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Abstract: 

Background: Instrumental variable (IV) analysis can estimate treatment effects in the 
presence of residual or unmeasured confounding. In settings where measures of baseline 
risk severity are unavailable, IV designs are therefore particularly appealing, but where 
established measures of risk severity are available, it is unclear whether IV methods are 
preferable. Objective: We compared regression to an IV design to estimate the effect of ICU 
transfer on mortality in a study with well-established measures of risk-severity. 

Research Design: We use ICU bed availability at the time of assessment for ICU transfer as 
an instrument. Bed availability increases the chance of ICU admission, contains little 
information about patient characteristics, and it is unlikely that bed availability has any 
direct effect on in-hospital mortality. 
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Subjects: We used a cohort study of deteriorating ward patients assessed for critical care 
unit admission, in 49 UK National Health Service hospitals between November 1, 2010, and 
December 31, 2011. 

Measures: Detailed demographic, physiological, and comorbidity data were collected for 
all patients. 

Results: The risk adjustment methods reported that after controlling for all measured 
covariates including measures of risk severity, ICU transfer was associated with higher 28-
day mortality with a risk difference of 7.2%, (95% CI=5.3% to 9.1%). The IV estimate of ICU 
transfer was -5.4% (95% CI=-47.1% to 36.3%) and applies to the subsample of patients 
whose transferwas ‘encouraged’ by bed availability. 

Conclusions: IV estimates indicate ICU care is beneficial but are imprecisely estimated. 
Risk adjusted estimates are more precise, but even with a rich set of covariates report that 
ICU care is harmful. 

Obtaining reliable evidence about whether transferring critically ill patients to Intensive 
Care Units (ICU) reduces mortality is difficult, since randomization of patients faces both 
ethical and practical barriers. Observational studies have tried to establish whether ICU 
transfer is effective for deteriorating ward patients1,2. In an attempt to address confounding 
by indication, one study used risk adjustment (RA) via multivariate regression analyses3. 
Confounding by indication is an important threat in any study of comparative effectiveness, 
and estimating treatment effects under an RA approach requires investigators to assume 
that all potential confounders have been observed. This assumption may be implausible if 
the reasons for transfer to the ICU are not fully recorded. 

Recent studies have applied the IV design to evaluate the effectiveness of ICU transfer4–9. 
Subject to a set of assumptions, the IV study design can provide consistent effectiveness 
estimates even when there are unmeasured prognostic differences between the 
comparison groups10–12. Brookhart12 advocates the use of IV designs given that measures of 
patient physiology or risk severity are often unrecorded in many medical data sources. 
However, others have strongly criticized the IV designs as imposing assumptions that may 
be unrealistic in many clinical settings13–15. 

In this study, we extend the (SPOT)light prospective cohort study in which investigators 
identified an IV for ICU transfer7. Based on ICU census data, they measured the number of 
available ICU beds at the specific time that a patient was assessed for ICU admission. They 
proposed that bed availability at the time of assessment was a valid IV for ICU transfer. An 
IV design replaces the assumption of no unmeasured confounding with the assumption that 
the number of ICU beds available at the time of assessment only has an effect on the 
outcome (mortality) through receipt of care in the ICU. An important feature of (SPOT)light 
is that the data collection included detailed measures of the patient’s physiological status 
which allowed detailed, validated measures of risk severity to be calculated. The aim of this 
paper is to compare estimates from the IV design with those from risk adjustment in a 
setting where detailed measures of baseline risk are available. 



Methods 

Data 

This study uses data from the (SPOT)light study which was a prospective cohort study of 
deteriorating ward patient referred for assessment by critical care7. The (SPOT)light 
investigators collected data from a population of deteriorating ward patients referred to 
critical care in 48 National Health Service (NHS) hospitals between 1 November 2010 and 
31 December 2011. The full study protocol is available on the ICNARC website16. Repeat 
visits, re-admissions, cardiac arrests, and deaths during the assessment were excluded, as 
were admissions following surgery (where delay may be due to the process of care), and 
patients with pre-existing treatment limitations. Fact and time of admission to critical care 
were obtained from the Intensive Care National Audit and Research Case Mix Programme 
(ICNARC CMP). Physiology measurements at the time of the ward assessment were 
abstracted, and used to generate physiological severity of illness scores for case mix 
adjustment. 

In our study, the initial population is comprised of 15,158 patients on general hospital 
wards that were assessed for admission to the ICU. From this population, we excluded 
2,141 patients from the study due to the presence of a treatment limitation order which 
prevented the possibility of more aggressive care. Of the remaining 13,017 patients, six are 
excluded since data was missing on the availability of beds in the ICU at the time of 
assessment, which implies a study population of 13,011 patients. Figure 1 details both the 
exclusion criteria and status by the exposure. 

Our primary outcomes were death 7 and 28 days after admission to the ICU. We defined 
the exposure of interest as transfer to and receipt of ICU care. Covariates included data on 
age, gender, septic diagnosis (0/1), and peri-arrest (0/1). Physiology data were also 
collected to create three measures of risk severity. These validated risk severity measures 
include the Intensive Care National Audit & Research Centre (ICNARC) physiology score17, 
the NHS National Early Warning (NEWS) score which measures whether respiratory rate, 
oxygen saturations, temperature, systolic blood pressure, pulse rate, and level of 
consciousness varied from the norm18, and the Sequential Organ Failure Assessment 
(SOFA) score which ranges from 0 to 24, with higher scores indicating a greater degree of 
organ failure19. In addition, the data also record the patient’s existing level of care at 
assessment and recommended level of care after assessment were defined using the UK 
Critical Care Minimum Dataset (CCMDS) levels of care20. These levels are 0 and 1 for 
general ward care, 2 for care within a high dependency unit, and 3 for care within the ICU. 
As such, the data include both objective and subjective measures of risk severity that would 
be absent in many health care databases. 

Instrument: ICU Bed Availability 

We use ICU bed availability at the time of assessment for ICU as an instrument for ICU 
transfer. That is, if there are few ICU beds available when the patient is assessed, this 
discourages ICU transfer. Bed availability ranges from 0 to 19 with a median of 4 and an 
IQR of 4. For the analysis that follows, we use a binary measure of the instrument where a 1 



indicates that fewer than 4 ICU beds were available at the time of assessment. We made 
this decision based on IV diagnostics. See Section 1.2 in the online supplementary 
materials. The Section 2.2 in the online supplementary materials contains results using the 
multi-valued version of the instrument. When ICU bed availability was above the median, 
42.4% of patients assessed were admitted to the ICU; when there were fewer than the 
median number of ICU beds available, patients were admitted to the ICU 33.8% of the time. 
For patients admitted to the ICU, the median time to the ICU was 4 hours (IQR: 11) if there 
were 4 or fewer beds available, and the median time to the ICU was 3 hours (IQR: 8). See21 
for a study that uses the SPOTlight data to study whether timing to the ICU affected 
mortality. 

For a measure to be a valid IV, several assumptions must hold. Moreover, a number of 
diagnostic tests have been developed to probe the IV assumptions. Here, we provide a brief 
review of our assessment of bed availability as an IV. The online supplementary materials 
contain a full review of those conditions following recent guidelines for reporting IV 
estimates in clinical settings22,23. Here, we provide a brief review of those results. First, 
results from a weak instrument test validated that the IV was sufficiently strong. We also 
assessed whether instrument status appears as ‘if random’ and does not have any common 
causes that jointly affect the outcome. Using balance tests, bias ratios, and a graphical test, 
we found that bed availability at time of assessment tells us nothing of clinical relevance 
about the patients24–26. Table 1 contains descriptive statistics stratified by both the IV and 
the expsoure. Notably, patients admitted to the ICU had higher risk severity scores, while 
the IV tells us little about patient frailty. See Section 1.3 in the online supplementary 
materials for details on this analysis. 

Next, an IV cannot have a direct effect on 7- or 28-day mortality–this is referred to as the 
exclusion restriction. One way this assumption would be violated is if, when the ICU is 
relatively full, the quality of care deteriorated leading to higher mortality. However, the 
instrument is the number of ICU beds free at the time of assessment not transfer. ICU bed 
occupancy varies by the time of day, and day of the week, and also randomly. Therefore the 
number of ICU beds free at assessment, may be only weakly related to the ICU occupancy 
during the ICU stay for those actually transferred. Moreover, the empirical evidence on the 
association between ICU occupancy and outcomes provides ambiguous results1,27. In sum, 
it appears plausible, that the number of ICU beds at assessment only affects mortality by 
inducing some patients to be admitted to the ICU. 

While this assumption cannot be tested, analysts can often apply a faslfication test to probe 
the exclusion restriction28,29. One falsfication test consists of identifying a subgroup that is 
always or never treated30. In this subgroup, the IV should have no effect on the outcome if 
the exclusion restriction holds. We found that 96% of patients that scored a 3 on CCMDS 
recommended levels of care variable were transferred to the ICU. While 91% of patients 
that scored a zero on the scale were not transferred to the ICU. To conduct a falsification 
test, we tested whether the IV was associated with either outcome in these subgroups 
using linear regression models. First, we present results for patients with 3 on the CCMDS 
variable. For the 7-day mortality outcome, the estimated risk difference is $-$0.632% with 
a p-value of 0.744. For the 28-day mortality outcome, the risk difference is $-$1.0% with a 
p-value of 0.686. Next, we present results for patients with 0 on the CCMDS variable. For 



the 7-day mortality outcome, the estimated coefficient is 0.40% with a p-value of 0.875. For 
the 28-day mortality outcome, the estimated coefficient is -0.01% with a p-value of 0.733. 
As such, in all cases, we find that the IV is not associaed with outcome, which implies that 
we do not find evidence against the exclusion restriction. See Section 1.4 in the online 
supplementary materials for details including full model results. 

Finally, it is important to note that RA and IV estimate different causal quantities. Estimates 
from RA may be interpreted as the average treatment effect. Under the IV design, we 
estimate a complier average causal effect, that is the treatment effect for the subpopulation 
of patients who receive ICU care because they were encouraged to by ICU bed availability. 
Table 2 contains descriptive statistics for the compliers as well as the overall cohort for 
select covariates. The online supplementary materials contains summary statistics for all 
covariates. 

Statistical Methods 

We estimated the effect of transfer to the ICU using two-stage least squares (2SLS) for the 
IV analyses. We used models based on 2SLS, since they impose relatively weak 
assumptions and generate consistent IV estimates, even when the treatment and outcome 
are binary variables31–33. See Section 2.1 in the online appendix for results based on logistic 
regression and a more flexible fit based on an ensemble of machine learning algorithms. 
Under the RA design, we adjusted for observed confounders using multivariate regression 
to ensure the scale of the estimates are comparable. For both approaches, we used three 
different model specifications according to the covariates included. Under the first 
specification, to provide unadjusted estimates of the effects of ICU transfer on hospital 
mortality, no covariates were included. The second specification was intended to mimic the 
‘reduced list’ of covariates, generally available in routine administrative databases. For the 
reduced specification, we adjusted for age, gender, septic diagnosis, peri-arrest, and 
hospital fixed effects – indicators for each hospital. The final specification included all 
observed covariates, including the validated measures of risk severity, together with 
hospital fixed effects. Section 2.4 in the online supplement contains complete model results 
based on the 2SLS estimator. See Section 3 in the online supplementary materials for 
details on a secondary matching analysis that we also performed. Analyses were conducted 
in R 3.3.2 (R Foundation) and Stata software version 14. 

Results 

Table 3 contains the RA versus IV estimates of the effects of ICU transfer on 7-day hospital 
mortality. The unadjusted RA model reported that ICU transfer was associated with higher 
mortality, with a risk difference (RD) of 9.3% (95% CI= 8.0% to 10.5%). The unadjusted IV 
estimate indicated that on average ICU transfer reduced mortality with a RD of -5.7% (95% 
CI= -19.7% to 8.3%). The RA approach that included a ‘reduced list’ of potential 
confounders reported estimated effects that were somewhat smaller (RD: 8.2%, 95% CI= 
6.9% to 9.5%). While including the measures of risk severity reduced the magnitude of the 
estimated treatment effect using RA, they still suggested that ICU transfer caused an 
increase in 7-day mortality (RD: 3.5%, 95% CI from 2.0% to 5.1%). The IV models that used 



the ‘reduced list’ of covariates, and the full specification both found that ICU transfer was 
beneficial on average (RD: -6.2% 95% CI= -40.7% to 28.3%). 

Table 2 contains the estimates for the effect of ICU transfer on 28-day mortality. The 
pattern of effects corresponded to those for 7-day mortality. Estimates based on RA 
indicate that mortality increases following ICU transfer, and including measures of risk 
severity reduced the magnitude of the estimated treatment effect. For example, using the 
full specification, the estimated based on RA suggested that ICU transfer causes an increase 
in 28-day mortality (RD: 7.2%, 95% CI from 5.3% to 9.1%). Estimates based on the IV 
design indicate that on average ICU transfer reduces mortality across all specifications. 
When we use the full specification with the IV method, we find that ICU transfer causes a 
decrease in mortality (RD: -5.4% 95% CI= -19.7% to 8.3%) though the IV estimates 
contains considerable statistical uncertainty. While the IV estimates are imprecisely 
estimated, they are comparable with other IV estimates of ICU effectiveness5,6,8. 

Discussion 

This paper contrasts an IV design with conventional RA; in a setting with a rich set of 
baseline covariates from a high-quality clinical database. The IV design estimates that, on 
average, ICU transfer reduces 7- and 28- day mortality for deteriorating ward patients. By 
contrast, conventional RA estimates that ICU transfer for deteriorating ward patients is 
associated with an increase in hospital mortality, even when detailed measures of baseline 
risk are included in the adjustment. In supplementary analyses we undertook matching 
prior to both RA and IV estimation, and reported similar results (see supplement). While all 
the IV estimates are imprecise, this does suggest that the IV design, even in its unadjusted 
form offers protection against bias from confounding by indication. However, even when 
the RA includes case-mix measures from a high-quality clinical database that have 
previously been validated in relevant settings, they provide estimates that lack clinical 
plausibility. 

The method of instrumental variables has become more widely used in clinical 
applications. The obvious attraction of the IV approach is that it offers some protection 
against unobserved confounding outside of randomization. Of late, the use of IV methods in 
clinical settings have been strongly critiqued13–15,34. Soumerai and Koppel argue that,``the 
majority of IVs are not a reliable way to control for bias in medical effectiveness 
research.‘’14 One response is to rely on RA methods and seek to overcome confounding by 
indication with richer specifications. The major limitation to this approach is that due to 
unobserved prognostic variables, such as the patients’ past medical history that may 
influence treatment assignment, the estimated treatment effects are likely to be biased 
whichever measured covariates are included in the RA models. Here, those who are ICU 
transferred are likely to have the a high risk of death versus those who remain on general 
wards, according to prognostic measures that are not available to the study. We would 
maintain that the results presented here suggest careful application of IV methods should 
remain a key part of outcomes resarch. While our IV estimates are imprecisely estimated, 
they are comparable with other IV estimates of ICU effectiveness5,6,8. 



Moreover our study adds to the knowledge based through the use of an additional IV for 
ICU admissions in a new setting. Rosenbaum and Imbens recommend that evidence be built 
across a series of studies based on different instruments: ‘’…if each instrument is plausible 
but not certain, there may be no reason why these different instruments should be biased 
in the same direction. In replicating observational studies, the goal is to replicate whatever 
treatment effects may exist without replicating whatever biases may coexist and this goal is 
sometimes achievable by using a variety of instruments . . . .’’35 Thus it is worth noting the 
congruence between our study and the results in Valley et al used distance to hospital as an 
alternative, but also plausible IV.8. 

Our study can be viewed as a new addition to the use of instruments to study the 
effectiveness of ICU transfer. Although the (SPOT)light study included multiple measures of 
risk severity, the estimates based on RA methods appear to be confounded with clinical 
severity as they indicate that ICU transfer causes higher levels of mortality. Our results 
based on RA methods suggest that confounding by indication cannot be overcome even in a 
context with validated measures of risk severity. It is conceivable that the RA estimates are 
unbiased and the IV estimates are biased, due for example to violation of the exclusion 
restriction. This would seem unlikely for the following reasons: first, we followed recent 
methodological guidance and assessed relative bias for each prognostic measure. The 
results suggest that the RA results were more likely to be biased according to the 
prognostic measures of greatest importance. Second, while it is plausible that ICU transfer 
can lead to harm, due for example to more aggressive therapy for older or frailer patients, 
this seems implausible for the overall cohort of patients included in the (SPOT)light study. 
Moreover, the IV design passed a falsification test for this key assumption. Third, as 
additional measures of baseline risk were included in the RA, the magnitude of the 
estimated risk increase following ICU transfer was reduced. Clinical opinion indicates that 
patients recommended for ICU transfer would have relatively poor prognosis according to 
unmeasured covariates, versus those who were assessed but remain on general wards. 
Hence, it is plausible that this and previous studies that use RA underestimate the benefits 
of ICU care. 

This study inevitably has limitations, and provokes areas for further research. First, IV 
study designs are inefficient, and the study was not powered to formally test hypotheses as 
to whether the IV versus RA approaches provided different estimates of the effect of ICU 
transfer. While power in an IV design depends on several factors, the most straightforward 
way to increase the precision of the estimates would be more extensive data collection. 
(SPOT)light is based on one year of admissions across 48 hospitals. A longer time span and 
additional hospitals are obvious ways to expand the data. 

Second, no case study can provide formal assessment of the relative bias and precision of 
alternative study designs. A complementary approach would be to design formal 
simulation studies characterized by ‘real’ examples such as the (SPOT)light study. Third, 
we contrasted the IV and RA designs within a case study of prime policy relevance, with the 
aim of providing insights to guide the future design of observational studies that use 
routine data. That said, definitive conclusions about the relative merits of these 
complementary approaches cannot be drawn from a single study, and further research that 
contrasts these approaches across a range of clinical areas, would be useful. Finally, while 



bed availability appears to be a valid IV, we cannot rule the possibility of unobserved IV 
and outcome confounders. Critical confounders would be factors that cause both bed 
availability and mortality to move in tandem. One possible factor might be some time trend 
that increased admissions thus reducing ICU space but is also associated with admissions 
with higher mortality. 

Conclusion 

In conclusion, we contrasted IV and RA methods in evaluating the effectiveness of ICU 
transfer for deteriorating ward patients. We find that the IV design appears to reduce bias 
from unobserved confounders relative to estimates based on risk adjustment. 
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