38

2.1. Purification of the esterases A2 and B2 74

2.2. Substrate interactions of esterases A2 and B2 79

2.3. Influence of the effectors on the activity of purified esterase B2 82

2.4. Kinetic constants for the interaction of esterase B2 with the

insecticides 85

2.5. Comparison of the deacylation rates (k3) of the mosquito esterases

A2, B2 and the aphid esterase E4 in their interaction with 

insecticides 92

3.1. Substrate interactions of A2 and B2 carboxylesterases and the

susceptible ‘B’ type carboxylesterase purified from different strains 112

3.2. The kinetic constant ka (M '1 min'1) for insecticide interactions with

A2 and susceptible (PelSS) ‘A’ carboxylesterases 114

3.3. The kinetic constant k, (M '1 min'1) for insecticide interactions with B2

and susceptible (PelSS) ‘B’ carboxylesterases 116

3.4. The kinetic constant ka (M '1 min'1) for insecticide interactions with

B, carboxylesterases purified from Colombian and Trinidad strains 118

3.5. The kinetic constant k, (M '1 min'1) for insecticide interactions with

the larval crude homogenates of PelSS and PelRR strains 120

4.1. Resistance ratios (LDj«, of larvae/ LDjo of PelSS larvae) for the

parental colony and the three insecticide selected sub-colonies of

14



Cx quinquefasciatus for the insecticides used in selection 129

4.2. The k, values for the interaction of partially purified sub-colony A2

esterases with the insecticides used in selection 133

4.3. The k, values for the interaction of partially purified sub-colony B2

esterases with the insecticides used in selection 135

6.1. Amino acid sequence surrounding the active-site serine residue (S)

in some serine hydrolases including TEM-R B, 168

6.2. Comparison of the immunological and sequence data obtained for

molecular homologies of esterase A2 with the mosquito esterase 

B2 and several vertebrate esterases 170

15





C hapter 1

GENERAL INTRODUCTION

1.1. HISTORICAL BACKGROUND

Melander’s observations of San Jose scale resistance to lime-sulphur in the 

Clarkston Valley of Washington in 1908, was the first documented arthropod 

resistance to pesticides (Melander, 1914). The number of reported cases 

increased gradually until the introduction of DDT in 1946, which resulted in the 

sudden appearance of a large number of new cases of resistance over a five year 

period. The subsequent wide scale use of new insecticides further increased the 

number of reported cases and by 1980 resistance had been detected in 

populations of at least 428 species representing 14 orders and 83 families of 

insects and acariñes (Forgash, 1984). This rapid development of insecticide 

resistance was largely supported by the enormous reproductive capacity and 

genetic flexibility of insects.

Mosquitoes are vectors of many human diseases such as malaria, filariasis, 

dengue and encephalitis, as well as being a biting nuisance to man. The 

development of resistance by mosquitoes to pesticides was first observed in 1947, 

when the salt-marsh mosquitoes Aedes taeniorhynchus and Ae. sollicitons began 

to show resistance to DDT in Florida (Brown, 1986). By 1992, 56 species of
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Anophiline and 46 species of Culicine mosquitoes worldwide, had been reported 

to be resistant to pesticides (WHO, 1992). An understanding of the mechanisms 

which underlie these resistances is of great importance for the development of 

rational strategies for the management of resistant populations. This 

understanding would also be helpful in designing new insecticides to use against 

resistant strains and to develop strategies to revert resistant strains back to their 

initial sensitivity levels.

Chapter 1

13.. INSECTICIDES AND THEIR TARGET SITES

Commonly used insecticides can be divided into four major groups; 

organochlorines, organophosphates (OPs), carbamates and pyrethroids (FIGURE 

1.1). Today the use of organochlorines has been discontinued in many areas of 

the world because of resistance and concerns for the environment although DDT 

still remains as the most widely used insecticide for malaria control. All these 

insecticides attack the nervous system of the insect. For OPs and carbamates the 

target site is acetylcholinesterase (AChE), the enzyme which hydrolyses the 

neuro-transmitter acetylcholine. Cyclodienes, a sub-group of organochlorines, 

bind to the y-aminobutyric acid (GABA) receptors in the CT channels of the 

neurons and modulate the Cl' conductance across the nerve membrane. The rest 

of the organochlorines (DDT + its analogues) and pyrethroids bind to Na+ 

channel proteins of the neuron and inactivate its shut-down.

18



C hapter 1
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Figure 1.1. DIFFERENT TYPES OF INSECTICIDES
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Chapter 1

13. OTHER METHODS OF CONTROL

Chemical compounds targeting other areas of insect physiology have also been 

introduced although they are not in extensive use due to their expense and 

specificity of action. Juvenile hormone analogues (JHAs) and chitin synthesis 

inhibitors (CSIs) have specific actions against insects with very little effect on 

vertebrates. Sex and aggregation pheromone baited traps are used to attract the 

insects or to disrupt their mating behaviour. The effectiveness of these methods 

can be increased if they are used with insecticides (Edwards, 1993; Jones, 1993). 

Polystyrene beads, spread over the breeding sites of mosquitoes are also used in 

Culex and Anopheles control programmes (Curtis, 1993). Biological control of 

mosquitoes has also been tested for decades. The most promising results have 

been obtained from the bacteria Bacillus thuringiensis and B. sphaericus which 

produce proteins toxic to mosquito larvae (Becker and Rettich, 1993). Predatory 

fish species, dragon fly larvae, Copepods Mesocyclopes, Mermi thid nematodes 

and some species of Protozoa and fungi are also considered as possible control 

agents (Becker and Rettich, 1993; Curtis, 1993). Difficulties concerning the 

storage, transport and complex life cycles of these organisms remain as major 

drawbacks to their use. Among all these control methods the use of insecticides 

(this term will refer to organochlorines, OPs, carbamates and pyrethroids 

throughout this thesis unless otherwise stated) is the most effective and the most 

common method in insect control.
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C h ap te r 1

1.4. MECHANISMS OF INSECTICIDE RESISTANCE

Mechanisms developed by insects to bring about the resistance to insecticides can 

broadly be classified as follows:

1.4.1. BEHAVIORAL CHANGES

Developed to avoid or minimise the contact with and thereby the uptake of the 

insecticides. Insects may thus change their habits accordingly eg. indoor spray of 

DDT in Thailand changed the preferred habitat of Anopheles minimus from 

indoor to outdoor resting (Bang, 1985).

1.4.2. CUTICULAR RESISTANCE (REDUCED PENETRATION)

The uptake of the toxicant is reduced due to a thickening or a change in 

chemical composition of the insect cuticle. This has been observed in OP 

resistant strains of Culex quinquefasciatus (Stone and Brown, 1969) and Cx 

tarsalis (Apperson and Georghiou, 1975). Differences in insecticide transport 

across the cuticle was demonstrated in house flies by Golenda and Forgash 

(1989). It has been reported that cyclodiene resistance in red flour beetle 

Tribolium castaneum (Lin et aL, 1993), fenvalerate resistance in diamondback 

moth Plutella xylostella (Noppun et aL, 1989) and OP resistance in colorado 

potato beetle Lepinotarsa decemlineata (Argentine et aL, 1994) were partly due
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to reduced penetration.

1.4.3. TARGET SITE INSENSITIVITY

Changes in the insecticide target sites have developed, so that the toxicant 

molecules can not interact with them.

A) Knock-down Resistance (kdr)

Individuals with this mechanism are resistant to the rapid knock-down effect 

caused by the pyrethroid and DDT insecticides and are called ‘kdr’ type or super 

‘kdr’ (highly resistant) type. Resistance is caused by reductions in the number 

and/or the affinity of the target site, Na+ channel protein (Jackson et aL, 1984; 

Kasbekar and Hall, 1988; Pauron et aL, 1989). This mechanism has been 

observed in house flies (Musca domestica) (Sawicki, 1987; Rossignol, 1988; Grubs 

et aL, 1988), Drosophila (Jackson et aL, 1984; Ramaswami and Tanouye, 1989) 

Ae. aegypti (Hemingway et aL, 1989a) and German cockroaches (Blattella 

germanica) (Hemingway et aL 1993a).

B) Changes in GABA Receptors

Cyclodienes which constitute a large group of organochlorines, exert their action 

by binding to GABA receptors. Alteration of the structure of the target site

2 2



results in decreased affinity to the insecticides. This has been demonstrated in 

several insect species including Drosophila (ffrench-Constant etaL, 1992; Steichen 

and ffrench-Constant, 1994), Ae. aegypti (Thompson et aL, 1993), Blatlella 

germanica (Kadous et aL, 1983), Tribolium castaneum (Lin et aL, 1993) and 

Musca domestica (Anthony et aL, 1991).

C) Altered Acetylcholinesterases

This form of resistance is highly effective against carbamates and OPs and has 

been found among several strains of mosquito species; Anopheles albimanus from 

Central America (Georghiou and Pasteur, 1978; Hemingway et aL, 1984), An. 

sacharovi in Turkey (Hemingway et aL, 1992), Cx quinquefasciatus from Cuba 

(Bisset et aL, 1990; 1991; Rodriguez et aL, 1993) and Tanzania (Khayrandish and 

Wood, 1993a; 1993b), Cx pipiens from Italy (Villani and Hemingway, 1987; 

Bonning et aL, 1991) and Cx tritaeniorhynchus from Japan (Takahashi and 

Yasutomi, 1987). Selection of this mechanism in the field populations of Culex 

mosquitoes has been in combination with and preceded by the carboxylesterase 

mechanism (Villani and Hemingway, 1987; Rodriguez et aL, 1993). This is also 

common in other insects such as the tobacco bud worm Heliothis virescens 

(Brown and Bryson, 1992), the pear bug Cacopsylla pyri (Berrada et aL, 1994), 

Lygus Hesperus (Hemiptera: Miridae) (Zhu and Brindly, 1992a; 1992b), citrus 

thrip Scirtothrip citri (Ferrai et aL, 1993), Lepinotarsa decemlineata (Argentine et 

aL, 1994) and Blattella germanica (Hemingway et aL, 1993b).

Chapter 1
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1.4.4. METABOLIC RESISTANCE

This includes qualitative or quantitative changes in the enzymes, which 

metabolise or sequester the insecticides before they reach their target sites. 

There are three groups of such enzymes; glutathione-S-transferases, 

monooxygenases and carboxylesterases.

1.4.4.1. Glutathione-S-transferases (GSTs)

Resistance can occur due to an increased activity of GSTs. These enzymes 

principally catalyse O-dealkylation of OPs (phosphorothionates and their oxon 

analogues) (FIGURE 1.2) and the dehydrochlorination of DDT to DDE (Hayes 

and Wolf, 1988; Lamoureux and Rusness, 1989; Hassall, 1990).

This mechanism has been reported to be responsible for the OP and DDT 

resistance in house flies (Motoyama and Dauterman, 1978; Clark and Shamaan, 

1984). GSTs have been shown as a possible mechanism for the insecticide 

resistance in german cockroaches (Hemingway et aL, 1993a; 1993b) and the 

mosquitoes An. gambiae (Hemingway et aL, 1985), An. sacharovi (Hemingway 

et aL, 1992) and An. subpictus (Hemingway et aL, 1991). In a DDT resistant An. 

gambiae strain, resistance has been shown to be conferred by qualitatively 

different GSTs that are present in higher concentrations in the resistant strain 

(Prapanthadara et aL, 1993).

2 4
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GST 
GSH J GS —CHj

FIGURE 1.2. O-dealkylation o f fenitrothion by G ST

1.4.4.2. Oxidases

Detoxication of insecticides by increased activity of mixed function oxidases 

(mfo) or monooxygenases, due to changes in cytochrome P-450, the terminal 

oxidase of the microsomal electron transport system, is also found in insects. The 

most common type of reaction catalysed by this enzyme system is again O- 

dealkylation (Hassall, 1990). This is also a common mechanism for drug 

resistance in mammals (Wislocki et aL, 1980).

An mfo mediated mechanism has been shown to be responsible for 

organophosphate resistance in A n. subpictus in Sri Lanka (Hemingway et aL, 

1987) and resistance to both permethrin and pirimiphos-methyl in Cr 

quinquefasciatus from Saudi Arabia (Hemingway et a£,1990), to deltamethrin in 

the same species in West Africa (Magnin et o£,1988) and to permethrin in a
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Tanzanian strain (Khayrandish and Wood, 1993b). In houseflies oxidative 

degradation has been shown to be a major mechanism of insecticide resistance 

(Welling et aL, 1974; Scott and Lee, 1993). Chlorpyrifos resistance in several 

strains of Blattella germanica was also partly due to an oxidase mechanism 

(Hemingway et aL, 1993a ;1993b).

Another important reaction catalysed by oxidases is the conversion of 

phosphorothionates to their oxon analogues. OPs are usually applied as thionates 

because of their low toxicity to humans and their relatively high solubility in 

lipids which enables them to penetrate the insect integument rapidly. Once inside 

the body, the formation of oxon analogues, which are highly toxic, is catalysed 

by ‘mfo’s (FIGURE 1.3). Malaoxon has shown approximately 2000 times greater 

anticholinesterase activity than malathion in Cx tarsalis (Matsumura and Brown, 

1961). Antiserum raised against purified P-450 of housefly has inhibited the 

activation of chlorpyrifos to its oxon analogue in housefly microsomes (Hatano 

and Scott, 1993). The use of oxidase synergists such as piperonyl butoxide in bio­

assays has increased the level of resistance to organophosphates due to the 

inhibition of the formation of highly toxic oxon analogues. An increase in 

resistance to OPs has been observed in An. stephensi (Hemingway, 1982) and in 

Cx qninquefasciatus (Magnin et aL, 1988; Khayrandish and Wood, 1993b) after 

pretreatment of the mosquito larvae with piperonyl butoxide.
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FIGURE 1.3. Formation o f the axon-analogue o f malathion by oxidases

I.4.4.3. Carboxylesterases

Qualitative and/or quantitative changes in carboxylesterases can lead to 

increased levels of insecticide resistance. This mechanism is usually developed 

against OP and carbamates and common in mosquitoes, aphids and many other 

insect species (FIGURE 1.4).

The existence of highly active variants can increase the resistance by increasing 

the rate of interaction with and/or hydrolysis of insecticides. This mechanism is 

present in some Anophiline mosquitoes, where the resistant individuals can 

hydrolyse the insecticides rapidly without any detectable increase in

A) Qualitatively Different Carboxylesterases
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FIGURE 1.4. Hydrolysis o f  Fenitrooxon by carbaxylesterases

carboxylesterase activity to general substrates when compared with susceptibles. 

eg. An. arabiensis from Sudan (Hemingway, 1983), An. culicifacies from India 

(Malcolm and Boddington, 1989) and An. stephensi from Pakistan (Hemingway, 

1982).

B) Q u a n t i t a t i v e  D i f f e r e n c e s  ( E l e v a t i o n )  o f  

Carboxylesterases

A correlation between insect resistance to insecticides and increased esterase 

activity detected by enzyme assays or by native gel electrophoresis using general 

esterase substrates such as a- and P-naphthyl acetates, has been reported in the 

mosquito species Cx quinquefasciatus (Georghiou and Pasteur, 1978; Georghiou 

et aL, 1980; Hemingway and Georghiou, 1984; Raymond et aL, 1987; Magnin et 

aL, 1988; Bisset et aL, 1990; 1991; Hemingway et aL, 1990; Peiris and 

Hemingway, 1990b; Wirth et aL, 1990), Cxpipiens (de Stordeur, 1976; Pasteur et
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aL, 1981a; 1981b; Villani et aL, 1983; Maruyama efa£, 1984; Fournier et aL, 1987; 

Villani and Hemingway, 1987), Cx tarsalis (Matsumura and Brown, 1961; 

Apperson and Georghiou, 1975; Prabhakar et aL, 1987), Cx tritaeniorhynchus 

(Takahashi and Yasutomi, 1987), Ae. aegypti (Field et aL, 1984; Mourya et aL,

1993) ; the peach-potato aphid Myzus persicae (Devonshire, 1977); the black fly 

Simulium damnosum  (Diptera: Simuliidae) (Hemingway et aL, 1989b), the 

housefly Musca domestica (Kao et aL, 1985a; 1985b), the two-spotted spider-mite 

Tetranychus urticae (Matsumura and Voss, 1964), Lygus hesperus (Zhu and 

Brindley, 1992a), the brown plant-hopper Nilaparvata lugens (Chen and Sun,

1994) , the tobacco white fly Bemsia tabaci (Byrne and Devonshire, 1991; 1993), 

Scirtothrips citri (Ferrari et aL, 1993) and Blattella germanica (Prabhakaran and 

Kamble, 1993; Hemingway et aL, 1993a; 1993b). Involvement of the esterases in 

the resistance can be verified by synergistic studies using carboxylesterase 

inhibitors such as DEF (S,S,S- tributyl phosphorothioate), TPP (triphenyl 

phosphate) and IBP (S-benzyl 0,0-diisopropyl phosphorothionate) (Apperson 

and Georghiou, 1975; Georghiou and Pasteur, 1978; Hemingway, 1982; 1983; 

Hemingway and Georghiou, 1984; Magnin et aL, 1988; Hemingway et aL, 1989b; 

Bisset et aL, 1990; Wirth et aL, 1990).
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1.5. CROSS-RESISTANCE AND MULTIPLE RESISTANCE

Resistance is usually high to the insecticide which induced it, with some cross
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resistance to other insecticides. The range of resistance can be very narrow (eg. 

to a few insecticides within a pesticide group) or broad, encompassing several 

pesticide groups. This can result in resistance to a range o f insecticides to which 

the insect has not been previously exposed. Where more than one mechanism of 

insecticide resistance operates in a single insect, it is termed multiple resistance. 

The contribution of each mechanism to the resistance varies according to the 

type of insecticide.

1.6. STAGE SPECIFICITY OF RESISTANCE

Chapter 1

Generally the selection of larvae with an insecticide selects the resistance in the 

adult as well and the converse is also true. But stage specificity has been 

reported in some cases. Exposure of adult An. arabiensis to  malathion for three 

years in Sudan resulted in adult, but not larval, malathion resistance 

(Hemingway, 1983). A decrease in the adult resistance to malathion with age has 

been observed in An. stephensi (Rowland and Hemingway, 1987). Adults of Cx 

quinquefasciatus were less susceptible than larvae after a  larval selection with 

OPs (Amin and White, 1985). Differences in the esterase bands in native gel 

electrophoresis between larvae and adults have been observed in a field 

population of An. subpictus (Hemingway et aL, 1987). Maruyama et al. (1984) 

reported that there is only one esterase band in the eggs o f Cx pipiens with the 

gradual appearance of many bands during larval development followed by the 

loss of most anodal bands on pupation. However, the correlation of these stage
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specific esterases with the insecticide resistance has not been investigated.

1.7. FITNESS OF THE RESISTANT INSECTS

Generally the diurnal activities of resistant individuals are the same as the 

susceptible individuals. This has been shown with Cx quinquefasciatus strains 

(Amin, 1983). However, depending on the type and the extent of the resistance 

mechanism, differences in the fitness may be observed. In An. gambiae, the 

selection o f resistance to yHCH/dieldrin resulted in a reduction in fecundity, 

activity and competitiveness at mating (Rowland, 1988). A resistant strain of 

Drosophila melanogaster also has been shown to be more sensitive to higher 

temperatures than susceptibles (ffrench-Constant et aL, 1993a). Increased fitness 

has been shown for malathion resistant Tribolium castaneum where the resistance 

mechanism is thought to be carboxylesterase-based (Beeman and Nanis, 1986).

1.8. ESTERASES

1.8.1. CLASSIFICATION

"Carboxylesterase" or "esterase" is usually a collective term for the molecules 

which have a  hydrolytic action on carboxylic esters. The term carboxylesterase 

covers a wide variety of enzymes and most of them are non-specific esterases. 

Phosphoric acid esters such as OPs can also be hydrolysed by some of these

31



enzymes. The generally accepted nomenclature of the International Union of 

Biochemistry (I.U.B.) is not weil suited for a carboxylesterase unless its 

physiological role is known (Heymann, 1980). Moreover, overlapping substrate 

specificities make individual classification difficult. An esterase classification 

introduced by Aldridge (1953a, 1953b) remains valuable. According to this, 

esterases can be divided into two major groups; ‘A’ esterases and ‘B’ esterases 

depending on their interactions with paraoxon (later extended to other OPs as 

well). Those inhibited by OP compounds in a progressive and temperature 

dependent reaction are called ‘B’ esterases and those which are not inhibited 

(hydrolysis of OPs is not an obligatory requirement) are called ‘A’ esterases 

(Aldridge, 1993). ‘A’ esterases hydrolyse OPs possibly through an acylated 

cysteine in the active site. Their activity requires metal ions and is sensitive to 

inhibition by metallic salts which have affinity to S-H groups (Aldridge, 1993). 

The ‘A’ esterase classification has recently been revised. They are now grouped 

under phosphoric triester hydrolases (EC 3.1.8) (Reiner, 1993; Walker, 1993). 

The term ‘carboxylesterase’ (EC 3.1.1.1) is now mainly attributed to B-esterases 

(Reiner, 1993; Walker, 1993). The active site of all B-esterases has a serine 

residue which reacts with the OP. Therefore, the terms ‘B esterases’ and ‘serine 

hydrolases’ are synonyms. The physiological functions of most of these esterases 

are unknown and therefore they are called non-specific-esterases, although their 

role is thought mainly to be the detoxication of xenobiotics.

Apart from these major categories of classification, different nomenclatures have
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been developed to describe the different types of esterases present in a particular 

species or a group of closely related species. Mentlein et al (1984; 1985a) 

worked on rat liver microsome esterases and proposed that individual esterase 

should be listed according to their most prominent natural substrate, eg. 

monoacylglycerol lipase, palmitoyl-CoA hydrolase, palmitoyl-camitine hydrolase 

etc. However, mobility differences shown in the native electrophoresis is the most 

commonly used characteristic in this type of classification, eg. mouse and rat 

esterases ES-1, ES-2 etc. (Peters, 1982; Simon et aL, 1985), Drosophila esterases 

Est.2, Est.5 etc. (Zorns et aL, 1982), German cockroach esterases E-l, E-2 etc. 

(Prabhakaran and Kamble, 1993). In mosquitoes the esterase nomenclature has 

been developed on the basis of their electrophoretic mobility and their 

preference for hydrolysing the synthetic esters a- and p-naphthyl acetate 

(Georghiou and Pasteur, 1978; Raymond et aL, 1987). An esterase which 

preferentially hydrolyses a-naphthyl esters is classified as an "esterase A" and th a t 

with a preference for P-naphthyl esters as an "esterase B". Subscripts 1,2 etc. were 

used after "A" or "B" to indicate the order, starting from the slowest running 

esterase. Unless stated otherwise, this classification will be used in this report for 

mosquito carboxylesterases. However, to date, all insect esterases, found to be 

involved in OP resistance are B-type esterases according to Aldridge’s 

classification and belong to carboxylesterases (EC 3.1.1.1). Four major esterase 

types are very common and have been observed in natural populations of the Cx. 

pipiens complex; A, in Southern France and Italy (Pasteur et aL, 1981b; Severini 

et aL, 1993), B, mainly in North America, Cuba and China (Georghiou and
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Pasteur, 1978; Bisset et aL, 1990; Qiao and Raymond, submitted) and the most 

common A2 and B2, always associated together, in Africa, North America, 

Europe, the Middle East and Asia (Villani et aL, 1983; Raymond et aL, 1987; 

Hemingway et aL, 1990). However B4 and Bs (associated with A4  and A5  

respectively) recently described by Poirie et aL (1992) from Southern France and 

Mediterranean countries are  not compatible with this nomenclature.

1.8.Z LOCALIZATION

Chapter 1

In cell fractionation experiments, carboxylesterases have been predominantly 

found in the microsomal and mitochondrial fractions, showing their intracellular 

location (Matsumura and Brown, 1961; Heymann, 1980; Chen and Sun, 1994). 

In rat liver, the presence of xenobiotic metabolising carboxylesterases has been 

shown in the cytosolic fraction (McCracken et aL, 1993). Parenchymal cells have 

shown the highest carboxylesterase activity in a study of the differential 

distribution of carboxylesterases among the cell types of rat liver (Gaustand et 

aL, 1992). In Drosophila, Est-5 has appeared at high concentration in the 

haemolymph and fat body (Zorus et aL, 1982) while Est-6 of adult males was 

concentrated in the anterior ejaculatory duct (Sheehan et aL, 1979; Karotam and 

Oakshott, 1993). Increased esterase activity has also been found in the larval 

body wall and digestive tract of Drosophila (Healy et aL, 1991). Gut tissues of Cx 

tarsalis have shown an increased carboxylesterase activity when compared with 

head, thorax and the test of abdomen (Matsumura and Brown, 1963). However,
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currently no comprehensive study has been performed to show the exact 

distribution of carboxylesterases in the insect body.

1.8.3. GENETICS, IMMUNOLOGY AND MOLECULAR BIO LOG Y OF 

ESTERASES

1.8.3. L Genetics

Insect resistance to insecticides is an inherited characteristic. Formal genetic 

studies of mosquitoes have been based on the polymorphism of adult or larval 

esterases shown by the native gel electrophoresis. Highly active esterase forms 

are co-dominant and there have been no hybrid forms in heterozygotes (de 

Stordeur, 1976). Many investigators have considered that different elevated 

esterases are governed by different genes. Inheritance and linkage relationships 

have been analyzed from the esterase banding patterns or esterase activity of the 

progeny which resulted from mass crosses between resistant and susceptible 

strains followed by backcrosses to the susceptible parents (de Stordeur, 1976; 

Georghiou et aL, 1980; Pasteur et aL, 1981a; 1981b; Villani et aL, 1983; 

Prabhaker et aL, 1987; Takahashi and Yasutomi, 1987; Peiris and Hemingway, 

1993). Resistance is not sex-linked as detected by the reciprocal crossings (de 

Stordeur, 1976; Georghiou et aL, 1980, Peiris and Hemingway, 1993). In Cx 

quinquefasciatus a minor maternal effect on resistance has been shown with back- 

crosses involving resistant (F,) females, giving consistantly and significantly lower
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mortalities than those involving resistant (F,) males (Peiris and Hemingway, 

1993). Mosquitoes have three pairs of chromosomes (Besansky et aL, 1992). The 

pattern of inheritance with known recessive morphological mutations, belonging 

to each linkage group, has indicated that the resistant gene(s) are on linkage 

group (chromosome) II for Cx tritaeniorhynchus (Takahashi and Yasutomi, 1987) 

and chromosome III for the Cx pipiens complex (Pasteur et aL, 1981a). Pasteur 

et aL (1981a; 1981b) attributed the ‘A’ and ‘B’ type esterases to two closely 

linked gene loci Est-3 and Est-2 respectively. Wirth et aL (1990) showed that 

genes for the esterases B2, A2 and B, in Cx quinquefasciatus are located 2.9 and 

3.9 centimorgans apart respectively in a separate linkage group from Aj. 

Esterases A* and B4, recently described for a Cx. quinquefasciatus strain from 

France, have been shown to be under the control of two distinct loci on the same 

chromosome at approximately 0.8 centimorgans apart. Using restriction maps of 

esterase ‘B’ regions, an unrooted consensus tree has been constructed describing 

the genetic divergence of six esterase ‘B’ haplotypes (Poirie et aL, 1992) 

(FIGURE 1.5).

In vertebrates, inheritance and the linkage relationships of esterase genes have 

been well established. Polymorphism is a common phenomenon and most of the 

gene loci have more than two alleles (TABLE 1.1). In mouse, Mus musculus, 

most of the esterase genes are found on chromosome 8 and arranged in two 

clusters 6.9 centimorgans apart. Gene loci within a  cluster are very closely 

arranged and code for esterases which are more similar to each other than to
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B4 a  susceptib le

( N .  A m e r ic a / T E M -R )

FIGURE 1.5. Proposed unrooted evolutionary tree describing the genetic divergence 

o f six esterase ‘B ‘haplotypes (numbers are estimates o f nucleotide substitutions along 

each segment). Country and the strain are shown in parentheses. Adopted from  

Poirie et aL (1992).

those coded by the loci of the other cluster. Orthologous chromosome regions 

have been identified in other mammals including rat (Linkage group V) and 

rabbit (linkage group VI) (FIGURE 1.6) (Peters, 1982; Hedrich and Deimling, 

1987; Zutphen et aL, 1987). Recently the mouse Es-29 was shown to be under the 

control of two independent genes, a structural gene (linked to cluster 2 on 

chromosome 8) and a modifying/regulatory gene (on chromosome 12) (Deimling 

and Gaa, 1992).

3 7



C hapter 1

ESTERASE GENE CHROMOSOME NO. OF ALLELES

Es-1 8 3
Es-2 8 7
Es-3 11 6

Es-5 8 2
E s-6 8 3

Es-7 8 4?
E s-8 7 2

E s-9 8 4?

E s-10 14 3
Es-11 8 2

E s-12 ? 2

E s-13 9 2
E s-14 9 2
E s-15 7 3

E s-16 3 3

E s-17 9 2

Es-20 8 4

Es-22 8 7

Es-23 8 5
Es-24 8 4

Es-25 12 2
E s-29 8 3

Table 1.1. Location and observed number o f alleles for mouse esterases. 
Compiled from Peters et aL, 1982; Deimling et aL, 1983; Eisenhardt and 
Deimling, 1983; Deimling, 1984; Berning et aL, 1985; Medda et aL, 1986; 
Deimling and Taylor, 1987; Deimling and Gaa, 1992.
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MOUSE Es—24 Es 23
E s -2 2  Es— 1 1 
Es—20 Es— 7

+Ea—1 Es—1 Es—6 E s -9  E s -2  E s -5

4 1.5 6.9 0.4  17

Cluster 1 Cluster 2

RABBIT

Es—1
E s -2  

-  1

Es — 1 
Es - 2  
Es —4  
Es —6 + e

1 0 .6  ±  2 .3
Cluster 1

I

C lu ster 2
1 8 .5  ±  3 .7 ------- r

RAT

+ R T -2
______________________ I_________________

Es—1 0  
Es—6  E s—9  
Es—4  Es—7  
E s - 2  E s—3

E s—18  
E s—16  
E s—15  
E s—1A 
Es—1

1 7 .1 l 2 . 7  l 8 . 8  ±  1 .3 ------------ 1 ~

C luster 1 Cluster 2

FIGURE 1.6. Orthologous chromosome regions of the mouse, the rat and the 

rabbit. * R T , 4E a - l :  two blood group genes, *c: a coat colour gene

Com piled from Peters, 1982; Ronai el a /., 1985; H e d ric h  and Demoting, 1987; Z utphen el a !., 1987 

and D eim ling and Gaa, 1992.
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I.8.3.2. Immunology

Recent immunological and molecular biological studies clearly show that the 

amplification of esterase genes, which allows an increased production of different 

detoxifying esterases, is a common mechanism for organophosphate resistance 

in insects. Reactions of antisera, raised against esterase B, of OP resistant Cx 

quinquéfasciatus (TEM-R) and A, of O P resistant Cx pipiens (S54), with 

immunoblots of various strains have shown that esterase B, and A x are 

overproduced in these strains by factors of at least 500-fold and 70-fold 

respectively as compared with the corresponding susceptible strains. Bj antiserum 

was found to cross-react with other types of B esterases but not with type A 

esterases (Mouches et aL, 1987). Similarly, Aj antiserum reacted with other types 

of A esterases but not with type B esterases. Furthermore, proteins 

immunologically related to type B esterases could be detected in Cx tarsalis, An. 

albimanus, An. stephensi, Ae. aegypti, Myzus persicae and Musca domestica strains 

(Mouches et aL, 1987; Beyssat-Arnaouty et aL, 1989). Antiserum, raised against 

E4 esterase of peach potato aphid Myzus persicae, was used to show the presence 

of increased amounts of these esterases in crude homogenates of resistant strains 

compared to those of susceptibles. This antiserum cross-reacted with the closely 

related variant of E4, FE4, and esterases of Phorodon humuli (Hemiptera: 

Aphidae), showing the homology among these enzymes (Devonshire et aL, 

1986a). In the house mouse, antisera raised against cluster 1 esterases cross-react 

with all the esterases of cluster 1 but not with those of cluster 2 and vice versa.
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Using the immunological and biochemical characteristics, a phylogenic tree has 

been constructed to show the evolution of these two clusters each forming a 

multigene family (FIGURE 1.7) (Ronai et aL, 1985). It was proposed that the 

multiplicity of the carboxylesterase isozymes of the house mouse is the result of 

repeated duplication of an ancestral gene.

Chapter 1

Cluster 1 Cluster 2

Ancestral carboxylesterase 
EC 3.1.1.1

FIGURE 1.7. Evolutionary tree representing possible divergence o f mouse 

carboxylesterase isozymes. Figure from Ronai et aL (1985).

Molecular Biology

Many studies on cultured mammalian cells have shown the development of 

resistance to toxins by amplification of genes which are responsible for
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detoxication mechanisms (Devonshire and Field, 1991). This has also been 

observed in the insects, including mosquitoes. A partial cDNA, which could be 

used to  synthesise a protein that reacts with B, antiserum, was isolated from the 

TEM-R strain. This was used as a probe to detect gene copy number of B, in 

different strains. Adults of the resistant strains with esterase B, were found to 

possess up to 250 times more copies of the gene than the adults of the 

susceptible strain (Mouches et aL, 1986). Utilizing a partial cDNA of the same 

gene Raymond et aL (1989) showed that gene amplification is also common in 

natural populations of Cx quinquefasciatus. A probe prepared from the partial 

Bj DNA hybridized with other ‘B’ type esterase genes of field collected mosquito 

larvae and adults, demonstrating different levels of amplifications of ‘B’ type 

genes in  field populations (Raymond et aL, 1989). In contrast ‘A’ type genes did 

not hybridized with this B, probe confirming the immunological findings that 

there is a  high level of homology among type B esterases but not between B and 

A esterases (Mouches et aL, 1987).

Later, the gene coding for esterase B, of the TEM-R strain was sequenced and 

the structure of the amplified unit in the mosquito genome, (the amplicon) which 

includes the structural gene, was partially characterised (Mouches et aL, 1990). 

Each amplicon was found to contain a highly conserved 25 kilobase "core" 

sequence within a sequence of at least 30 kilobases and was present in a large 

number of copies in the genome of resistant mosquitoes but not in susceptible 

mosquitoes. The esterase B, gene was 2773 base pairs long with three introns
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and the deduced amino acid sequence of the enzyme contained 540 residues. 

The active site polypeptide sequence was similar to those of eukaryotic serine 

esterases. In addition, esterase B, contained regions strongly similar to human 

butyrylcholinesterase, Torpedo AChE and Est-6 and AChE from Drosophila 

melanogaster (Mouches et al., 1990).

Raymond et al. (1991) cloned and sequenced a H indlll/Bam H l fragment of the 

esterase B2 gene and compared this with the homologous B, fragment. The two 

fragments showed 96% nucleotide sequence homology, and 97% homology in the 

predicted amino acid sequence. Using restriction fragment length polymorphism 

(RFLP) and partial sequencing, they have also shown that structural genes of 

electrophoretically dissimilar type B esterases were similar whereas their 

flanking regions varied considerably. However, the flanking sequences of esterase 

B2 from different geographical locations (Africa, Asia and North America) were 

identical. Therefore it was suggested that amplified esterase B2 genes originated 

from an initial event, and by migration this type of OP insecticide resistance has 

subsequently spread throughout the world (Raymond et aL, 1991). Later Poirie 

et a l (1992) found two ‘B’ type esterases (B4 and Bs) with RFLP patterns of the 

flanking regions different from each other and from those of B, and B2 and thus 

argued that amplification of esterase ‘B’ locus has occurred at least 4 times. 

Using the restriction maps built with three restriction enzymes and with male 

genitalia as morphological markers to discriminate tropical, temperate and 

hybrid forms of the Cx pipiens complex of mosquitoes, Rivert et al (1993) have
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shown the recent migration of A 2 and B2 esterases into France. However, the 

possibility of co-evolution can not be overlooked when the patchy distributions 

and different insecticide cross-resistance spectra shown by the resistant 

populations are considered.

Chromosomal organization of the B, amplified gene has been studied by in situ 

hybridization using a labelled esterase B, gene probe. Esterase B, gene copies 

were found to be clustered in the intermediate region (between the centromere 

and the apex) of the chromosome II, in a tandem arrangement making it a little 

longer in resistant types (Nance et aL, 1990). Wirth et aL (1990), after observing 

the pattern of inheritance and linkage relationships of these esterases, stated that 

these amplified genes may be inherited as clusters showing a monofactorial 

inheritance. Tandem gene duplication of Drosophila Est-6 (on chromosome 3) 

has also been demonstrated by in situ hybridization experiments using a 1.8 kb 

cDNA probe of the Est-6 gene (Procunier et aL, 1991).

Some progeny of a cross between OP resistant TEM-R and a susceptible strain 

showed significantly higher esterase activity than the mean esterase activity of 

their parents suggesting an enhanced expression of the amplified Bt genes when 

they are present in only one of the  two homologous chromosome pair (Ferrari 

and Georghiou, 1990). The same phenomenon has also been shown with Sri 

Lankan Cx quinquefaSciatus by Peiris and Hemingway (1993).
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Apart from the above studies on mosquito esterases intensive molecular 

biological studies have been carried out on the esterase E4 and its closely 

related variant FE4 in Myzus persicae. Again gene amplification is responsible 

for the increased production of these esterases and the degree of amplification 

is well correlated with the level of resistance and the amount of esterase activity 

in different strains (Field et aL, 1988). Increased amounts of mRNA coding for 

these esterases has been shown for resistant strains using the immunologically 

precipitated products of their in vitro translation. No such protein has been 

detected in the experiments done with susceptible aphids (Devonshire et aL, 

1986b). The amplified E4 related sequences were highly methylated at restriction 

enzyme MSP1 sites in all resistant strains but not in those where resistance had 

reverted. This suggested that the subsequent loss of methylation had resulted 

in the loss of transcriptional expression of these genes, giving an apparently 

susceptible phenotype (Field et aL, 1989). Recently, Field et al. (1993) have 

cloned and fully characterised the genes of E4 and FE4 esterases. The open 

reading frame of E4 cDNA was 1656 nucleotides long coding 552 amino acids. 

The gene was 4.3 kb long and the coding region was interrupted by six introns. 

Its closely related variant FE4 gene had a 99% identity over this region with a 

single nucleotide substitution which resulted in the FE4 mRNA having an extra 

36 nucleotides at the 3’ end. The deduced amino acid sequence shows the 

possibility that the activity of the native protein involves a charge-relay system 

with a catalytic triad (serine, histidine and glutamic acid) in the active site as in 

AChE. Strong similarities have been shown between the amino acid sequence
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surrounding the active site of E4 and that of the other serine hydrolases, 

including mammalian AChEs and carboxylesterases, mosquito esterase Bj, 

Drosophila Est-6 and the juvenile hormone esterase from Heliothis virescens 

(Field et aL, 1993).

1.8.4. PHYSICOCHEMICAL PROPERTIES

1.8.4.1. Physical Properties

Liver, kidney and intestinal carboxylesterases of mammals generally consist of 

units of molecular weight of about 60 kDa. The majority of these are monomers 

which tend to associate at higher concentrations, while a few form stable trimers 

(Heymann, 1980). Native molecular weights of several esterases found on mouse 

chromosome 8 were 45-55 kDa (Peters, 1982) although that of 130 kDa has been 

reported recently for ES-29 (Deimling and Gaa, 1992). Recently Alexon et al. 

(1993) also have shown a monomeric molecular weight of 59 kDa for a rat liver 

microsomal esterase.

Molecular weights of purified mosquito esterases A2 and B2 were 67 and 60 kDa 

respectively and both were monomers in their native forms (Ketterman et aL, 

1992; Jayawardana, 1992). Merryweather et aL (1990) reported a mosquito 

carboxylesterase of 62 kDa. A monomeric structure of 67 kDa and a 

homodimeric structure of 118-134 kDa have been reported for partially purified
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B, and A, (Fournier et aL, 1987). Although the dimeric structure for A, here 

contrasts with those of other reported esterases, it may be due to temporary 

associations between monomers. However, a molecular weight of 16 kDa, shown 

for a partially purified mosquito carboxylesterase by Matsumura and Brown 

(1963), is an exception. Estimated molecular weights for the esterases of other 

insects also fall into the above general range; 65 and 66 kDa for esterase E4 and 

FE4 respectively in Myzus persicae (Devonshire et aL, 1986b), 65 kDa for 

esterase-C in Drosophila melanogaster (Holwerda and Morton, 1983) and 62-64 

kDa for esterases E„ Ej and E3 in Nilaparvata lugens (Chen and Sun, 1994). 

Again an exceptionally higher molecular weight range of about 220 kDa has 

been reported for partially purified housefly esterases (Kao et aL, 1985a).

The iso-electric point (pi) of B-type carboxylesterases (according to Alridge’s 

classification) is usually in the range of pH 4.7-6.5 (Heymann, 1980). Two 

purified human liver carboxylesterases have shown p i values of S.2-5.8 and 4.2- 

4.8 (Ketterman et aL, 1989) while a pi range of 4-7 has been observed in mouse, 

rat and rabbit liver carboxylesterases (Kao et aL, 1985b, Simon et aL, 1985). 

Mentlein e t aL (1984; 1985a; 1985b) reported a pi range of 5.2 - 6.4 for several 

rat liver microsomal carboxylesterases. In insects, 5.1 and 5.3 pi values have been 

reported for two active esterases in insecticide resistant houseflies (Kao et aL, 

1985a). Carboxylesterases Et, E j and Ej in Nilaparvata lugens have shown pi 

values of 4.7 - 4.9 (Chen and Sun, 1994). Twenty two soluble esterases of 

Drosophila melanogaster have shown a pi range of 3.8 - 6.2 (Healy et aL, 1991).

C hapter 1
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Reported pi values of mosquito carboxylesterases are similar to those in other 

organisms, being 5.2 for A2 (Ketterman et a l, 1992), 5.1 for B2 (Jayawardena, 

1992) and between 5-6 for A, and B, (Fournier et a l, 1987).

The glycosylated nature of esterase E4 of Myzus persicae has been shown by its 

high affinity for lectin (con-A sepharose) and by non-denaturing electrophoresis 

gels, stained for sugars. Differences in glycosylation may be responsible for about 

6 - 8  kDa difference between the native esterases, E4 and FE4, and their 

respective nascent forms, shown by both in-vitro translation of mRNA 

experiments (Devonshire etaL, 1986b) and deduced amino acid sequences (Field 

et al., 1993). Five and three possible glycosylation sites have been shown for 

esterases E4/FE4 and Bt amino acid sequences respectively (Field et aL, 1993, 

Mouches et aL, 1990). The predicted molecular weight o f  esterase Bj was 59,000 

kDa which is 8 kDa less than its native form (Fournier et aL, 1987; Mouches et 

a l, 1990).

1.8.4.2. Chemical Properties

The complex involvement of carboxylesterases in detoxication in the mammalian 

liver has been well studied. In insects, most of the earlier work was reviewed by 

Ahmad and Forgash (1976).

The majority of serine hydrolases contain a serine-histidine-glutamic acid
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catalytic triad, but some (eg. cholesterol esterase) have aspartic acid as the acidic 

member of the triad (Cygler et aL, 1993). Carbamate and many OP insecticides 

inhibit B-type carboxylesterases (according to Aldridge’s classification) by rapid 

esterification of the serine residue in the active site. This reaction is often 

followed by a slow hydrolysis of the new ester bond. Therefore considering the 

overall reaction, these insecticides are only inhibitors because they are such poor 

substrates for these esterases.

The generally accepted reaction mechanism is;

C hapte r 1

E  +
k 2 k 3

»  E l  - E l ' + P,
k -i h2o

or;

E  +
*3

P, -  E  +
h2o

P2

where, E  is the enzyme, I the inhibitor, El Michaelis complex, E l’ acylated 

enzyme, P, first product (alcohol) and P2 second product (acid).

It is believed that the formation of the Michaelis complex (k,) is probably 

diffusion controlled and the fastest of all reactions making it impossible to
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measure (Aldridge and Reiner 1972). For substrates, the whole reaction is very 

fast so that free enzyme is regenerated and the substrate is rapidly hydrolysed. 

However it is not conclusive that substrates go through an acylated esterase 

intermediate step because the intermediate has not been isolated (Aldridge 

1993). For inhibitors, the acylated enzyme is formed very quickly (k, is very high) 

but it is either stable or its rate of hydrolysis (k3) is very slow becoming a rate 

limiting step. Hence carboxylesterases have a very high affinity for the OPs and 

carbamates with a very low capacity because of the irreversible 1 : 1 

stoichiometry of the reaction in the active site. In the presence of large amounts 

of these enzymes the insecticides are rapidly sequestered before they reach their 

targets. This is the basis for the resistance mechanism with increased amounts 

of carboxylesterases.

Kinetic constants, showing the rates of acylation and the affinities of binding of 

the purified mosquito carboxylesterase A2, have been reported for four 

insecticides (three OPs and one carbamate), supporting its role in sequestration 

(Ketterman et aL, 1992). Slow turnover of the insecticides, determined by the 

kinetic constant k3, has been shown for both purified esterases A2 (Ketterman 

et aL, 1992) and E4 of Myzus persicae (Devonshire, 1977; Devonshire and 

Moores, 1982).

Kinetic constants for hydrolysis of various xenobiotic substrates by esterases, 

have been investigated by many workers using crude homogenates of insects.

C hapter 1
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Cuany et al. (1993) have reported 1^ values of several insecticides for TEM-R 

crude homogenate of Cx quinquefasciatus. Studies with purified esterases have 

been reported for mosquito esterase A2 (Ketterman et aL, 1992), peach-potato 

aphid esterase E4 (Devonshire, 1977) and housefly esterases (Kao et aL, 1985a). 

The purified esterases E4, from both resistant and susceptible strains, have 

shown similar kinetic constants towards paraoxon and a-naphthyl acetate, 

indicating, that the enzyme from both strains are biochemically similar and the 

difference between the strains must be caused by different amounts of the same 

enzyme resulting from amplification rather than a change in the structural gene 

(Devonshire, 1977). In contrast, qualitative differences for the susceptible and 

resistant esterases of pi 5.1 have been shown in house fly strains (Kao et aL, 

1985a). Ijo values for several insecticides have been reported recently for purified 

Ej, E2  and E3 carboxylesterases of Nilaparvata lugens (Chen and Sun, 1994).

Extensive biochemical work has been performed to determine the possible 

physiological functions of different rat liver microsomal esterases (Mentlein et 

aL, 1984; 1985a; 1985b). Ketterman et aL (1992) also attempted to investigate the 

role of A2 on possible physiological substrates. The mosquito A2carboxylesterase 

showed acylglycerol lipase activity, which has also been reported for vertebrate 

carboxylesterases. It was suggested that this A2 enzyme, like the mammalian 

carboxylesterases, may be involved in lipid-fatty acid metabolism in addition to 

its role in detoxication.

C hapter 1
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1.9. BACKGROUND AND AIMS OF THE PRESENT STUDY

1.9.1. BACKGROUND OF THE STUDY

The use of pesticides, both directly and indirectly, against the mosquito Cx 

quinquefasciatus has resulted in the selection of the elevated esterase-based 

mechanism in populations throughout the world. The majority of these involve 

the co-elevation of two esterases, A2 and B2. The overproduction of ‘B’ esterases 

has been shown to be due to gene amplification (Mouches et aL, 1986; 1990; 

Raymond et aL, 1989). On the basis of identical restriction digest patterns of the 

B2 amplicon from the resistant strains of Cx quinquefasciatus from major ports, 

Raymond et aL (1991) have put forward the hypothesis that this resistance 

mechanism has occurred only once, and spread worldwide by a recent migration. 

According to this hypothesis all the amplified A2 and B2 esterases would be the 

same. To date, no work has been performed to test this hypothesis using the 

purified enzymes.

1.7.2. AIM S OF THE STUDY

The ultimate goals of this study are;

1) Purification and characterization of the elevated mosquito esterases A2 and 

B2 to reveal their properties.
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2) To establish the role of these esterases in the insecticide resistance.

3) To investigate whether or not the amplified enzymes in different strains 

(which originate from different geographical regions of the world) are 

functionally identical, using the purified enzymes. If there are multiple variants, 

the possibility of the presence of more than one form within a single population 

will also be examined.

4) To establish the identity of the susceptible non-amplified esterases.
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PURIFICATION AND CHARACTERIZATION OF THE 

CARBOXYLESTERASES A2 AND B2 FROM PELRR STRAIN.

2.1. INTRODUCTION

To determine the role of the carboxylesterases which are responsible for the 

insecticide resistance in the mosquito Cx quinquefasciatus, the PelRR strain was 

used as a model enzyme source. The ‘Pel’ original colony was collected in 1984 

from Peliyagoda, Sri Lanka and was heterogenous for OP resistance. The major 

resistance mechanism was the increased activity of carboxylesterases A2 and B2. 

The PelRR strain was selected from the ‘Pel’ colony with temephos for 13 

consecutive generations and was 29-fold more resistant to the selecting 

insecticide than the susceptible PelSS strain which was also derived from the ‘Pel’ 

colony by single family selection for low esterase activity. The basic biochemistry 

and the genetics of OP resistance of the PelRR strain had already been studied 

and the increased activity of esterases A2 and B2 was the only resistance, 

mechanism detected (Peiris and Hemingway, 1990a; 1990b). Later, the 

methodologies were developed to purify both A2 and B2 enzymes and esterase 

A2 was characterized (Ketterman et aL, 1992; Jayawardena, 1992).

At the start of this project, purified enzymes could no longer be obtained using
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the published purification methods. To characterize the properties and to define 

the role in insecticide resistance it was important to obtain the enzymes pure. 

This chapter details the re-development of the purification methodologies for 

both enzymes and the characterization of the B2 enzyme from the PelRR strain. 

Most of the characterization of esterase A2 had already been done previously 

(Ketterman et a t, 1992) and this was completed by the other members of the 

research group from enzyme purified as part of this project.

C hapte r 2

2.2. MATERIALS AND METHODS

2.2.1. MOSQUITO COLONY MAINTENANCE

Adult mosquitoes were kept in cages of dimensions 45 x 45 x 45 cm with 20% 

(w/v) glucose solution for food. Females were blood fed once a week on young 

chicks confined by wire-mesh cages and placed inside the mosquito cages 

overnight. Small plastic tubs containing water were placed inside the cages for 

egg laying. Adult cages were maintained in a 12 hour light/dark regime at 25°C 

and 80% relative humidity. Egg rafts or hatched first instar larvae were 

transferred to rearing bowls containing tap water. The bowls were covered with 

nets and maintained at 25°C. A mixture of liver powder + yeast was added as 

required as the larval food. Pupae or late 4th instar larvae were transferred to the 

plastic emergence tubs which were placed inside the adult cages. In the PelRR
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strain, larval selection for temephos resistance was maintained by exposing the 

fourth instar larvae of every third generation to the calculated LD^ 

concentration of temephos. Larval bioassays were undertaken according to 

standard World Health Organization procedures (WHO, 1981).

2.2.2. CHEMICALS A N D  EQUIPMENTS

Q-Sepharose Fast Flow, Phenyl Sepharose Fast Flow, PD-10 columns, Nap-5 

columns and Nick spin columns were purchased from Pharmacia, UK. 

Hydroxylapatite, Prep-Cell model 491 and the protein assay kit were purchased 

from Bio-Rad, UK. The p-chloromercu ri benzoate was from Pierce (Chester, 

UK). Chemicals were purchased from Sigma (UK) except when stated otherwise. 

0 ,0 ,0 ’0 ’-tetramethyl0,0’-thiodi-p-phenylenebis(phosphorothioate)(temephos, 

99.7% pure), 0,0-diethyl 0-3,5,6-trichloro-2-pyridyl phosphorothioate 

(chlorpyrifos, 99.5% pure), 0,0-dimethyl O’-4-nitro-m-tolyl phosphorothioate 

(fenitrothion, 97% pure) , diethyl (dimethoxythiophosphorylthio) succinate 

(malathion, 97% pure) and its oxon analogue (malaoxon, 87.5% pure), diethyl-4- 

nitrophenyl phosphate (paraoxon, 97.4% pure) and 2-isopropoxyphenyl 

methylcarbamate (propoxur, 97% pure) were purchased from British Greyhound 

(Birkenhead, Merseyside, U.K.). The oxon analogues of chlorpyrifos (chlorpyrifos 

oxon, analytical grade)and fenitrothion (fenitrooxon, 98.3% pure) were gifts from 

DowElanco (Midland, U.S.A.) and Sumitomo (Osaka, Japan) respectively, a- 

cyano-3-phenoxybenzyl 3 -(2 -ch lo ro-3 ,3 ,3 -trifluoroprop-l-eny l)-2 ,2 -
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dimethylcyclopropanecarboxylate (lambda cyhalothrin, 81.2% pure) was a gift

Chapter 2

from Zeneca Public Health (Bracknell, Berks., U.K.).

2.2.3. ENZYME ASSAYS

Enzyme activities were assayed with the substrate ImM p-nitrophenyl acetate in 

50 mM phosphate buffer (pH 7.4) at 22°C, unless otherwise stated. A stock 

solution of 100 mM p-nitrophenyl acetate was prepared in acetonitrile and stored 

at 4°C. 200 pi of a 1 mM working solution, prepared in 50 mM sodium 

phosphate buffer (pH 7.4), was mixed with 10 pi of enzyme solution in a 

microtitre plate well and the increase in absorbance at 405 nm was continuously 

monitored for 0.5-1.0 minute in a UVmax microtitre plate reader (Molecular 

Devices, USA). An extinction co-efficient of 6.53 mM'1 (corrected for a path 

length of 0.6 cm for 200 pi) was used to convert the absorbance to millimoles.

2.2.4. PROTEIN DETERMINATION

The protein concentration was estimated by the method of Bradford ( 1976) using 

bovine serum albumin as the standard protein. In a microtitre plate well, 10 pi 

of protein sample was mixed with 300 pi of working solution (prepared according 

to the instructions of the manufacturer) and the absorbance was read at 570 nm 

after a five minute incubation at 22°C.
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2.2.5. PURIFICATION OF CARBOXYLESTERASES

2.2.5.1. Purification of esterase A2

Unless stated otherwise, the purification steps were performed at 4°C. Fourth 

instar larvae were snap-frozen in liquid nitrogen and stored at -70°C until used. 

The larvae (15g) were homogenised in 100 ml of bis-tris propane buffer (pH 6.5 

with the conductivity adjusted to 2.0 mS/cm) containing 25 mM DL-dithiothreitol 

(DTT). The homogenate was centrifuged at 10,000g for ten minutes and the 

supernatant (pH and conductivity adjusted) was applied to a Q-Sepharose Fast 

Flow column (4.4 x 4 cm) equilibrated with homogenisation buffer. The enzyme 

was eluted with a 10 bed volume salt gradient (0-0.5 M  NaCl in bis-tris propane 

buffer) and elution profiles were determined for esterase activity, protein and 

conductivity. The esterase activity eluted in one peak and the salt concentration 

of the pooled fractions was adjusted to 3M NaCl. This sample was then applied 

to a Phenyl-Sepharose Fast Flow column (2.2 x 8 cm) equilibrated with 25 mM 

bis-tris propane buffer (pH 6.5) containing 10 mM DTT and 3M NaCl. The 

absorbed esterase activity was eluted with 5 bed volumes of a decreasing salt 

gradient (3-0 M NaCl in the equilibration buffer). Elution was continued 

isocratically once the gradient ended. The esterase A2 peak was eluted first and 

the fractions were combined and dialysed against dry sucrose. Further de-salting 

and buffer exchange into the hydroxylapatite buffer was performed on PD-10 

columns. The sample was then applied to an hydroxylapatite column (2.2 x 5.4
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cm ) equilibrated with 10 mM phosphate buffer, pH 6.8, containing 10 mM D l l . 

T he esterase activity was eluted with a 5 bed volume gradient of phosphate 

buffer (10-200 mM, pH 6.8). To avoid the crystallization of the phosphate buffer, 

which occur at lower temperatures, the hydroxylapatite chromatography was 

performed at 22°C. The esterase activity was eluted as a single peak and the 

fractions were combined and concentrated to 500 tx\ in Amicon centriprep 10 

concentrator units. Buffer exchange into tris-borate native PAGE electrode 

buffer (pH 8.0) was performed using a Nap-5 column. The sample (with xylene 

cyanol marker and 10% glycerol) was applied onto a 9% acrylamide gel (17 ml) 

w ith a 4% acrylamide stacking gel (9 ml) in a Prep-Cell model 491. The gel was 

run at 15 W constant power and the enzyme was eluted with the same buffer 

containing 10 mM D TI . Pooled fractions of activity were concentrated and the 

buffer exchanged into 50 mM phosphate buffer (pH 7.4) on Nap-5 columns. 

Purified enzyme was stored in 50 mM phosphate buffer (pH 7.4) containing 50% 

(v /v) glycerol and 25 mM DTT at -20°C.

2-2.S.2. Purification o f esterase B2

The esterase B2 peak was the second esterase peak eluted from the Phenyl- 

Sepharose column as described above. Fractions were pooled separately from 

those of A2 and dialysed against dry sucrose. De-salting and buffer exchange into 

the hydroxylapatite buffer was performed on PD-10 columns. The sample was 

then applied to a hydroxylapatite column (2.2 x 5.4 cm) equilibrated with 10 mM

C hapter 2
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phosphate buffer (pH 6.8) containing 50 mM NaCl and 10 mM DTT. The 

esterase activity was eluted with a 5 bed volume gradient of the phosphate buffer 

(10-200 mM, pH 6.8) containing no NaCl. The hydroxylapatite chromatography 

was performed at 22°C. The esterase activity was eluted as a single peak and the 

fractions were combined and concentrated in Amicon centriprep 10 concentrator 

units. Buffer exchange into 0.1 M phosphate buffer containing 10 mM EDTA 

(pH 7.8) was performed on Nap-5 columns. This sample was applied to a p- 

chloromercuribenzoate column (1.5 x 5 cm) equilibrated with the same buffer. 

The esterase activity was eluted with a 5 bed volume gradient of the equilibrating 

buffer and 20 mM phosphate buffer, pH 6.8, containing 30 mM p- 

mercaptoethanol. Fractions with esterase activity were combined and 

concentrated. Buffer exchange was performed on Nap-5 columns and the purified 

enzyme was stored at -20°C in 50 mM phosphate buffer (pH 7.4) containing 50% 

(v/v) glycerol and 25 mM DTT.

2.2.6. CHARACTERIZATION OF ESTERASES A 2 AND B2

C hapter 2

2.2.6.1. Kinetic constants

All specific activities are given in units/mg of protein. A unit corresponds to the 

hydrolysis of 1 ¿¿mol of substrate in 1 min under the assay conditions used. 

Kinetic constants were determined from at least three experiments for each 

substrate or insecticide using enzymes from several different purifications.
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2.2.6.1.1. DETERMINATION OF THE MICHAELIS CONSTANT (K J  AND  

THE MAXIMUM VELOCITY (V ^ J  FOR THE SUBSTRATES

The hydrolytic production of p-nitrophenol at different substrate concentrations 

was measured to determine the constants for p-nitrophenyl acetate and p- 

nitrophenyl hexanoate (p-nitrophenyl caproate) using the assay described 

previously (see section 2.2.3.). For a- and p-naphthyl acetate the production of 

naphthol was measured at 235 nm in a Beckman Du-70 spectrophotometer 

(Buckinghamshire, UK). An extinction co-efficient of 24 mM'1 (corrected for the 

path length) was used to convert the absorbance to moles. The Michaelis 

constant (!£„,) and Vm„  for these substrates were calculated by non-linear 

regression using the Enzfitter programme (by RJ.Leatherbarrow, Biosoft)

Z2.6.1.Z DETERMINATION OF KINETIC CONSTANTS FOR SEVERAL 

INSECTICIDES

C hapter 2

For the inhibition kinetics, stopped time inhibition assays were performed using 

p-nitrophenyl acetate or p-nitrophenyl hexanoate as the substrate. An enzyme 

concentration which gives a reading of about 300 mOD in the control was used. 

Insecticide stock solutions (100 mM) were always prepared in acetonitrile and 

diluted in phosphate buffer (pH 7.4) prior to each experiment. The purified B2 

enzyme was incubated with a series of concentrations of the test insecticide 

(acetonitrile concentration of the medium never exceeded 1% [v/v]) and at 0.5-
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5.0 min time intervals aliquots were withdrawn and diluted with the substrate 

immediately to stop further inhibition. Residual activity was determined by 

measuring the rate of substrate hydrolysis. The activities were divided by those 

measured in the absence of insecticide (control). The inhibitor concentrations 

were in large excess so that linear pseudo-first-order kinetics were obtained 

(Aldridge and Reiner, 1972). For each insecticide concentration log percentage 

remaining activity at each time point was plotted against time and the slope of 

each graph gave the observed rate of inhibition (lq*,). The following equation 

was used to determine the constants K, and k2 (Aldridge and Reiner, 1972).

[ I l /k ^  = K,/k2 + [I]/k2

where; [I]= insecticide concentration, K,= Michaelis constant for the inhibitor 

and k2 = first order rate constant for the formation of acylated enzyme from the 

Michaelis complex.

by dividing with [I] the following equation is derived;

1/kob* = K,/k2 . l / [ I ]  + l /k 2

Therefore, when l / k ^  values are plotted against 1/[I], the k2 and K, constants 

are given by the (1/Y-axis intercept) and (slope x k2) respectively.

The bimolecular rate constants for the formation of acylated enzyme (k,) were
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derived from the following equation (Aldridge and Reiner, 1972). 

k, = l/[I]t In 100/X

where; t=  time of preincubation of the enzyme and X= percentage remaining 

activity.

Whenever the [I] could not be maintained in large excess and thereby pseudo- 

first-order kinetics were not obtained, the k, values were determined in the 

presence of the substrate using the following equation (Main and Dauterman, 

1963).

k, = 2.303 /(V t,)(l-«)[I] log V,/V2 

and, (1-a) = ^ / ( I ^  + IS])

where; K„ = Michaelis constant for the substrate, [S] = substrate concentration, 

V, is the velocity after inhibition for time t2 and V2 is the velocity after inhibition 

for time t2.

To minimise the effect of the reversible enzyme-substrate complex on the rate 

of acylation, the substrate concentration was maintained at a very low 

concentration so that the [substrate concentrationJ/K^ ratio was always less than
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0.5 (Aldridge and Reiner, 1972).

The re-activation experiments were performed by incubating the enzyme with the 

respective insecticide for 10-15 min so that the enzyme was more than 90% 

inhibited. Concentration of the enzyme was determined as earlier. The unbound 

insecticide and enzyme-insecticide complex were separated on a  Nick spin 

column. 10 #d Aliquots were removed to measure the esterase activity of the re­

activating enzyme, as well as a control, over time. The slope of the curve, 

obtained by plotting the percentage remaining activity against the time, gave the 

reactivation constant k3.

2.2.6.2. Influence of effectors

Several compounds which may effect the enzyme activity and are commonly used 

to characterize different esterase types were used. Solutions of bis-(p-nitrophenyl) 

phosphate (0.1 mM), paraoxon (0.1 /iM and 0.1 mM), EDTA (1 mM), eserine 

(10 /iM ) and several metal ions were prepared either in 50 mM phosphate buffer 

(pH 7.4) or in 25 mM bis-tris propane buffer (pH 7.4) depending on their 

solubility. Each effector was pre-incubated with the purified enzyme for 30 min 

at 22°C. Esterase activity was then measured in the presence of each effector. 

Enzyme concentration was determined as described in the previous section.
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2.2.6.3. Polyacrylamide gel electrophoresis

Bio-Rad Miniprotean II vertical gel electrophoresis units were used. 

Electrophoresis of native protein samples was performed in 7.5% acrylamide gels 

in tris/borate buffer, pH 8.0, by the method of Davis (1964). The gels were 

stained for esterase activity with 0.04% (w/v) a- and P-naphthyl acetate and 

0.1% (w/v) Fast Blue B in 100 mM phosphate buffer, pH 7.4. SDS- 

polyacrylamide gel electrophoresis was performed with standard proteins using 

10% acrylamide gels in tris/glycine/SDS buffer, pH 8.3, as described by Laemmli 

(1970). Coomassie Blue R250 was used to stain for protein.

2>2.6.4. Determination of Molecular Weight

For each SDS-polyacrylamide gel, log molecular weight versus the relative 

mobility for each standard were plotted to obtain a regression line. The 

molecular weight of esterase B2  was determined using its relative mobility 

compared to the standards. This was repeated on several gels.

2.2.6.5. N-terminal analysis

N-terminal analysis of purified B2  (for each trial a sample of about 10 pg in 100 

Ml of distilled water was sent) was done by automated Edman degradation on an 

Applied Bio Instruments 477a protein sequencer by the protein sequencing unit
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23. RESULTS AND DISCUSSION

2.3.1. PURIFICATION OF ESTERASES

Purification procedures for the esterases A2 and B2  were developed by modifying 

the methods of Ketterman et aL (1992) and Jayawardena (1992). In the previous 

methodologies pure esterases were obtained by sequential chromatography on 

Q-Sepharose, phenyl-Sepharose and hydroxylapatite. Both esterases eluted from 

the ion-exchange column in a single peak as both had similar isoelectric points 

(between 5.0-5.1). The A2  and B2  esterase activity peaks were separated on the 

hydrophobic phenyl-Sepharose column. Each esterase was then purified to 

homogeneity by hydroxylapatite columns. However, probably due to batch to 

batch variation of the chromatography media, an inefficiency in binding of both 

enzymes to Q-Sepharose and of esterase B2 to hydroxylapatite was later observed 

under the established conditions. Experiments carried out under different 

conditions revealed that the conductivity should not exceed 2.5 mS/cm in order 

to bind these esterases firmly to Q-Sepharose material at pH 6.5. Esterase B2  

could be bound to hydroxylapatite material by reducing phosphate ion 

concentration (by changing the buffer system) or by introducing NaCl. MgCl2  or
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CaCl2 could not be used because of their inhibitory effect on B2  in high 

concentrations. As a result of extensive experiments it was found that the 

maximum purity with a sharp esterase peak in the elution could be attained only 

by the method given in section 2.2.S.2. The necessity of a fourth step in the 

purification procedures arose as the samples still had several other protein 

contaminants. For the fourth step various materials were tested with both 

enzymes under different conditions.

Esterase A2  could be bound to Cibacron Blue, a dye ligand immobilised on 

agarose, but was difficult to elute from it. When the same dye was used to elute 

the esterase, it could not be dissociated from the enzyme afterwards. Esterase A 2  

would also bind to immobilised p-chloromercuri benzoate but was not eluted by 

various standard methods. Finally using the differences in the mobility in native 

PAGE, esterase A2  could be separated from the other contaminating proteins 

with the Prep Cell model 491.

Esterase B2  did not bind to any of the several dye ligands tested (Cibacron Blue, 

Reactive Blue 4-Agarose [R 8754], Reactive Brown 10-Agarose [R 8629], 

Reactive Green 19-Agarose [R 4004], Reactive Red 120-Agarose [R 9129] and 

Reactive Yellow 8 6 -Agarose [R 8504]). It also did not bind to chelating 

Sepharose charged with Z n+* binding sites. The glycosylated nature of this 

enzyme is questionable as it did not bind to Con-A Sepharose (with binding sites 

for glucose and mannose residues). Since most of the contaminating proteins

C hapter 2
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gave a single band together with esterase B2 in native PAGE, the Prep Cell could 

not be used. Finally, pure esterase B2 could be isolated using immobilised p- 

chloromercuribenzoate.

The disulphide bonds must be very important in maintaining the active forms of 

A2  and B2  since it was essential to maintain a high concentration of DTT, which 

serves as an reducing agent and protects the S-S groups, during the purification 

procedures and storage. However, DTT was removed before the samples were 

introduced to p-chloromercuribenzoate material to facilitate the binding.

Chromatography profiles are shown in FIGURES 2.1-2.4. Esterase B2  was eluted 

from p-chloromercuribenzoate column in a broad peak of activity and the protein 

concentrations of these fractions were not detectable (profile not shown). Data 

for a single purification procedure is given in TABLE 2.1. Multiple preparations 

routinely gave approximately 40% final recovery of enzyme activity (as a 

percentage of the total esterase activity [ie. A2 + B2] observed in the beginning) 

and 350 -fold purification for esterase A2  and 3% final recovery and 50-60 -fold 

purification for esterase B2. Using the outlined procedures approximately 800 pg 

of purified esterase A2  and 200-300 pg of purified esterase B2  were obtained 

from 15 g wet weight of larvae. The final esterase preparations appeared to be 

homogeneous as determined by SDS-PAGE (FIGURES 2.5 and 2.6).

Chapter 2
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FIGURE 2.1
Elution profile of Q-Sepharose chromatography for esterases A] and B2 
purification

5 ml fractions of the elution of 0-0.5 M NaCl gradient in 25 mM bis-tris propane 
buffer (pH 6.5) were collected.
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FIGURE 2 J.

Elution profile of phenyl-Sepharose chromatography for esterases A2 and B2 
5 ml fractions of the elution of 3-0 M NaCl gradient in 25 mM bis-tris propane 
buffer (pH 6.5) were collected. The two esterases were eluted in two separate 
peaks (see the text for details).
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FIGURE 2 3

Elution profile of hydroxylapatite chromatography for esterase A2 
1 ml fractions of the elution were collected. Enzyme was applied to the column 
in 10 mM phosphate buffer (pH 6 .8 ) and eluted with a 10-200 mM phosphate 
gradient.
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FIGURE 2.4

Elution profile of hydroxylapatite chromatography for esterase B2 
1 ml fractions of the elution was collected. Enzyme was applied to the column 
in 10 mM phosphate buffer (pH 6 .8 ) with 50 mM NaCl and eluted with a 10-200 
mM phosphate gradient without NaCl.
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TABLE 2.1

Purification of the esterases Aj and B2
The purification was monitored by the assay of 1 mM p-nitrophenyl acetate 
hydrolysis at 22°C. The two esterases were separated after the phenyl-Sepharose 
column.

Step Specific 
Activity 
(Units/mg)

Protein
(mg)

Purification
(fold)

Recovery
(% )

1 0 , 0 0 0  g supernatant 1.03 692.5 - -

Q-Sepharose 13.15 63.93 12.74 117.5

Phenyl-Sepharose a 2 33.22 12.67 32.20 58.90

b 2 21.49 3.98 20.83 11.96

Hydroxylapatite a 2 204.78 1.63 198.8 46.84

b 2 47.27 1.45 45.81 9.60

Prep-Cell a 2 363.15 0.80 352.6 40.70

p-chloro- b 2 51.82 0.395 50.22 2 . 8 6

mercuribenzoate
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FIGURE 2.5
SDS-I’AGE of purified esterase A2

Molecular weight markers on 10% gel are; a2-macroglobulin (180 kDa), p* 
galactosidase (116 kDa), fructose-6 -phosphate kinase (84 kDa), pyruvate kinase 
(58 kDa), fumarase (48.5 kDa), lactate dehydrogenase (36.5 kDa) and 
triosephosphate isomerase (26.6 kDa).

116.0 KDa

180.0 KDa

26.6 KDa
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FIGURE 2.6

SDS-PAGE of purified esterase B2

Molecular weight markers on 10% gel are; P-galactosidase (119 kDa), fructose-e- 
phosphate kinase (98 kDa), pyruvate kinase (80.6 kDa), fumarase (64.4 kDa), 
lactic dehydrogenase (44.6 kDa) and triosephosphate isomerase (38.9 kDa) 
(Markers are pre-stained and therefore slightly heavier than the similar markers 
in FIGURE 2.5 which are not pre-stained).

b2

119.0 KDa

98.0 KDa

80.6 KDa

64.4 KDa

44.6 KDa

38.9 KDa
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2.3.2. CHARACTERIZATION OF ESTERASES A 2 AND B2

2.3.2.1. Physical Characterization

The monomeric Mr of the purified esterase B2, estimated from SDS/PAGE was 

62.8 ± 2.4 kDa (FIGURE 2.7). This is in close agreement with the previous 

observations for the same enzyme (Jayawardena, 1992) and for esterase A 2  

(Ketterman et aL, 1992) (see section I.5.4.I.). The pi of the esterase B2  was 

previously determined to be 5.0 (Jayawardena, 1992).

N-terminal sequencing of both esterases A2 and B2  was not possible, probably 

due to a blocked N-terminus of the enzyme molecule. One purified sample of 

esterase B2  and two purified samples of esterase A 2  (obtained from two different 

purifications) were analysed. In each attempt only about an 8 % total recovery, 

spread over several amino acid signal peaks, was obtained.

2 3 2 2 .  Chemical Characterization

2.3.2.2.1. Substrate specificity

Michaelis constants (K ^  and values were determined for four general 

esterase substrates (TABLE 2.2). Both esterases showed a higher affinity towards 

p-nitrophenyl hexanoate (C-6 ) thanp-nitrophenyl acetate (C-2). A preference for

7 7
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FIGURE 2.7

Subunit molecular weight estimation of purified esterase B2

Rf values o f the SDS-PAGE standard proteins were plotted against their log
molecular weights. Molecular weight of the B2  was determined graphically for
each gel.

Relative mobility cm.
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TABLE 2.2

Substrate interactions of esterases Aj and B2

The rate of substrate hydrolysis was measured at 405 nm for p-nitrophenyl 

acetate and p-nitrophenyl hexanoate, and at 235 nm for a-naphthyl acetate at 

22°C. A unit corresponds to the hydrolysis of 1 /¿mol of substrate in 1 min under 

the assay conditions used.

^ 2 b 2

Vm„ K» Vma> K™

(units/mg) (M  M ) (units/mg) (mM)

p-nitrophenyl acetate 472.0 ± 51.4 145.8 ±  45.0 63.4 ± 0.8 140.0 ±  50.0

p-nitrophenyl caproate . 788.2 ± 74.8 35.4 ±  9.7 8 3 3  ±  9.8 17.0 ± 6.0

a-naphthyl acetate 717.9 ± 48.4 30.5 ±  6.1 200.9 ± 15.0 172.5 ± 40.6
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medium chain length mono- and di-acylglycerols had been observed earlier for 

both enzymes (Ketterman et aL, 1992; Jayawardena, 1992). When the data for the 

two enzymes are compared, the rate of hydrolysis is considerably slower with 

esterase B2 for both substrates. Pig and rat liver carboxylesterase isoenzymes 

have shown Kn, and Vmax values of 30-220 /¿M and 66-110 units/mg respectively 

for p-nitrophenyl acetate (Heymann,1980). For the same substrate, two purified 

human liver carboxylesterases have shown K„ values of 190 and 130-870 /iM and 

Vmax values of 13.3 and 67.3-142.7 units/mg (Ketterman et aL, 1989) and 

Mentlein et aL (1984) reported values and Vmax values of 87-740 /tM and 30- 

176 units/mg respectively for five esterases purified from rat liver microsomes. 

The range of and Vmax values of the esterases E„ Ej and E 3  purified from 

Nilaparvata lugens were 150-250 /iM and 20-100 units/mg for the substrate p- 

nitrophenyl acetate (Chen and Sun, 1994). These observations are very close to 

the observations reported here for purified mosquito carboxylesterases although 

the Vmax of the esterase A 2  for p-nitrophenyl acetate is slightly higher. The two 

substrates used to define esterases A 2  and B2  originally, a- and P-naphthyl 

acetate were also examined. By definition, esterase A2 was more reactive towards 

a-naphthyl acetate and esterase B2  was more reactive towards P-naphthyl acetate 

when given a choice between the two substrates. This could be shown with a- 

naphthyl acetate (TABLE 2.2) but with P-naphthyl acetate the and Vmax 

values could not be determined because of the insolubility of the substrate at the 

concentrations necessary. Slightly lower values (15-70 units/mg) have been 

reported for the Et, E2  and E3  esterases of Nilaparvata lugens for a- and P-

C hapter 2
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naphthyl acetate (Chen and Sun, 1994).

2.3.2.2.2. Influence o f effectors

The influence of several metal ions and known carboxylesterase effectors are 

presented in TABLE 2.3. Enzyme activity of B2  was inhibited only by CuCl2, 

FeCl3  and HgCl2  among several metal ions tested. Inhibition by HgCl2  was also 

observed for esterase A2  (Ketterman et aL, 1992) and this again implicates the 

involvement of a thiol group in catalysis, or more likely, in conformational 

stability of these enzymes as discussed earlier (Section 2.3.1.). ‘A’ esterases 

(according to Aldridge’s classification) and arylesterases are characteristically 

inhibited by mercuric chloride because of the presence of -SH groups of the 

cystein residue at the active site (Aldridge 1993; McCracken et aL, 1993). A 

phosphorotriester hydrolase, purified from the insect Heliothis virescens, a  pest 

of cotton, showed complete inhibition with Hg2* and slight inhibition with 

Cu2+, but not with Fe3+ at 1 mM concentrations (Konno et aL, 1990). R at liver 

microsomal esterases have been inhibited to various degrees with MgCl2, Z nS04, 

C uS0 4  and HgCl2  (Mentlein et aL, 1984).

Esterase B2 was completely inhibited by 0.1 mM paraoxon but only to about 50% 

by 0.1 pM. Esterase A2  was completely inhibited by 0.1 pM paraoxon. These 

results confirm that both esterases are ‘B’ type serine hydrolases according to 

Aldridge’s classification (Aldridge 1953a; 1953b; 1993). Bis-(p-nitrophenyl)
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Influence of the effectors on the activity of purified esterase B2
The individual effectors were pre-incubated with the purified enzyme for 30 min 
at 22°C. Esterase activity was then measured with 1 mM  p-nitrophenyl acetate 
in the presence of each effector.

Effector Concentration % Activity

CaCl2 1.0 mM 105.9

CuCl2 1.0 mM 4.8

FeCl3 1.0 mM 3.5

HgCl2 1.0 mM 11.7

MgCl2 1.0 mM 113.1

MnCl2 1.0 mM 96.7

ZnCl2 1.0 mM 102.3

EDTA 1.0 mM 104.1

Eserine 1 0 . 0  mM 103.4

Bis-(p-nitrophenyl)phosphate 0.1 mM 5.9

Paraoxon 0 . 1  pM 51.3

0.1 mM 5.9

8 2



phosphate, which has been shown to be a specific carboxylesterase inhibitor in 

rats (Brandt et aL, 1980) also inhibited the purified mosquito esterase B2. EDTA 

did not inhibit the enzyme indicating that there is no metal ion requirement for 

catalysis. In contrast, ‘A’ esterases (according to Aldridge’s classification) are 

inhibited with EDTA (Reiner, 1993). Esterase A2  also behaved in the same 

manner as B2with the latter two effectors. Purified esterase B2  was not inhibited 

by the acetylcholinesterase inhibitor eserine. In contrast esterase A2  was 

completely inhibited by 1 0  fiM eserine although it showed no significant activity 

with commonly used cholinesterase substrates (Ketterman etaL, 1992). However, 

any structural similarity of esterase A 2  to the target site enzyme AChE does not 

account for any greater contribution to resistance, since both A2  and B2  are 

almost equally effective at binding various insecticides (see section 2.3.2.2.3.). 

Complete inhibition with paraoxon and inhibition to various degrees with bis-(p- 

nitrophenyl) phosphate and eserine have also been demonstrated for rat liver 

esterases (Mentlein, et aL, 1984; McCracken et aL, 1993).

2.3.2.2.3. Interaction o f esterase B2 with insecticides

The interaction of esterase B2  was determined for four OPs (chlorpyrifos, 

fenitrothion, malathion, parathion and their oxon analogues), one carbamate 

(propoxur) and one pyrethroid (lambda cyhalothrin). No significant interaction 

of purified mosquito esterase B2  with phosphorothionates could be detected. 

Slight inhibitions caused by some of the thionates at their maximum solubility

Chapter 2
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limits may be attributed to a possible contamination by the highly reactive oxon 

analogues. There was no interaction with the pyrethroid lambda cyhalothrin. 

Therefore the inhibition constants could be determined only for chlorpyrifos- 

oxon, fenitrooxon, malaoxon, paraoxon and propoxur and are presented in 

TABLE 2.4 together with k3  values obtained from reactivation kinetic 

experiments. The k, values for the interaction of esterase A2  with the insecticides 

are also presented for comparison.

Linear pseudo-first order kinetics for the inhibition of the esterase B2 were 

obtained for the insecticides fenitrooxon, malaoxon and propoxur (FIGURES 2.8 

and 2.9). Therefore all three inhibition constants (K,, k2  and k,) could be 

determined for these insecticides. Chlorpyrifos-oxon and paraoxon were very 

potent inhibitors, such that the inhibition rates could be measured only at very 

low inhibitor concentrations. With these inhibitors, the concentrations of 

insecticides approachéd or were lower than that of the B2 enzyme and pseudo- 

first order kinetics could no longer be obtained. Therefore, K, and k2  values of 

esterase B2  could not be determined for these two insecticides and only the k,s 

were determined in the presence of substrate (TABLE 2.4). Esterase A2  was 

always used in much lower concentrations than esterase B2  in enzyme assays 

because of its greater reactivity towards the assaying substrates. Also the 

reactivity of A 2 with the chlorpyrifos-oxon was much lower than that of B2  and 

a greater amount of insecticide was needed to inhibit the enzyme. Therefore in 

the insecticide interaction experiments done with esterase A2, the inhibitor

C hapter 2
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TABLE 2.4

Kinetic constants for the interaction of esterase B2 with the insecticides
Enzyme activity was measured by the assay of 1 mM p-nitrophenyl acetate 
hydrolysis at 22°C. The value in parentheses is the resistance ratio of LDj,, 
concentrations from resistant-versus-susceptible larval bioassay experiments (for 
organophosphates the value represents the resistance ratio for the thionate 
analogue). The k,’s for the esterase A2  are presented for comparison.

B, A,

Insecticide 102 X k 2 

(m in '1)

1 0 4 x k 3 

( m i n 1)

1 0 s x  K ,

( M )

i c r s x k ,

( M 1 m in 1)

10 -5 x k ,  

( M 1 m in 1)

M alaoxon*(7) 16.3 ± 3.8 18.1 ± 3.7 0.43  ± 0.11 0 3 0  ± 0.17 0.17  ± 0.07

Fenitrooxon*(4) 37.4 ± 15.4 13.5  ± 3.9 0.56  ± 0.21 1.73 ± 0.60 0.91 ± 0.37

Chlorpyrifos-oxon*(37) • 2 .4  ± 1.7 - 1550 ± 140 145.3 ± 59.7

paraoxon*(20) - 5.1  ± 2.0 - 170 ± 53 178.0 ± 47.7

propoxur® (2 ) 40.2 ± 10.2 10.9  ± 4.4 135.7 ± 64.8 0.0052 ± 

0.0017
0.012  ± 0.003

a -Organophosphatc. 

b -Carbam ate.
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FIGURE 2.8

Time dependent inhibition of esterase B2  by malaoxon
For each inhibitor concentration, log % remaining activity was plotted against 
time, for each concentration was obtained by the slope of the graph. 
Malaoxon concentrations:02.5 pM ,#4 /i M,v  5 /iM ,y 6  pM, CIO pM, «20 pM.

Time (min)
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FIGURE 2.9

Relationship between the inhibitor concentrations and th e ir values for 
malaoxon

values obtained from the FIGURE 2.8 were plotted against their relative 
inhibitor concentration to determine k2  and K, constants (see the text for 
details).

( M )
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concentration could always be maintained in excess. The k, values for the 

esterase A2  were determined in both the presence and absence of substrate in 

order to compare the data obtained by the two methods and were shown to 

agree irrespective of the manner of determination. Data presented here agree 

with the fact that oxons are far more potent inhibitors than the thionate 

analogues. Both esterases were also tested with temephos, with which the 

mosquito strain PelRR was selected. Again no interaction was observed with the 

thionate form and the oxon analogue could not be tested as it was not available. 

Apart from OPs, the carbamate propoxur interacted with the purified esterase 

B2, but at a very slow rate. The reactivation rates (k3) were very low even with 

the highly active oxon forms indicating a slow turn over of the insecticides 

(FIGURE 2.10). Therefore the sequestration role of this enzyme is confirmed.

The inhibition rates of esterases A2  and B2  can be compared with the insecticide 

cross-resistance spectrum showed by the PelRR strain (Peiris and Hemingway, 

1990a). If the toxicity is mainly brought about by the oxons, formed in vivo, the 

resistant ratios shown for the thionates are due to the interaction of their oxon 

analogues with these esterases. A causal relationship therefore appears to exist 

between the bimolecular rate constant (k,) and the insecticide cross-resistance 

spectrum. The greatest resistance ratios shown for chlorpyrifos (37) and 

parathion (2 0 ) may be due to the greater interaction (as shown by higher k, 

values) of these esterases with their oxon analogues. This is clearly shown by the 

respective k, values; 1550± 140 x 10s and 170±53 x 10s M' 1 min ' 1 for esterase B2

C hapter 2
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FIGURE 2.10

Reactivations o f the B2 esterases inhibited by fenitrooxon, malaoxon and 
propoxur

Acylated enzyme was separated and the reactivation of the enzyme was 
measured and plotted against time. The reactivation constant (k3) was obtained 
from the slope of each graph.

8 9
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and 145.3±59.7 x 10s and 178.0±47.7 x 10s M' 1 min ' 1 for esterase A2. The ka 

values obtained for fenitrooxon and malaoxon are much lower than these and 

correlate well with the lower resistance ratios shown for fenitrothion (4) and 

malathion (7) respectively. The slightly higher resistance ratio of malathion 

compared with fenitrothion can not be explained in a similar manner. The 

contribution of other minor mechanisms may slightly alter the direct relationship 

between the k, values and the insecticide cross-resistance spectrum. For the 

carbamate propoxur, which is not converted into any other active form in vivo, 

k, values of both enzymes are very low and can directly be compared with the 

low resistance ratio shown for it. The mosquito strain PelRR has shown a 

negative cross-resistance (0.75 x ) for the pyrethroid permethrin (Peiris and 

Hemingway, 1990a), which suggests that the resistant enzyme may be less 

reactive with pyrethroids than the susceptible enzyme, although further work is 

required to confirm this.

In general, no major difference was observed between the two esterases with 

their insecticide interactions indicating that both A2  and B2  probably have a 

similar role in resistance. Differences in k,’s of A 2  and B2  for the same 

insecticide may reflect the degree of their relative contributions for the resistance 

to that particular insecticide. Purified carboxylesterase E4, which is responsible 

for the insecticide resistance in peach-potato aphid, had a ka of 1330.0 ± 80.0 x 

10s M' 1 min' 1 for paraoxon (Devonshire, 1977). A ka value of 46.0 ± 7.0 x 10s M' 1  

m in 1 has been reported for rat plasma carboxylesterases (Maxwell, 1992). In rats,

9 0



it has been shown in vivo that carboxylesterases are more sensitive to 

organophosphates and carbamates than AChE and protect AChE from these 

compounds (Gupta and Dettbarn, 1993). In sheep erythrocytes, the bimolecular 

rate constant (k,) of the target site, AChE, for paraoxon has been shown to be 

11 x 10s M" 1 min ' 1  (Aldridge & Davison, 1952). A rat brain AChE has shown a 

ka value of 9.0 ± 1.1 x 10s M' 1 min' 1 for the same insecticide (Maxwell, 1992). 

For an insect AChE, purified from Lygus hespems (Hemiptera: Miridae) this 

value was 9.44 x 10s M' 1  min'1. This insect enzyme has also been shown to have 

k, values of 104  - 106  (M ' 1 min'1) for five other oxons tested (Zhu and Brindley, 

1992b). Susceptible AChE from the tobacco budworm, Heliothis virescens, was 

determined to have a ka of approximately 0.3 x 10s M' 1 min' 1 for paraoxon 

(Brown and Bryson, 1992). These data indicate that the insect carboxylesterases 

which have the putative role of sequestration in protecting the target site, AChE, 

interact with these organophosphates more readily than the target site itself, 

thereby demonstrating the effectiveness of this resistance mechanism.

The correlation between the k, and the insecticide resistance is also reflected by 

the respective K, value (Michaelis constant for the insecticides). The constants 

k2 and k3  do not have any apparent relationship with the insecticide cross- 

resistance spectrum of the mosquito strain (see TABLE 2.4). Slow deacylation 

rates (k3) have been observed for the interactions of aphid esterase E4 with 

insecticides showing the major role of this enzyme in detoxication is also 

sequestration (Devonshire and Moores, 1982). TABLE 2.5 compares the

C hapter 2
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TABLE 2.5

Comparison of the deacylation rates (k3) of the mosquito esterases A2, B2 and 

the aphid esterase E4 in their interactions with insecticides.

Insecticide a 2

k3  hr' 1

b 2 E4

Malaoxon 0.038 0.109 3.120

Paraoxon 0.031 0.031 0.330

Propoxur 0.374 0.065 0.093

9 2



deacylation rates for esterases B2, A2 and E4. The aphid esterase E4 hydrolysed 

paraoxon at 10x the rate of the mosquito esterases A2 and B2. For malaoxon, 

esterase E4 hydrolysis was 30x the rate of the mosquito esterase B2  and 1 0 0 x the 

A2  rate. Therefore in addition to the sequestration, hydrolysis was also shown to 

be important in organophosphate detoxication by aphid esterase E4. In contrast, 

for the carbamate propoxur, E4 had a similar rate to esterase B2, but this was 

about 4 x less than the rate for A2.

2.3.3. DETERMINATION OF THE PROPORTIONS OF ESTERASES A 2 AND  

B2 PER PELRR LARVA

The relative amounts of esterases A2  and B2  present in Pel RR crude 

homogenate was investigated using the acetylcholinesterase inhibitor eserine. 

Previous experiments showed that 10 /¿M eserine completely inhibits the activity 

of A2  but not the activity of B2  (see section 23.2.2.2.). When the crude 

homogenate of Pel R R  was inhibited with 10 /¿M eserine a remaining activity of 

about 30%, which probably represents the activity of B* was obtained. Since the 

Vmax of B2  is about 7.5 fold less than that of A2 for the assaying substrate p- 

nitrophenyl acetate (see TABLE 2.2), a rough estimation of about three times 

more B2 than A2  ( 30x7.5 B2: 70 A2) can be made. However, when the inhibited 

crude homogenate was run on a native PAGE gel a faint A2  band also appeared 

in addition to the B2  band. The deacylation rate (k3) of esterase A2  for the 

carbamate eserine was then investigated to explain this observation. The k3  for

C hapter 2
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eserine was 0.237 hr"1. This was similar to the k3 of the other carbamate tested, 

propoxur (see TABLE 2.5). Upon entering into the gel the acylated enzyme is 

separated from the excess inhibitor and about 20-25% of the inhibited A2 is 

reactivated during the electrophoresis run which takes about an hour. This 

amount is enough to produce a small band of esterase A2 in the gel.

After the phenyl Sepharose column the A2 and B2 enzymes were separated and 

the recovered enzymatic protein ratio was about 60% Aj and 12% B2 (see 

TABLE 2.1). After the difference in Vm„  for the substrate for the two enzymes 

was normalised a proportion of 60% B2 and 40% A2 ( 12x7.5 B2 : 60 A2) can be 

determined for the recovered enzymes. Since the esterase B2 is more labile than 

A2, a higher proportion of B2 than this can be expected in the crude homogenate. 

Higher availability of esterase B2 in the crude homogenate was also 

demonstrated using native PAGE gels stained for the esterase activity. To obtain 

an A2 band and a B2 band with similar intensities to the respective crude 

homogenate bands, about 3-4 times more purified B2 than purified A2 had to be 

applied (FIGURE 2.11).

2.3.4. SUMMARY OF THE ROLE OF A 2 AND B2 ESTERASES IN  MOSQUITO 

LARVAE

In a purification procedure begun with 600-800 mg of total protein, about 1-1.5
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FIGURE 2.11

Native PAGE of different amounts of purified A2 and B2 proteins (Stained for 
the activity with both a- and p-naphthyl acetate).
Lane a) P e IR R  crude homogenate, b ) 0.1/jg of B j, c ) 0.02/jg of A 2, d ) 0.02pg of B 2, c ) 0.002pg of

A 2.

M Jtm



mg of pure esterases A2 and B2 could be obtained with a final recovery of about 

40-45% esterase activity (TABLE 2.1). Assuming that the esterases A2 and B2 are 

mainly responsible for the high p-nitrophenyl acetate activity of the crude 

homogenate, it can be estimated that they comprise about 3 mg [(1.25xl00)/42.5] 

or 0.4% of the total protein. According to the relative proportions determined 

previously about one fourth of this amount is esterase A2 and the rest is esterase 

B2. A mean protein estimation of 0.115 ± 0.038 mg per 4th instar larva could be 

obtained from the crude homogenates prepared from individual larvae (20 

independent determinations). Therefore each larva has about 460 ng of A2 and 

B2 (0.115 mg x 0.4%). Since each esterase has a molecular weight of 

approximately 60,000, a concentration of approximately 7.67 pmol total of both 

A2 and B2 esterases per mosquito larva of PelRR strain can be estimated (460 

ng/60,000). Thus the amount per mg of the larval protein is 66.7 pmol 

(7.67/0.115). The wet weight of a 4th instar mosquito larva is about 2.4 mg 

(determined by weighing 100 larvae). Therefore the concentration of both these 

esterases per mg of mosquito larva is 3.2 pmol (7.67/2.4). The calculated amount 

of paraoxon (molecular weight = 275.2), for example, that can be sequestered by 

esterases A2 and B2 in a 4,h instar mosquito larva is about 2.1 ng (275.2 x 7.67 

pmol). The deacylation rate (k3) of the mosquito crude homogenate for paraoxon 

was determined to be 0.056 hr'1 and was similar to that of the pure enzymes. 

Therefore a single mosquito larva can hydrolyse about 0.118 ng of paraoxon per 

hour (2.1 x 0.056), which is 5.59% of the sequestered amount. Concentrations of 

the esterase E4 in resistant aphids have been shown to be in the range of 0.85-

C hapter 2
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24.7 pmol/mg aphid (Devonshire & Sawicki, 1979). For the most resistant aphid 

variant G 6 , E4 per aphid (10 pmol) could sequester 2.5 ng paraoxon and 

hydrolyse 0.83 ng per hour which was 33.2% of the sequestered amount. For the 

susceptible aphid variant these figures were 0.04 ng, 0.01 ng hr" 1 and 25% 

respectively (Devonshire & Moores, 1982). Differences in the percentage 

hydrolysis of the sequestered amount between the resistant and susceptible 

enzymes may indicate a qualitative difference although the authors have not 

discussed it. It is clear that unlike the aphid E4, which can sequester and 

significantly hydrolyse the insecticide, the main role of the mosquito esterases A2  

and B2  in insecticide resistance is sequestration. The rates of interaction of the 

mosquito esterases with organophosphates are also apparently slower than those 

of E4 as shown by their respective k, values for paraoxon. It has been shown that 

unlike A2  and B2  esterases, aphid E4 is capable of interacting with pyrethroid 

insecticides. The (IS)trans-enantiomer of the pyrethroid permethrin is hydrolysed 

rapidly by E4 (Devonshire and Moores, 1982). In the most resistant variant of 

aphid, the E4 enzyme accounted for approximately 3% of the total protein of an 

aphid (Devonshire & Moores, 1982) whereas both esterases A2  and B2  comprise 

only 0.4% of the total protein in 4th instar PelRR larvae. The lower percentage 

content of these esterases in PelRR homogenate was also evident since a 

significant band at the level of A2  and B2  could not be observed when the crude 

homogenate was run on SDS-PAGE gels. In contrast, E4 protein could be 

identified as a prominent band in SDS electrophoresis of resistant aphid 

homogenates (Devonshire and Moores, 1982). However, our results are  not
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compatible with the percentages estimated for the esterases A, and B, by 

Fournier et aL (1987). Using partial purification procedures they showed that 

esterase A, constitutes 1-3% of the proteins of OP resistant Cx pipiens (S54 

strain) whereas esterase B, constitutes 6-12% of the proteins of TEM-R Cx 

quinquefasciatus (Fournier et aL, 1987).

Greater efficiencies of the carboxylesterase based resistance mechanism in aphids 

may have an additional advantage of detoxifying the poisonous compounds found 

in the plant materials on which they feed. It is now known that OPs are not 

always man-made eg. a naturally occurring organophosphorous compound which 

inhibits AChE in a progressive manner has been found in cyanobacterium 

Anabeana flos-aquae (Edward and Carmichael, 1991). Most of the distribution 

studies show that increased activity of carboxylesterases is mainly found in 

association with the digestive tract of the resistant insects (see section 1 .8 .2 .). 

These factors probably indicate that the evolution of the esterase-based 

resistance mechanisms in insects may have primarily occurred as an adaptation 

to the toxic materials found in their environment.

2.4, SUMMARY

Chapter 2

Characterization of the purified mosquito carboxylesterases A2  and B2  revealed 

that their major role in insecticide resistance is sequestration (rapid binding 

followed by slow turn over of the insecticide) and the bimolecular rate constant,
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k, is the most important constant which correlates directly with the insecticide 

resistance ratios of the strain. A concentration of approximately 7.67 pmol of 

both A2  and B2  esterases accounting for about 0.4% of the total protein could be 

estimated per 4lh instar larva of PelRR strain. It was also estimated that the 

A2  : B2 ratio present in this strain is about 1 : 3.
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CHARACTERIZATION OF ‘A’ AND ‘B’ TYPE ESTERASES 

FROM DIFFERENT POPULATIONS OF CU LEX  

QUINQUEFASCIA TUS

3.1. INTRODUCTION

From  the studies performed with the esterases A2  and B2 of the PelRR strain it 

was clear that both enzymes are equally important in insecticide resistance and 

the role of these elevated carboxylesterases in resistance is sequestration. 

According to the hypothesis put forward by Raymond et aL (1991), amplification 

of A 2  and B2  esterases has arisen only once and through a recent migration 

spread worldwide (see section 1.6.3.3.). If this is true then all amplified A2  and 

B2  esterases would be the same. This hypothesis does not however account for 

the different resistance patterns observed in the Culex strains which contain only 

this resistance mechanism (Georghiou and Pasteur, 1978; Amin and Peiris, 1990; 

Hemingway et aL, 1990; Peiris and Hemingway, 1990a; 1990b). The present study 

was carried out to investigate whether the qualitative differences occur between 

the amplified A 2  esterases and B2  esterases. Identity of the susceptible non- 

amplified forms were also investigated. Both esterases A2 and B2  were purified 

and characterized from one susceptible and a further four resistant (ie. in 

addition to the PelRR) strains of Culex quinquefasciatus, which originated from
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different geographical areas. Since the purified susceptible ‘B’ esterase appeared 

to be similar to the esterase type B, in native electrophoretic mobility, two B, 

esterases were also purified from two different strains and characterized for 

comparison. The strains used in this study were chosen to represent different 

samples of enzymes in space and time, as well as representing different pesticide 

regimes. Two of the locations were also identical to those used in Raymond’s 

study.

3.2. MATERIALS AND METHODS

3.2.1. MOSQUITO STRAINS

The strains Dar91, Tanga85 and Muheza were collected respectively from Dar 

es Salaam, Tanga and Muheza in Tanzania. The Dar91 strain originated from 

a resistant population which had been selected in the field by chlorpyrifos for a 

number of years and then by fenitrothion, since 1988. It was colonized in 1991. 

Since colonization this strain was maintained without any selection pressure. The 

Tanga85 strain originated from a chlorpyrifos resistant field population and was 

colonized in 1985. This strain has been maintained in the laboratory under 

intermittent chlorpyrifos selection pressure. The field collection sites for Dar91 

and Tanga85 are approximately 200 km apart. Muheza was collected in 1987 

from an area where pesticides were not routinely used for Culex control. It has 

been maintained under intermittent chlorpyrifos selection since colonization.
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Muheza is approximately 60 km from Tanga and 140 km from Dar es Salaam. 

SPerm was collected from Jeddah, Saudi Arabia in 1989. Field selection of this 

population had been with temephos and then with a range of different 

pyrethroids. Immediately after colonization, it was selected for 20 generations 

with permethrin and subsequently selected intermittently with malathion and 

temephos in the laboratory. The strains Col and Trinidad were collected from 

Nuqui-Choco, Colombia and Port of Spain, Trinidad respectively in 1993. The 

area where Col originated was not under the pressure of insecticides used in 

mosquito control. The field population of Trinidad had been selected with 

malathion. Both Col and Trinidad strains were maintained in the laboratory 

without any selection pressure. The susceptible PelSS strain was obtained by 

single family selection for low esterase activity from the Sri Lankan Pel strain 

and lacks all the resistance mechanisms (see section 2 .1 ).

All the strains except PelSS were OP resistant and showed elevated 

carboxylesterases as the major resistance mechanism.

3 .2 .2 . P U R I F I C A T I O N  A N D  C H A R A C T E R I Z A T I O N  O F  

CARBOXYLESTERASES

Chemicals used were as detailed in section 2.2.2.. All the ‘A’ type and ‘B’ type 

esterases were purified using the methods previously adopted for PelRR A2  and 

B2  respectively (see section 2.2.5.1. and 2.2.5.2.). Characterizations of the purified
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esterases were also carried out according to the procedures described previously 

in chapter 2. Crude homogenates for the insecticide interaction experiments were 

prepared in ice-cold 50 mM phosphate buffer (pH 7.4) with 5% (v/v) glycerol 

and 10 mM D IT . Fresh or frozen 4th instar larvae were homogenized thoroughly 

and centrifuged at 15,000g for 5 minutes and the supernatant was used for the 

experiments.

C hapter 3

3.3. RESULTS AND DISCUSSIONS

3.3.1. PURIFICATION OF CARBOXYLESTERASES

Initially esterases A2  and B2  were purified from Dar91, Tanga85, Muheza and 

SPerm strains. All these strains had increased activity of A2 and B2  as the major 

resistance mechanism (FIGURE 3.1). Using the previous methodologies both 

esterases A2  and B2  could be purified to homogeneity from these strains without 

any difficulty. Final enzyme preparations appeared as a single band on SDS- 

PAGE after Coomassie staining.

None of the carboxylesterases were elevated in the susceptible PelSS crude 

homogenate (see FIGURE 3.1). During the purification of PelSS, esterase peaks 

were difficult to detect with the substrate p-nitrophenyl acetate (especially after 

the phenyl Sepharose column). The specific activity of PelSS crude homogenate
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FIGURE 3.1

Equal amounts of crude homogenates from different strains on a native PAGE 
gel stained for esterase activity.
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for the substrate p-nitrophenyl acetate was 0.02 units/mg. This is approximately 

50x less than  the 1.03 units/mg observed routinely for PelRR crude homogenate. 

It was shown in the previous chapter that the reactivity of both A2  and B2  

esterases o f  PelRR was much greater towards p-nitrophenyl hexanoate than p- 

nitrophenyl acetate. For PelSS crude homogenate also a higher specific activity 

of 0.14 units/m g could be observed for p-nitrophenyl hexanoate. Therefore this 

was used as the assaying substrate during the PelSS purification. However when 

assaying several fractions at a time with this substrate, extra care had to be taken 

because of th e  nature of the p-nitrophenyl hexanoate hydrolysis which was linear 

only for about 30 seconds. Thus, in all purifications other than PelSS, p- 

nitrophenyl acetate hydrolysis was used, as this reaction was linear for at least 

2 minutes. During the purification of PelSS also two esterase peaks 

corresponding to A2 and B2  were obtained after the phenyl Sepharose column. 

These were pooled separately and confirmed to be an ‘A’ type and a ‘B’ type 

esterase on a  native PAGE gel. These two esterases were further purified as if 

they were A 2  and B2 esterases and at the end of the purification about 5-10 pg 

of purified protein from each enzyme, which was barely enough to check the 

purity, could be obtained. Purifications started with greater amounts of materials 

did not result in any better recoveries. Therefore subsequent PelSS purifications 

were discontinued at the end of the hydroxylapatite step to obtain enough 

enzyme for characterization.

The B, esterases were also purified to homogeneity using the method developed
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for esterase B2. In both the Col and Trinidad strains, B, was the only ‘B’ type 

esterase elevated in the crude homogenates.

3.3.2. PHYSICAL CHARACTERIZATION

SDS-PAGE with purified esterases demonstrated that the molecular weights of 

the different A2  enzymes were similar to that of PelRR A2  (about 67 kDa) and 

the different B2  and B, enzymes were similar to that of PelRR B2 (about 62 

kDa) (see section 2.3.2.1). A native PAGE gel with the purified ‘A’ type 

esterases is shown in FIGURE 3.2. It should be noted that the electrophoretic 

mobility of the susceptible ‘A’ was reproducibly faster than that of the resistant 

A 2s . In contrast FIGURE 33  of the ‘B’ esterases of the same strains showed that 

the susceptible ‘B’ esterase had a slower mobility than that of the resistant B2s. 

Slight consistent variations between the A2 bands and between the B2  bands 

could also be observed. However the results clearly showed that the ‘A’ and ‘B’ 

type esterases purified from PelSS are markedly different from those esterases 

of the resistant strains in their electrophoretic mobility. According to the 

classification of Raymond et aL (1987) these susceptible ‘A’ and ‘B’ type 

esterases should be classified as A„ (where n is a number greater than 2) and B, 

respectively because of their electrophoretic mobilities (see section 1.6.1.). This 

similarity of the susceptible ‘B’ esterase to the B, esterases could be shown by 

PAGE with the purified PelSS ‘B’ esterase and the B, esterases purified from 

Col and Trinidad strains (FIGURE 3.4). PelRR B2  esterase was also run on the
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FIGURE 3.2

A native PAGE gel of purified ‘A’ type carboxylesterases stained for esterase 
activity
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FIGURE 3.3

A native PAGE gel of purified ‘B’ type carboxylesterases stained for esterase 
activity
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FIGURE 3.4

A native PAGE gel of purified Bt, B2 and susceptible ‘B’ carboxylesterases 
stained for esterase activity
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same gel for comparison.

3.3.3. CHEMICAL CHARACTERIZATION

Chemical characterization o f ‘A’ type esterases was performed by the other 

members of the group. To examine possible kinetic differences between the 

purified esterases, they were all tested with the two substrates and five 

insecticides used previously. Kinetic data presented here are the means from at 

least three experiments for each substrate or insecticide using the enzymes from 

several different purifications for each strain.

333.1 . Interactions with substrates

TABLE 3.1 shows the Vmax and values of two A2  esterases and all four B2  

esterases for the substrates p-nitrophenyl acetate and p-nitrophenyl hexanoate. 

Values for PelRR enzymes are also presented for comparison. For the partially 

purified PelSS ‘B ’ esterase Vm„  values could not be obtained because of the 

presence of other proteins and only the values are presented. It should be 

noted that the K^, of the susceptible ‘B’ esterase for p-nitrophenyl acetate is 

about 2-3 times higher than that of the resistant B2s. Several significant 

differences were observed among the K„ and Vm>x values of different A2 

esterases and B2  esterases. The of Tanga85 A2 is twice than that of PelRR 

A2 for both substrates. For p-nitrophenyl hexanoate the Vma> of Muheza B2  is
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TABLE 3.1

The substrate interactions of A2 and B2 carboxylesterases and the susceptible ‘B’ 
type carboxylesterase purified from different strains (Data for PelRR strain are 
also presented for comparison).

p-nitrophenyl acetate p-nitrophenyl hexanoate

v MI K - v
T max K«

(units/mg) (mM) (units/mg) (mM)

A2

Dar91 609.4 ±21.0* 182.2 ±183* 954.6 ±80.3* 28.0 ±6.9*

Tanga85 893.1 ±25.9b 209.5 ±17.0* 1594 ±171.0” 29.0 ±8.9*

Pel RR 472.0±51.4* 145.8 ±45.0* 788.2 ±74.8* 35.4 ±9.7*

b ,

Dar91 98.81 ±1.33* 85.41 ±3.94* 159.8 ±15.4* 13.7 ±4.2*

Tanga85 70.09±1.49b 90.11 ±6.49* 111.8±7.21b 7.45 ±2.09*

Muheza 77.56±0.88c 95.28 ±3.72* 83.43 ±3.41£ 6.85 ±131*

SPerm 92.74 ±1.62d 86.76±5.20* 117.5±5.98b 7.05 ±1.61*

Pel RR 63.16±0.75e 140.8 ±5.24b 1833±17.2* 153 ±4.34*

Sus. ‘B’

PelSS - 247.2 ± 23.3C - 1 2 . 2  ± 2 .2 1 *

T h e  data are means ± standard deviations. In  the same colum n different superscript letters 

indicate a significant difference ( P <  0.05) am ong 'A ’ esterases o r am ong ‘B ’ esterases.
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same gel for comparison.

3.3.3. CHEMICAL CHARACTERIZATION

Chemical characterization of ‘A’ type esterases was performed by the other 

members of the group. To examine possible kinetic differences between the 

purified esterases, they were all tested with the two substrates and five 

insecticides used previously. Kinetic data presented here are the means from at 

least three experiments for each substrate o r insecticide using the enzymes from 

several different purifications for each strain.

33.3.1. Interactions with substrates

TABLE 3.1 shows the Vm„  and K̂ , values of two A2  esterases and all four B2  

esterases for the substrates p-nitrophenyl acetate and p-nitrophenyl hexanoate. 

Values for PelRR enzymes are also presented for comparison. For the partially 

purified PelSS ‘B’ esterase Vm„  values could not be obtained because of the 

presence of other proteins and only the K„, values are presented. It should be 

noted that the of the susceptible ‘B’ esterase for p-nitrophenyl acetate is 

about 2-3 times higher than that of the resistant B2s. Several significant 

differences were observed among the K„, and Vmax values of different A2 

esterases and B2  esterases. The V„.v of Tanga85 A2 is twice than that of PelRR 

A2  for both substrates. For p-nitrophenyl hexanoate the Vmax of Muheza B2  is
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TABLE 3.1

The substrate interactions of A2 and B2 carboxylesterases and the susceptible ‘B’ 
type carboxylesterase purified from different strains (Data for PelRR strain are 
also presented for comparison).

p-nitrophenyl acetate p-nitrophenyl hexanoate

v M 1 K »
v
T max K »

(units/mg) (mM) (units/mg) (mM)

A2

Dar91 609.4 ±21.0* 182.2 ± 18.3* 954.6 ±80.3* 28.0 ±6.9*

Tanga85 893.1 ±25.9b 209.5 ±17.0* 1594±171.0b 29.0 ±8.9*

Pel RR 472.0±51.4* 145.8 ±45.0* 788.2 ±74.8* 35.4 ±9.7*

b 2

Dar91 98.81 ±133* 85.41 ±3.94* 159.8 ±15.4* 13.7 ±4.2*

Tanga85 70.09±1.49b 90.11 ±6.49* 111.8±7.21b 7.45 ±2.09*

Muheza 77.56±0.88c 95.28 ±3.72* 83.43 ±3.41c 6.85 ±131*

SPerm 92.74 ±1.62" 86.76 ±5.20* 117.5±5.98b 7.05 ±1.61*

Pel RR 63.16 ±0.75* 140.8 ± 5.24b 1833 ±17.2* 15.3 ±4.34*

Sus. ‘B’
PeISS - 247.2 ±233c - 1 2 . 2  ± 2 .2 1 *

T h e  data are means ±  standard deviations. In  the same colum n different superscript letters 

indicate a significant difference (P < 0 .0 5 ) among ‘A ’ esterases or among ‘B ’ esterases.
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half of the Vmax values of Dar91 B2  and PelRR B2. In general, the Vmax 

differences are much greater for p-nitrophenyl acetate than for p-nitrophenyl 

hexanoate. These results demonstrate that qualitative differences exist between 

both the A2  esterases and the B2  esterases purified from the different strains. It 

is also shown that the susceptible ‘B’ enzyme is markedly different from the B2 

esterases both in electrophoretic mobility and the kinetics of its interaction with 

these two substrates.

Interactions with insecticides

Since it was shown in the previous chapter on the PelRR resistant strain that the 

k, is the most important constant to determine the rate of interaction between 

these enzymes and the insecticides, only the k, values were determined for the 

esterases from the four other resistant strains and the susceptible PelSS strain. 

TABLE 3.2 shows the k, values for the interaction of all the purified ‘A’ type 

esterases with chlorpyrifos-oxon, fenitrooxon, malaoxon, paraoxon and propoxur. 

Data for PelRR A2  are also presented for comparison. Several significant 

differences were observed between the k, values for the different enzymes for 

the same insecticide. Differences are about lOx between Dar91 and PelSS for 

chlorpyrifos-oxon and also between PelRR and Tanga85 for fenitrooxon. PelSS 

‘A’ enzyme reacted more slowly than all the resistant A2  enzymes with 

chlorpyrifos-oxon and paraoxon showing that it is not only amplified but also less 

able to bind the insecticides than its respective ‘resistant’ counterparts. The
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TABLE 3.2

The kinetic constant k, (M'1 min'1) for insecticide interactions with elevated Aj and susceptible (PeISS) ‘A’ 
carboxylesterases (Data for PeIRR A2 are also presented for comparison).

10-®x k„

Pel SS Pel RR Dar91 Tanga85 Muheza SPerm

Chlorpyrifos-oxon 53.3 ± 10.7* 144 ± 32.9b 521 ± 91.9e 374 ± 74.3e 709 ±  122* 726 ± 158e

Fenltrooxon 3.43 ± 1.19“ 0.958 ± 0.201* 4.53 ±  0.80b 9.35 ± 1.54' 2.89 ± 0.576 3.16 ± 0.649b

Malaoxon 0.113 ± 0.022“ 0.219 ± 0.033* 0.130 ± 0.031“ 0.086 ± 0.010b 0.229 ± 0.032* 0.204 ± 0.034*

Paraoxon 131 ± 16.4* 190 ± 20.7“ 143 ± 28.6* 119 ± 24.3* 387 ± 72.4e 351 ± 67.0“

Propoxur 0.0018 ± 0.0004* 0.0124 ± 0.0027“ 0.0151 ± 0.0023b 0.0063 ± 0.0011* 0.0203 ± 0.00406 0.0211 ± 0.0047*

The data are means ± standard deviations. In the same row different superscript letters indicate a significant difference

(P<0.05).



respective k, values for the ‘B’ type esterases are presented in TABLE 3.3. 

Although the differences among the ‘B’ esterases were less than those for the ‘A’ 

enzymes, between the susceptible ‘B’ and B2  enzymes the differences were 

significant. Efficiencies in detoxifying chlorpyrifos-oxon and paraoxon of PelSS 

‘B’ enzyme is respectively lOOOx and lOOx less than those of the resistant strains. 

In addition, the organophosphates malaoxon and fenitrooxon were of use in 

distinguishing between some of the B2 enzymes from the resistant strains.

The kinetic differences presented here further elaborate the idea that functional 

variants exist among the A2 and the B2  esterases and more than one allele from 

each of the A2  and B2 esterase genes are amplified. Two of the resistant strains 

used in the present study (PelRR and Dar91) were collected from the same 

locations as in Raymond’s study. It should be noted that the esterases from 

Dar91 and Tanga85, which were collected at 6  year interval from the same 

country, are also kineticaliy different from each other. This suggests the 

possibility that more than one amplified allelic form of the A2  gene and the B2 

gene may occur in the same geographical location. The susceptible ‘A’ and ‘B’ 

enzymes are less reactive with a range of insecticides and electrophoretically 

different from the respective resistant enzymes. Since both the PelSS and PelRR 

strains were derived from the same Pel parental colony it is clear that different 

non-amplified susceptible alleles can co-exist with amplified resistant alleles in 

the same population. Differences between the resistant enzymes and the 

susceptible enzymes in insecticide binding suggest that there has been a positive
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TABLE 3.3

The kinetic constant k, (M'1 min'1) for insecticide interactions with elevated B2 and susceptible (PeISS) ‘B’ 
carboxylesterases (Data for PeIRR B2 are also presented for comparison).

10-®x  k ,

PeISS Pel RR Dar91 Tanga85 Muheza SPerm

Chlorpyrifos-oxon 2.29 ± 0.811* 1550 ± 140" 1670 ± 269b 2100 ± 397* 1750 ± 324b 2090 ± 524*

Fenltrooxon 0.328 ± 0.008* 1.60 ± 0.300b 5.67 ± 0.957° 3.08 ± 0.183° 4.06 ± 0.630°° 5.24 ± 0.503°

M a la o x o n 0.400 ± 0.050* 0.496 ± 0.168** 0.553 ± 0.195*b 0.513 ± 0.097** 0.383 ±  0.057* 0.615 ± 0.015*

paraoxon 1.94 ± 0.054* 170 ± 53.1b 181 ± 24.3" 139 ± 42.0" 170 ± 24.3" 154 ± 29.2*

propoxur <0.0001* 0.0052 ± 0.0017* 0.0074 ± 0.0014b 0.0048 ± 0.0004b 0.0065 ± 0.0007* 0.0061 ± 0.0018*

The data are means ± standard deviations. In the same row different superscript letters indicate a significant difference

(P< 0.05).
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insecticide selection pressure for the selection and amplification of the resistant 

enzymes.

As the ‘B’ esterase in the PelSS susceptible strain had identical electrophoretic 

mobility to the amplified B, esterase, the hypothesis that these are identical 

isoenzymes was tested. The PelSS ‘B’ esterase was compared with the two 

elevated B, esterases purified from Col and Trinidad strains with respect to their 

interaction with the insecticides (TABLE 3.4). Data for PelRR B2  are also 

presented for comparison. It should be noted that the reactivity of PelSS ‘B’ is 

significantly different from that of B} esterases for all the insecticides tested. B, 

esterases are lOOOx and lOOx more reactive than PelSS ‘B’ esterase for 

chlorpyrifos-oxon and paraoxon respectively. The two elevated BjS are, therefore 

more similar to the elevated B2  esterases than to the isoenzyme from the 

susceptible strain. For malaoxon and fenitrooxon, the Col Bj and Trinidad Bt are 

not only significantly different from that of PelSS, but also show a 20- and 10- 

fold difference from each other. In summary all four enzymes presented in 

TABLE 3.4 are kinetically different from each other, and the differences are 

much greater between the susceptible ‘B’ type esterase and either of the elevated 

resistant B, or B2  esterases. This illustrates that in their insecticide interactions, 

the elevated B, esterases are more similar to the B2 esterases (despite the 

different electrophoretic mobilities) than the susceptible ‘B’ esterases with 

identical electrophoretic mobilities (see FIGURE 3.4). Hence, the 

electrophoretic mobility of the esterases is an extremely poor indicator of the
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TABLE 3.4

The kinetic constant k„ (M'1 min'1) for insecticide interactions with B, 
carboxylesterases purified from Columbian and Trinidad strains. Data for 
PelRR B2  and PelSS ‘B’ are also presented for comparison.

k, X KT5 (M ' 1 min'1)

Insecticide Colombian
Bt

Trinidad
Bt

PelSS
‘B’

PelRR
b 2

Chlorpyrifos-
oxon

1230.0* ±203.0 1210.0* ±248.0 2.290^0.811 1550.0* ±140.0

Fenitrooxon 7.092* ±1.279 0.223b± 0.034 0328e ±0.008 1.600" ±0.300

Malaoxon 1.300*±0.130 0.074b± 0.014 0.400e ±0.050 0.496e± 0.168

paraoxon 100.0* ±6.901 73.80* ±9330 1.942b±0.054 170.2* ±53.10

propoxur 0.0033* ±0.0005 0.0041* ±0.0007 <0.001b 0.0052* ±0.0017

T h e  data are means ± standard deviations. In  the same row  different superscript letters indicate 

a significant difference (/><0 .05).
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actual allelic variant or variants present in a given strain and the classification 

introduced by Raymond et aL (1S87) (see section 1.8.1.) needs to be revised.

3 J J J .  Interaction of crude homogenates with insecticides

To examine whether the kinetic differences shown by the purified enzymes of the 

resistant and susceptible strains could be seen at the crude homogenate level, the 

k, values for the insecticide interactions were determined for PelRR and PelSS 

larval crude homogenates (TABLE 3.5). The data revealed that even at this level 

the rate of interaction can be seen to the same magnitude as for purified 

enzymes (see TABLE 3.2 and 33). As with the purified ‘B’ enzymes, in the crude 

homogenates also the greatest differences were for chlorpyrifos-oxon and 

paraoxon. However, for PelRR, any correlation between the crude homogenate 

data and the purified A2  and B2  data with the previously determined A2  and B2  

proportions (see section 2.3.23.) could not be made. This may be due to  the 

presence of other enzymes and interfering factors in the crude homogenate. It 

was shown earlier that the kinetic differences among the resistant enzymes are 

less prominent than they are between the resistant and susceptible enzymes. 

Also, the A2 /B 2  proportion may vary from strain to strain. Therefore the 

differences observed among the resistant enzymes may not be expected to be 

seen at crude homogenates. Still, this may be used as a crude method in 

detecting the level of interaction between these enzymes and insecticides. 

Insecticide interaction experiments with the TEM-R crude homogenate were
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TABLE 3.5

The kinetic constant k, (M*1 min*1) for insecticide interactions with the larval 

crude homogenates of PelSS and PelRR strains.

1 0  s x k,

PelSS PelRR

Chlorpyrifos-oxon 1.25 ± 0.33 694 ± 98.0

Fenitrooxon 0.554 ± 0.070 2.05 ± 0.47

Malaoxon 0.040 ± 0.004 0.251 ± 0.028

Paraoxon 7.52 ± 0.78 168 ± 24.2

Propoxur 0.0003 ± 0.0000 0.0075 ± 0.0018
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carried out by Cuany et aL (1993) and the values have been reported for 

several insecticides. Ij,, values are not accurate measures for the time dependent 

rapid inhibitions of these esterases and can not be compared with the kinetic 

constants determined in the present study.

3.4. SUMMARY

Chapter 3

Results presented in this chapter demonstrate the presence of qualitatively 

different A2 and B2  esterases in different populations of Cx quinquefasciatus. 

Kinetic differences among the A2  esterases and the B 2 esterases were more 

profound than the differences between the B2  esterases. Susceptible non- 

amplified enzymes were markedly less reactive than the resistant enzymes with 

some of the insecticides and these differences could be identified even in the 

crude homogenates of these mosquitoes. It was also shown that the esterases 

with similar electrophoretic mobilities can be significantly different from each 

other in their insecticide kinetics.
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CHARACTERIZATION OF DIFFERENT A2 AND B2 ESTERASES 

DERIVED FROM A SINGLE POPULATION OF CULEX  

QUINQUEFASCIA TVS

4.1. INTRODUCTION

After observing the differences among both the A2  esterases and the B2  esterases 

purified from different populations of Cx quinquefasciatus, it was evident that 

each of the esterase loci A2  and B2  overproduces more than one amplified allelic 

form. The present study was designed to investigate whether different isoenzymes 

of elevated A2  and B2  can be found within a single population. Three sub­

colonies were selected with different insecticides from a  single parental colony. 

This population was a field collected strain which was heterogeneous with 

respect to resistance. The major resistance mechanism in the parental population

was elevation o f the A2  and B2  esterases. After selection the sub-colonies were
/

examined for qualitative differences in their A2  and B2  esterases. Selection also 

resulted in larger than expected differences in the cross-resistance spectra of the 

different sub-colonies. Hence, the presence of resistance mechanisms other than 

the esterase based mechanism were also investigated.
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4.2. MATERIALS AND METHODS

The chemicals used were as described in Chapter 2.

4.2.1. MOSQUITO STRAINS

The field collected Pel colony, described previously in section 2.1., was used as 

the parental colony. Since colonization it has been maintained without insecticide 

selection pressure. Three sub-colonies; Pel-Chi, Pel-Mal and Pel-Pro were 

selected for four generations with chlorpyrifos, malathion and propoxur 

respectively by exposing the 4th instar larvae of each generation to the calculated 

LCgo concentrations. The PelRR and PelSS strains, both of which were derived 

from the Pel parental colony, were also used for comparative purposes.

4.2.2. LARVAL BIOASSAYS

Larval bioassays were performed by exposing batches of 25 fourth instar larvae 

to known insecticide concentrations in 250 ml of distilled water (WHO, 1981). 

Insecticide solutions were made in ethanol and 1 ml of the alcohol solution 

added to the water. For each bioassay at least five concentrations giving 

mortality between 0-100% were tested, and four replicates were set for each 

concentration. Bioassays were always performed including a control of 1 ml of 

alcohol alone. There were no mortalities in the control. After 24 hr pesticide
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exposure at 25±2°C the number of dead larvae were counted. Mortality data 

were subjected to probit regression with an unpublished program written by C. 

J. Schofield (WHO, Geneva) based on the method of Finney (1971) and the 

lethal concentrations which gave 50% (LC^) and 80%(LC8o) mortalities were 

calculated. The calculated LQo f°r each insecticide for each generation was then 

taken as the dose with which to select the bulk of the larvae in that generation. 

Survivors of the pesticide treatment were transferred to clean water, fed as usual 

and reared to adulthood to establish the next generation.

Chapter 4

4.2.3. BIO ASSAYS WITH PIPERONYL BUTOXIDE

The possible involvement of monooxygenases in resistance was investigated by 

bioassays using the synergist piperonyl butoxide (PB) with the insecticides 

chlorpyrifos and propoxur. Bioassays were carried out by exposing the larvae to 

known insecticide concentrations with and without PB. 75 /il of the PB stock 

solution (in acetone) was added into 250 ml of distilled water with insecticide to 

give a final PB concentration of 3 mg/L. Control experiments confirmed that 24 

hrs exposure to this concentration of PB alone was not lethal to mosquito larvae. 

Log dosage mortality regression lines were plotted for each insecticide with and 

without PB for each sub-colony.
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4.2.4. GLUTATHIONE S-TRANSFERASE ASSAY

95 fourth instar larvae were placed in a microtitre plate (one larva per well) and 

each was homogenised thoroughly in 150 /¿I of distilled water using a multiple 

homogeniser (ffrench-Constant and Devonshire, 1987). 10 n\ of the homogenate 

from each larva was placed in a microtitre plate and 200 /xl of the substrate 

solution [95 parts of 10.5 mM reduced glutathione (GSH) in 100 mM phosphate 

buffer + 5 parts of 63 mM l-chloro-2,4-dinitrobenzene (CDNB) in methanol] 

was added to each well. The reaction was measured at 340 nm for 5 minutes. An 

extinction co-efficient of 5.76 mM"1 (corrected for the path length) was used to 

convert the absorbances to moles. Protein concentration of each supernatant was 

measured according to the method described previously (see section 2.2.4.).

4.2.5. PURIFICATION OF CARBOXYLESTERASES

After four generations of insecticide selection, the unexposed fifth generation 

was used as the enzyme source for esterase purification work. Carboxylesterases 

A2 and B2 were partially purified from the frozen batches of 4th instar larvae 

from each sub-colony by sequential column chromatography on Q-Sepharose, 

phenyl Sepharose and hydroxylapatite as described in the section 2.2.5.1. and

2.2.5.2. respectively.
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4.2.6. KINETIC CONSTANTS FOR CARBOXYLESTERASES AND  

ACETYLCHOLINESTERASES

Chapter 4

Inhibition kinetics of partially purified A2  and B2 esterases with the insecticides 

were carried out using the same methods detailed in section 2 .2 .6 .I.2 .

For the inhibition kinetics of AChE crude homogenates were prepared from 

frozen 4th instar larvae in ice-cold 50 mM phosphate buffer pH 7.4, with 25 mM 

dithiothreitol and 5% (v/v) glycerol. The supernatant of the centrifuged sample 

(15,000g for 5 minutes) was incubated with 5-100 mM of propoxur. 20 /d aliquots 

were withdrawn at 1 0  second intervals for two minutes and each aliquot was 

immediately added to an excess of substrate solution [25 /d  of 10 mM 

acetylthiocholine iodide in distilled water + 10 /¿I of 10 mM 5,5’ dithio-bis- (2 

nitrobenzoic acid) (DTNB) in 100 mM phosphate buffer (pH 7.0) + 145 /d of 

100 mM phosphate buffer (pH 7.8) with 1% Triton X-100] to stop the inhibition. 

Remaining AChE activity was read at 405 nm for 5 minutes. Uninhibited 

homogenate was assayed to obtain the 1 0 0 % activity control.

Log % remaining activity was plotted against time for each experiment. The 

inhibition co-efficients (Iqs) were calculated according to the following equation.

kj = (AlogV)2.303 /  [I]t
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where; ‘V’ is the % remaining activity at the time ‘t’ and [I] is the propoxur 

concentration.

The kj values were calculated for each time point separately and averaged to 

obtain the final value.
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4 3 . RESULTS AND DISCUSSION

4.3.1. CROSS-RESISTANCE SPECTRA OF THE SUB-COLONIES

Increased activity of A2  and B2  was the major resistance mechanism for the 

observed organophosphate resistance of the field-collected Pel strain (Peiris and 

Hemingway, 1990a). In the present study, three sub-colonies were selected from 

the parental strain using two organophosphates and one carbamate. During the 

selection resistance to the selecting insecticide increased dramatically with 

associated cross-resistance increasing to the other two insecticides. TABLE 4.1 

presents the resistance ratios for the parental colony prior to selection and for 

the three sub-colonies after four generations of selection at the 80% mortality 

level. Irrespective of the insecticide used for the selection, all three sub-colonies 

showed the greatest resistance ratio to chlorpyrifos. Also the colony selected with 

chlorpyrifos (Pel-Chl) had the highest resistance to all three insecticides. It was 

1.7x more resistant to malathion and about 5x more resistant to chlorpyrifos and
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TABLE 4.1

Resistance ratios (LD^ of larvae/ LD^ o f PelSS larvae) for the parental colony 

and the three insecticide selected sub-colonies of Cx quinquefasciatus for the 

insecticides used for the selection.

Insecticide Pel Pel-Chl Pel-Mal Pel-Pro

Chlorpyrifos • 32.0 1300 226.7 303.3

Malathion 4.82 175.0 1 0 0 . 6 1 0 0 . 6

Propoxur 230 948.3 161.9 154.2

1 2 9



propoxur than the other two sub-colonies. Cross-resistance spectra of Pel-Mal 

and Pel-Pro showed a similar pattern of resistance even though they were

C hapter 4

selected with insecticides belong to two different classes.

4.3.2. DIFFERENCES AMONG THE CARBOXYLESTERASES ELEVATED IN  

THE SUB-COLONIES

Esterases A2  and B2  were elevated in the crude homogenates of all three 

colonies (FIGURE 4.1). Larvae of the 5th generation, which had not been 

exposed to insecticides, were used for enzyme purifications. During the 

purification, esterases A2  and B2 were separated from each other after the phenyl 

Sepharose column and each enzyme was pooled separately and further purified 

by hydroxylapatite chromatography. A purification factor of about 200 for 

esterase A2  and about 50 for esterase B2  were obtained (see TABLE 2.1). 

Identification of each of the partially purified enzyme was confirmed by a  native 

PAGE gel (FIGURE 4.2).

Previously it was shown that the bimolecular rate constant, k,, is the most 

important constant which correlates directly with the insecticide resistance ratios 

of the strain (see section 2.3.2.2.3.). Interactions of all six partially purified 

enzymes with the three insecticides, used for selection, were investigated. 

TABLE 4.2 shows the k, values of the sub-colony A2  esterases together with 

those of PelRR A2. The strain PelRR was also selected from the same Pel
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FIGURE 4.1

A native PAGE gel of crude homogenates from the insecticide selected sub­
colonies of Pel stained for esterase activity. Pel and PelRR crude homogenates 
were also ran for comparison.
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FIGURE 42

A native PAGE gel of A2 and B2 esterases partially purified from insecticide 
selected sub-colonies of Pel stained for esterase activity.
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TABLE 4.2

The k, values for the interaction of partially purified sub-colony Aj esterases 

with the insecticides used for the selection, (data for PelRR A2 are also 

presented for comparison).

Insecticide

IO ‘ * x  ka (M '1 min"1)

Pel-Chi Pel-M al Pel-Pro PelRR

Chlorpyrifos-oxon 289.1* ±58.90 1220b± 128.1 557.0e ±6032 144.2* ±32.90

Malaoxon 0.266* ±0.045 0.427*^0.032 0.415* ±0.059 0.219e ±0.033

Propoxur 0.012* ±0.0016 0.018* ±0.0054 0.018* ±0.0038 0.012* ±0.0027

The data are m eans ± standard deviations. In the same row  different superscript 

le tters indicate a significant difference (P c  0.05).
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colony with the organophosphorus insecticide temephos (see section 2 . 1 .). 

Therefore it is also a sub-colony of the Pel parental colony. However, to avoid 

confusion it will be referred to as PelRR throughout. The three sub-colony A2  

esterases were significantly different from each other in their interactions with 

chlorpyrifos-oxon and two of them, Pel-Mal A 2  and Pel-Pro A2, were also 

different from PelRR A2. For malaoxon, significant differences were observed 

among the A2  enzymes from Pel-Chl, Pel-Mal and PelRR and also between Pel- 

Pro A2  and PelRR A2.

Enzyme-insecticide interaction data for B2  esterases are presented in TABLE

4.3. Only malaoxon interacted differently with the different B2  enzymes showing 

a significant difference between Pel-Pro and PelRR. It was shown in Chapter 3 

that the B2  esterases from different strains are also less different from each other 

kinetically than the A2  enzymes (see section 33.3.2.). However these data for 

enzyme-insecticide interactions indicate that different alleles or allelic mixtures 

of esterase loci A 2  and B2  exist in the different sub-colonies selected from the 

same population, therefore the parental ‘Pel’ colony must contain an allelic 

mixture. These colonies were selected only for four generations and a greater 

allelic segregation may have occurred if the colonies were selected further.

According to the reactivities of the sub-colony A2  and B2  esterases the resistance 

of Pel-Chl to all the insecticides tested should be less than that of the other two 

colonies which is not in agreement with the resistance ratio data in TABLE 4.1.
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TABLE 43

The k, values for the interaction of partially purified sub-colony B2 esterases 

with the insecticides used for the selection, (data for PelRR B2 are also 

presented for comparison).

Insecticide

I O 3 a K (M ' 1 min'1)

Pel-Chl Pel-Mal Pel-Pro PelRR

Chlorpyrifos-oxon 1440* ±158.0 1560* ±208.2 1511* ±181.1 1550* ±140.1

Malaoxon 1.200* ±0.213 1.293* ±0.245 1.260*±0.146 0.500̂  ±0.170

Propoxur 0.0058* ±0.001 0.0059* ±0.002 0.0104* ±0.020 0.0052* ±.002

The data are means ± standard deviations. In the same row different superscript 

letters indicate a significant difference (/*<0.05).
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During the purifications slightly higher amounts of Az and B2 esterases could be 

recovered from Pel-Chi sub-colony suggesting the presence of higher quantities 

of these enzymes. But this could not account for the very high resistance shown 

by Pel-Chl. Specific activities of the crude homogenates of the Pel-Chl, Pel-Mal 

and Pel-Pro for the substrate p-nitrophenyl acetate were 0.54,0.52 and 0.50 /¿mol 

min" 1 mg' 1 respectively indicating the lack of quantitative differences. Also the 

relative differences of the affinities of the enzymes towards different insecticides 

do not correlate with the relative differences of the resistance ratios shown by 

each sub-colony. The presence of resistance mechanisms other than the esterase- 

based mechanism were investigated to explain the differences observed in the 

cross-resistance spectra .

4.3.3. THE PRESENCE OF OTHER RESISTANCE MECHANISMS 

4JJ.1. Cytochrome P-450 mechanism

The different classes of insecticides may select different isozymes of cytochrome 

P-450s. Therefore, the effect of the synergist PB with an phosphorothionate 

(chlorpyrifos) and a carbamate (propoxur) was determined. None of the sub­

colonies showed significant differences at the 95% confidence level between their 

log probit mortality lines plotted for the bioassays with and without PB 

(FIGURES 4.3-4.8). This indicates that monooxygenases are not responsible for 

the observed resistance of the sub-colonies. Although some investigators have

Chapter 4
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FIGURE 4.3

Log-dosage probit mortality lines for the sub-colony Pel-Chl tested with 

chlorpyrifos with and without PB (95% confidence limits are indicated by 

dashed lines).
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FIGURE 4.4

Log-dosage probit mortality lines for the sub-colony Pel-Chi tested with 
propoxur with and without PB (95% confidence limits are indicated by dashed
lines).
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FIGURE 4.5

Log-dosage probit mortality lines for the sub-colony Pel-Mal tested with 
chlorpyrifos with and without PB (95% confidence limits are indicated by 
dashed lines).
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FIGURE 4.6

Log-dosage probit mortality lines for the sub-colony Pei-Mal tested with 
propoxur with and without PB (95% confidence limits are indicated by dashed 
lines).

Pel-M al

140



Pe
rce

nta
ge

 m
ort

ali
ty

Chapter 4

FIGURE 4.7

Log-dosage probit mortality lines for the sub-colony Pel-Pro tested with 
chlorpyrifos with and without PB (95% confidence limits are indicated by 
dashed lines).
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FIGURE 4.8

Log-dosage probit mortality lines for the sub-colony Pel-Pro tested with 
propoxur with and without PB (95% confidence limits are indicated by dashed 
lines).
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reported that the inhibition of oxidases increase the resistance to 

organophosphates (see section I.2.4.2.), this was not observed. The current 

experiments differed from much of the earlier work in that PB was present 

throughout the bioassay, rather than being used as a 1 hr pre-exposure. However, 

there is no evidence that this variation in the exposure method affects insecticide 

toxicity significantly.

Glutathione S-transferase mechanisms

The specific activities of GST in the crude homogenates for the substrate CDNB 

were 0.386 ± 0.070, 0.396 ± 0.105 and 0.252 ± 0.080 for Pel-Chi, Pel-Mal and 

Pel-Pro respectively. These are not significantly different from each other or 

from the value of 0.340 ± 0.071 observed for PelSS. The distribution patterns of 

the populations are shown in FIGURE 4.9. The results suggested that the 

involvement of GSTs in the insecticide resistance of the sub-colonies is unlikely.

4 3 3 3 . Altered acetylcholinesterase mechanism

Inhibition studies on the acetylcholinesterases showed that an altered AChE 

mechanism has been selected differently in the three sub-colonies. Selection of 

this mechanism along with the esterase based mechanism is very common among 

the field populations of Cx quinquefasciatus (Bisset e ta l, 1990; 1991; Villani and 

Hemingway, 1987). AChE activity of Pel-Mal, Pel-Pro and the susceptible PelSS

Chapter 4
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FIGURE 4.9

Distribution pattern or GST specific activities of the sub-colony crude 
homogenates for the substrate CDNB. Data for PelSS are also presented for 
comparison.
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crude homogenates were inhibited by 60-80% with 5 /iM propoxur over a period 

of 2 minutes. In contrast, Pel-Chl AChE activity was not inhibited at that 

concentration and 100 mM propoxur only inhibited it to 60% (FIGURE 4.10). 

The calculated inhibition co-efficient (kj) values for AChEs from Pel-Chl, Pel- 

M al, Pel-Pro and PelSS were 5.12 ± 0.61 x 103, 1.39 ± 0.15 x 10s, 1.02 ± 0.08 

x 10s and 1.83 ± 0.16 x 10s M' 1 min' 1 respectively and the kj for Pel-Chl AChE 

was significantly less than the others (P< 0.01). The difference between the kj 

values of Pel-Pro and PelSS was also significant (P< 0.05). Therefore the greater 

resistance ratios shown by Pel-Chl are due to the additional resistance conferred 

by the altered AChE resistance mechanism. Esterase and AChE kinetic data 

explain the differences in cross-resistance spectra shown by each sub-colony 

towards different insecticides. According to the reactivities of both the esterases 

A2  and Bz all sub-colonies should express the resistance in the order 

chlorpyrifos > malathion> propoxur (see TABLES 4.2 and 4.3). But the 

resistance of Pel-Chl sub-colony to propoxur is much higher than the expected 

level, while in the other two sub-colonies the resistance to propoxur is similar to 

that of malathion (TABLE 4.1). The altered AChE mechanism in mosquitoes 

has been reported to be invariably more efficient at giving carbamate than 

organophosphate resistance (Georghiou, 1972; Ayad and Georghiou, 1975). In 

the present study also resistance to propoxur has been increased relative to the 

organophosphate resistance due to the presence of this mechanism in the sub­

colonies. The highest propoxur resistance in Pel-Chl is well correlated with its 

AChE resistance mechanism.

Chapter 4
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FIGURE 4.10

Time dependent inhibition of AChEs of the sub-colony homogenates. Data for 
PelSS are also presented for comparison.
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4.4. SUMMARY

During the present study three sub-colonies were selected with three different 

insecticides from a single parental colony of Cx quinquefasciatus. Elevated A2  

and B2 esterases were partially purified from each sub-colony and interacted with 

different insecticides. Kinetic data revealed that there is more than one elevated 

isoenzyme for each of the esterases A2  and B2, in the parental population. 

However, the differences of the sub-colony cross-resistance spectra were mainly 

due to a variously selected altered AChE mechanism.
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IMMUNOLOGICAL CROSS-REACTIVITY OF THE 

ANTISERUM RAISED AGAINST PELRR A2

5.1. INTRODUCTION

Polyclonal antiserum against the purified PelRR A2 was raised previously and 

shown to have no cross-reactivity with the purified PelRR B2  esterase 

(Jayawardena, 1992). Immunological cross-reactivity of this antiserum was further 

investigated in the present study. Carboxylesterases purified from several strains 

of Cx quinquefasciatus and mosquito crude homogenate samples on PAGE gels 

were examined for cross-reactivity using more sensitive detection methods. The 

antiserum was also interacted with an esterase purified from a malathion 

resistant strain of the saw-toothed grain beetle (Oryzaephilus surinamensis) and 

crude homogenate samples of An. stephensi and German cockroach (Blattella 

germanica) on PAGE gels to examine its cross-reactivity with other insect 

enzymes. The immunological relationships of esterase A2 with the commercially 

available vertebrate carboxylesterases and cholinesterases were also investigated.

149



C hap te r 5

S3.. MATERIALS AND METHODS

5.2.1. M ATERIALS

‘A’ and ‘B’ type carboxylesterases purified for the studies in Chapters 2 and 3 

were used. Purified grain beetle esterase was a kind gift from Dr. Chris Walter, 

Central Science Laboratory, Berkshire. Mosquito crude homogenates were 

prepared from the PelSS, PelRR, Dar91 and Tanga85 strains of Cx 

quinquefasciatus and ‘STMal’ (malathion resistant) and ‘Iraq’ (susceptible) strains 

of An. stephensi (currently held at London School of Hygiene and Tropical 

Medicine). Mosquito larvae were homogenized in ice-cold 50 mM phosphate 

buffer (pH 7.4) with 10 mM DTT using fresh or frozen fourth instar larvae. The 

supernatants of the centrifuged homogenates (15,000g for 5 minutes) were used 

for the experiments. Cockroach crude homogenates were also prepared in a 

similar manner using the first instar nymphs from an OP resistant strain, 

‘Muncie’ (colonized by Purdue University, USA and currently held at 

LSH&TM).

The polyclonal antiserum was previously produced against the purified PelRR 

A2 esterase in white New Zealand rabbits (Jayawardena, 1992) and stored at 

-70°C in 20 pi aliquots.

Polyvinylidene difluoride (PVDF) transfer membranes (0.2 p) were from
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Millipore (Bedford, MA, USA). Anti-rabbit IgG, horseradish peroxidase linked 

white antibody (from donkey) and ECL (enhanced chemiluminescence) detection 

reagents were from Amersham International pic. (Buckinghamshire, England). 

The trans-Biot SD Semi-Dry Electrophoretic Transfer Cell was from Bio-Rad, 

UK. Purified vertebrate carboxylesterases, cholinesterases and all the chemicals 

were from Sigma Chemical Co., UK.

5.2.2.1MMUNOBLOTTING TECHNIQUES

All the immunoblotting experiments were carried out at room temperature 

(22°C).

5.2.2.1 . Dot-Blot Assays

Purified esterases were diluted with distilled water to obtain the required protein 

concentrations. A 5 m1 dot for each sample was placed directly on the PVDF 

membrane. After blocking non-specific sites with 5% (w/v) non-fat milk and 

0.05% (v/v) Tween-20 in PBS (80 mM NajHPO^ 20 mM NaH2 P 0 4  and 100 mM 

NaCl, pH 7.5) the PVDF membrane was incubated with the A2  antiserum 

(1/2500 dilution in the blocking solution) (1 hr each). After washing in 0.05% 

(v/v) Tween-20 in PBS, 0.05% (v/v) Tween-20 plus 0.5 M NaCl in PBS and in 

0.05% (v/v) Tween-20 in PBS, for 5 min each, the membrane was incubated for 

1  hr with the horse-radish-peroxidase labelled secondary antibody [1 / 1 0 0 0  -

Chapter 5
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1/5000 dilution in 0.05% (v/v) Tween-20, 1% (w/v) non-fat milk in PBS]. The 

washing was repeated as described above. Membrane was then incubated for 

about 1 min in the ECL detection reagent and the bound antibody was detected 

by exposing to hyperfilm ECL for 10 seconds to 2 minutes.

5 2 2 2 . Western-blotting

Electrophoresis of purified esterases or crude homogenates was performed on 

native or SDS PAGE and the gels were removed and equilibrated in transfer 

buffer (25 mM Tris, 0.2 M glycine, pH 8.3) for 15 minutes. While this was in 

progress a PVDF membrane (9 x 8  cm) and 10 pieces of Whatman 3 MM filter 

papers (each 9 x 8  cm) were also equilibrated in transfer buffer. The ‘blotting 

sandwich’ was assembled on the middle of the cathodic plate of the Transfer 

Cell in the following order; 5 pieces of filter paper were rolled out on each other 

and the PVDF membrane was placed on that followed by the gel and another 

5 pieces of filter paper. It was essential to avoid trapping any air bubbles 

between the layers. The proteins were transferred at 20 V for 30 minutes. The 

sandwich was dissembled carefully once the process was completed and the 

PVDF membrane was directly placed in the blocking solution. The 

immunoblotting was then carried out as described in the previous section.

Chapter 5
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S3. RESULTS AND DISCUSSION

5.3.1. CROSS-REACTIVITY WITH ‘A ’AND ‘B’ TYPE ESTERASES

To investigate whether the antiserum raised against PelRR A2  cross-reacts with 

the other ‘A’ type esterases, both native and SDS PAGE gels were used with the 

‘A’ esterases purified from Dar91, Tanga85, Muheza, SPerm and PelSS strains 

and were subjected to immunoblotting. Purified PelRR A2 was also used as a 

control. The antiserum cross-reacted with all the A2  esterases and the susceptible 

‘A’ esterase both in their native and denatured forms (gels not shown). However 

a greater affinity could be observed for the native forms probably because the 

antiserum was raised against the native form of the PelRR A2  (Jayawardena, 

1992). It was also apparent that the reactivities of other ‘A’ esterases were 

similar to that of PelRR A2. All the purified B2  esterases and the purified PelSS 

‘B’ esterase were also examined in a similar manner. The results revealed that 

the A 2  antiserum does cross-react with ‘B’ type esterases although the extent of 

reactivity was slightly lower than that with ‘A’ esterases (gels not shown). Cross- 

reaction between ‘A’ and ‘B’ types has not been reported previously and is in 

contrast to the previous observations. One possible explanation for this is that 

the highly sensitive ECL detection method was used in the present study. When 

using the much less sensitive 3,3’-diaminobenzidine tetrahydrochloride dye 

method for visualization on the immunoblots no cross-reaction with the PelRR 

B2  protein was observed, as reported previously, with the same antiserum
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(Jayawardena, 1992). Mouches et aL (1987) have also reported that the 

antiserum raised against A, esterase cross-reacted with all the ‘A’ type esterases 

but not with ‘B’ type esterases. Similarly their B, antiserum cross-reacted with 

all the other types of ‘B’ esterases but not with type ‘A’ esterases (see section

1.8.3.2. ). Therefore this is the first report to show the immunological cross­

reactivity between the ‘A’ and ‘B’ type mosquito carboxylesterases. To determine 

the extent of cross-reactivity between the A2  esterases and B2  esterases, dot-blot 

immunoassays of the native proteins of PelRR A2 and PelRR B2  were 

performed. From serial diluted dot blots it was estimated that the A2  antiserum 

is about 50x less reactive with esterase B2  than esterase A2  (FIGURE 5.1).

5.3.2. CROSS-REACTIVITY WITH OTHER INSECT PROTEINS

FIGURE 5.2 shows an immunoblot of a native PAGE gel run with equal 

amounts (12 ng from each) of crude homogenate proteins of PelRR, Dar91 and 

Tanga85 strains. Several protein bands are observed to have cross-reacted with 

the anti-esterase A2  antiserum. Of these bands the low mobility and highly 

reactive band, found in all the samples, can be identified as acetylcholinesterase 

(AChE) according to the studies carried out on the PelRR strain previously 

(Peiris, 1989). The strong immunological cross-reactivity of the A2  antiserum with 

AChE suggests that both enzymes contain similar motifs. Esterase A2  and B2 

bands are prominent in all the resistant crude homogenates. In PelSS crude 

homogenate, the band between the resistant A2  and B2 esterases probably
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FIGURE 5.1

Dot-blots of serial dilutions of the PeIRR carboxylesterases A2  and B2  

immunodetected with A2  antiserum.
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FIGURE 52

Equal amounts of crude homogenates on native PAGE gel immunodetected with 

A2  antiserum.
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represents the co-migrating susceptible ‘A’ and ‘B’ enzymes, which are faster 

than A2  and slower than B2  respectively in their electrophoretic mobilities (see 

FIGURE 3.2 and 3.3). The weak PelSS band with an identical mobility to PelRR 

A 2  may represent the unamplified (or non-elevated) A 2  esterase in the PelSS 

strain. It is clear that several other bands present in the mosquito crude 

homogenate have also reacted with the A2 antiserum and some of these bands 

may represent other forms of ‘A’ and ‘B’ esterases. The esterase B2 band was 

always more diffuse than A 2  (see FIGURE 5.2) and after observing several films 

of the repeated experiments it was apparent that the broad B2  band comprised 

more than one band in all the resistant crude homogenates. This indicates the 

possibility of having several isoenzymes with slightly different electrophoretic 

mobilities for each of the esterase bands elevated on native gels which are 

stained for esterase activity.

Cross-reactivity of A, and B, antisera with the proteins present in Culex crude 

homogenates was investigated by Mouches et aL (1987). After denatured 

electrophoresis the gels were electroblotted to nitrocellulose sheets. Both 

antisera identified their own esterase types. In addition, A 1 antiserum cross- 

reacted with an unidentified 40 kDa protein band also. However any cross- 

reactivity between these antisera and the AChE was not observed (Mouches et 

aL, 1987). Beyssat-Amauty et aL (1989) extended these observations and 

introduced dot-blot immunoassays with this B, antiserum as a  method of 

monitoring the resistance, caused by the overproduction of ‘B’ type esterases, in
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the field. It is clear that the immunological cross-reactivity among ‘A’ and ‘B’ 

esterases or between these esterases and AChE is not detectable when dyes are 

used as the method of detection ie. Beyssat-Amauty et aL (1989) used goat anti­

rabbit alkaline phosphatase conjugate as the secondary antibody and 5 -bromo-4- 

chloroindoxyl phosphate with nitroblue tetrazolium salt to reveal its activity. 

Therefore it should be possible to monitor the amount of the ‘B’ esterases 

present in a given individual/strain, on comparative basis, using their method.

The purified esterase which is associated with the malathion resistance in saw­

toothed grain beetle (Oryzaephilus surinamensis), was subjected to a dot-blot 

assay with A2  antiserum. No cross-reactivity was observed even at a 

concentration of 0.75 ng per dot while the control (purified PelRR A2- 0.001 ng 

per dot), on the same membrane, gave a strong cross-reactivity. Crude 

homogenate immunoblots with similar amount of proteins from a malathion 

resistant strain (STMal) and a susceptible strain (Iraq) of An. stephensi were also 

examined (FIGURE 5.3). STMal strain has a qualitatively different 

carboxylesterases as the major resistance mechanism (Hemingway, 1982) (see 

section 1.4.4.3.A). Only a single band, AChE, cross-reacted from both strains 

under the established conditions. On longer exposure of the film a few other 

bands also appeared. Out of these, an esterase band in STMal crude 

homogenate was very prominent and had the same electrophoretic mobility as 

that o f the PelRR B2. In the susceptible crude homogenate also a similar band, 

but with much less reactivity, was identified (labelled as ‘Est’ in FIGURE 5.3).
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FIGURE 5.3

Equal amounts of crude homogenates of An. stephensi (susceptible ‘Iraq’ and 
malathion resistant ‘STMal’ strains) and PelRR on native PAGE gel 
immunodetected with anti-A2 antiserum. The film has been over exposed (see 
the text for details).



In the resistant homogenate, this band may represent a qualitatively different 

esterase involved in the malathion resistance. When a similar gel was stained for 

esterase activity, no such bands or any other elevated bands were observed in 

both strains. ‘Muncie’ strain o f Blattella germenica has elevated esterases as an 

OP resistance mechanism. However, in the crude homogenates of these 

cockroaches none of the esterases except AChE cross-reacted with the antiserum 

even after long exposure. From these results it is clear that the A2 antiserum is 

highly cross-reactive with the insect AChEs although the cross-reactivity with the 

resistance associated esterases from other insects is very poor.

5.3.3. CROSS-REACTIVITY W ITH VERTEBRATE CARBOXYLESTERASES 

AND CHOLINESTERASES

C hapter 5

Cross-reactivity of the PelRR A 2  antiserum with the commercially available 

vertebrate carboxylesterases and cholinesterases was examined using the dot-blot 

technique (FIGURE 5.4). Different concentrations of PelRR A 2  were used as 

controls. A strong immunological affinity was seen with rabbit liver esterase (1- 

10 fold less reactive than esterase A2) although the antiserum affinity was 

insignificant for the porcine liver esterase. Cross-reactivity of electric eel AChE, 

bovine AChE, human AChE and horse butyrylcholinesterase were about 104, 102, 

103  and 104  fold respectively, less than that of A2 esterase. The results show that 

the mosquito carboxylesterase A2  is immunologically related to several 

carboxylesterases and cholinesterases present in the vertebrates. Cross-reactivity
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FIGURE 5.4
Dot-blots showing the cross-reactivity of A2 antiserum with purified A2  and 
vertebrate esterases, a-rabbit liver esterase, b- porcine liver esterase c- AChE 
from electric eel, d- AChE from bovine erythrocytes, e- AChE from human 
erythrocytes, f- butyrylcholinesterase from horse serum.
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with the commercially available vertebrate esterases has also been shown 

recently for an antiserum raised against a partially purified rat liver microsomal 

carboxylesterase multigene family (Alexon et aL, 1993). However this is the first 

report to show the immunological relationships between mosquito and vertebrate 

esterases.

5.4. SUMMARY

Chapter 5

Immunological studies presented in this chapter reveal that the ‘A’ and ‘B’ type 

mosquito carboxyleste rases are immunologically related and the A2  antiserum 

strongly cross-reacts with the mosquito and other insect AChEs. Esterase A2  did 

not show any significant immunological relationship with the other resistance 

associated insect esterases tested. A2 antiserum cross-reacted with some of the 

commercially available vertebrate esterases indicating its similarities with the 

enzymes found in completely different groups of animals.

162





C hapter 6

GENERAL DISCUSSION

6.1. ESTERASE-BASED RESISTANCE MECHANISMS

Increased activity of non-specific carboxylesterases is a major resistance 

mechanism against the organophosphorus and carbamate insecticides in a variety 

of insect groups. As discussed in Chapter 2, these esterases may have primarily 

evolved as an adaptation to the toxic compounds found in their diet and 

environment. However, mosquito esterases A2  and B2  have also shown a 

preference for intermediate length mono- and diacylglycerols suggesting their 

possible involvement in other physiological functions, such as fatty acid-lipid 

metabolism (Ketterman et aL, 1992; Jayawardena, 1992).

In the present study, characterization of the purified carboxylesterases A2  and B2  

revealed that the esterase-based resistance mechanism in the mosquito Cx 

quinquefasciatus is due to the overproduction of carboxylesterases for the 

sequestration (rapid binding followed by slow turnover) of the insecticides. 

Hence the role of the mosquito esterases is very similar to that of the well 

characterized E4 esterase of aphids (Devonshire, 1977; Devonshire and Sawicki, 

1979; Devonshire and Moores, 1982). To maintain the mechanism effectively 

resistant individuals have to produce a considerable amount of enzymes and for
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a mosquito larva and an aphid this amount is respectively up to 0.4% and 3% of 

their total proteins (see section 2.3.2.4). It is surprising that such a mechanism, 

which results in considerable energy loss to the insect, has been selected. 

However there is no evidence to show that the resistant individuals with elevated 

esterases are less fit in their diurnal activities than the susceptible individuals 

with no elevated esterases (Amin,1983). Still, it has been observed in the field 

that resistant esterase genes have a selective disadvantage over the susceptible 

genes when there is no insecticidal pressure (Severini et aL, 1993). The same 

observation was made with most of our laboratory colonies as well, although 

some strains, eg. Dar 91, maintained their increased esterase levels even in the 

absence of any selection pressure.

In contrast to the overproduced esterase-based mechanism, non-elevated 

esterases also can act in OP resistance. In humans and rabbits, OP resistance is 

mainly due to the presence of serum paraoxonases (which belong to the ’A’ type 

esterases of the Alridge’s classification) that can hydrolyse the insecticides rapidly 

(Du et aL, 1993; Furlong et aL, 1993; Li et aL, 1993). The overproduction of these 

enzymes is not necessaiy for their function as they do not act by sequestration. 

A similar type of mechanism has also been observed in a malathion resistant yin. 

stephensi and An. arabiensis strains. Esterases involved in insecticide resistance, 

are not elevated as observed in native PAGE gels and qualitatively different 

from the susceptible enzymes (Hemingway, 1982; 1983). It has been reported that 

resistant An. stephensi carboxylesterases can hydrolyse malathion but are
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inhibited by paraoxon (Boddington, 1992). It is still to be investigated whether 

they belong to ‘A’ type or ‘B’ type esterases of the Alridge’s classification. 

However unlike the resistant Cx quinquefasciatus mosquitoes with overproduced 

‘B’ type (Alridge’s classification) esterases, the malathion resistant An. stephensi 

mosquitoes have a much narrower cross-resistance spectrum (Hemingway et aL, 

1982). Therefore, the most important factor which favours the selection of the 

overproduced esterase-based mechanism may be its ability to sequester a wide 

range of insecticides, giving the insect a broader cross-resistance spectrum. In the 

Cx quinquefasciatus strains studied, it is highly unlikely that any esterase-based 

mechanism, other than the one with overproduced esterases, is present because 

the insecticide interaction rates of the crude homogenate were very similar to 

those of the purified elevated esterases (see section 333.3.). However, in a 

malathion resistant strain of Cx tarsalis, both elevated and non-elevated types of 

carboxylesterase resistance mechanisms have been reported to co-exist (Ziegler 

et aL, 1987).

6 . 2 .  M O L E C U L A R  H O M O L O G Y  O F  THE M O S Q U I T O  

CARBOXYLESTERASES TO OTHER SERINE HYDROLASES

C hapter 6

The relationship between the amino acid sequence and the three dimensional 

structure of a large family of esterases and related proteins (including TEM-R 

B, [see section I.6.3.3.]) has recently been studied (Cygler et aL, 1993). It was 

shown that 25 amino acid residues were conserved in all the esterases studied.
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It is thought that these residues are vital for the structure (residues used for 

packing, salt bridges and disulphide bridges) and function (residues in the active 

site) of these proteins. TABLE 6.1. shows the amino acid residues surrounding 

the active site serine residue in some of the published serine hydrolases including 

the TEM-R Bj. A  considerable similarity is seen between the mosquito esterase 

B, and the insecticide target site AChEs (8-10 out of 12 identical residues). Over 

the entire coding region of the gene, the number of identical residues is higher 

between the B, and the human AChE than between the Bt and the AChE of the 

mosquito An. stephensi. Recently the amplified esterase genes o f PelRR A2, 

PelRR B2, MRES (an OP resistant Cuban Cx quinquefasciatus strain) B} and a 

partial length of the susceptible non-amplified PelSS ‘B’ were sequenced. The 

percentage identities of A2  esterase and ‘B’ type esterases with vertebrate AChEs 

are about 40% and 12% respectively at the amino acid level. The identities with 

the AChE of An. stephensi are much lower (less than 14% and 2% respectively) 

(Vaughan et aL, submitted[a]; [b]). The AChE gene of Culex has not been 

sequenced so far and that of An. stephensi may not represent a typical mosquito 

AChE as enzyme inhibition assays have shown that this AChE behaves 

differently from that of other mosquitoes (Dr. J. Hemingway, personal 

communication).

The antiserum raised against the esterase A2 cross-reacted with purified esterase 

B2  and several other vertebrate esterases and the differences were estimated (see 

Chapter 5). These immunological relationships of esterase A2 were compared
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Hydrolase Sequence

Serine proteinases, subtilisin family
Subtilisin BNP AYNGTSMASPHV

Serine proteinases, trypsin family
Bovine trypsin SCQGDSGGPW C
Drosophila trypsin-like ACQGDSGGPLVS
Hornet trypsin-like ACHGDSGGPLVS

Serine esterases
Torpedo AChE TIFGESAGGASV
Human AChE TLFGESAGAASV
Drosophila AChE TLFGESAGSSSV
An. stephensi AChE TLFGEfiAGGSSV
Rat carboxylesterase TIFGESAGGVSV
Mouse carboxylesterase TIFGESSGGISV
Rabbit carboxylesterase TIFGESAGGQSV
Drosophila Est - 6 LLVGHSAGGASV
Heliothis JH E TIAGOSAGASAA
Culex Esterase-Bj TLAGHSAGAASV
Aphid E4/FE4 TITGMSAGASSV

TABLE 6.1. Amino acid sequence surrounding the active-site serine residue (S) 

in some serine hydrolases including TEM-R B, (adopted from Field et aL, 1993).



with the homologies of their amino acid sequences (TABLE 6.2.). There is no 

apparent relationship between the homologies shown by the two methods. The 

immunological data show the presence of specific binding sites on the molecular 

surfaces which may be correlated with the conformations of the actual proteins.

The mosquito esterases A2  and B2 have been compared biochemically with other 

esterases during their characterization in Chapter 2. Unlike B2, A2  was 

completely inhibited by the specific AChE inhibitor eserine at 10 nM  

concentration, showing a very high structural similarity of the active sites of Aj 

and AChEs. To assess the similarity of the conformation around the active site, 

the specific AChE inhibitors propidium iodide and BW284C51 were tested with 

purified esterase A2. These inhibitors are thought to be bind to an anionic sub­

sites situated around the rim of the active site gorge of the AChE molecule and 

modify activity through conformational change (Friboulet et aL 1990; Shafferman 

et aL 1992; Marchot et aL 1993). However esterase A 2  was not inhibited by either 

of these compounds (Dr. A. J. Ketterman, personal communication).
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Immunological

reactivity*

Sequence

identity1’

PelRR B2 2 .0 % 70%

Rabbit liver esterase > 1 0 .0 % 2 0 %

Porcine liver esterase 0 .0 1 % < 14.0%

Electric eel AChE 0 .0 1 % 40.0%

Bovine AChE 1 .0 % 35.0%

Human AChE 0 .1 % 40.0%

Horse BChE* 0 .0 1 % < 14.0%

a- cross-reactivity o f the A 2 antiserum is expressed as a percentage o f  its reactivity w ith purified 

esterase A 2

b- percentage identity is expressed at the amino add level 

‘Butyrylcholinesterase

TABLE 6 ¿2. Comparison of the immunological and sequence data obtained for 

molecular homologies of esterase A2  with the mosquito esterase B2  and several 

vertebrate esterases (see the text for details).
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63. POLYMORPHISM OF MOSQUITO CARBOXYLESTERASES

During the present study, different A and B type carboxylesterases were purified 

and characterised from several different strains of Cx quinquefasciatus. The 

observed kinetic differences clearly indicated the existence of multiple variants 

showing the polymorphism in mosquito carboxylesterases. Recent molecular 

biological data show that ‘B’ type esterases are very similar to each other. Gene 

sequences of PelRR B2, MRES Bj and the partial PelSS ‘B’ have been compared 

with the sequence of TEM-R Bj and a previously sequenced partial B2  gene 

(Mouches etaL, 1990, Vaughan et aL, submitted[a]). The four esterase nucleotide 

sequences (excluding the partial B2  sequence) are from 95.2% (TEM-R B, with 

MRES B, and PelSS ‘B’) to 98.8% (MRES B, with PelSS ‘B’) identical. Deduced 

amino acid identity between the esterases ranges from 95.2% (TEM-R Bj with 

PelSS ‘B’) to 98.6% (partial sequenced B2  with PelRR B2) (Vaughan et aL, 

submittedfa]). The high identities at the molecular level suggest that the esterase 

‘B’ genes are allelic. Esterase A2  shows about 70% amino acid sequence 

homology with all the sequenced ‘B’ type esterases (Vaughan et aL, 

submitted[b]). The relationships among different A esterases are yet to be 

established.

In Drosophila there are at least 22 different soluble esterases which can be 

distinguished electrophoretically using naphthyl acetates as substrates and
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multiple alleles are present at some of the corresponding loci (Healy et aL,

1991). Human and rabbit paraoxonases are also present as highly polymorphic 

isoenzymes (Du et aL, 1993; Furlong et aL, 1993; Li et aL, 1993). In mouse, 

polymorphic esterase genes are arranged in two clusters and the orthologous 

chromosome regions have been identified in other mammals as well (see section

1.6.3.1.). The isoenzymes are very similar to each other and share a common 

origin (see section I.6.3.2. and FIGURE 1.7.). It was shown that A and B type 

mosquito esterases are immunologically related and both have the same role in 

insecticide resistance. This suggests that both ‘A’ and ‘B’ gene loci may have 

evolved from a tandem duplication of a common ancestral locus and different ‘A’ 

and ‘B’ type genes have risen secondarily from each of these loci forming a 

multigene family, a situation somewhat similar to the organization o f the 

mammalian esterase genes.

Specific glycosylation may be a possible explanation for the mobility differences 

of the different ‘A’ and ‘B’ electromorphs. There are five possible glycosylation 

sites amongst all the B esterases sequenced so far and only one of these is 

common to all four sequences (Mouches et aL, 1990; Vaughan et aL, 

submitted[a]). Since they have different sites of glycosylation, allele specific 

glycosylation leading to mobility differences on native PAGE is possible. The 

same phenomenon may cause the differences among the ‘A’ electromorphs as 

well. However during the development of the purification procedures it was

C hapter 6
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noted that PelRR B2  did not bind to Con-A Sepharose which contains binding 

sites for glucose and mannose residues (see section 2.3.1.). This implies that 

either the glycosylation of PelRR B2  or the participation of glucose and mannose 

residues in glycosylation is insignificant.

6.4. THE THEORY OF MIGRATION

Chapter 6

On the basis of identical restriction digest patterns of the flanking regions of the 

B2  gene from different populations, Raymond et aL (1991) proposed the 

hypothesis that amplification of the Bj allele of the esterase ‘B’ locus has 

occurred only once and spread worldwide (see section 1.63.3.). Esterase A2  is 

always associated with esterase B2  and shows almost complete linkage 

disequilibrium. It is now known that both esterases A2  and B2 sit on the same 

amplification unit (Vaughan et aL, submitted[b]). Therefore the event causing A2  

elevation must have occurred and spread concurrently with B2. If OPs have been 

the main selecting agents for the A2 /B 2  esterase amplification worldwide, this 

selection has only been operative over the last forty years at most, and in the 

majority of countries the time scale would be much shorter than this. Thus, the 

amplification of the A2 /B 2  unit and its subsequent selection and migration have 

to be considered as a recent event and the time scale is not sufficient for the 

amplified genes to diversify significantly. Therefore if Raymond’s migration 

theory is correct, all the amplified A2  and B2  genes would be almost identical (in
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actual terms Raymond et aL [1991] postulated the hypothesis assuming that all 

the B2  genes are the same).

The A2 and B2  esterases purified in this study were from strains which originated 

in different geographical areas of the world (two of the strains were collected 

from identical sites to those used in Raymond’s study) but they were kinetically 

different from each other. Slight differences among the electrophoretic mobilities 

of esterase BjS were also observed (see Chapter 3). It was also shown that 

kinetically different A2  and B2  enzymes can be selected even within a single 

population of Cx quirujuefasciatus (see Chapter 4). These data clearly 

demonstrate that different isoenzymes of esterases A2  and B2  occur in natural 

populations and suggest that Raymond’s hypothesis is too simplistic.

Although it is possible that the post-transcriptional changes of the same gene 

product lead to the formation of different forms, existence of such a mechanism 

to generate kinetically different forms is highly unlikely. Sex-, tissue- and age- 

specific regulation of the genes of esterase 6  and esterase S in Drosophila have 

been studied but there is no data to show that they are enzymologically different 

(Karotam and Oakeshott, 1993; Ludwig et aL, 1993; Sergeev et aL, 1993). 

Extensive polymorphism of the gene product after mRNA processing and 

subsequent post-translational modifications has been reported for AChE 

(Chatonet and Lockridge, 1989; Taylor, 1991; Li et aL, 1993). Post-translational
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proteolytic processing and core-glycosylation have also been studied in rat liver 

esterases (Robbi and Beaufay, 1986; 1987; 1988). Two of the forms, of which one 

was formed as a result of proteolytic processing of the other, were similar to the 

pi 6.0 and 6.4 esterases which were shown to have different substrate preferences 

by Mentlein et aL (1985). However, both groups were uncertain whether such 

proteolytic processing can occur in vivo (Mentlein etaL , 1985; Robi and Beaufay, 

1988). It is hard to believe that the kinetic differences observed among A2 and 

B2  esterases are due to post-transcriptional or post-translational modifications of 

the same gene product. A difference of three amino acid residues has been 

observed between the deduced amino acid sequences of the partial Bz esterase 

sequence (Mouches et aL, 1990) and the corresponding region of the PelRR B2  

gene (Vaughan et aL, submitted[a]). In human serum paraoxonases, kinetic 

differences between two variants occur due to a single amino acid substitution 

at a position which is not near the active site (Humbert et aL, 1993). Therefore 

the observed differences in mosquito carboxylesterases must certainly be due to 

the differences in their gene sequences.

Two elevated B esterases found in Cx pipiens in France and Cyprus have been 

reported to possess restriction fragment length polymorphisms different from 

each other and from the previous patterns reported for B2  esterases (Poirie et aL,

1992). Although both enzymes have almost identical mobilities to that of B2 on 

starch gels, they have been classified as B4  and Bs because of their RFLP

Chapter 6

175



patterns and their respective association with A* and A, esterases which are 

different from esterase A2  in electrophoretic mobility. It has now, therefore, been 

suggested that amplification of the esterase ‘B’ locus has occurred at least four 

times with two electrophoretically distinguishable allelic forms of the gene (B, 

and B2 /B 4 /Bs), but it is maintained that B2  is the most common form which was 

spread by migration throughout the majority of the world (Poiri6  et aL 1992). 

According to the results of the present study, B2 esterases are also expected to 

vary in their actual gene sequences. Since B4  and Bs have different RFLP 

patterns and different ‘A’ types in association, these may be distinctly different 

from other B2  esterases representing two early off-shoots (A4 /B 4  and Aj/B5) of 

the main evolutionary stream of A2 /B 2  esterases.

RFLP analysis of the ‘B’ locus and its flanking region in susceptible Culex strains 

(which have non-amplified ‘B’ esterase genes) have shown a high degree of 

polymorphism (Raymond et aL, 1991). In the present study it was shown that the 

susceptible enzymes are markedly different from the resistant enzymes (see 

Chapter 3). However, gene sequencing data show a high identity (95.2% - 98.8%) 

between the PelSS ‘B’ and the other sequenced resistant ‘B’ types (Vaughan et 

aL, submitted[a]).

Insecticide-interaction data obtained for different resistant ‘B’ esterases showed 

that the two B, esterases differ greatly from each other whereas different B2
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types were more similar to each other (see TABLE 33 and 3.4). Deduced amino 

acid sequences have also shown that the percentage identity of TEM-R B, and 

MRES Bj is only 96.1%. Interestingly both of these have shown greater identities 

(97.4% and 98.0% respectively) to PelRR B2 (Vaughan et aL, submitted [a]). 

From both the kinetic and molecular biological data it is clear that Bj esterases 

are more diversified. Although the enzymological data suggest that B2  esterases 

are more conserved the situation is yet to be analysed with gene sequences. It is 

possible that the Bj esterases have diverged at different times from the main B2  

stream during the process of evolution .

The enzymological data presented in this report and the molecular biological 

studies which are still in progress clearly show that a great number of alleles exist 

for the resistant esterase loci ‘A’ and ‘B’. Such a variation in amplified alleles can 

not be expected to occur as a result of a single amplification event and a 

subsequent recent diversification. If they have been amplified only once, the 

original amplification has not occurred recently and can not be within the time 

span over which OPs have been used. Another possibility is that the amplification 

has occurred several times amplifying several different mutated alleles of the ‘A’ 

and ‘B’ loci. Amplification is a rare event and its frequency in cultured 

mammalian cells is reported to be lO^-KT4 (Schimke, 1984). Mutation is also a 

rare event and the sequenced data of ‘B’ esterases show that the changes that 

have occurred between alleles are due to single nucleotide substitutions rather
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than chromosomal rearrangements, as the nucleotide changes are scattered 

throughout the coding sequence (Vaughan et aL, submitted [a]). However, 

chromosomal rearrangement have also undoubtedly played an important role 

during the evolution of the ‘A’ and ‘B’ esterase loci, because it has been shown 

that all the ‘A’ and ‘B’ type genes are not situated on the same linkage group 

(Wirth et aL, 1990).

Transposable elements or long interspersed repetitive elements (LINEs) which 

are capable of accelerating the frequency of gene mutation and gene 

amplification have been found in association with the mosquito carboxylesterases. 

Mouches et aL (1990) identified LINEs, designated as Juan-C, closely associated 

with the amplified esterase B, gene in the TEM-R strain of Cx quinquefasciatus. 

Transposable elements (LINEs) are DNA sequences that are capable of 

movements (transposition), with or without a RNA intermediate, within or 

between genomes and considered as powerful mutagenic agents which cause 

increased genetic variability. Transposition can be influenced by environmental 

factors such as insecticidal pressure and therefore may play an important role in 

adaptation (Wilson, 1993). These elements can insert into genes or excise with 

parts of genes causing severe rearrangements. Truncated elements or the 

elements with deletions have also been observed commonly (Mouches et aL, 

1992; Agarwal et aL, 1993). Many full length copies of Juan-C lines have been 

described recently from the genomes of different strains of Cx quinquefasciatus
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that originated from different continents. All these amplified elements had nearly 

identical copies suggesting a recent spread. They also display strong homologies 

with Juan-A elements of Aedes mosquitoes and similarities with some of the 

Drosophila LINE types indicating a common precursor. Juan-A elements have 

been identified in the genomes of various strains belonging to three non-sibling 

species of Aedes. It has been suggested that these elements have spread by 

horizontal transfer between the species (Mouches et aL, 1992; Agarwal et al.,

1993). Lack of the terminal repeats in the Juan-C sequence was observed to 

cause duplication of the host DNA at the site of their integrations (Agarwal et 

aL, 1993). Therefore the presence of LINEs in mosquito genomes, especially the 

close association of Juan-C with the esterase gene, indicates the possible 

involvement of these elements in accelerating the diversification of the mosquito 

esterase genes which are favoured by the environment. Although the different 

levels of amplification of the amplicon core and extremities make it unlikely that 

active transposition has been involved in amplification (Besansky et aL, 1992).

The frequent appearance of new esterase phenotypes has been observed near 

international ports suggesting the importance of migration in their spread (Rivert 

and Pasteur, 1993). Migration must have undoubtedly played an important role 

in the spread of the amplified resistant genes in the presence of the positive 

selection pressure of the insecticides. But the whole process can not be as simple 

as Raymond et aL (1991) overviewed. Mutations and amplifications of the gene
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loci ‘A’ and ‘B’ must have occurred on several occasions over a long period of 

time resulting in different forms of amplified ‘A’ and ‘B’ alleles.

Chapter 6

6.5. RELATED EVENTS IN OTHER RESISTANCE MECHANISMS

A basic overview on the mechanisms which can cause the insecticide resistance 

in insects is given in the section 1.4. It is well known that different types of 

oxidases and GSTs belonging to different families can be involved in detoxication 

of xenobiotic substances such as insecticides. The recent advances in the 

understanding of qualitatively and quantitatively different insecticide target sites 

is of great interest and can be compared with the elevated esterase-based 

mechanism in the light of their physiological functions.

AChE is the target site of the OP and carbamate insecticides. Target site 

insensitivity is caused by the mutated forms of AChE with decreased sensitivity 

to insecticide inhibition. Four point mutations, associated with the resistance, 

have been identified in the Drosophila AChE gene and resistant wild populations 

are expected to carry a greater number of mutated alleles (Fournier et aL, 1992; 

1993). Resistance due to the altered AChEs in houseflies has been shown to be 

often accompanied by a modification in the kinetics of hydrolysis of its 

physiological substrate, acetylcholine, although there is no definitive correlation 

between its insensitivity to inhibition and the activity (Vmilx) or the affinity (K„,)

180



towards acetylcholine (Devonshire and Moores, 1984). The flexibility of the 

insect to tolerate slight changes in the kinetics of the AChE/acetylcholine 

interaction, means that a range of mutations in the AChE are possible leading 

to different pesticide insensitive variants. Unlike AChE, non-specific esterases 

appear to  have no significant physiological function and therefore, there are 

fewer restrictions on their diversification.

The possibility of the involvement of increased quantities of AChE in OP 

resistance has also been investigated. Fournier et aL (1992) introduced additional 

copies of the AChE gene to Drosophila melanogaster individuals by P-mediated 

transformation and constructed different strains with various amounts of the 

enzyme. Toxicological analysis of these strains demonstrated that the resistance 

to OPs is correlated with the amount of AChE present in the central nervous 

system (Fournier et aL, 1992). By increasing the gene expression, the soluble 

form of AChE was secreted to the haemolymph of D. melanogaster in greater 

quantities. These flies showed high levels of OP resistance as a result of the 

excess AChE, present outside the nervous system (Fournier et aL, 1993). 

Therefore, as implied by the latter experiment, the presence of increased 

quantities of AChE can function in the sequestration of the OPs in a manner 

similar to the elevated mosquito esterases. It has been strongly suggested that in 

natural populations of insects increased production of AChE occurs as a 

mechanism for the insecticide resistance within the limitation that it must not
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alter the normal physiology of the animal (Fournier et aL, 1992; 1993). It is hard 

to believe that such a mechanism would be selected in the presence of the 

elevated esterase-based mechanism because the esterases are more efficient than 

the AChE in binding some insecticides as shown in Chapter 2 (see section

2.3.2.2.3.) and also unlike AChE, esterases do not have any distinct physiological 

function which could be altered in the presence of the excess enzyme. 

Furthermore, the molecular weight of the AChE is higher than that of the 

esterases and since both enzymes interact with insecticides in 1 : 1  stoichiometry, 

production of AChE is more energy consuming than the production of esterases.

The number of mutated forms of a protein tend to be extremely limited when 

the protein of interest has a highly specific function in the physiology of the 

animal. Two such examples are exhibited by the GABA receptor proteins and 

the Na+ channel proteins of the insect nervous system.

The y- aminobutyric acid subtype A (GABAA)-gated chloride channel of the 

insect nervous system is the target site for cyclodiene insecticides. The evidence 

suggests that the cyclodiene resistance is due to the insensitivity of these 

receptors (Deng et aL, 1991). The GABAa receptor/chloride ion-channel gene 

was cloned and sequenced from an insecticide susceptible Drosophila 

melanogaster strain (ffrench-Constant et aL, 1991). A single base pair mutation 

causing a single amino acid substitution (Ala3 0 2 to Ser) within the second
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membrane-spanning region of the channel was found to be the only consistent 

difference between resistant and susceptible strains (ffrench-Constant et aL, 

1993b). Site-directed mutagenesis of this amino acid and functional expression 

of the resulting GABA gated chloride ion channels in Xenopus oocytes has 

confirmed the functionality of the resistance associated mutation (ffrench- 

Constant et aL, 1993c). In the resistant strains of Drosophila simulans, most 

insects showed the same mutation while a few displayed an alternative single 

base pair mutation in the same codon resulting in the substitution of a different 

amino acid. It has been shown that these were the only mutations present in both 

species using 122 resistant and 58 susceptible strains collected from two 

continents. Both mutations cause a loss o f a restriction endonuclease HaeII site 

allowing the resistant gene to be detected by a polymerase chain reaction 

(PCR)/ restriction endonuclease (REN) treatment. The type of the resistant 

allele involved could be identified by the PCR amplification of specific alleles 

(PASA) treatment (ffrench-Constant et aL, 1993b; Steichen and ffrench-Constant,

1994). In Aedes aegypti the membrane spanning region of the gene has been 

shown to be almost identical to that of D. melanogaster and the same mutation, 

causing the same amino acid substitution, was shown to be involved with the 

resistance. This also could easily be detected by PCR/REN or PASA techniques 

(Thompson et aL, 1993; ffrench-Constant et aL, 1994). Most recently the same 

Ala3 0 2  to Ser mutation in GABAa protein has been shown to be involved with 

the cyclodine resistance in three species which belong to three different orders
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of insecta; Musca domestica (Díptera), Tribolium castaneum (Coleóptera) and 

Peripleneta americana (Dictyoptera) (ffrench-Constant, 1994). It is interesting to 

note the conservation of the same mutation between widely separated insects 

groups. It has been suggested that the same mutation has occurred independently 

in different groups showing parallel evolution (Thompson et aL, 1993; ffrench- 

Constant, 1994). Unlike in the esterases and AChEs, the number of viable 

resistant mutations in this important functional region of the protein may 

therefore be extremely limited.

In D. melanogaster the presence of an £coRl site in the neighbouring intron was 

found to be associated with the resistance in all but 3 of 48 strains examined 

(ffrench-Constant et aL, 1993b). This shows a difference in the RFLP patterns of 

the resistant genes within only 770 base pairs of the resistance associated 

mutation whereas Raymond et aL (1991) claimed that the restriction maps of the 

amplified esterase B2 genes were identical across several kilobases near the 

resistance gene in Culex strains from around the world. Perhaps the restriction 

enzymes used in the Raymond’s study have not identified the mutations present 

among the resistant B2 genes as they were not selected with the knowledge the 

DNA sequence.

The Na+ channel protein of the insect nervous system is the target site for 

pyrethroids and DDT. Resistant insects have a ‘kdr’ type nerve insensitivity which
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is caused by the reduction in the density of the target sites/ Na+ channels in the 

neuronal membrane (Jackson et aL, 1984; Kasbekar and Hall, 1988; Rossignal, 

1988) or as most of the studies have shown by the reduced affinity (alteration of 

the structure) of the target site ( Jackson et aL, 1984; Grubs et aL, 1988; Pauron 

et aL, 1989; Amichot et aL, 1992). Deduced amino acid sequence of the N a+ 

channel protein of Drosophila shows a high degree of homology with vertebrate 

channel proteins in all the areas presumed to be critical for channel function 

indicating a high level of evolutionary conservation (Salkof et aL, 1987). In 

Drosophila two putative Na+ channel genes, ‘DSCI’ and ‘para’, have been 

identified to be responsible for producing channel proteins with decreased 

affinity (Salkoff et aL, 1987; Ramaswami and Tanouye, 1989). Cloning and 

sequencing of the ‘DSCI’ gene revealed a single non-silent nucleotide change 

between the susceptible and resistant genes that may be responsible for the 

resistance (Amichot et aL, 1992). Using a fragment of the Drosophila ‘para’ gene, 

the resistance associated ‘Msc’ gene has been isolated from house flies. The 

amino acid identity between ‘para’ and ‘Msc’ is 99%. Different RFLP patterns 

at the ‘Msc’ locus have been identified in susceptible, ‘kdr’ and ‘super kdr’ flies 

(Williamson et aL, 1993). The evidence shows that more than one gene is 

involved in the ‘kdr’ resistance mechanism in insects. Whether the  resistance 

associated mutations, which are found in the resistant alleles of each gene type, 

are conserved among different insect groups is yet to be established. However, 

as was shown for GABA receptors, there may be severe functional constraints
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on the formation of functional Na* channels which are insensitive to insecticide 

binding.

C hapter 6

6.6. PROBLEMS IN THE NOMENCLATURE OF MOSQUITO 

CARBOXYLESTE RASES

In the A2 /B 2  classification, subscripts are based on the Rf values of different 

esterases on native PAGE gels (Raymond et aL 1987) and the time has come to 

assess the validity of this nomenclature. In the present study significant 

differences were shown among the enzymes with similar Rf values. In addition, 

two B2- type enzymes which have the same mobilities as esterase B2  on starch 

gels have been classified as B4  and B5  after observing the differences in their 

restriction fragment length polymorphism patterns (Poirid et aL 1992). Obviously 

the electrophoretic mobility of the esterases on either starch o r acrylamide gels 

is an extremely poor indicator of the actual allelic variant or variants present in 

a given strain within the A2  or B2 classification. Furthermore, an esterase activity 

band observed on a native gel may not be a single enzyme but a mixture of 

isozymes representing an allelic mixture. The terms ‘A’ and ‘B’ are also 

misleading since both these types are referring to serine hydrolases which can be 

classified under the ‘B’ type esterases in Alridge’s classification (Aldridge, 1953a; 

1953b). In keeping with the rat and mouse nomenclature (Zutphen, 1983; Bender 

et aL, 1984; Zutphen & Bieman, 1984; Simon et aL 1985), we therefore propose
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the two enzymes be referred to as ESa and ESP and the genes be called Esa and 

Esfi. Esterase B, and B2  would thus become ESP-1 and ESP-2. Fully 

characterized allelic forms might then be superscripts following the digits for the 

forms, for example, for isoforms of ESP-2 they might be ESP-2 1 or ESp-24.

C hapte r 6

6.7. CONCLUSIONS AND FUTURE STUDIES

In conclusion, characterization of the purified esterases A2, B2  and B, from 

several different strains of Cx quinquefasciatus revealed that the role of elevated 

carboxylesterases in the insecticide resistance is sequestration (rapid binding 

followed by slow turn over of the insecticide) and that more than one isoenzymes 

exists for each of these esterase isozymes. Non-elevated susceptible enzymes were 

markedly less reactive with some of the insecticides. Both esterase types ‘A’ and 

‘B’ were immunologically related to each other and revealed a high molecular 

homology to the insecticide target site AChE. The presence of multiple variants 

of ‘A’ and ‘B’ type esterases show a polymorphism among the mosquito 

carboxylesterases, but the esterases are similar enough in their characteristics 

through purification to suggest a common origin. Diversification of the amplified 

resistant alleles of the esterases indicate that amplification of the gene loci have 

occurred several times and/or such events are not recent.
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The knowledge of kinetic and catalytic properties and molecular structure of the 

elevated carboxylesterases should lead to their manipulation to facilitate insect 

control. The present work is an enzymological approach to this problem. A 

number of the A2, B2 and B, genes have already been sequenced (Vaughan et aL, 

submittedfa]; [b]). Polymorphism among the B, esterases has already been shown 

in both their DNA sequence and RFLP patterns (A.Vaughan, personal 

communication). Similar experiments for A 2 /B 2  genes will show whether the 

multiple variants observed in the present study are due to differences in their 

gene sequences or whether there is any post-transcriptional or post-translational 

modifications in the expressed gene products. Different types of esterase genes 

will now be expressed in baculovirus systems and their subsequent purification 

and characterization will confirm their identity. Knowledge of the possible 

events/factors which can influence the mutation and amplification of these 

esterase genes would also be of great importance in developing new strategies 

in insect control. Subsequent construction of the 3-D structure of the 

carboxylesterase protein will allow the identification of the residues which are 

important in the catalytic activity of the enzyme. A thorough understanding of 

the molecular structure of these enzymes will aid in designing novel insecticides 

which are less reactive with these enzymes.
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