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Scientific Knowledge on the Subject: Macrophages are the front-line defense against 

pulmonary infection with the mould pathogen Aspergillus fumigatus. Phagocytosis and 

generation of reactive oxygen species are known to be crucial for control of infection. 

However, the cellular outcome from progressive macrophage infection with Aspergillus 

fumigatus has not been systematically studied. 

What This Study Adds to the Field: Here we present a systematic analysis of human 

macrophage infection with Aspergillus fumigatus. We show that successful fungal 

germination in the phagosome leads to necrotic cell death and can result in cell-cell transfer 

of germinating Aspergillus fumigatus between macrophages. Ultimately this process assists 

control of fungal germination, and is orchestrated through the calcium-responsive serine-

threonine phosphatase calcineurin. Our systematic analysis of the macrophage response to 

Aspergillus fumigatus defines necroptosis as a key early event in the pathogenesis of 

pulmonary aspergillosis. 

This article has an online data supplement, which is accessible from this issue's table of 

content online at www.atsjournals.org 

 

  

Page 3 of 63
 AJRCCM Articles in Press. Published on 10-May-2016 as 10.1164/rccm.201601-0070OC 

 Copyright © 2016 by the American Thoracic Society 



1 

 

Abstract 

Rationale:  Pulmonary aspergillosis is a lethal mould infection in the immunocompromised 

host. Understanding initial control of infection, and how this is altered in the 

immunocompromised host, is a key goal for understanding the pathogenesis of pulmonary 

aspergillosis. 

Objectives: To characterise the outcome of human macrophage infection with Aspergillus 

fumigatus, and how this is altered in transplant recipients on calcineurin inhibitor 

immunosuppressants.  

Methods: We defined the outcome of human macrophage infection with Aspergillus 

fumigatus, and the impact of calcineurin inhibitors, through a combination of single cell 

fluorescence imaging, transcriptomics, proteomics, and in vivo studies.  

Measurements and Main results: Macrophage phagocytosis of Aspergillus fumigatus 

enabled control of 90% of fungal germination. However fungal germination in the late 

phagosome led to macrophage necrosis. During programmed necroptosis, we observed 

frequent cell-cell transfer of Aspergillus fumigatus between macrophages which assists 

subsequent control of germination in recipient macrophages. Lateral transfer occurred 

through actin-dependent exocytosis of the late endosome in a vasodilator-stimulated 

phosphoprotein (VASP) envelope. Its relevance to the control of fungal germination was 

also shown by direct visualisation in our zebrafish aspergillosis model in vivo. The calcineurin 

inhibitor FK506/tacrolimus reduced cell death and lateral transfer in vitro by 50%. This 

resulted in uncontrolled fungal germination in macrophages and hyphal escape.  

Conclusions: These observations identify programmed necrosis-dependent lateral transfer 
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of Aspergillus fumigatus between macrophages as an important host strategy for controlling 

fungal germination. This process is critically dependent on calcineurin. Our studies provide 

fundamental insights into the pathogenesis of pulmonary aspergillosis in the 

immunocompromised host. 

Word count: 248 

Key Words: Pulmonary Fungal Diseases; Macrophage; Necrosis; Aspergillus; Calcineurin 
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Introduction 

Aspergillus fumigatus (Af) is a mould with small airborne conidia that are a ubiquitous 

component of the aerial mycobiota (1). Normally inhaled conidia are cleared by alveolar 

macrophages to prevent fungal germination, tissue invasion and destructive lung disease (2, 

3).  Our previous work using murine and zebrafish models of invasive aspergillosis has 

shown the importance of macrophages in control of Af early post infection, with neutrophil 

influx a later event (4, 5). Previous studies have highlighted the importance of  inflammatory 

monocytes in murine invasive aspergillosis (6).  

A spectrum of immunocompromised states predispose individuals to high-mortality invasive 

or chronic forms of pulmonary aspergillosis (PA) (7). Organ transplant recipients are at high 

risk of PA, with lung transplant recipients being particularly susceptible with a mortality of 

>40% (8, 9). There are an estimated 3 million individuals with chronic PA, and 4.5 million 

with allergic bronchopulmonary aspergillosis globally (10, 11). Af has also been implicated in 

the pathogenesis of asthma, chronic obstructive airways disease and bronchiectasis (11-13). 

Treatment options remain limited, and high mortality rates persist (14). Better 

understanding of susceptibility to PA in the non-neutropenic host is a key clinical research 

priority.                                                                                                                                                                                                                                       

Calcineurin-NFAT signalling is the target of the calcineurin inhibitor immunosuppressants 

(CNIs) used in organ transplantation (15).  We have shown that CNIs (FK506/tacrolimus) 

increase susceptibility to murine PA through inhibition of the macrophage TLR9-calcineurin-

NFAT pathway (4, 5). This pathway is crucial for activation of inflammatory responses to Af, 

and recruitment of fungicidal neutrophils to the site of infection. Calcineurin-NFAT signalling 

has also been shown to be critical for the innate immune response to Candida albicans and 
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Escherichia coli, through endocytic mechanisms convergent on phospholipase C-ɣ-

dependent calcium flux (16, 17). These observations underscore the importance of 

calcineurin-NFAT signalling for myeloid immunity, and reveal a novel relationship between 

innate sensing and calcineurin-NFAT signalling in the lung that requires further clinical 

definition.  

Here we show that host programmed necrosis is an important outcome of Af germination in 

the human macrophage. Cell death occurred in response to phagosomal germination, with 

necroptosis-associated lateral transfer of Af between macrophages. Cell death-dependent 

transfer was calcineurin-dependent, and enabled control of germination in recipient 

macrophages. Crucially, inhibition of either calcineurin-dependent cell death, or lateral 

transfer, enabled hyphal escape from the macrophage.  These studies identify programmed 

necrosis as a key cellular response in PA, and show that it is likely to be critically impaired in 

organ transplant recipients on calcineurin inhibitors. Our studies reveal cell-cell transfer as a 

novel and important cell death associated defence mechanism that enables control of 

fungal germination in the myeloid compartment.  

 

 

Methods 

Ethics Statement  
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Studies were approved by the Biomedical Research Unit (NRES reference 10/H0504/9), 

Royal Brompton and Harefield NHS Trust (AS1). All experiments conformed to the WMA 

declaration of Helsinki. Written informed consent was obtained from all participants.  

Zebrafish care and maintenance 

Experiments were approved by the United Kingdom Home Office in accordance with the 

project license PPL 70/7446. Full details are given in the Supplemental Experimental 

Procedures. 

Fungal strains and culture 

A. fumigatus CEA10 was used for Western blot, Luminex, fungal burden, Imagestream, 

phosphoproteomic and RNA sequencing experiments. ATCC46645-eGFP, a gift from Frank 

Ebel, was used for microscopy experiments. See Supplemental Experimental Procedures. 

Isolation of human macrophages 

hAMs were isolated from bronchoalveolar lavage by adherence. Purified hAMs were rested 

for 3 days. Monocytes were isolated from peripheral blood mononuclear cells (PBMCs) from 

healthy volunteers by Ficoll-Paque gradient centrifugation and negative magnetic bead 

isolation (Pan-monocyte isolation kit, Miltenyi Biotech, CA, USA). hMDMs were 

differentiated using 5ng/ml granulocyte-macrophage colony-stimulating factor (GM-CSF) 

and 10% human serum for 7 days. See Supplemental Experimental Procedures. 

RNA-seq analysis  
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Illumina RNA-seq libraries were prepared from hMDMs (n = 6, healthy donors) pre-treated 

with 10 ng/ml FK506 for 1h or vehicle and stimulated with live Af swollen conidia (SC) 

(MOI=1) for 1h and 6h. Illumina paired-end reads were mapped to the human reference 

genome (hg19) using TopHat2 (18) (GEO database accession number GSE74924) and 

differential expression analyses performed using Cufflinks v2.2.1 (19). Gene analyses were 

carried out using DAVID v6.7 (20). Human PPI network modules were obtained using 

MCODE (21) analysis in Cytoscape. See Supplemental Experimental Procedures. 

Phosphoproteomic analysis 

A Phospho Explorer Antibody Microarray was conducted by Full Moon BioSystems Inc 

(California, USA). hMDMs were differentiated at 1 x 10
7 

cells in 75mm
2
 tissue culture flasks. 

At day 7, cells were stimulated with live Af swollen conidia (SC) (MOI=1) following pre-

treatment for 1h with FK506 (10ng/ml, Calbiochem) or vehicle (DMSO diluted in RPMI). At 

1h post-infection, cells were washed (x5) with 10mls ice-cold phosphate-buffered saline 

(PBS) containing protease inhibitors (Cell Signalling), and collected by centrifugation (250g 

for 10min at 4°C). Cells were frozen at -80°C and transferred to Full Moon Biosystems on dry 

ice. The array consisted of 1,318 phospho-specific antibodies. Proteins were labelled with 

biotin and adhered to pre-blocked microarray slides. After washing, detection of total and 

phosphorylated proteins was conducted using Cy3-conjugated streptavidin. Expression of 

phosphorylated proteins was normalized to the corresponding total protein abundance. 

Fold change was calculated as the phospho- to non-phospho-protein ratio of FK506-treated 

cells/the phospho- to non-phospho-protein ratio of untreated cells.  

Statistical analysis 
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Results are presented as mean ± SEM and were analyzed using GraphPad Prism software 

(version 6.0; GraphPad). Significance was determined using a Student’s t test for unpaired 

observations; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. If 3 or more groups were compared a 

one-way ANOVA with Bonferroni correction was used. 

Full details of Experimental Procedures are available in the Supplemental Information. 

 

 

Results 

Aspergillus fumigatus activates calcineurin-NFAT-dependent inflammatory responses in 

human macrophages 

Af phagocytosis activates NFAT nuclear translocation in murine macrophages (4). We 

therefore characterised the role of NFAT in human monocyte-derived macrophages 

(hMDMs).  hMDMs were infected with live Af swollen conidia (SC) or resting conidia (RC) 

and NFAT translocation determined by Western blot and confocal microscopy. SC 

phagocytosis led to sustained NFAT translocation after 30min (Figures 1A, B and E1A). RC 

induced a weak transient NFAT activation response (Figure E1B, E1C). NFAT translocation in 

response to SC was confirmed in alveolar macrophages (hAMs) from lung transplant 

recipients (Figure E1D). Maximum translocation of NFATc2 to the nucleus was seen in 

response to Af at 60 minutes p.i. NFAT translocation was blocked by the calcineurin inhibitor 

FK506 (Figures 1B, 1C, E1E), but NFκB Rel65 translocation was unaffected (Figure 1B).   
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NFAT transcriptional activity was defined by measuring expression of the NFAT-specific 

target Regulator of Calcineurin 1 (RCAN1). SC infection increased RCAN1 expression, which 

was abrogated by FK506 (Figures 1D, E1F). To determine the role of the calcineurin-NFAT 

pathway in inflammatory responses, we quantified chemokine and cytokine production in 

hMDMs during SC infection. TNF-α, GM-CSF, MCP-1, MCP-1α and MCP-1β expression were 

attenuated by calcineurin inhibition (P=0.02; P=0.02; P=0.03; P=0.0003 and P=0.009 

respectively) (Figures 1E, E1G). Flow cytometry characterisation of hMDMs and lung 

transplant hAMs revealed similar inflammatory activation status with CD11c
+
MHCII

+
CD206

+
 

surface expression. There were significant differences in surface CD11b (P≤0.001) and CD86 

(P≤0.001) expression (Figure E1H). Blockade of the fungal C-type lectin receptor Dectin-1 

(P=0.001) or inhibition of downstream Syk signalling (P=0.001) impaired TNF-α responses, 

but there was no effect on NFAT translocation (Figures E1I, E1J). These results indicate that 

the calcineurin-NFAT signalling pathway is critical for early macrophage inflammatory 

responses to Af, independent of Dectin-1 and Syk, in humans.  

Human macrophage phagocytosis, reactive oxygen species production and killing of A. 

fumigatus are calcineurin-dependent 

Next we characterised the role of calcineurin-NFAT in killing of Af. hMDMs were infected 

with SC following treatment with FK506 or vehicle, and fungal growth analysed at 1 and 6h 

p.i.. Both hMDMs and hAMs pre-treated with FK506 exhibited impaired control of fungal 

growth (P<0.001 and P<0.0001 respectively) (Figures 2A, E2A). Time-lapse video microscopy 

demonstrated increased Af hyphal transition in FK506-treated macrophages (P=0.02) (Figure 

2B). To identify the calcineurin-dependent mechanism for fungal growth inhibition, we 

assessed efficiency of Af phagocytosis. Calcineurin inhibition delayed phagocytosis of SC in 
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hMDMs (P<0.01) and hAMs (P=0.04) early post-infection but phagocytosis of RC was not 

affected (Figures 2C, E2B, E2C). We measured reactive oxygen species (ROS) production and 

Cathepsin B (a lysosomal cysteine protease) activation, which are critical for Af killing (22, 

23). ROS production was partially calcineurin-dependent (P<0.0001) with no effect on 

mitochondrial ROS (Figures 2D, E2D-E) or activated Cathepsin B production (Figures 2E-F).  

Calcineurin-dependent effects on phagosomal maturation were analysed by phagosomal 

acidification and recruitment of the late phagosomal maturation marker, LAMP-1 to Af-

containing phagosomes. Calcineurin inhibition increased LAMP-1 recruitment at early time 

points after infection (P<0.05) (Figure E2F, E2G). Phagosomal acidification was not 

calcineurin-dependent (Figures E2H, E2I). These results indicate that inhibition of the 

calcineurin-NFAT pathway impairs the ability of human macrophages to control fungal 

hyphal transition, delays fungal phagocytosis, and reduces ROS production.  

Macrophages traffic Af-containing endosomes to neighbouring cells through calcineurin-

dependent lateral transfer 

During live time-lapse confocal imaging, we observed lateral transfer of germinating Af 

between hMDMs (Figure 3A, Movie 1). This was confirmed in alveolar macrophages from 

lung transplant recipients (Movie 2). Lateral transfer events occurred in 3.0 ± 0.4% of cells 

infected with SC, peaking at 4 to 6h p.i. (Figure 3B). Calcineurin inhibition markedly reduced 

lateral transfer (53.9% +/- 10.3) (P=0.002) (Figure 3C).  

We assessed the role of fungal germination in lateral transfer of Af by time-lapse 

microscopy of metabolically inactive RC or dead fixed SC. Lateral transfer was dependent on 

both live and swollen Af (P<0.001) (Figure 3D). We observed co-localisation of actin and 
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dynamin to conidia undergoing lateral transfer (Figures 3E,3F) suggesting an actin and 

dynamin-dependent process. This was confirmed by treating hMDMs with actin 

polymerisation or dynamin inhibitors (Cytochalasin D or Dynasore respectively) following 

phagocytosis (P<0.001)  (Figure 3D). Fungal burden was increased after inhibition of lateral 

transfer post-phagocytosis using Dynasore, suggesting transfer enables recipient 

macrophage control of hyphal germination (P<0.01) (Figure E3A). Transmission electron 

microscopy showed that transfer of Af-containing cargo between hMDMs occurred in 

membrane-bound compartments (Figure E3B). The Af-containing cargo transferred between 

hMDMs was further characterized by staining for endo-lysosomal markers (Rab 5, Rab7 and 

LAMP-1). This showed that Af was transferred between hMDMs in Rab7-positive and Rab5 

and LAMP-1-negative compartments, suggesting late endosomal trafficking (Figure 3F and 

E3C). 

To determine whether this phenomenon occurred in vivo, we exploited our zebrafish 

invasive aspergillosis model (4). Using an mpeg:mCherry transgenic zebrafish line and eGFP-

expressing Af, we examined the macrophage-Af interaction in vivo using time-lapse high-

resolution confocal microscopy. We observed similar macrophage Af lateral transfer in 

zebrafish larvae, consistent with an evolutionarily conserved macrophage response to Af 

infection that occurs in vivo (Figure 3G and Movie 3). Taken together, these observations 

indicate that successful fungal germination in the late endosome triggers exocytic transfer 

of Af between macrophages. 

Macrophages undergoing calcineurin-dependent programmed necrosis transfer Af conidia 

to neighbouring cells to control fungal germination 
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hMDMs transferring Af had increasingly translucent cytoplasm, organelle swelling and 

increased cell volume, suggesting programmed cell death during transfer. This was 

confirmed by confocal microscopy using propidium iodide (PI) (Figure 4A, Movie 4). Around 

90% of macrophages successfully control fungal germination and do not die (Figure 4B). PI 

staining revealed that in dying macrophages (13±2%), lateral transfer occurred in 37 ± 5% 

(Figure 4D).  This represents ~3-4% of total macrophages as previously described infected 

with Af SC. Transfer of Af conidia from dying hMDMs enhanced control of germination, 

compared to dying hMDMs where conidia were not transferred (P=0.003) (Figure 4B). 

Germination of Af in live hMDMs was well controlled when compared to cells undergoing 

programmed necrosis (Figure E3D) , further supporting a model where programmed cell 

death and lateral transfer occur in response to successful fungal germination in 

macrophages, to enable containment of infection in recipient macrophages (Figure 4B).  

Consistent with programmed cell death, we observed massive vacuole formation adjacent 

to the Af-containing compartment (Figure E3E, Movie 5) (24). Transmission electron 

microscopy also showed conidia residing within large vacuoles (Figure E3F). Vacuole 

formation was inhibited by pre-treatment with the vacuolar H+ ATPase inhibitor Bafilomycin 

(P=0.003), with a trend towards decreased transfer (P=0.06)  (Figure E3G).  

To define the relationship between cell death and transfer, induction of necroptosis with 

the pan-caspase inhibitor Z-VAD-FMK (an inhibitor of caspase-dependent apoptosis which 

increases necroptosis) was performed (25, 26). This increased lateral transfer (P=0.003) 

(Figure 4C). Addition of Necrostatin-1, an inhibitor of RIP1 kinase-dependent necroptosis, to 

Z-VAD-FMK, inhibited both cell death (P=0.078) and lateral transfer (P=0.028) induced by Z-

VAD-FMK alone (Figure 4C). However, induction of necroptosis with Z-VAD-FMK led to 
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increased fungal burden due to recipient macrophage death (P<0.01) (Figure E3H). 

Necrostatin-1 alone or necrosulphonamide could not inhibit macrophage programmed cell 

death or lateral transfer (Figure 4C). As pyroptosis has recently been shown following 

macrophage infection with C. albicans, we blocked pyroptosis with an irreversible cell 

permeable caspase-1 inhibitor, (Z-YVAD-FMK), which did not affect cell death or lateral 

transfer (Figure 4C) (27). These observations are consistent with transfer of Af between 

macrophages during a programmed cell death process with hallmarks of necroptosis.  

As calcineurin regulates cell death, we assessed its role in macrophage necrosis following 

infection (28). Calcineurin inhibition reduced macrophage programmed necrosis by 57% +/- 

13.7 (P=0.01) (Figure 4D) and was associated with accelerated fungal germination at late 

time-points in macrophages that failed to undergo necrosis-dependent transfer (P<0.001) 

(Figures E3I, E3J). This is consistent with a calcineurin-dependent checkpoint for 

programmed necrosis during Af germination. 

Together, these results indicate that hMDMs infected with live Af SC undergo calcineurin-

dependent cell death with hallmarks of programmed necroptosis and transfer Af-containing 

endosomes to neighbouring cells to facilitate control of fungal germination. 

Calcineurin regulates cell death and the MAP kinase pathway during Af infection 

To further define the macrophage response to Af, we undertook next generation transcript 

profiling of hMDMs during phagocytosis.  hMDMs pre-treated with FK506 were infected 

with SC for 1h or 6h, and differentially expressed genes compared to baseline and untreated 

infection controls were identified (Figure E4A). The major gene sets regulated by calcineurin 

at 6h p.i. were associated with cell death, inflammatory responses and transcriptional 
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regulation (Figure E4B). 51 genes associated with the cell death pathway were calcineurin-

dependent at 6h p.i (Table E1).  

Over-representation analysis using ConsensusPathDB (CPDB) identified calcineurin-

dependent control of the programmed cell death, MAPK signalling and cytokine-cytokine 

interaction pathways at 6h p.i. (Figure E4C). To assess the interaction between the pathways 

regulated by calcineurin, a protein-protein interactions (PPI) network was created. This 

identified significant interactions and clustering of transcriptional regulation pathways, 

immune response pathways, apoptosis and the AP-1 transcription factor network (Figure 

4E). Studies have suggested a critical role for the MAPK-AP-1 pathway, and dynamin-related 

protein 1(Drp1)-mediated mitochondrial fission in necroptosis (25, 29). As mitochondrial 

translocation of Drp1 and MAPK-AP-1 pathway regulation are thought to be calcineurin-

dependent, this was explored in Af-infected hMDMs (30-32). Significant modulation of 

MAPK-AP-1 pathway activation and Ser637 P-Drp1 phosphorylation was observed (Figure 

E4D). Thus, RNA- and protein-level analyses further support a role for calcineurin in the 

macrophage programmed cell death response to Af.      

Af containing endosomes transferred from macrophages to macrophage are enveloped 

within actin-VASP rich cargo  

Calcineurin phosphatase activity has multiple NFAT-independent effects on cytoskeletal 

reorganisation and regulation of MAPK pathways (31, 33, 34). To identify calcineurin 

phosphatase targets, we performed a comparative phosphoproteomic array on FK506 vs. 

vehicle pre-treated hMDMs infected with SC (Figure 5A). There were differences in 

phosphorylation of proteins within the MAPK pathway including c-Jun, and the cell cycle 
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regulatory protein CDC25A. This is consistent with our transcriptomic findings of cross-

control between calcineurin, and MAPK pathways and cell death pathways.  

The analysis revealed a 26-fold increase in Ser238 phosphorylated vasodilator-stimulated 

phosphoprotein (VASP) levels in FK506-treated hMDMs (Figure 5A). VASP is an actin 

polymerase that promotes assembly of actin networks, and is important for directional 

motility and phagocytosis (35-37).  Its function is tightly regulated with Ser238 

dephosphorylation required for actin filament formation. We therefore postulated that 

VASP is a direct calcineurin target. As calcineurin is the only Ca
2+

-activated serine-threonine 

phosphatase, we measured Ser238 P-VASP following the addition of the calcium ionophore 

ionomycin (to selectively activate calcineurin) to hMDMs with phosphorylated VASP 

(induced using a cell permeable cGMP analogue) in the presence or absence of FK506 

(Figure 5B). This confirmed that VASP is a major dephosphorylation target of calcineurin. 

As VASP is an important actin cytoskeletal regulator, and calcineurin is required for optimal 

phagocytosis and transfer of Af, we hypothesized that VASP is involved in actin-dependent 

phagocytosis and lateral transfer of Af. Using high-resolution confocal microscopy, we 

observed co-localisation of VASP to Af at phagocytic cups, which disappeared following 

internalisation (Figures 5C, 5D and Movie 6). Localisation of VASP to Af was not calcineurin-

dependent. During Af lateral transfer at late time-points, high intensity co-localisation of 

VASP and actin staining was observed to Af-containing endosomes (Figure 5E). High-

resolution 3D reconstruction revealed that Af containing endosomes trafficked between 

macrophages are enveloped within actin-VASP rich cargo (Figure 5C-G and Movie 7).  

To determine the role of VASP in macrophage Af phagocytosis, siRNA knockdown of VASP 

was performed in human macrophages, followed by analysis of uptake of calcofluor white-
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stained live Af SC compared to control. This showed that phagocytosis of live Af SC at early 

time-points is VASP-dependent (P<0.01) (Figure 5H), consistent with the defect seen for 

calcineurin inhibition (Figure 2B).  Taken together, these results indicate that calcineurin has 

a key role in macrophage actin cytoskeleton re-organisation during fungal infection, by 

direct de-phosphorylation and activation of the actin polymerase VASP. This enables 

optimal actin-dependent Af phagocytosis and lateral transfer of Af containing endosomes 

during programmed necrosis, which are critical to achieve control of germinating conidia.  

Discussion 

Pulmonary aspergillosis has emerged as a serious infectious complication of a range of 

immunocompromised states and chronic respiratory diseases. Overt infection is typically 

characterised by hyper-inflammatory tissue destruction, with more complex relationships 

between airway colonization and progression of chronic respiratory diseases (38). Here we 

report human macrophage programmed necrosis as an important response to germination 

of Af. Whilst necrosis has been recognized as a form of cell death since the mid-nineteenth 

century, it has recently become clear that programmed necrosis may occur through 

receptor-interacting protein kinase 3 (RIPK3) necroptotic cell death (39). Necroptosis occurs 

as a first line defense to intracellular pathogens, and is central to the pathogenesis of a 

number of chronic inflammatory conditions including emphysematous change (40, 41).  

Remarkably, we observed frequent lateral transfer of Af during necroptosis which ultimately 

enabled control of hyphal escape from the macrophage. Transfer occurred through a late 

endosomal compartment, suggesting that this process may have similarities to exocytosis 

(42). Whilst lateral transfer has previously been observed for Cryptococcus neoformans at 
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low frequency, the molecular basis for transfer and its relationship to cell death or control 

of infection have not been previously defined (43). The pathogen escape and transfer 

processes described to date are pathogen-mediated, and enhance either tissue 

dissemination, or evasion from immune attack (47). However, our observations are 

consistent with host-dependent lateral transfer of Af, to limit hyphal escape during 

macrophage death. The observation of cell-cell transfer of Af supports a model whereby 

inhaled conidia may persist in the myeloid compartment as spores for prolonged periods of 

time. This has potentially important implications for individuals who subsequently undergo 

immunosuppression. 

Notably, we observed that both fungal-driven programmed necrosis and lateral transfer 

were calcineurin-dependent, indicating that necroptotic control of infection is likely to be 

impaired in organ transplantation. Calcineurin has been postulated to have a role in the 

regulation of programmed cell death through interaction with Bcl-2 family proteins (25, 26). 

Consistent with this, we found significant calcineurin-dependent expression of Myeloid Cell 

Leukaemia 1 (MCL1), a Bcl-2 protein that inhibits apoptosis, and Bcl2 Modifying Factor 

(BMF), a member of the pro-death BH3-only subgroup of Bcl-2 family proteins required for 

TNFα-induced necroptosis (27). Transcriptomic and phosphoproteomic analysis defined 

calcineurin as a key phosphatase mediating cross-control of cell death, the MAPK-AP-1 

innate pathway, and VASP-dependent cytoskeletal remodelling during macrophage 

infection. Calcineurin inhibition impaired these cellular processes, leading to enhanced 

fungal germination in the late phagosome, impaired lateral transfer, and ultimately hyphal 

escape. Interestingly, virulent Burkholderia spp. have recently been shown to mimic VASP 
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actin polymerases to enable cell fusion and spread (44).  Whether fungi are able to directly 

manipulate host actin polymerases remains to be determined.  

In summary, we have identified macrophage programmed necrosis as an important 

response to progressive germination of Aspergillus fumigatus in the human macrophage, 

and report a previously undescribed phenomenon of cell death-dependent lateral transfer 

as a co-operative macrophage behaviour that assists in limiting hyphal escape. We show 

that calcineurin is a key orchestrator of this process, further defining the importance of this 

pathway in innate immunity. Our findings yield novel insights into host innate immunity to 

Af in the lung, extend current understanding of the pathogenesis of PA in organ 

transplantation, and have broader implications for transplant immunity and chronic lung 

disease. 
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Figure Legends 

Figure 1. A. fumigatus activates calcineurin-NFAT-dependent inflammatory responses in 

human macrophages 

(A) hMDMs were stimulated with live Af SC (MOI=1). hMDM nuclear extracts were collected 

at 30, 60 and 120min p.i. and probed by Western blot for NFATc2. Maximum translocation 

of NFATc2 to the nucleus was observed at 60 minutes p.i. Western shown representative of 

data from n= 4. 

(B-C) hMDMs were pre-treated with FK506 (10ng/ml) and stimulated with live Af SC 

(MOI=1). Nuclear extracts were probed by western blot for NFACTc2 and whole cell extracts 

for RCAN1. NFAT translocation was assessed by confocal microscopy. NFAT shown in red, 

nuclei in blue and Af conidia are seen in green. Representative images are shown of live 

conidia stimulating NFAT nuclear translocation. Western shown representative of data from 

n= 4. 

(D) hMDMs were pre-treated with FK506 (10ng/ml) and stimulated with live Af SC (MOI=1). 

FK506 completely inhibited RCAN1 production. Western shown representative of data from 

n= 4. 

 (E) hMDMs were pre-treated with FK506 (10ng/ml) and stimulated with live Af SC (MOI=1). 

Culture supernatant cytokines were measured at 6hr p.i. by Luminex. N =7 

Figure 2. Human macrophage phagocytosis, reactive oxygen species production and 

control of A. fumigatus growth are calcineurin dependent 
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(A) hMDMs pre-treated with FK506 (10ng/ml) or vehicle were stimulated with live Af SC 

(MOI=1), and total RNA isolated at 1 and 6 hour p.i. Fungal growth was assayed by RT-PCR 

of fungal RNA. N = 5 

(B) hMDMs pre-treated with FK506 (10ng/ml) or vehicle were infected with live eGFP-

expressing Af SC (MOI=1), and hyphal transition assessed using time-lapse video microscopy 

over a 10h period. N = 4 

(C) hMDMs pre-treated with FK506 (10ng/ml) or cytochalasin D (5nM) or vehicle were 

stimulated with live Af SC (MOI=1) prestained with Calcofluor white. Phagocytosis was 

quantified by Imagestream. p.i. N=4 

(D) hMDMs pre-treated with FK506 (10ng/ml) or vehicle were stimulated with live Af SC 

(MOI=1) and ROS production assayed by luminescence. N=4 

(E) hMDMs pre-treated with FK506 (10ng/ml) or vehicle were stimulated with live Af SC 

(MOI=1) and Cathepsin B activation assayed by live confocal time-lapse microscopy. 

Phagosomal activated Cathepsin B activation was quantified by ImageJ. N=4 

(F) Representative confocal microscopy image showing Cathepsin B activation in Af conidia 

containing phagosomes in MDMs. Activated Cathepsin B is shown in red, nuclei in blue and 

Af in green. Data are represented as mean ± SEM. 

Figure 3. Macrophages infected with swollen A. fumigatus undergo calcineurin-dependent 

lateral transfer.  
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(A) Representative time-lapse widefield microscopy images of Af lateral transfer in MDMs 

infected with live Af SC (MOI=1, shown in green). Transferring macrophage labelled ‘a’ and 

receiving macrophage labelled ‘b’. Images taken at 10 minute intervals.  

(B) hMDMs were stimulated with live eGFP-Af SC (MOI=1) and time-lapse widefield imaging 

performed at 10min intervals for 12h p.i.. Timing of lateral transfer events per hour in 

macrophages infected with live Af SC is shown (N=3).  

 (C) hMDMs pre-treated with FK506 (10ng/ml) or vehicle were stimulated with live eGFP-Af 

SC (MOI=1) and lateral transfer events quantified by time-lapse widefield imaging at 10 

minute intervals for 12 hour p.i. (N=5). Total lateral transfer events over the 12h period 

were quantified for each biological replicate.  

 (D) hMDMs were stimulated with live or fixed Af SC or RC (MOI=1) and lateral transfer 

events quantified by time-lapse widefield microscopy. Cytochalasin D (5nM) and Dynasore 

(100μM) were added at 90mins p.i. with unbound conidia washed away 45mins p.i.. N=4 

(E) Representative confocal microscopy image of dynamin-dependent lateral transfer in 

monocyte-derived macrophages stimulated with live Af SC. Dynamin shown in red, nuclei in 

blue and Af in green. 

(F) MDMs were stimulated with live Af SC (MOI=1) with non-phagocytosed conidia washed 

away at 45mins p.i.. Lateral transfer events were captured by fixing cells every 10mins from 

120-180mins p.i.. Characterisation of Af lateral transfer was performed by staining for Rab 5, 

Rab 7 and LAMP-1 (shown in red) alongside actin (shown in cyan). Nuclei are shown in blue 

and live swollen Af in green.  Representative images show positive Rab7 localisation to Af 

Page 27 of 63
 AJRCCM Articles in Press. Published on 10-May-2016 as 10.1164/rccm.201601-0070OC 

 Copyright © 2016 by the American Thoracic Society 



25 

 

containing endosomes during lateral transfer with little Rab 5 localisation and no LAMP-1 

localisation. 

(G) MPEG:mCherry Zebrafish larvae were infected with ~50 eGFP-expressing conidia of Af 

and time-lapse confocal microscopy performed. Representative images show Af lateral 

transfer between macrophages. The transferring macrophage is labelled ‘a’ and the 

receiving macrophage labelled ‘b’. Images shown are at 7 minute intervals. Data are 

represented as mean ± SEM. 

Figure 4. Macrophages undergoing programmed necrosis laterally transfer germinating A. 

fumigatus conidia in endosomes through an actin-dependent process. 

 (A) Representative time-lapse confocal microscopy images of lateral transfer of live Af SC 

(shown in green) between MDMs. Propidium iodide staining (red) showing cell death of 

macrophage transferring Af conidia (labelled ‘a’) to neighbouring macrophage (labelled ‘b’). 

Images taken at 10 minute intervals.  

(B) Time-lapse confocal microscopy was used to quantify the fate of transferred vs non-

transferred conidia from dying human MDMs and to conidia within live macrophages. 

Germination was assessed over a 12-hour period. Control of fungal germination was 

significantly increased in dying hMDMs that transferred conidia to neighbouring cells 

compared to those that did not. N=4 

(C) hMDMs pre-treated with a pan-caspase inhibitor (Z-VAD-FMK 50μM), RIPK-1 inhibitor 

(Necrostatin-1 10μM), caspase-1 inhibtor (Z-YVAD-FMK 50µM), FK506 10ng/ml or vehicle 

were stimulated with live Af SC (MOI=1) and lateral transfer events and cell death quantified 

by propidium iodide fluorescence based time-lapse confocal microscopy. Treatment with Z-
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VAD-FMK induced necroptotic cell death coupled to increased Af lateral transfer, which was 

inhibited by the addition of a RIPK-1 inhibitor (Necrostatin-1). N=3 

(D) hMDMs pre-treated FK506 (10ng/ml) or vehicle were stimulated with live Af SC (MOI=1) 

and cell death assayed by propidium iodide fluorescence quantified by time-lapse confocal 

microscopy over a 6h period. The graph also shows the proportion of lateral transfer events 

in dying cells (~30% of dying cells). N=4 

(E) The network modules of the significantly expressed genes in FK506 pre-treated 

macrophages stimulated with live Af SC (MOI=1) for 6hrs. Significantly expressed genes 

were mapped on to PPI network and network modules identified using the MCODE plugin 

application of Cytoscape. Over represented pathway involving these network modules were 

identified from the KEGG and Wikipathways databases. N=6. Data are represented as mean 

± SEM. 

Figure 5. Lateral transfer of Aspergillus fumigatus occurs through VASP tunnel-like 

structures. 

(A) A phosphoprotein array analysis of hMDMs pre-treated with FK506 and stimulated with 

live Af SC (MOI=1) for 1hr p.i was performed. Proteins with significant fold change 

differences in the phosphoprotein to non-phosphoprotein ratio between FK506 and control 

macrophages stimulated with live Af SC are shown.  

(B) hMDMs were pre-treated with a cell-permeable cGMP analogue (8-pCPT-cGMP 25mM) 

to induce Ser238 VASP phosphorylation and FK506 (10ng/ml) or vehicle. They were then 

stimulated with a calcium ionophore (Ionomycin 2μg/ml) to activate calcineurin. 
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Macrophage whole cell extracts were probed by western blot for Ser238 VASP and total 

VASP.  

(C) Representative confocal microscopy images of hMDM phagocytosis and lateral transfer 

of live Af SC (MOI=1). VASP shown in red, nuclei in blue and Af in green. 1: Uninfected 

hMDMs; 2: Initial phagocytosis of Af by MDMs; 3: Late phagocytosis of Af by hMDMs; 4: 

Lateral transfer of Af between hMDMs.   

(D) 3D reconstruction of confocal microscopy images of phagocytosis and lateral transfer of 

live Af SC (MOI=1) between hMDMs. Image of Af phagocytosis at 30min p.i. with VASP 

shown in red, Af in green and nuclei in blue.  

(E) 3D reconstruction of confocal microscopy image of Af lateral transfer with VASP shown 

in yellow, actin in magenta, Af in green and nuclei in blue.  

(F-G) Representative z-slice confocal microscopy image (F) and 3D reconstruction (G) of Af 

lateral transfer. VASP shown in red, Af in green.  

(H) THP-1 macrophages treated with either control or VASP siRNA (50µM) were infected 

with live Af SC and stained with calcofluor-white (Sigma) (MOI=1). Phagocytosis was 

quantified by flow cytometry. N=3. Data are represented as mean ± SEM. 
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Figure 1. A. fumigatus activates calcineurin-NFAT-dependent inflammatory responses in human 
macrophages  
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Figure 2. Human macrophage phagocytosis, reactive oxygen species production and control of A. fumigatus 
growth are calcineurin dependent  
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Movie Legends 

Movie 1. Human monocyte-derived macrophages infected with swollen A. fumigatus 

undergo lateral transfer. 

Representative time-lapse widefield microscopy images of Af lateral transfer in human 

MDMs infected with live Af SC (MOI=1, shown in green). Lateral transfer highlighted with 

black arrow. Images taken at 10 minute intervals.  

Movie 2. Human alveolar macrophages infected with swollen A. fumigatus undergo lateral 

transfer. 

Representative time-lapse widefield microscopy images of Af lateral transfer in human AMs 

infected with live Af SC (MOI=1, shown in green). Lateral transfer highlighted with black 

arrow. Images taken at 10 minute intervals. 

Movie 3. In vivo confirmation of macrophage lateral transfer in zebrafish macrophages 

infected with swollen A. fumigatus. 

MPEG:mCherry Zebrafish larvae were infected with ~50 eGFP-expressing conidia of Af and 

time-lapse confocal microscopy performed. Representative three-dimensional 

reconstructed images show Af lateral transfer between macrophages. The transfer process 

is highlighted with a yellow arrow. Images shown are at 7 minute intervals. 

Movie 4. Macrophages infected with germinating A. fumigatus conidia undergo lateral 

transfer during programmed cell death. 
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Representative time-lapse confocal microscopy images of lateral transfer of live Af SC 

(shown in green) between MDMs. Propidium iodide staining (red) showing cell death of 

macrophage transferring Af conidia to neighbouring macrophage. Transfer process 

highlighted by black arrow. Images taken at 10 minute intervals.  

Movie 5. Massive vacuole formation occurs during A. fumigatus germination in human 

monocyte-derived macrophages 

Representative time-lapse widefield microscopy images of vacuole formation in human 

MDMs infected with live Af SC (MOI=1, shown in green). Images taken at 10 minute 

intervals. 

Movie 6. VASP co-localises to the human monocyte-derived macrophage A. fumigatus 

phagocytic cup. 

3D reconstruction of confocal microscopy image of phagocytosis of live Af SC (MOI=1) by 

hMDMs. Image of Af phagocytosis at 30min p.i. with VASP shown in red, Af in green and 

nuclei in blue.  

Movie 7. Lateral transfer of germinating A. fumigatus conidia between human monocyte-

derived macrophages occurs within VASP-enveloped endosomes. 

3D reconstruction of confocal microscopy image of hMDM Af lateral transfer with VASP 

shown in green and Af in magenta. 
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Supplementary Experimental Procedures 

 

Zebrafish care and maintenance 

All zebrafish experiments were approved by the United Kingdom Home Office and 

performed in accordance with the project license PPL 70/7446. Wild-type adult breeders 

were purchased from the Zebrafish International Resource Center (Eugene, OR). The 

Tg(UAS-E1b:Eco.NfsB.m Cherry)c24 (referred to as mpeg:mCherry) zebrafish lines have been 

described elsewhere (1). Embryos were raised in Petri dishes containing 0.5 × E2 medium 

supplemented with 0.3 lg/ml of methylene blue. For imaging studies, from 24 h post-

fertilization (hpf), 0.003% 1-phenyl-2-thiourea (Sigma-Aldrich) was added to the medium to 

prevent melanin synthesis. Embryos were reared at 30°C, and larvae were anaesthetized 

with 200 lg/ml tricaine (Sigma-Aldrich) during the injection and imaging procedures 

 

Fungal strains and culture 

Aspergillus fumigatus AFCEA10 was used for the Western blot, Luminex, fungal burden, 

Imagestream, phosphoproteomic and RNA sequencing experiments. An eGFP-expressing 

strain (ATCC46645-eGFP, a gift from Frank Ebel) was used for all microscopy experiments. 

All strains were cultured on Sabouraud dextrose agar (Oxoid). Conidia were harvested in 

0.1% Tween/H2O and filtered through MIRACLOTH (Calbiochem, UK). Conidial suspensions 

were washed twice in phosphate-buffered saline (PBS) and resuspended in RPMI (Sigma) at 

concentrations shown. To generate swollen conidia (SC), resting conidia (RC) were 

suspended in RPMI at 1 × 10
6
 conidia/ml and swollen at 37°C for 4 h. Fixed SC were 

generated by fixing in 2% formalin for 30 min at 4°C, followed by quenching in 0.1M 

ammonium chloride for 10 minutes and further washes in PBS x4.  
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Isolation of human alveolar macrophages 

A total of 240 ml saline bronchoalveolar lavage (BAL) was performed by flexible 

bronchoscopy and return transferred on ice for processing. BAL fluid was passed through a 

100μm cell strainer (BD Bioscience, UK) and centrifuged at 400g for 10 min to pellet cells, 

which were subsequently washed in cold PBS and resuspended in pre-warmed RPMI 1640. 

Macrophages were plated at the desired concentration and adhered for 1hour. These 

purified AMs were then further rested for 3 days to ensure any residual calcineurin inhibitor 

effect was removed. 

 

Isolation of monocyte-derived macrophages 

Peripheral blood mononuclear cells (PBMCs) were isolated from 60 ml of healthy volunteer 

blood or from leukocyte cones purchased from the National Blood Service, Colindale, UK by 

mixing 3:1 in warm RPMI and layering over Ficoll-Paque plus (GE healthcare) and 

centrifuging at 450g for 45 minutes. PBMCs were washed at 200g in cold PBS to remove 

platelets and monocytes subsequently purified by negative magnetic bead selection using a 

pan-monocyte isolation kit (Miltenyi Biotech, Auburn, CA). To obtain monocyte-derived 

macrophages (MDMs), freshly isolated monocytes were cultured with RPMI 1640 medium 

supplemented with 10% human serum (Sigma, UK) and 5 ng/ml granulocyte macrophage 

colony-stimulating factor (GM-CSF) (Peprotech, UK) for 7 days at 37°C.  

 

Western blotting 

For whole-cell lysates, cells were lysed in 150 mM NaCl, 50 mM Tris (pH 8), 1% Triton X-100 

containing proteinase/phosphatase inhibitor cocktail (Cell Signalling, US). Cytoplasmic and 
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nuclear extracts were prepared using the NE-PER extraction reagents (Thermo Scientific). 

Extracts were separated by 4–15% Bis-Tris gel (BioRad), and proteins transferred to PVDF 

membranes activated with methanol. Membranes were probed with anti-NFATc2 (sc-7296 , 

Santacruz), anti-NF-κB p65 (C22B4), anti-HDAC1 (10E2), anti-Histone H3 (D1H2), anti-β-actin 

(8H10D10), anti-DSCR1 (D6694, Sigma, UK), anti-VASP (9A2), anti-phospho-VASP (Ser239) 

(3114), anti-SAPK/JNK (9252),  anti-phospho-SAPK/JNK (Thr183/Tyr185) (81E11), anti-p38 

MAPK (D13E1), anti-phospho-p38 MAPK (Thr180/Tyr182) (D3F9), anti-DRP1 (D6C7) and anti-

phospho-DRP1 (Ser637) (GTX5091, Genetex, US) antibodies. All antibodies, where not 

specified, were from Cell Signalling, US. 

 

Luminex and TNF-α ELISA assay 

MDMs were plated at 1x10
5
 per well in a 96-well plate and pre-treated with FK506 

(10ng/ml, Calbiochem), human Dectin-1 blocking antibody (3µg/ml, R&D Systems), 

piceatannol (20µM, Cayman Chemical) or vehicle for 1h followed by stimulation with live Af 

SC (MOI=1) for 6h. Luminex analysis of culture supernatants was performed using the 

Milliplex human cytokine/chemokine magnetic bead panel kit from Merck Millipore. 

Supernatants were assayed for TNF-α, GM-CSF, MCP-1, MIP-1α and MIP-1β. TNF-α 

production was additionally assayed using a human TNF-α ELISA kit (R&D Systems) 

according to manufacturer’s instructions. 

 

Real-time PCR 

AMs and human MDMs were stimulated with live Af SC (MOI=1) with FK506 or vehicle pre-

treatment for 1h. A total of 5x10
5
 macrophages were lysed in Tri Reagent 1 and 6h after 

stimulation and whole RNA extracted using TRIzol and purified further using RNAeasy kit 
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(QIAGEN). RNA was reverse-transcribed using the QuantiTect kit according to the 

manufacturer’s instruction (Qiagen). Fungal burden was analysed by measuring A. fumigatus 

18S rRNA (GenBank accession number AB008401) by real time PCR as described (2). For 

RCAN1.4 and TNF-α mRNA expression, RNA was extracted as above from human MDMs 

stimulated with live Af SC (MOI=1) pre-treated with or without FK506. RCAN1.4 expression 

was measured using the primer set, forward primer 5’-AGAAAGCAAGATGCATTTTAGAAAC-3’ 

and reverse primer 5’-CGCTGAAGATATCACTGTTTGC-3’, and TNF-α was measured using 

forward primer 5’-CGAGTGACAAGCCTGTAGCC-3’ and reverse primer 5’-

TTGAAGAGGACCTGGGAGTAG-3’. mRNA expression was normalised to β-actin.  

 

Macrophage flow cytometry phenotyping 

AMs were harvested at D3 after isolation and MDMs at D7 after differentiation and stained 

with Zombie-aqua cell viability stain (Biolegend, UK) as per manufacturer’s guidelines. Prior 

to fixation, cells were blocked on ice for 20mins with human FcR block (1 in 100 dilution in 

PBS/0.1%BSA, BD Biosciences) and subsequently stained with antibodies against CD11b, 

CD11c, CD206, CD86, HLA-DR, and Dectin-1 for 30mins at RT in the dark (see table below). 

All antibodies were from Biolegend, UK. Cells were washed with PBS/0.1%BSA x1, fixed as 

above and then acquired on a Fortessa flow cytometer. Results were analysed using Flow Jo 

(Oregon, US). 

Antibody description Manufacturer Clone 

anti-CD11b-PerCP/Cy5.5 Biolegend ICRF44 

anti-CD11c-PE/Cy7 Biolegend 3.9 

anti-CD206-AF647  Biolegend 15-2 
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anti-CD86-Brilliant violet 

605 

Biolegend IT2.2 

anti-HLA-DR-APC/Cy7 Biolegend L234 

anti-Dectin-1-PE Biolegend 15E.2 

 

Imagestream analysis of phagocytosis 

5 x 10
5
 MDMs pre-treated with FK506 (10ng/ml) and/or cytochalasin D (5µM, Sigma) for 1h 

were stimulated with live Af SC (MOI=1) pre-stained with Calcofluor White (Sigma). 

Infections were synchronised by incubating cells at 4°C for 30min pre and post-infection 

before starting the experiment by incubation at 37°C. At specified time-points, macrophages 

were washed twice with warm PBS to remove non-internalised Af conidia. Cells were 

harvested by incubation with ice-cold PBS and repeat pipetting and centrifugation at 400 x g 

for 10 minutes. Cells were stained with nuclear stain DRAQ5 (Cell signalling) and fixed with 

2% paraformaldehyde. Fixed cells were run on ImageStreamX (Amnis) and data analysed 

using IDEAS software. Single cells with in-focus nuclei were chosen for analysis and 

percentage of macrophages with internalised conidial quantified according to Calcofluor 

White fluorescence within the cell.   

 

Reactive oxygen species (ROS) production analysis 

MDMs were plated at 1x10
5
/well in 96-well TC-treated black clear bottom plates (Fisher 

Scientific). Cells were pre-treated with 10 ng/ml FK506 and 5µM cytochalasin D for 1h and 

stimulated with live Af SC (MOI=1). Infections were synchronised by centrifugation at 

1000rpm for 5 min. 10μM dihydrorhodamine 123 (Life technologies) was added to each well 

and the reactive oxygen species production measured over 24h using a fluorescent plate 
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reader (Tecan). For analysis of mitochondrial ROS production, MDMs were plated at 

5x10
5
/well in 24-well plates and infected with live Af SC (MOI=1) following pre-loading with 

Mitotracker Orange CM-H2TMRos (Invitrogen) according to the manufacturer’s instructions 

and pre-treatment with FK506 (10ng/ml), or vehicle, for 1h. Cells were harvested at the 

required time-points using ice-cold PBS/5mM EDTA and fluorescence quantified by flow 

cytometry (Fortessa). Results were analysed using Flow Jo (Oregon, US). 

 

Confocal and time-lapse video microscopy for in vitro studies 

For confocal microscopy, cells seeded on coverslips were fixed in 2% PFA for 15 minutes 

followed by quenching in 50mM NH4Cl for 10 min. Cells were blocked and permeabilised in 

PBS containing 10% goat serum (Sigma, UK) and 0.1% Saponin (Sigma, UK) for 2h at room 

temperature and incubated overnight at 4°C with a primary antibody (anti-NFATc1, clone 

7A6, BD Biosciences; anti-Rab 5, clone C8B1, Cell signalling; anti-Rab 7, clone D95F2, Cell 

Signalling; anti-LAMP-1, clone H4A3,  Biolegend; anti-VASP, clone 9A2, Cell Signalling) in 

blocking buffer. After washing with PBS, cells were incubated with an anti-rabbit AF555 (Life 

Technologies), anti-rabbit Cy5 or anti-mouse Cy5 antibody with or without Phalloidin AF555 

or AF643 (Life Technologies) for 45min at room temperature in the dark and mounted with 

Vectashield mounting medium containing DAPI (Vector laboratories). Imaging of activated 

Cathepsin B and phagosomal acidification was performed on live cells using a Magic Red 

Cathepsin B staining kit (Immunochemistry Technologies) and with MDMs pre-stained using 

1μM Lysotracker Red DND-99 respectively. Colocalisation of acidification, activated 

Cathepsin B and phagosomal markers was assessed by quantifying the average pixel 

intensity around single conidia using ImageJ. Live time-lapse imaging was performed by 

plating human MDMs at 1 x 10
5
 cells/well in 8-well μ-slides (Ibidi) and stimulating with live 
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Af SC e-GFP expressing Af, resting Af or fixed Af (MOI=1). Cells were pretreated for 1h with 

FK506 (10ng/ml, Calbiochem), Bafilomycin (100nM, Sigma), Z-VAD-FMK (50μM, Promega), 

Necrostatin-1 (10μM, Calbiochem), Necrosulphonamide (5μM, Calbiochem) or vehicle. 

Following stimulation with Af, propidium iodide was added to the media (1.25μg/ml, 

Invitrogen) and lateral transfer events visualised by confocal time-lapse imaging using a 

Leica SP5 inverted confocal microscope. To avoid effects on Af uptake, media was replaced 

to contain cytochalasin D (5μM, Sigma) and Dynasore (100μM) 1h p.i. and un-internalised 

conidia removed by washing with warm RPMI x3. Cells were maintained at 37°C with 5% 

CO2 during imaging and images analysed using ImageJ with 3D reconstructions performed 

using Velocity. 

 

Electron microscopy 

Human MDMs in 24-well plates were infected with live swollen CEA10 Af conidia (MOI=1). 

Un-internalised conidia were removed by washing with warm RPMI x3 at 1h p.i., and 

cultures were subsequently fixed in 2.5% glutaraldehyde in 0.05M cacodylate buffer at 

15min intervals from 105min p.i. to 180min p.i.. Samples were post-fixed in 1.0% osmium 

tetroxide, dehydrated through a methanol series (70-100%) and embedded in epoxy resin. 

Regions of interest were selected from 1.0 μm thick toluidine blue-stained resin survey 

sections. Ultrathin sections (70–80 nm) were contrast-stained with uranyl acetate and lead 

citrate then examined by transmission electron microscope (JEOL 1400+, Jeol Ltd, UK). 

Digital images were captured using an AMT 16X camera (Deben, UK). 

 

Zebrafish infection experiments and imaging 
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At 2 days post-fertilization (dpf), zebrafish larvae were transferred into 0.5 × E2. For 

zebrafish infection studies, 1x10
8
 resting e-GFP Af conidia were stained overnight at 4°C 

with Alexa-flour 488 5-SDP ester (Life Technologies) at 400µg/ml in 250μl of 0.1M NaHCO3 

pH 8.3 buffer, washed twice with 0.1%Tween/H2O followed by PBS and resuspended in PBS 

containing 1% polyvinylpyrrolidone (Sigma, UK). At Day 3, up to 10μl of prestained AF 

resting conidia from a stock concentration of 5 x 10
7
/ml was injected into the hindbrain 

resulting in an inoculum of 10 to 50 conidia per embryo. Infected larvae were embedded in 

1% agarose in 35mm live-imaging μ-dish (Ibidi) and covered with 0.5 x E2 media. 

Macrophage recruitment and AF lateral transfer was imaged with live time-lapse imaging in 

a humidified incubation chamber at 30°C using a Leica SP5 resonant inverted confocal 

microscope.  Images were analysed using ImageJ and Velocity. 

 

RNA extraction, RNA library preparation and sequencing 

5x10
5
 MDMs (n = 6, healthy donors) were plated in 24 well plates and half of the plates pre-

treated with 10 ng/ml FK506 for 1h. Cells were stimulated with live Af SC (MOI=1) for 1h and 

6h and total RNA extracted using TRIzol reagent (Life technologies).  RNA was further 

purified using an RNAeasy kit (QIAGEN) with an additional purification step by on-column 

DNase treatment using the RNase-free DNase Kit (QIAGEN) to ensure elimination of 

genomic DNA. RNA quality was analysed using a 2200 Tape station (Agilent Technologies). 

RNA with a RIN greater than 9.0 was used for library preparation. One microgram of total 

RNA was used to generate RNA-seq libraries using the mRNA seq kit v2 (Illumina, Essex, UK), 

according to the manufacturer’s instructions.  Briefly, RNA was purified and fragmented 

using poly-T oligo-attached magnetic beads using two rounds of purification, followed by 

the first and second cDNA strand synthesis. Next, cDNA 3′ ends were adenylated and 
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adapters were ligated, followed by 10 cycles of library amplification. Finally, the libraries 

were selected by size using AMPure XP beads (Beckman Coulter) and purified. Constructed 

libraries were assessed with a 2200 Tape station and quantified using a KAPA Illumina SYBR 

Universal Lib QPCR kit (Anachem Ltd, Bedfordshire, UK) and broad range Qubit analysis 

using the QuantiT dsDNA BR assay (Life technologies). Libraries were then sequenced to 

generate 150-bp paired-end reads on an Illumina HiSeq 2500 (Genome facility, MRC Clinical 

Science Centre). 

 

Mapping of sequenced reads and differential gene expression analysis  

Quality filtered Illumina paired-end reads were mapped to human reference genome (hg19) 

using the read alignment software TopHat2 with default parameters (3). Genes that have 

zero counts across all samples were removed from the dataset. Sequencing and mapping 

were controlled for quality using standard tools provided in the FastQC software 

(http://www.bioinformatics.bbsrc.ac.uk/projects/fastqc). Differential expression analyses 

were done with Cufflinks v2.2.1 (4). Genes differentially expressed (DE genes) with FK506 

treatment and Af stimulation (at 1h and 6h time points) were identified with 2 fold gene 

expression changes (both up and down) with less than 5% false discovery rate (FDR). 492 

genes were identified with significant differential expression at 6 hours of FK506 treatment 

DE genes were used to construct regulatory networks in Cytoscape and STRING v9.05  (5, 6). 

In Cytoscape the DE genes were mapped onto the BioGrid and IntAct protein-protein 

network database. Nodes were coloured according to the maximal log2 ratio across the time 

points and placed into functional groups. Gene ontology enrichment, functional 

classification of genes and KEGG pathway enrichment analysis were carried out using  

DAVID v6.7 (7). All GO categories over-represented with adjusted P-value of <0.05 were 
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obtained for analysis. The Cytoscape Enrichment Map plugin was used to visualize GO 

biological processes.  

 

PPI network construction and network module analysis 

A human PPI network was constructed from the HIPPIE database and the PPI network for 

the genes expressed in FK506 pre-treated samples were visualised with Cytoscape (8). The 

network modules were obtained based on the Molecular Complex Detection (MCODE) 

analysis using the Cytoscape app. Default parameters (Degree Cutoff: 2, Node Score Cutoff: 

0.2, K-Core: 2) were used as the cutoff criteria for network module screening (9). GO term 

enrichment of network modules with MCODE score >10 above were further analysed using 

BinGO plugin in cytoscape (10).  

 

Phosphoproteomic analysis 

The Phospho Explorer Antibody Microarray was conducted by Full Moon BioSystems Inc 

(California, USA). Human MDMs were differentiated at 1 x 10
7 

cells in 75mm
2
 tissue culture 

flasks. At day 7, cells were stimulated with live Af SC (MOI=1) following pre-treatment for 1h 

with FK506 (10ng/ml, Calbiochem) or vehicle. At 1h post stimulation, cells were washed (x5) 

with 10mls ice-cold PBS with protease inhibitor (Cell signalling), and collected by gentle 

scraping and centrifugation (250g for 10min at 4°C). Cells were frozen at -80°C and 

transferred to Full Moon Biosystems on dry ice. The array consists of 1,318 phospho-specific 

antibodies. In brief, proteins were labelled with biotin and placed on pre-blocked microarray 

slides. After washing, detection of total and phosphorylated proteins was conducted using 

Cy3-conjugated streptavidin. Expression of phosphorylated proteins was normalized to 
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corresponding total protein expression. Fold change was calculated as follows: 

phosphorylation of FK506-treated cells/phosphorylation of untreated cells.  

 

siRNA transfection of THP-1 cells and flow cytometry analysis of phagocytosis 

3x10
5 

THP-1 cells were plated in 24-well plate wells and differentiated with 100ng/ml PMA 

(phorbol myristate acetate) overnight. The next day, cells were transfected with 50µM 

Signal Silence human VASP siRNA (Cell signalling) and 6µl HiPerfect siRNA transfection 

reagent/well according to manufacturers’ instructions. Cells were left for 72h before 

washing away remaining complexes with warm RPMI and performing experiments. Cells 

were infected with swollen CEA10 conidia pre-stained with Calcofluor White (Sigma) as 

above. Infections were synchronised at 4°C. At 30min and 1h p.i. uninternalised conidia 

were washed away with warm RPMI and cells were harvested in ice cold PBS/5mM EDTA, 

fixed in 2% paraformaldehyde (PFA) and uptake analysed by flow cytometry (Fortessa). 

Results were analysed using Flow Jo (Oregon, US).  

 

Statistical analysis 

Data were presented as mean ± SEM and were analyzed using GraphPad Prism software 

(version 6.0; GraphPad). Significance was determined using a Student’s t test for unpaired 

observations; *P ≤ 0.05; **P ≤ 0.01; ***P ≤ 0.001. If 3 or more groups were compared One-

way ANOVA with Bonferroni correction was used. P < 0.05 was considered statistically 

significant. 
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Supplemental Table E1. List of genes involved in human apoptosis pathway that are 

regulated by calcineurin in hMDMs stimulated with Af at 6 hours p.i.  

Gene Gene description 

log2 fold 

change p value q value 

ADRB2 adrenergic, beta-2-, receptor, surface 2.03666 5.00E-05 0.0025039 

ANGPTL4 angiopoietin-like 4 3.14403 5.00E-05 0.0025039 

ARF6 ADP-ribosylation factor 6 1.03967 5.00E-05 0.0025039 

BAG5 BCL2-associated athanogene 5 1.09531 0.00015 0.00622643 

BMF Bcl2 modifying factor -1.63738 5.00E-05 0.0025039 

BTG2 BTG family, member 2 1.64023 5.00E-05 0.0025039 

CARD6 caspase recruitment domain family, member 6 1.5241 5.00E-05 0.0025039 

CEBPB CCAAT/enhancer binding protein (C/EBP), beta 1.30165 5.00E-05 0.0025039 

CSF2 

colony stimulating factor 2 (granulocyte-

macrophage) 1.3387 5.00E-05 0.0025039 

EGLN3 egl nine homolog 3 (C. elegans) 1.77097 5.00E-05 0.0025039 

FASTKD5 FAST kinase domains 5 1.66276 5.00E-05 0.0025039 

FEM1B fem-1 homolog b (C. elegans) 1.23424 5.00E-05 0.0025039 

FOXO1 forkhead box O1 -1.13244 0.0006 0.0195528 
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GREM1 G protein-coupled receptor 183 1.57284 5.00E-05 0.0025039 

HSPA1B 

heat shock 70kDa protein 1A; heat shock 70kDa 

protein 1B -1.63925 5.00E-05 0.0025039 

IER3 immediate early response 3 1.94819 5.00E-05 0.0025039 

IL1A interleukin 1, alpha 1.19629 5.00E-05 0.0025039 

IL7 interleukin 7 1.69211 0.00015 0.00622643 

MCL1 myeloid cell leukemia sequence 1 (BCL2-related) 1.20625 0.0001 0.00451116 

MMD 

monocyte to macrophage differentiation-

associated 1.32196 5.00E-05 0.0025039 

MOAP1 modulator of apoptosis 1 1.48072 5.00E-05 0.0025039 

NLRP3 NLR family, pyrin domain containing 3 1.30533 5.00E-05 0.0025039 

NUAK2 NUAK family, SNF1-like kinase, 2 -1.53623 0.00055 0.0180311 

OSM oncostatin M 1.7967 5.00E-05 0.0025039 

PHLDA1 

pleckstrin homology-like domain, family A, 

member 1 1.54668 5.00E-05 0.0025039 

PHLDA2 

pleckstrin homology-like domain, family A, 

member 2 1.07479 0.0003 0.0112934 

PHLPP1 
PH domain and leucine rich repeat protein 

-1.01121 0.00015 0.00622643 

Page 51 of 63
 AJRCCM Articles in Press. Published on 10-May-2016 as 10.1164/rccm.201601-0070OC 

 Copyright © 2016 by the American Thoracic Society 



phosphatase 1 

PIK3CG 

phosphoinositide-3-kinase, catalytic, gamma 

polypeptide 1.15058 0.00015 0.00622643 

PMAIP1 

phorbol-12-myristate-13-acetate-induced protein 

1 1.3955 5.00E-05 0.0025039 

RNF144B ring finger protein 144B -1.06347 5.00E-05 0.0025039 

RRAGA Ras-related GTP binding A 1.08069 5.00E-05 0.0025039 

SERPINB2 

serpin peptidase inhibitor, clade B (ovalbumin), 

member 2 1.95908 5.00E-05 0.0025039 

SLC33A1 

solute carrier family 33 (acetyl-CoA transporter), 

member 1 1.16431 5.00E-05 0.0025039 

TNF 

tumor necrosis factor (TNF superfamily, member 

2) 1.284 0.0002 0.00811673 

TRAF4 TNF receptor-associated factor 4 -1.2598 5.00E-05 0.0025039 

 

  

Page 52 of 63
 AJRCCM Articles in Press. Published on 10-May-2016 as 10.1164/rccm.201601-0070OC 

 Copyright © 2016 by the American Thoracic Society 



References: 

1. Mostowy S, Boucontet L, Mazon Moya MJ, Sirianni A, Boudinot P, Hollinshead M, 

Cossart P, Herbomel P, Levraud JP, Colucci-Guyon E. The zebrafish as a new model for the in 

vivo study of shigella flexneri interaction with phagocytes and bacterial autophagy. PLoS 

pathogens 2013;9:e1003588. 

2. Werner JL, Metz AE, Horn D, Schoeb TR, Hewitt MM, Schwiebert LM, Faro-Trindade I, 

Brown GD, Steele C. Requisite role for the dectin-1 beta-glucan receptor in pulmonary 

defense against aspergillus fumigatus. Journal of immunology 2009;182:4938-4946. 

3. Kim D, Pertea G, Trapnell C, Pimentel H, Kelley R, Salzberg SL. Tophat2: Accurate 

alignment of transcriptomes in the presence of insertions, deletions and gene fusions. 

Genome biology 2013;14:R36. 

4. Trapnell C, Roberts A, Goff L, Pertea G, Kim D, Kelley DR, Pimentel H, Salzberg SL, 

Rinn JL, Pachter L. Differential gene and transcript expression analysis of rna-seq 

experiments with tophat and cufflinks. Nature protocols 2012;7:562-578. 

5. Cline MS, Smoot M, Cerami E, Kuchinsky A, Landys N, Workman C, Christmas R, Avila-

Campilo I, Creech M, Gross B, Hanspers K, Isserlin R, Kelley R, Killcoyne S, Lotia S, Maere S, 

Morris J, Ono K, Pavlovic V, Pico AR, Vailaya A, Wang PL, Adler A, Conklin BR, Hood L, Kuiper 

M, Sander C, Schmulevich I, Schwikowski B, Warner GJ, Ideker T, Bader GD. Integration of 

biological networks and gene expression data using cytoscape. Nature protocols 

2007;2:2366-2382. 

6. Jensen LJ, Kuhn M, Stark M, Chaffron S, Creevey C, Muller J, Doerks T, Julien P, Roth 

A, Simonovic M, Bork P, von Mering C. String 8-a global view on proteins and their functional 

interactions in 630 organisms. Nucleic acids research 2009;37:D412-D416. 

7. Dennis G, Jr., Sherman BT, Hosack DA, Yang J, Gao W, Lane HC, Lempicki RA. David: 

Database for annotation, visualization, and integrated discovery. Genome biology 

2003;4:P3. 

8. Schaefer MH, Fontaine JF, Vinayagam A, Porras P, Wanker EE, Andrade-Navarro MA. 

Hippie: Integrating protein interaction networks with experiment based quality scores. PloS 

one 2012;7. 

9. Bader GD, Hogue CW. An automated method for finding molecular complexes in 

large protein interaction networks. BMC bioinformatics 2003;4:2. 

10. Maere S, Heymans K, Kuiper M. Bingo: A cytoscape plugin to assess 

overrepresentation of gene ontology categories in biological networks. Bioinformatics 

2005;21:3448-3449. 

 

 

 

 

 

 

 

Page 53 of 63
 AJRCCM Articles in Press. Published on 10-May-2016 as 10.1164/rccm.201601-0070OC 

 Copyright © 2016 by the American Thoracic Society 



Figure E1. FK506 inhibits A. fumigatus mediated activation of the calcineurin/NFAT 

pathway in human lung transplant alveolar macrophages and healthy monocyte-derived 

macrophages. 

(A) MDMs were stimulated with live Af SC (MOI=1) and macrophage nuclear extracts 

probed by western blot for NFATc1. NFATc1 was normalised to HDAC1 and nuclear 

translocation quantified. N =3 

(B) AMs isolated from human lung transplant recipients after bronchoscopy were 

stimulated with live Af RC (MOI=1) and macrophage nuclear extracts probed by western blot 

for NFATc2. N =5 

(C) MDMs were stimulated with live Af RC (MOI=1) and total RNA extracted at various 

time points p.i. mRNA expression of the NFAT-specific regulatory target RCAN1.4 was 

normalised with β-actin and quantified. N =5 

 (D) AMs isolated from human lung transplant recipients after bronchoscopy were 

stimulated with live Af SC (MOI=1) and macrophage nuclear extracts probed by western blot 

for NFATc2. N =5 

(E) MDMs pre-treated with FK506 (10ng/ml) or vehicle were stimulated with live Af SC 

(MOI=1) macrophage nuclear extracts probed by western blot for NFATc1. NFATc1 nuclear 

translocation was normalised with HDAC1 and quantified. N =4 

(F) MDMs pre-treated with FK506 (10ng/ml), NF-κB inhibitor SC514 (10 μM) or vehicle 

were stimulated with live Af SC (MOI=1) and total RNA was extracted at various time point 

p.i. mRNA expression of the NFAT-specific regulatory target RCAN1.4 was normalised with 

β-actin and quantified. N =5 
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(G) TNF-α mRNA expression quantified from total RNA isolated from MDMs infected 

with live Af SC (MOI=1) and pre-treated with FK506 (10ng/ml) or vehicle. N =4 

(H) Healthy hMDMs (N=4) and AMs (N=5) isolated from lung transplant recipients were 

characterised by flow cytometry. Cells were gated on live-dead stain
-
, forward and size 

scatter and CD45
+
. Both healthy MDMs and lung transplant AMs are CD11c

+
, MHC

+ 
and 

CD206
+
. MDMs are CD11b

+
 whereas AMs are CD11b

-
.  

(I-J) TNF-α production measured by ELISA and NFATc1 nuclear translocation was 

analysed by confocal microscopy shown in MDMs pre-treated with Dectin-1 blocking 

monoclonal antibody (3µg/ml) or the Syk inhibitor piceatannol  (20µM) and infected with 

live Af SC (MOI=1). N=4. Data are represented as mean ± SEM 

Figure E2. Calcineurin inhibition leads to impaired phagocytosis and ROS production in 

human macrophages infected with Aspergillus fumigatus but does not affect phagosomal 

maturation. 

(A) AMs isolated from human lung transplant recipients after bronchoscopy were pre-

treated with FK506 (10ng/ml) or vehicle and stimulated with live Af SC (MOI=1). Total RNA 

was isolated at 1 and 6 hour p.i. Fungal growth was assayed by RT-PCR of fungal RNA. N =5 

(B) MDMs pre-treated with FK506 (10ng/ml) or cytochalasin D (5nM) or vehicle were 

stimulated with live Af RC (MOI=1) and pre-stained with Calcofluor white. N =3 

(C) AMs isolated from human lung transplant recipients after bronchoscopy were pre-

treated with FK506 (10ng/ml), Cytochalasin D (5nM) or vehicle and stimulated with live Af 

Page 55 of 63
 AJRCCM Articles in Press. Published on 10-May-2016 as 10.1164/rccm.201601-0070OC 

 Copyright © 2016 by the American Thoracic Society 



SC (MOI=1).  Af SC (pre-stained with Calcoflour White) phagocytosis by AMs (pre-stained 

with Draq5, Abcam) were quantified using Imagestream. N =6 

 (D) MDMs pre-treated with FK506 (10ng/ml) or vehicle were stimulated with live Af RC 

(MOI=1) and ROS production assayed by luminescence. N=4 

(E) MDMs stained with Mitotracker Orange CM-H2TMRos (Invitrogen) were pre-treated 

with FK506 (10ng/ml) or vehicle and stimulated with live Af SC (MOI=1). Cells were analysed 

at 0, 2 and 4h p.i. by flow cytometry and fluorescence quantified by Flow Jo (Oregon, US). 

N=3  

 (F) MDMs pre-treated with FK506 (10ng/ml) or vehicle were stimulated with live Af SC 

(MOI=1) and LAMP-1 expression analysed by confocal microscopy at 30minute intervals. 

Phagosomal LAMP-1 intensity was quantified by ImageJ. N=3 

(G) Representative confocal microscopy image showing LAMP-1 recruitment to Af 

conidia containing phagosomes in MDMs. LAMP-1 is shown in red, nuclei in blue and Af in 

green.  

(H) Representative confocal microscopy image showing acidification in Af conidia 

containing phagosomes in MDMs. Lysotracker Red can be seen in red, and Af in green.  

(I) MDMs stained with Lysotracker Red (Invitrogen) and pre-treated with FK506 

(10ng/ml) or vehicle were stimulated with live Af SC (MOI=1) and fluorescence assayed by 

live confocal microscopy with phagosomal intensity quantified by ImageJ. N=3 

Data are represented as mean ± SEM 
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Figure E3. Characterisation of calcineurin-dependent lateral transfer and programmed 

necrosis in human macrophages infected with Aspergillus fumigatus.  

(A)  MDMs were stimulated with eGFP live Af SC (MOI=1) and treated with Dynasore 

(100µM) or vehicle following phagocytosis. Fungal burden was quantified by analysis of 

eGFP fluorescence over time during time-lapse confocal microscopy. 

(B) Representative electron microscopy image showing two conidia (indicated by red 

arrows) contained within specialised compartments being transferred between 

macrophages. 

(C) Phagosomal intensity of maturation markers (Rab5, Rab7 and LAMP-1) assayed by 

confocal microscopy in MDMs infected with live Af SC undergoing lateral transfer and 30 p.i. 

was quantified by ImageJ. N=3 

(D) Time-lapse confocal microscopy was performed of human MDMs infected with live 

SC (MOI=1). Propidium iodide was used to analyse cell necrosis. The conidial area (μm
2
) as a 

marker of fungal germination was quantified within cells undergoing programmed necrosis 

and surrounding live cells. Conidia that undergo lateral transfer are highlighted in red. N=14 

(E-F) Time-lapse widefield microscopy images (E) and representative transmission 

electron microscopy images (F) showing vacuole development in Af containing 

compartments in macrophages infected with live Af SC. Electron microscopy image was 

taken at 180min p.i.. Conidia are indicated by red arrows. Widefield microscopy images 

taken from 45min p.i. and subsequently at 45min intervals. (See Movie 4)  

(G) Quantification of vacuolar development and lateral transfer in MDMs pre-treated 

with Bafilomycin (100nM) and infected with eGFP live Af SC (MOI=1). N=3 
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(H) MDMs pre-treated with a pan-caspase inhibitor (Z-VAD-FMK 50μM), RIPK-1 inhibitor 

(Necrostatin-1 10μM), both or vehicle were stimulated with eGFP live Af SC (MOI=1) and 

fungal burden was quantified by analysis of eGFP fluorescence over time. N=3 

(I-J)  MDMs pre-treated with FK506 (10ng/ml) or vehicle were stimulated with eGFP-

expressing live Af SC (MOI=1) and time-lapse confocal microscopy performed. Fungal 

burden was quantified by eGFP fluorescence quantification over time (I) and average 

conidial size 6h p.i. quantified to assess fungal germination (J). N=4 

Figure E4. Transcriptome analysis of FK506 pre-treated monocyte-derived macrophages in 

response to live A. fumigatus infection. 

(A) Venn diagram indicating the number of significantly regulated genes after FK506 

(10ng/ml) pre-treatment of macrophages stimulated with live Af SC (MOI=1). Results shown 

for 1 and 6 hours together with the overlap between each set of genes.  

 

(B) Selected GO enrichment terms for the differentially expressed genes in MDMs pre-

treated after FK506 (10ng/ml) and stimulated with live Af SC (MOI=1) for 6 hours.  

Differentially expressed genes were analysed using the functional annotation tool in DAVID.  

(C) Visualisation of selected over represented pathways of differentially expressed 

genes analysed using ConsensusPathDB (CPDB) interaction map. The node size reflects the 

total number of components in a pathway; the node colour reflects the p-value of the 

pathway representation analysis with a darker colour corresponding to a lower p-value. 
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(D) Monocyte-derived macrophages pre-treated with FK506 (10ng/ml) or vehicle were 

stimulated with live Af SC (MOI=1) and whole cell lysates probed by western blot for DRP-1 

phosphorylation and MAPK pathway activation.  

 

 

Page 59 of 63
 AJRCCM Articles in Press. Published on 10-May-2016 as 10.1164/rccm.201601-0070OC 

 Copyright © 2016 by the American Thoracic Society 



D

A B C

E F

N
F

A
T

c1
Rt

ra
n

sl
o

ca
ti

o
n

Pn
o

rm
al

is
ed

Rt
o

RH
D

A
C

1g

SMS

SM5

1MS

1M5

2MS

2M5 PR=RSMS47

S

1S

2S

3S

4S

R
C

A
N

1M
4R

m
R

N
A

Re
xp

re
ss

io
n

Pn
or

m
al

is
ed

Rto
Rβ

ha
ct

in
g

S 1 2 4 S 1 2 4 S 1 2 4

6 6 6 6
6 6 6 6

h h h h h h h h
h h h h h h h h

PR=RSMS28

Af 6 6 6h
Dectinh1RAb h h h6
Piceatannol h h 6h

T
N

F
hα

Rp
g

Km
l

P =RSMSS1R
P =RSMSS1

G

S SM5 1 2 4 6 8

S

1

2

3

R
C

A
N

1
M4

Rm
R

N
A

Re
x

p
re

s
s

io
n

Pn
o

rm
a

li
s

e
d

Rt
o

 β
ha

c
ti

n
Rl
e

v
e

ls
g

ns

TimeRPhrsg

NFATc2

HDAc1

TimeRPminsg3S 6S 12SS

A. fumigatus

H

TimeRPhrsg

21SM5S 4

N
F

A
T

c
1

Rt
ra

n
s

lo
c

a
ti

o
n

Pn
o

rm
a

li
s

e
d

Rt
o

RH
D

A
C

1
g

PR=RSMSS3

SMS

SM5

1MS

1M5

2MS

TimeRPminsg

NFATc2

Histone

3S 6S 12SS

A. fumigatus

I

6 6 6h

h h h6
h h 6h

NF
AT

c1
RM

1R
co

rr
el

at
io

n ns

Af

Dectinh1RAb

Piceatannol

TimeRPhrsg S 1 2 4 S 1 2 4

6 6 6 6h h h h

S

1S

2S

3S

4S

5S

T
N

F
hα

Rm
R

N
A

Re
x

p
re

s
s

io
n

Pn
o

rm
a

li
s

e
d

Rt
o

Rβ
ha

c
ti

n
Rl
e

v
e

ls
g

PR=RSMSS4

FK5S6

TimeRPhrsg

FK5S6

SC514

h 6 6 66Af
1SM5S 1SM5TimeRPhrsg

h 6 6h hFK5S6

J

    Figure E1
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