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Predicting quality and quantity of water used by urban
households based on tap water service
Aurelie Jeandron 1*, Oliver Cumming 1, Lumami Kapepula2 and Simon Cousens3

Despite significant progress in improving access to safe water globally, inadequate access remains a major public health concern in
low- and middle-income countries. We collected data on the bacterial quality of stored drinking water and the quantity of water
used domestically from 416 households in Uvira, Democratic Republic of the Congo. An indicator of tap water availability was
constructed using invoices from 3685 georeferenced piped water connections. We examined how well this indicator predicts the
probability that a household’s stored drinking water is contaminated with Escherichia coli, and the total amount of water used at
home daily, accounting for distance from alternative surface water sources. Probability of drinking water contamination is predicted
with good discrimination overall, and very good discrimination for poorer households. More than 80% of the households are
predicted to store contaminated drinking water in areas closest to the rivers and with the worst tap water service, where river water
is also the most likely reported source of drinking water. A model including household composition predicts nearly two-thirds of
the variability in the reported quantity of water used daily at home. Households located near surface water and with a poor tap
water service indicator are more likely to use water directly at the source. Our results provide valuable information that supports an
ongoing large-scale investment in water supply infrastructure in Uvira designed to reduce the high burden of cholera and other
diarrhoeal diseases. This approach may be useful in other urban settings with limited water supply access.
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INTRODUCTION
The public health importance of both drinking water quality and
the quantity of water available for domestic consumption has
been long recognised.1 The quality of drinking water influences
“waterborne” disease transmission, that is the ingestion of
infectious agents via contaminated drinking water, while the
quantity of water available domestically influences “water-
washed” disease transmission, that is where insufficient water is
available to allow adequate hygiene practices.2,3 Many efforts
have been made to quantify the health risks associated with both,
with an emphasis on diarrhoeal diseases.4–13 In turn, the estimated
levels of health risk have been used to classify households’ water
sources, combining water quality characteristics, such as protec-
tion from microbiological contamination, and accessibility and
availability criteria, such as distance to the source, time needed to
fetch water and continuity of water availability.
In 2015, the international community set the ambitious target of

“safely managed water for all” by 2030 (Sustainable Development
Goals (SDGs)—target 6.1) in an ongoing effort to address the
detrimental health and social impacts of poor access to safe water
for those without these services.14 “Safely managed water” is
defined by three criteria: (1) water free of faecal and priority
contamination; (2) water accessible directly on premises; (3) water
available when needed. This definition replaces the dichotomy
between unimproved/improved drinking water source previously
used for the Millennium Development Goals (MDGs) between
1990 and 2015 that did not capture adequately the levels of
accessibility and availability offered by improved sources.15

Estimates of the health benefits of improved accessibility and
continuously available water sources are rather heterogeneous

across studies, but a recent review estimates that moving from an
unimproved drinking water source to a continuous piped water
supply on the premises could reduce the risk of diarrhoeal
diseases by up to 75%.12 Using quantitative microbial risk
assessment methods (QMRA), Bivins et al. estimated that 13,700
disability-adjusted life years (DALY) are attributable to intermit-
tency of piped water supplies in Sub-Saharan Africa (SSA) with
109,000 annual DALY worldwide.16 The causal pathway for the
above health impacts involves a change in both quality and
quantity of water used by households for drinking and domestic
purposes, but establishing the respective importance of each is
challenging. A continuous piped water supply on the premises
suggests that households do not require water handling and
storage, which are known risk factors for microbial contamina-
tion.17 Continuous tap water service and pressure also reduce the
risk of contaminant ingress into the distribution network and
water quality deterioration.18 Access to water on the premises
implies minimal time and effort needed from household members
to collect water, and doubles or more water consumption in
comparison with households using a source outside their
premises.1,8 Water quantity consumed by households was indeed
shown to be stable when using a source outside the compound
located as far as ~30 min of return collection journey, to decrease
as the journey time became longer than 30min, but to increase
sharply when the source was located on the premises. An
uninterrupted supply that users trust to perform consistently well
also reduces the probability of a household occasionally reverting
to other water sources of lesser quality or more demanding to
fetch, and the probability of some hygiene practices being
temporarily abandoned.19,20
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To enhance consistency and comparability of SDG estimates
globally, emphasis is largely placed on households’ main source of
water, which overlooks the widespread use of multiple sources of
water by households.21 In addition, SDG estimates are mostly
based on standardised national cross-sectional household surveys
and do not capture geographical inequalities at a smaller scale,
although methodological innovations, such as using spatial and
remote-sensing tools and data, have been proposed to provide
better coverage estimates at the district level.22

The Democratic Republic of the Congo (DRC) is one of a few
countries in which access to piped water on premises has
markedly declined over the MDG period, by nearly two-thirds for
the urban population, from 48 to 17% coverage.23 In addition to
increasing urbanisation, this is most likely a consequence of the
deterioration in the operational capacity of the National Water
Agency, Regideso, which operates piped water systems in 94 cities
and secondary urban centres across the country.24 None of the
piped water supply systems in DRC are considered uninterrupted,
and none of the country’s population has access to safely
managed water.23 The piped water infrastructure in Uvira, the
second largest town of South-Kivu province, is no exception, and
is currently being rehabilitated and extended to improve access to
piped water services for its ~250,000 inhabitants, in an attempt to
better control cholera and other diarrhoeal diseases. Uvira is an
identified hotspot for endemic cholera in Eastern DRC, from which
the disease regularly spreads to less frequently affected areas of
the country.25–27

The present analysis draws on data collected as part of an
evaluation of the impact of these improvements on households’
water-related practices, and the incidence of suspected cholera
and other diarrhoeal diseases. Its aim is to develop and assess
spatially explicit predictive models for estimating the probability
of households storing contaminated drinking water and for
estimating the quantity of water used at home for domestic
activities, based on piped water access and distance from surface
water sources. This research has the potential to provide estimates
of water service level coverage at a high spatial resolution, to
enable better targeted water infrastructure investments and
detection of geographical inequities.

RESULTS
Built-up areas in Uvira cover ~12 km2, with an estimated
population of 254,438 inhabitants in November 2017. Population
density estimated at the street level (n= 205) ranged from 5248 to
261,342 inhabitants per km2 (median: 23,835; interquartile range
—IQR: 17,565–33,659). In March 2018, 3685 taps were invoiced for
a total of 60,925 m3, with invoices ranging from 1 to 1800m3

(Supplementary Fig. S3). This represented 80.6% of the water
treated by the Regideso over the same period. The total volume of
water treated at the Regideso plant during the 31 days preceding
the last survey day (October 12th–November 11th, 2017)
amounted to 76,163 m3, leading to an estimated volume
distributed of 61,387 m3 and a daily average of 1980 m3. Over all
built-up areas of Uvira, the 250-m tap water service indicator
ranged from 5 × 10−4 to 99.3 LCPD (Supplementary Fig. S4). The
maximum distances from the closest river and from the lake shore,
adjusted for slope, were 5429 meters and 1812 meters,
respectively, for all built-up areas.
Data from 416 households were included in the data analyses,

of which 371 (89.2%) were recruited during the 2016 survey. The
tap water service indicator ind250 for interviewed households
ranged from 0.03 to 85 LCPD. Maximum distance from the closest
river and from the lake shore were 1880 meters and 1800 meters,
respectively, for interviewed households (Supplementary Fig. S4).
Drinking water contamination with E. coli was detected in
273 samples of the 411 analysed (66.4%). In total, 301 (72.4%)
households reported having collected their stored drinking water

from a tap. In total, 174 (58.6%) drinking water samples collected
at a tap and analysed were contaminated with E. coli, in
comparison with the 99 (87.6%) collected from surface sources,
mostly from rivers. The reported total amount of water used by
households at home on the day preceding interview ranged from
10 to 460 l (median 145 l, IQR 100–205), and the number of
household members present the day preceding the interview
ranged from 1 to 19 (median 7, IQR 5–10). In total, 115 (27.6%)
households reported having performed water-consuming activ-
ities directly at the source.
The training data set contained information on 235 households,

and the test data set 181 households (Table 1).

Household drinking water contamination
Drinking water contamination is strongly associated with the
reported source of collection, with drinking water collected at a
surface water source having five times the odds of contamination
(95% CI 2.7–9.1) of drinking water collected at a tap. The odds of a
household having collected their drinking water at a tap rather
than a surface source are also strongly associated with distance
from the nearest river and the tap water service indicator
(Supplementary Table S2).
The best-fitting model to predict drinking water contamination

included tap water service indicator, distance from the nearest
river and a linear interaction between distance from the nearest
river and tap water service indicator. There was only weak
evidence of miscalibration of the model fit to the training and
testing data, and no evidence suggesting that assumption of
linear relationships on the logit scale was inappropriate. Figure 1a

Table 1. Characteristics of households included in training and
testing data sets.

Training (N= 235) Testing (N= 181)

n (%) or median
(IQR/range)

n (%) or median
(IQR/range)

Drinking water contaminated
with E. coli

151 (64.3%) 122 (67.4%)

Missing 2 (0.9%) 3 (1.7%)

Total amount of water used in
the household the previous
day (in l)

145 (100–210/
10–460)

144 (102–200/
20–385)

Missing 1 (0.4%) 1 (0.6%)

Number of household members present the previous day

Total 7 (5–9/1–18) 7 (5–10/1–19)

Adults and children aged 15
and older

3 (2–5/1–12) 3 (2–5/1–12)

Children under 15 4 (2–5/0–11) 4 (2–5/0–10)

Tap water service indicator
(ind250) in LCPDa

4.5 (1.9–12.8/
0–85.1)

5.1 (2.2–12.9/
0–62.9)

Distance to the nearest river
in ma

672 (355–1091/
0–1727)

630 (293–1148/
30–1880)

Distance to the lake in ma 539 (272–879/
0–1680)

607 (345–896/
30–1799)

Wealth quintile (index range)

#0 (−2.23 to −1.29) 43 (18.3%) 38 (21%)

−1.26 to −0.7 49 (20.9%) 34 (18.8%)

−0.7 to −0.16 41 (17.4%) 42 (23.2%)

−0.15 to −0.79 51 (21.7%) 33 (18.2%)

#4 (0.8–5.38) 51 (21.7%) 32 (17.7%)

Missing 0 (0%) 2 (1.1%)

aAt a spatial resolution of 34 m × 42m
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shows the observed versus predicted probability for drinking
water contamination by deciles of predicted probability, for model
fits to training and testing data.
Discrimination performance of the selected model on the

training and test data was fair with AUCs of 0.73 and 0.75,
respectively (95% CI 0.66–0.8 and 0.67–0.83, respectively) (Fig. 1b).
In the selected model fitted to the training data set, the predicted
probability of drinking water contamination decreases as tap
water service improves, although this relationship is modified by
distance from the nearest river. The largest marginal effect of
increased tap water access—i.e. the predicted change in
contamination probability for each LCPD unit increment in tap
water indicator—is predicted to occur at the shortest distance
from the nearest river (−1.6%, 95% CI −0.8% to −2.4%). Model
coefficients are reported in Table 2.
When comparing AUC estimates for the entire data set based

on training model fit and stratified by household wealth quintile,
the discrimination ability of the model decreases noticeably
between the two lowest (AUC 0.80; 95% CI 0.71–0.89) and the
three highest wealth quintiles (AUC 0.66; 95% CI 0.59–0.74).
However, wealth quintile inclusion in the model as an indepen-
dent variable only improves very slightly its discrimination
performance on the training data set (AUC 0.76; 95% CI
0.7–0.82), while reducing it noticeably on the testing data set
(AUC 0.68; 95% CI 0.6–0.77).
Unsurprisingly considering the difference in odds of contam-

ination in samples coming from tap and surface sources, the
predicted probability of drinking water contamination also
discriminates well between the use of a surface water or a tap
as drinking water source (AUC 0.86; 95% CI 0.82–0.90).
Figure 2 shows the geographic distribution of predicted

probabilities of households storing contaminated drinking water
across Uvira. The map highlights the areas surrounding rivers as

those at the highest risk of contamination, and the central areas of
town, south of the water reservoir, as at the lowest risk.

Quantity of water used at home for domestic activities
The best-fitting model on the training data set includes household
composition, tap water service indicator multiplied by the number
of household members, distances from the lake and nearest river
and linear interaction terms between tap water service and distance
from the nearest river, and between distance to the lake and
distance from the nearest river. The selected model explains >60%
of the variability in reported household water consumption in the
training data (adjusted R2 0.61). The mean difference between
reported and predicted values (RMSE) is nonetheless high, and is
nearly equivalent to the cumulated daily consumption of two adults
and one child (50 litres). There was no evidence that using linear
functions for the predictors was inappropriate. Reported and fitted
values for both training and testing data sets are shown in Fig. 3.
The model predicts additional reported consumption of 21.8 and

10.6 litres for each extra adult and child present in the household,
respectively. Water consumption at home is predicted to increase
with improved tap water access, up to a distance of ~1300m from
the nearest river, with the highest marginal effect of 0.32 litres (95%
CI 0.16–0.47 litres) increased consumption per capita for households
closest to the rivers. Beyond 1300m from the nearest river, there is
little evidence of an effect of improved tap water access over water
consumption at home, with wide confidence intervals, including no
effect at all. Household water consumption is predicted to decrease,
as distance from the lake increases for households >500m from the
nearest river, at a rate of up to −12.8 litres per 100-m distance
increment. The predicted effect of increasing distance from the
nearest river varies with both distance to the lake and tap water
service. The marginal effect is positive for households close to the
lake (<500m) and up to good access to tap water (<20 LPCD, 85th

Fig. 1 Calibration and performance of the training and testing models for drinking water contamination with E. coli. Observed versus
predicted probability for drinking water contamination by deciles of predicted probability, for model fits to training and testing data sets (a)
and ROC for model fits to training and testing data sets (b).

Table 2. Selected logistic regression model for drinking water contamination with E. coli.

Logit coefficient (SE) OR (95% CI) p-valuea

Intercept 1.84 (0.41) – <0.001

Tap water service indicator (ind250) in LCPD −0.1 (0.03) 0.9 (0.84–0.96) 0.002

Distance from the nearest river in m −6.93 (4.83)b 0.9993 (0.9984–1.0003) 0.151

Dist. River X ind250 0.48 (0.29)b 1.00005 (0.99999–1.00011) 0.097

ap-value for chi-square of likelihood ratio test
b×10−4

Pregibon’s goodness-of-link test: p= 0.36; Hosmer–Lemeshow statistic for training and testing data: p= 0.16 and p= 0.09, respectively
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percentile over the full data set). In other situations, household water
consumption is predicted to decrease as distance from the lake
increases, by up to −10.6 litres per 100-m distance increment at the
median access to tap water (4.75 LPCD). Regression coefficients are
presented in Table 3.

When adding wealth quintile to the selected model, its
performance remains unchanged, with no evidence that wealth
quintile independently affects the predicted household water
consumption. When adding water use at the source, however, the
model performance improves slightly (adjusted R2 0.64; RMSE 48.7)

Fig. 2 Geographic distribution of predicted probabilities of households to store contaminated drinking water across Uvira.
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and the model predicts a reduction in the quantity of water used
at home of 34.9 litres (95% CI 19.4–50.3 litres; p < 0.001) by
households performing water-consuming activities at the source,
with little change to other model coefficients. A logistic regression
model of household water use at the source suggests that tap
water service, distances from the nearest river and from the lake
and linear interaction between tap water service and distance
from the nearest river are important predictors for such practice,
with good discrimination (AUC 0.76). Over all observations in the
entire data set, the predicted probability of household water use
at source decreases on average by 1%, 2.9% and 2.8% as tap water
service and distances from the nearest river and from the lake
increase (for 1 LPCD increment and 100-m increments,
respectively).
Figure 4a shows the predicted amount of water used for

domestic activities performed at home, by a household composed
of three adults or children over 15, and four children under 15,
across Uvira. Households in areas poorly served by the existing
water supply network and distant from both the lake and rivers
are predicted to report using <140 litres per day at home. Areas
near the rivers and the lake are also highlighted as areas with low
predicted water consumption at home. These areas are, however,
overlapping with those with a high probability of water use at the
source (Fig. 4b).

Sensitivity analysis
When fitting similarly formulated models to the training data with
indicators constructed over 500-m or 750-m radii and indicators
based on tap location and density without invoicing data at radii
250m, 500 m and 750m, predictions of drinking water contam-
ination with E. coli and predictions of the quantity of water used
by a household show similar performance in comparison with
ind250 (Supplementary Table S3).

DISCUSSION
Our study used household location relative to surface water
sources and a measure of their access to tap water to predict the
probability of microbial contamination of household drinking
water and the quantity of water consumed domestically. These
predictions were developed at the scale of Uvira, the second
largest town of South-Kivu province in DRC and summarised into
high-resolution maps of this secondary urban centre. The models
were developed using a subset of households’ survey data
collected in October 2017, and their predictive performance
assessed against the remaining portion of survey data.
The drinking water model predicted whether household-stored

contaminated drinking water with fair discrimination performed
better for the poorest households. Probability of contamination
was strongly predicted by tap water service and distance from the
nearest river, with the lowest probabilities predicted to occur for
households with a better tap water service and further away from
the rivers. The same improvement in tap water service was
predicted to reduce the probability of contamination in areas
<250m from the nearest river by twice as much as in areas
>1250m from the nearest river. The same model was also shown
to predict reasonably well the type of source used by the
household for drinking water (surface water or tap), which was
associated with very different risks of contamination.
The total quantity of water reported to be used at home by

households was predicted by its demographic composition, tap
water service and distances from both the lake and the nearest
river. An adult member was predicted to report more than double
the increase in daily household water consumption than a child,
with 21.8 litres versus 10.6 litres, respectively. The marginal effect
of tap water service improvement was predicted to be small, and
decreased as distance from the nearest river increased. On
average over the study households, an increase of one LCPD in tap
water service represented only 1.1-litre increase in the reported
total household consumption, corresponding to an average of
0.15 litre per household member. The lower amount of water
consumed at home by households located close to the rivers and

Fig. 3 Reported and predicted daily quantity of water used at home
by households in litres.

Table 3. Selected linear regression model for predicting the amount of water used at home by households for domestic activities.

Coefficient (SE) 95% CI p-valuea

Intercept −12.68 (15.26) −42.74–17.38 0.407

The number of household members aged 15 or more 21.79 (1.92) 18.01–25.58 <0.001

The number of household members under 15 10.62 (1.35) 7.96–13.28 <0.001

Tap water service indicator (ind250) × number of household members (in litres per day) 0.32 (0.08) 0.16–0.47 <0.001

Distance from the nearest river (in m) 0.08 (0.02) 0.04–0.11 <0.001

Distance from the lake (in m) 0.04 (0.02) 0.01–0.08 0.006

Dist. River × Dist. Lake −0.87 (0.21)b −1.28 to −0.45b <0.001

Dist. River × (ind250 × number of household members) −2.37 (0.66)b −3.68 to −1.07b <0.001

ap-value for χ2 of likelihood ratio test
b×10−4

Pregibon’s goodness-of-link test for training and testing data: p= 0.58 and p= 0.74, respectively. RMSE for training and testing data: 57.8 and 50.6, respectively
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lake appears associated with a higher probability of performing
activities directly at the source.
The tap water service indicator used in the present analysis was

built upon the assumption that a higher geographical density of
water taps in the vicinity of a household represents a higher
probability for that household of accessing and using it. By
weighing the spatial density with the water volume invoiced and
population density, the proxy indicator was then adjusted for a
potential limited supply of water at the taps, because of
unreliability, intermittency or because of “competition” with other
households for access. Within these assumptions, the sensitivity
analysis results of the indicator estimated over 500-m and 750-m
radii first suggest that household behaviours related to water
sources are influenced by spatial density of taps at least up to
750m. The results obtained with the indicators ignoring the actual
water volume invoiced for each tap then suggest that either
reliability or intermittency of water supply at the tap has little
bearing over these behaviours, or that the information on
reliability or intermittency of a tap is already included in the
measure of tap density. Taps are indeed more likely to be
subscribed to and active in areas where the supply is reliable,
which results in a spatial clustering captured by the tap-density
measure. The lack of influence of wealth quintile in model
predictions may also be explained by the strong correlation
between wealth index and tap water service indicator (Pearson’s
correlation coefficient r= 0.49).
The good discrimination ability of the drinking water model

indicates that factors exogenous to households play an important
role in stored drinking water contamination. Assuming that
households do have a preference for tap water as a drinking
water source due to quality/health concerns, distance from the
nearest river influences how access to a tap actually translates into

tap use as a drinking water source, especially when tap access is
relatively poor. The contamination OR between drinking water
collected at a tap or at surface sources by households in Uvira (0.2;
95% CI 0.11–0.37) relates well to that reported by Bain et al. in
their review of faecal contamination of drinking water in low- and
middle-income countries.28 Beyond encouraging its use as
drinking water source, access to a closer and more reliable tap
could plausibly reduce the risk of post-collection contamination
linked to transportation and storage of tap water. Another review
indeed determined the odds of contamination for stored house-
hold water more than double those of contamination of source
water, even for piped water supplies.29 The better performance of
the drinking water model for poorer households implies that these
households are even more dependent on exogenous factors, with
few coping mechanisms. Even in the case of poor tap water
service, wealthier households may have a stronger preference for
piped water as a result of higher education achievements or social
pressure, and use coping mechanisms—better storage containers,
point-of-use water treatment and payment for their water to be
collected for them at a tap for example.20

Predicting household water consumption at home for domestic
activities provides weaker evidence of the relationship between
proxy measures for access to tap water or surface water and the
quantity of water used. The nonlinear relationship between access
to water and water use has been highlighted before, especially
outside of rural contexts with few remote sources.30 When
multiple sources are available, water used for different purposes
is indeed a heterogeneous good, with characteristics—perceived
quality, convenience of access and monetary and opportunity
costs—influencing households collection and use behaviours
depending on their education and capacity to pay.31 Even in a
setting like Uvira, where the diversity of sources is limited—tap,

Fig. 4 Geographic distribution of predicted quantity of water used at home for domestic activities and of the predicted probability of
performing water-consumingactivities at the water source. Geographic distribution of predicted quantity of water used at home for
domestic activities for a standardised household composed of three adults and four children (a) and geographic distribution of the predicted
probability of performing water-consuming activities at the water source (b).
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rivers or lake—simple measures of access are unlikely to capture
enough of the preferences guiding households’ choices in source
use, and how access to the sources chosen impacts the quantity of
water used at home. By attempting to replace in the model the
two distance variables by a single one representing distance to
the nearest surface water source, the predictive performance of
the model decreased sufficiently to highlight different households’
behaviours towards the two surface water sources. This could
reflect a preference for one or the other surface source at equal
distance, either related to the distance measure (e.g. distance not
capturing the difficulties to access the lake shore in parts of town)
or related to the water characteristics. The predictive model
reached here is nevertheless compatible with the concept of a
water consumption plateau put forward by Cairncross et al.,
according to which water consumption of households remains
stable when the source is located between 5 and 30min from the
house, and decreases only when the location is further away than
30min, while increasing massively as the source is brought closer
than 5min (source within premises).2 Our model suggests that
water consumption only decreases with increasing distance when
the nearest river or the lake are further away than 500meters,
which roughly corresponds to 30 min (20 min there and back, with
10min to fill up containers). The results, however, do not reflect
the sharp increase in water consumption observed when a source
is accessible on household premises, as the tap water indicator is
unlikely to distinguish between households with an active tap
within their compound and those with an active tap at a short
distance but outside their compound, with less convenient access.
Our study has several limitations. The data used in the analysis

were collected at a single point in time, during the rainy season.
Although seasonality has a limited impact on the availability of
surface and tap water, it was previously reported that tap water
supply interruptions are more frequent in Uvira during the dry
season versus the rainy season due to more frequent power cuts
that affect the water treatment plant operations.32 Heavy rains on
the steep slopes overlooking Uvira also cause rivers and lake along
the shores to become extremely muddy for several hours,
deterring people from using the surface water. In addition, our
data do not support the inclusion of areas of Uvira located more
than 2 km from a river. A single measure of the outcomes will also
not capture daily or weekly differences in activities, which may
give rise to important variations in daily water consumption, with
some activities not carried out daily. Reported water quantity use
is also likely to suffer from a substantial random error. The
observational nature of the relationships established by the two
models should also be highlighted, and a causal relationship
between the predictors and the outcomes should not be assumed,
even though some degree of causality is plausible, especially for
drinking water. Finally, the predictive nature of our methodology
is unsuitable for untangling further the multiple factors affecting
water use by households, especially when not only considering
drinking water.
Geographical predictions of improved drinking water or

improved sanitation coverage within SSA countries were pre-
viously performed at the district level or rural community
level.33,34 Multi-country meta-analyses also provide estimates of
contamination levels for drinking water collected at different
sources or different levels of tap water service.35 In addition,
several methods were developed to estimate and predict water
demand for urban piped water systems in low- or middle-income
countries, with a focus on engineering and financial planning.31

However, we could not identify previous attempts to spatially
predict drinking water quality or domestic water quantity used at
the household level that provides valuable information for water
supply improvements targeting health benefits. We believe that
our approach and the results obtained here in Uvira warrant a
further exploration of their value in other contexts. Should it be
generalisable, our approach could allow identification of priority

intervention areas for water supply improvements in urban
settings, without implementing costly household surveys, by
geolocalising taps, possibly along with the volume of water
consumed at a single point in time, geolocalising alternative
sources of water and population data at a relatively small scale.
The present results also support their use to investigate the
possible relationship between tap water access and observed time
and space patterns of health outcomes incidence, such as
suspected and confirmed cholera.

METHODS
Study area
Uvira extends ~10 km along the northernmost shores of Lake Tanganyika,
<2 km inland and is crossed by five permanent rivers.
The population, estimated at 254,000 inhabitants in November 2017,

relies on both surface water sources and the tap water system managed by
the national water agency Regideso. Water from the river Mulongwe is
drawn upstream of inhabited areas and treated at the Regideso water
treatment plant before being fed into a single 1600m3 reservoir, from
which it is distributed to private and shared taps by gravity. The current
distribution system fails to serve adequately the taps located further away
from the reservoir or higher in altitude, and the daily amount of water
distributed is irregular. There are no wells or boreholes due to
unfavourable geological terrain.
Uvira’s water supply infrastructure is undergoing refurbishment and

expansion since September 2018 through a project funded by the
European Union (EU), the French Development Agency (AFD) and the
Veolia Foundation in partnership with the Regideso.

Household data
The household data were collected as part of two surveys of household water-
related practices, conducted in October 2016 and October–November 2017.
Recent, reliable data on the location and functionality of Regideso taps

were unavailable at the time households were sampled in October 2016.
Therefore, to establish a cohort of households representing a wide range
of access to tap water in Uvira, and in the absence of a household-
sampling frame, a two-stage random spatial sampling method was used
based on a piped water availability index. Details of this sampling method
are given in Supplementary Information, along with households’ selection
and enrolment methods. During the second survey implemented in 2017,
the buildings sampled and georeferenced during the first survey were
revisited. If the household inhabiting the building was different, the same
enrolment process was used with the new family.
During both surveys, households were interviewed about water-related

practices at home. This included the amount of fresh (as in not recycled
from a previous activity) water used the previous day for various domestic
activities using a visual aid, the number of adults and children present that
day and water use at the source. The amounts of fresh water used at home
for bathing, laundry, dishwashing, food and produce rinsing, dwelling
cleaning, handwashing and drinking were added up into a total amount of
fresh water used at home for domestic activities. Water used at home to
prepare food or items for sale or to render a paid-for service was excluded
from the total.
During each interview in 2017, a 150-ml sample of stored drinking water

was collected in a sterile sample Whirl-pak® ThioBag® (Nasco, Fort Atkinson,
WI) containing 30 g of sodium thiosulfate. The participant was requested to
provide the water that would be used for drinking at the time of the
interview, with the utensils usually used for serving such drinking water
and reported where the stored drinking water had been collected.
Samples were brought back daily in cool bags to the Centre de

Recherche Hydrobiologique (CRH) in Uvira and analysed within 6 h of
collection. Turbidity was measured with a digital turbidimeter, and the
volume of water filtered adjusted to aim for a turbidity of 3NTU once
diluted with sterile water to reach a volume of 100ml. Between 5 and
100ml of each sample was filtered in sterile conditions through a 0.47-μm
filter, and the filter was then aerobically incubated on sterile pads
saturated with mColiblue24 broth (Hach Co, Frederick, MD) for 24 h at
35 °C in a portable incubator. The number of blue colonies grown on the
filter was then counted and multiplied by the appropriate factor to obtain
the number of colony-forming units (CFU) Escherichia coli per 100ml.
Although there is still debate about the relationship between CFU E. coli
per 100ml in drinking water and health risks, we used a single cut-off of

A. Jeandron et al.

7

Published in partnership with King Fahd University of Petroleum & Minerals npj Clean Water (2019)    23 



one CFU E. coli per 100ml to define a binary outcome of contaminated/
non-contaminated drinking water.36

A household wealth index based on ownership of durable items and
dwelling characteristics was constructed and classified into quintiles
(details in Supplementary Information).
For each household interviewed, the shortest distances from one of the

town’s five main rivers and from Lake Tanganyika were computed with a
slope adjustment based on Tobler’s hiking function.37

Tap water service indicator
Data on the daily volume of water treated were collected from the register
held at the Regideso water treatment plant. Unique identifiers of active tap
connections were retrieved from the Regideso customers database, along
with the volume invoiced in March 2018, and each of them geolocalised.
Based on these data, an index of tap water availability was constructed.

In brief, a kernel density function with a radius of 250m around each tap
was used to combine data on the water volume invoiced for each
functional tap with information on population density. This produced a
smooth “surface” with a resolution of ~34m × 42m of tap water availability
across Uvira in litres per capita per day (LCPD). This indicator was extracted
at interviewed households’ location and used as a continuous variable.
Population data sources, delineation methods for built-up areas and the

construction of the tap water availability index are detailed in Supple-
mentary Information.

Statistical methods
Logistic regression was used to assess whether the tap water service
indicator, distance to the closest river and distance to the lake shore were
predictive of the probability of stored household drinking water being
contaminated. The model was developed on a random sample of 60% of
the data set records (training), and tested on the remaining 40%. Model
selection followed a hierarchical backward strategy, starting with a full
model, including the three variables as continuous and all possible two-
and three-way linear interactions.38 Model terms were eliminated starting
with the least significant, to identify the model with the lowest value of
Akaike’s information criterion (AIC).
The Hosmer–Lemeshow statistic and a plot of predicted against

observed probabilities by decile of predicted probability were used to
assess the model fit and calibration to the training and testing data sets.
Lowess plots of standardised residuals and Pregibon’s goodness-of-link
test were used to assess whether assuming a linear relationship was
appropriate.39 The discrimination of the model was assessed using
receiver–operator curves and derived area under the curve (ROC and
AUC). The model’s discriminative ability was examined by household
wealth quintile, to assess whether model performance varied with
household wealth. The importance of reported drinking water source as
a possible explanatory variable for contamination was also explored. The
predicted probability of household drinking water contamination was then
mapped using the coefficients of the selected model derived from the
training data set.
A similar approach was used to model the total quantity of water used

within a household using linear rather than logistic regression and
including demographic composition of the household (the number of
children, number of adults) as additional covariates. Tap water service
being expressed as a quantity of tap water per capita, we used the
indicator multiplied by the number of household members present the
previous day. Lowess plots of standardised residuals and Pregibon’s
goodness-of-link test were used to assess whether assuming a linear
relationship was appropriate, while adjusted R2 and root-mean-square
error (RMSE) described the model fit to the data. Wealth quintile and
reporting of having performed water-consuming activities (laundry,
dishwashing and bathing) at the source were added separately as
independent variables to the selected model in order to investigate
whether they improved the model predictions. We also investigated to
what extent water use at the source was predicted by tap water service,
distance from the nearest river and distance from the lake shore. The
predicted quantity of water used per household, for households having the
median household composition, was then mapped.
To avoid undue influence of extreme outliers on model parameters, four

records were excluded from the analysis: two households located at more
than 4000 meters from the closest river and two households for which
more than 20 members were reported present the day preceding the

interview. To avoid extrapolating model estimates, these exclusions were
taken into account by limiting the mapping to areas less than 2000 meters
from the nearest river.
A sensitivity analysis was performed by replacing the tap water service

indicator constructed at a 250-m radius (ind250) with indicators
constructed at radius 500m or 750m (ind500 and ind750). A tap-density
indicator at 250m, 500m and 750m (dens250, dens500 and dens750) was
also used. Expressed in number of taps per 1000 people, this indicator was
constructed with a constant weight applied to all taps, ignoring individual
taps invoicing and the possible variations in water availability and tap
reliability invoicing data may represent.
Data preparation and tap water service indicator construction were

performed with ArcGIS ArcMap 10.3 (ESRI, Aylesbury, UK) and R,40 in
particular the R package “sparr”.41 Data were analysed with STATA 14.2
(StataCorp, College Station, TX).

Ethical considerations
Household interviews were only performed after written consent to
participate was obtained, in accordance with study approvals from the
ethics committees of the School of Public Health at the University of
Kinshasa, Democratic Republic of the Congo (ESP/CE/088c/2017), and of
the London School of Hygiene and Tropical Medicine, United Kingdom
(No. 10603). The study is part of a broader evaluation of the impacts of tap
water supply improvements on cholera and other diarrhoeal diseases in
Uvira registered at clinicaltrials.gov (Reference: NCT02928341). All the data
were anonymised before analysis.
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