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Many drug3 in use at thn present time are of such a 

complex nature that it is impossible to predict at all accurately 

the strength of a particular preparation by considering the 

ingredients and processes involved in producing it. In such 
cases the strength of every preparation of the drug has to be 

determined experimentally after the manufacturing process is 
complete. Experiments of this nature involving biological 

material are called biological assays or. more commonly, bioassays.

In its most general form the experiment consists of 

measuring the activity of a preparation of a drug, which we 
shall call the test preparation, in a biological system. This 

information alone is of little practical use since the activity 

of the test preparation will depend very heavily on the particular 

biological material used, and it is likely to vary considerably 
from experiment to experiment. What is required is a measure 

of the activity of the test preparation that is independent of 

the biological system used to determine it. Such a measure is 
obtained by carrying out slmultanuously a similar experiment 

using a standard preparation. A measure of the activity of 

the test preparation relative to the standard preparation is 
then available and this should be independent of the biological 

medium involved in the experimentation. Standard preparations 

of drugs are normally of an arbitrarily defined strength.

For many drugs national or international standards have been 

adopted, and samples of these are available from an agreed 

issuing laboratory.

Bioassay experiments take several different forms depending 
on the substances and the assay medium concerned. One possibility 

is that specified doses of both test and standard preparations 

are administered to experimental units and the resulting quantitative 
responses recorded. Dose-response relationships are of various 

types, but for a wide class of drugs the log-doBo response curve 

is roughly linear for a range of doses, and flattens out fur 

doses above or below this range giving a sigmoid curve altogether.
In the ideal btoassay the tost and standard preparations behave 

as If they contain different concentrations of the same active 

ingredient, and go the two log-doae response curves will have



Identical shapes but will be displaced horizontally. In practice 

the active ingradicnt of the two preparations Is usually similar 
but not Identical so this Is only approximately true. In these 

assays the linear sections of the log-dose response curves for 

the two substances will be approximately parallel, and consequently 

they are Known as parallel-line assays. The feature of interest 
In the assay is the horizontal distance between the linear sections 

of the two log-dose response curves, which Is called the log 
potency ratio. Corranonly occuring pharmaceutical substances 

calibrated in this way are insulin, vitamin C, and many antibiotics.

The results of parallel line bioassays have been analysed 
for many years using sampling theory techniques. Parallel 

regression lines are fitted to the linear sections of the two 
log-do3e rosponse curves using the method of least squares,and 

normal residuals are assumed. The equations of the fitted lines

Ys ■ ys * bixs"xs)'

y t - W  *

where b Is the common slope of the lines, Xg and ys are the 

means of the log-doses and responses for the standard preparation 
and Yg is the fitted response for a log-dose Xg of the standard 

preparation. The suffix T refers to the test preparation in 

a similar way. The estimated log potency ratio M is then the 
difference in the log-dosos of the two substances required to 
give the same fitted response, that is

" ■ V :T -(»S->T>
b

The sampling distributions of lys-yT ) end b are both normal 

distributions and are mutually independent so confidence limits 

for the log-potency ratio can be calculated using Fieller’s 

theorem. Frequently information from several assays reeds to 

be combined, and if one takes the above approach this proveo 

a difficult problem which has remained unsolved for many years. 
Several empirical methods, in the form of weighted



averages. were suggested by Finney (1964). and more recently a 

procedure haa been described by Armltege et al (1976) which is 

equivalent both to generalized least squares and to maximum 
likelihood estimation.

In this thesis we have considered the problem outlined 
above from a Bayesian point of view, along the lines laid out 

by Lindley (1971a) and de Finetti (1975).

We begin by taking a critical look at the parametrization 

of the standard approach. An unusual feature is that the 

parameter of central interest, the log potency ratio, does not 

appear in the basic model. In the Bayesian framework information 

about the likely value of a parameter is expressed, both before 

end after an experiment, in the form of a distribution. This 

seems very difficult to do unless thoBS parameters in which one 
is primarily interested occur explicitly in the model. Hence 

our first decision about the model we should use is that the log 
potency ratio should occur explicitly in our basic formulation.

There now remains the task of deciding on the remaining 

parametrization of the modal. Mathematically a model for two 
parallel linear regressions set at a certain distance apart can 

be described using three parameters. Physically one can associate 
four simple meaningful quantities with the situation: the 

horizontal distance between the lines, the Joint slope o* the 

lines and the two intercepts of the lines. The decision before 

us is which two of the last three quantities to include as 

parameters in our model. We have come to the conclusion that the 

correct model will depend on the precise experimental situation 

under consideration. The problem we are primarily concerned to 
study is that of calibrating a relatively unknown tost substance 

with a relatively wellknown standard. In this cast we believe 

that the experimenter would be most happy about quantifying his 
prior beliefs about the regression line for the standard 

preparation completely, and then quantifying, possibly independently, 
his prior beliefs about the likely log potency ratio of the 

test preparation when compared with the standard. If normally 

distributed errors are assumed then we have the following model 
for observations on the standard preparation:

y - N(u*Bx,o2)



where y is the response, 

the regression line 

a2 the residual variance

: is the log-dose, 8 is the slope of 

at, its intercept and 

Also we have the following model for

observations on the test preparations 

y . N(o*B(u*x),o2).

where w is the log potency ratio. Combining these two into a 

single equation the basic model is

y - N(at-Biiz*Bx,o2),

where z is a dummy variable taking the value 0 when a dose of 

the standard preparation is used and 1 when a dose of the test 

preparation is used.

This model has an obvious disadvantage in that it is 

nonlinearj however we believe that our parameterization is a 
more natural one than the one used in the standard sampling 

theory analysis, and in particular we believe that the problem 
of combining information from several different assays on the 

some pair of substances is made logically simpler by this 
approach.

In the following chapters we explore the consequences 

of adopting this model and we follow closely the ideas set out 

by Lindley & Smith (1072) for the linear model, adopting them 

where necessary to this non-linear case.



Chapter 2. Analysis of d Single Au coy With Known Residual

Variance

2.1 The Mudel

The first analyaio wo sha’ attempt is that of a single 

assay. For initial simplicity we shall assume that the residual 

variance is known, and then in a later chapter we shall remove 

this restriction. To carry out our first analysis we shall 

use the following two stage model:

1st stage: y - N{ia*Bpz*ex),o2}

where y i3 the response, x is the log-dose, and z is a dummy 

variable taking value 0 when a dose of the standard preparation 
is used and 1 when a dose of the test preparation is used. The 
second stage of the model describes prior knowledge about the 

parameters in the first stage: o q f 60 , end the elements of £ 
are assumed known. Wo have considered a general case where 

all the elements of Z can be non-zero, but in many cases some 

of the off-diagonal elements will be zero. The appropriate 

form in any particular case will depond on the precise nature 

of the prior information available.
As an example of a case where some of the elements of 

£ are zero, let us consider the following situation. Suppose 

wo want to determine the activity of a test preparation of 

vitamin D by comparison with a well known standard, and 

suppose we are going to carry out this particular assay on 

chickens. It bo happens that we have carried out many assays 
on this medium using our currant standard and other tost preparations, 

but the only assays we have done with our current pair of 

substances have used rats insteau of chickens.
By considering the results we have obtained in the past 

for the standard preparation in assoys on chickens, w  .hould 

be oble to form an idea of what to expect next tima. Let the



intercept with the x-axis, and the slops of the linear part of 

the log-doae response curve be a & 6 respectively. We construct 

values aQ, B0, I n ,  Ei?. I22 such that to a raaeonabl

Also, by considering the extent of the linear part of the log-dose 

response curve in past assays we should be able to decide on 
the range of doses to be used for the standard preparation.

Quite independently of the above we now consider the 

results of the rat assays. Let the log potency ratio of the 
two substances concerned be u. We construct values uQ and £33 

such that approximately

We can now decide on the range of doses to be used for the test 
preparation and then on the final design. A method for 

designing assays is discussed in Chapter 3.

Amalgamating the prior information from the two separate 

sources the second stage of the model becomes

The situation described above will occur rather infrequently. 

However, the implied structure for I will hold approximately 

In many cases where prior information about the log putencyi 

rotlo of the two substancos concerned is o:. isoed separately 
from prior information about the behaviour of the atondard 

preparation using the current assay medium.

V - N{w 0.E33}



2.2 Posterior Olstr1 butlon-

After the assay results have bean obtained we can multiply 

together the liKelihood and the prior density, as given by 2 .1 , to 

form the posterior density of the three parameters a , 8 ard u up to 
a multiplicative constant.

This gives:

. l a , a . u | g l o . x p - ^ | a 2̂ n * i:l ^ * 2 a ^ E K i * u r z 1*E 12j * s ^  E x12*2 p j:x i z 1*u 2 E z i J ‘

-26/Ex1y1*UEy1zi»B0E2a»ooE12-(u-Uo^E!!)

\ ~  ~  '

where n is the number of subjects in the assay. . z^ and x^ 

refer to the i th .subject, I1-* is the lij)th element of l’1, and 

summations are from i^1 to i - n unless otherwise indicated.

As might be expected, this does not correspond to any 

standard distribution, and consequently its properties are 

difficult to examine. For example, we have been unable to find 

either the mean or the variance analytically. We can, however, 
find the mode. This occurs at

a-Iyi-0ui:z1-flEx1 *aoE 1 1 -(B-6o )r12-(w-po)r13

n ♦ E 1 1

0-EXiyi*v.EyiZi-aEx1-upEZi*0oE22-(a-ao)El2-(l.-Uo)J:23.

*7* ~  ~ ~  ~ 7  _______________

Ex .2*2m Ex .z .*h 2Ez 2*E22



W-6rylZl-B2Ex1z1-o6J:21*W0E3i-(a-a0)E13-(B-Bo )J:23

r2

If one has very little prior Knowledge about a, B & p. 

the elements of E will become extremely large, and consequently 

the elements of I 1 will become very email. In the limiting case 

of no prior Knowledge they will all be zero and the mode will 

occur at

e-y-Bpz-Bx .

where y is the average of y^, y^,... yn< z is the average of

for a in the expression for p. and for a and p in the expression 

for 6 gives

B-Ex1 y1*pEy1Zi-onx-apnz

Ex1 2*2pExiz1 *p2Ezi 2

l‘“£yizi~®Ex

BEz. 2
1

z2>...zn and x is the average of x^, x?. Substituting

(■**)
S

S.zz

- E(x^-x)(y^-y) and similarly for SXK. Sx i = > £  “ll



The expressions for/Sandyu.. although disguised by the use

of the dummy variable z, are exactly the estimates of elope of

regression line and log potency ratio obtained by the standard 
sampling theory analysis. This can easily be seen as follows. 
If we dispense with the dummy variable z we have the following 

relationships:

where suffices s and T  refer to standard and test preparations 

respectively. On substituting these relationships into the 

modal values for and we get

By examining the form of the Joint posterior density 

given in 2.2« it can be seen that the Joint distribution of 

a and 0 for a Fixed value of u is in the form of a bivariate 

normal distribution. We can therefore integrate over a and 0

S

s*yz"n8nT

#-iCx1 -xB)(y1-yB)



to obtain the marginal posterior density of u up to a r.ultiplicativi 
constant. This calculation gives

Again, this density does not correspond to any standard 

distribution, end it is even more intractable than the Joirt 
posterior density in the sense that the mode cannot be found 

analytically. For a closer investigation of its behaviour we 

have resorted to numerical techniques in special casesi see 
section 2.5.

The posterior marginal density of 0 can be found in a 

similar fashion and appears no less complicated.

In our subsequent discussion, either for theoretical 

simplicity, or as an approximation to a real situation, we may 

wish to consider the case where we have little or no prior 

information about one or more of the parameters in our model.

For example, reduction of prior information about 0 would cause 

*22 to get bigger, and eventually to t»nq to infinity. Da.'uie 
allowing the limiting situation of no prior Knowledge to occur 

we should examine carefully the consequences for the posterior 
distributions involved.

In the following argument we show that prior ignorance 

aboutpcauses the Joint posterior donsity to be unnormed. This 

does not happen when there is no prior Knowledge about a or 3.

We assume throughout that for at least one of the preparations at 
least two different doses are administered.

*Cl*|y)«c|v| * e x p -l{ p2i;33-2»)CaoEl 3*0oJ;23*uoE33)-

[ f i r

11 0E 12 “ 1 po 1E 1 3

b-rx1yi*uEy1 z 1 *0oE22 ♦aoE>2-Cu-uo )E23





C¿< BXpiC*(li)









P"£ÏÎ —  
r
£M (£2 3)2*E2 2(El3)2-2El2£l3E23*1

Ell£22-(E 1 2 ) 2*1 {En Ex1 2-2E 32Ex1 *nE22)*n 5 ^  

a2 a1*

It can easily be shown that p > 0  for all the cases under 

consideration, and hence

1 ‘“
3)2Ex.2-2E1 3£23Ex.*nCE2 3 ) 2

/// f(a.8.w)dadfldw< - .

Now suppose £ 3 3 - * - .  B(p)”1, and as in the previous case C(w)

becomes a constant. Hence

/// f(a,fJ.p)dadBdu»4 ^exp n f  1 .dp

This completes the argument.

If we had not satisfied the initial assumption of at least 

two doses being used on one preparation, our argument would still 

have held provided A(u)} 0 for all^A. From 2.7 this will be 

true if

EllE(x1 *yz1 )2-2El2E(x1 *uz1)*nr22> 0.

that le if either £22} 0, or E l l > 0  and a non-zoro dose of the 
standard is used. This will happen when either we have some 

prior information about the slope of the log-dose response line 

of the standard, or we have some prior information about the 
intercept of this line with the y-axls and experimental Knowledge 

about some other point on it, thus enabling the slope to be 

estimated.



In the light of the preceding result we shell in our 

subsequent discussion consider using uniform priors for o 

.

a parallel line bioassay one obtains information about log 
potency ratio in a rather indirect way and consequently the 

resulting information is imprecise. The result compares with 

the fact that in the standard sampling theory analysis the 
log patency ratio is estimated by t.he ratio of two statistics 

whose sampling distributions are normal and mutually independent. 

Consequently the sampling distribution of the estimate of log 

potency ratio has no finite moments.





to the mode of the Joint posterior density for finite samples 
when the terms involving the prior knowledge are neglected,
»80 2.4 & 2.r,. A- is lnd , |i .¡re the

estimates of 6 i u given by the standard sampling theory analysis. 

It can easily be shown that the variance of 0 is equal to the 

sampling variance of the standard estimate of slope, and that 

the variance of y in equal to the approximate formula frequently 
used as the sampling variance of the standard estimate of log 
potency ratio.



2.4 Estimation of Log Potoncy Ratio

Following de Finettl (1975) we foal that, within tha 

Bayesian framework, the natural way to present the solution of 
a statistical problem Is to give tho relevant posterior distribution. 

In the present case this is the marginal posterior distribution 

of u. in the context of . it. drugs nei I
labelled with particular strengths and so there is a need for 

a more concise representation of the available information In 

the form of a point estimate of v and also possibly a confidence 

interval.
We shall approach the problem of point estimation from a 

decision theoretic point of view, and we shall assume for the 

sake of definiteness that a quadratic loss function is appropriate.

In this case the best estimate of log potency ratio will be the 

marginal posterior mean of p , calculation of which will 

involve two one-dimensional numerical Integrations. At the 

present time there are fast and reliable computer packages 

which perform one-dimensional numerical integrations of the 
type required and so this calculation should not present too 
great a problem. If necessary, howevpr, one could approximate 

the marginal posterior mean by the marginal posterior mode, 
the calculation of which is a much simpler problem numerically.

A further possible estimate of the log potency ratio is 

the value of p at the mode of the Joint posterior distribution 
of a,8, and p es given by 2.3. If large quantities of data 

were available the Joint posterior distribution of a , 8 and p 

would be approximately multivariate normal, and the Joint mode 

would be approximately equal to the marginal posterior means. 

However, data from a single assay are unlikely to be sufficiently 

extensive for this to be the case.
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Figure 2.4 Karginal posterior density of p for the generated dato
set when the prior distribution for p is fj(0.000,0.0149)
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0.500 0.0298 0.372 0 .0 149
1.0 0 0 0.0298 0 .G22 0 .0 149
0.000 0.0149 0.0801 0.00993
0.500 0.0149 0.414 0.00093
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Tablo 2.3 P aram eters  o f  the approxim ate norm al p o s te r io r

distribution jslng the generated date set for varying prior
distributions.



2.5 A Generated Data r.et

In this section we shall Illustrate the Ideas laid out 
In the previous sections with the aid of on artificially 

generated data sat. Data for a 4 - point assay with 8 measurements 

at each point were constructed with the following parameter

a -.1 .0, 
6 -  1.0, 

W ■ 0.5, 
o2 - 0 . 2 .

The log doses were 1.0 and 2.0 for the test preparation and

1.5 and 2.5 for the standard preparation. The data are given 
in Table 2.1.

Taking the prior distributions to be uniform for o and 

8 and N(po, £33) for p , the posterior density of p is

* tp | y)“ (Sxx*2pSxz*w2Sz z ) ” êxp (Sxy*pSyz) 2

2o2 C Sxx*2pSxz*p2Szz)

i-Cp-Po ) 2

2*33

Using large sample theory the approximate posterior distribution 

of p is N(0.243, ft.0298). For various prior distributions of p 

the constant of integration was found numerically using Causs- 
Hermits quadrature as described by Froberg (1985). Serna 

examples of the resulting posterior densities are illustrated 
in Figures 2.1 - 2.4. The values of 0.0290 and 0.0149 for the 

prior variance of p are intended to represent situations 

where the prior information carries approximately the same 

amount of information as the data, and approximately twice as 

much information as the data. For each of the prior distributions 

considered the value of p at the mode of the Joint posterior 

density of a, 0 and p, the value of p at the mode of the marginal 

posterior density of p. and the mean and variance of the



marginal posterior distribution of p ware calculated. The 

results are given in Table 2.2 . Tha marginal posterior mean 

of p is theoretically the best point estimate of u, but we can 

see that in this case both the value of p at the node of the 

marginal density of p and its value at the mode of the Joint 

posterior density of a. 0, and p are good approximations to 

the marginal posterior mean. Of these two modal approximations 

tha one based on the marginal posterior distribution should 

on theoretical grounds be the better one, although for this 
data set the estimate based on the Joint distribution is 

closer to the marginal posterior mean for almost all the prior 

distributions considered.

On Inspection the densities illustrated in Figures 2 .1  -  

2.4 look as if they may not be very different from normal 

densities. This raises the question as to whether they can 

be reasonably approximated by normal densities. If satisfactory 

approximations could be found it might be possible to apply 

them without access to a computer. The density corresponding 

to the large sample approximate distribution is illustrated 
In Transparency 1 inside the back cover. Comparison of the 

transparency with Figures 2.1 - 2 .4  shows this density to be 

a reasonable approximation to the small sample density only 

when there is little prior information available. A more 

useful approximation might be obtained by combining the prior 

information with the approximate large sample distribution in 

some way. Suppose tha approximate large sample distribution of p 

for a data set is N(M.S2), and suppose we treat the experimental 
data as if it were a single observation fl from a normal distribution 

with variance S2. The posterior distribution of u would then 

be |i * NCpg, <J22) where





C h ap ter 3. Use ut the P r i o r  D i s t r i b u t i o n  in  Ul s I g n tn r th e  E x p e rim e n t.
3.1 Introduction

Whan we have available prior information about the 

parameters in an assay, it seem3 reasonable that thi3 information 
should Influence the doses used.

The use of prior distributions in designing experiments 

for parameter estimation in non-linear models has been discussed 

by Draper S Hunter C1967). We shall now give a short summary 

of the relevant parts of this paper. Suppose we wish to make 

n observations of the form

yi ■ fixi* !J * ci* (i “ 2 •••nj

where the e^'s are independently normally distributed with 

zero mean and variance o? x - txj, X2....x^)T is a vector of 
k variables, 6 ' (6 ;,8 2... .8p )T is a vector of p parameters to 
be estimated, and fix,8 ) 1s a non-linear function of x & 0 . 

Suppose we also have available prior information about the fl’s 

in the form of a multivariate normal distribution with mean e 
and covariance matrix t.

We should like to chooae the n points x^(i"1, 2, ...n) 
to obtain the best posterior distribution. The criterion for 

best 1 s taken to be to maximize the final posterior density 
both with respect to e and x.li«1, 2, ...n). By approximating 

f(x1# 0 ) by the first two terns Iti reyloi expei m it ut 
®n, the maximum likelihood estimator of 8 after the experiment 

has been carried out, the best design is found to be that which 
maximizes

|XTX ♦ o*E"»|

with respect to x.(i“1» 2, ...n), where the (i.J)**' element of X 

is af(ii* e)|

8ej I e-en



bo the (J.K)th element of XTX 1*

i- 1 J e - e- . n

Since ®n is not available before the experiment la performed, 

we have to approximate 9n by 6 ^  thuB obtaining a practically 
applicable criterion.

3*2. Application to Parallel Line Blo,^;ijy

In using this procedure to design a parallel line 

bioassay we shall use the model as stated at the beginning 
of chapter 2.

In this particular application a further constraint will 
be imposed by the biological system on which the assay is 
performed, because the assay is restricted to lie in the linear 

part of the log-dose response curve. We shall assume that the 

log-dose response response curve is linear for both test and 
standard preparations for responses lying between two particular 

values which we estimate to be yj & y2 . We must try and restrict 
the doses used so that the responses will lie between these 

two values. We have to decide on the doses before carrying out 

the assay, and so we must rely on our prior information in 

doing this. Consequently we shall choose the points 
such that

»  * i*1« 7 , . . . n  . (3.1)

The region which satisfies these constraints is a convex hull 
and we lhall call it the feasible region.

To return to the optimizing criterion of Draper ft Hunter, 

in this application f(x. q)-a*0iiz*0x and © T0-(e .• .Uq *.



i V " •otai

Cu0Ez1*Ex1) " V r t 1' V “orzi2*rz

•o“ l •o***4a

E L .

Suppose n^.of the doses are on the test preparation, and the 

average of these log-doses is xT» Similarly ng of the d o ses  are 

on the standard preparation and the average of the log-doses is
»11 S»2 Si3
jl2 S22 S2 3

3“ S23 S33

In practice o2 would usually be unknown and so S would have to 
be estimated rather than £. Thi3 notation gives

|x t x *o 2e" i 1* Cn*Sil>
' V A V V . -5" 1 ( W sl’)

lnT V ns V "

(nTB0*S13)
('iT(<,;T*"T,ol,o's n i

■{nTnsBo2*nS33-2nT6oSl 3*nT8o2S ll*Su S33-(S13)2} Exia

♦<-nsB02-l»o2sI 1 *260S l ,-s” )nT*;T2 

♦2(0 S ls-S33) n n x_x



♦2(u0SllS 33-y0(S1J)2*n

(3.2)

* terms not involving the Xj .

If we fix at a particular positive integer no bigger 
than n. the above expression will be a con vex fu n c tio n  o f  the 

\  if the matrix G i3 positive definite, where

Ij is the J x J identity matrix ,

x k is th® J x K matrix whose elements ore nil 1.

£  will be positive definite if and only if all its 

principal minora are positive, 'his implies two sets of 
conditions:

1. P*mq > 0, 0 * m * n T

2. ((p*lr)(p*nTq)-nTls2 ) > o , 1 i l $ n g .

Considering the first set of conditions, 

p*mg-(nT-«a)(nseo2+0oa8ll-20oSl3»SIS)«fiS3,*StlS,,-(S13)2 .

C -

sJ P

and



From its definition, S-o 2E where E Is the covariance matrix 

of a multivariate normal distribution and o2 is a variance. 

Hence S will be positive definite and consequently

will alao be positive definite. This implies that

are all strictly posltlvej so it follows that p*mq will be strictly 

positive for m-0, 1, ...n^ and the first set of ccn- itions is 
always satisfied.

Considering the Becond set of conditions, on substitution 

(p*lr)*(p*nTq) - nTls2-(ns-l)S3î*S1lS 3î- (S13)2. This will be 

strictly positive for 1*1, 2, ...nr from tha positive definiteness 
of S*.

Hence we have the result that for fixed nT 

Ix^X^o2! 11 is a convex function of the x^ .

3.3 Maximization of |xTX*a2E~l| .

We can now apply the criterion of Draper & Hunter by 

first fixing the number of doses on each of the test and standard 
preparations and maximising the resulting expression for

maximize it with respect to n^.

First let us fix the number of doses on the test 

preparation at nT, leaving (n-nr) doses on the standard 

preparation. Maximization of |x TX*o 2e”1| over the feasible 

legion then amounts to maximizing a convex function over a 

convex hull. The maximum will therefore lie in a vertex of the 

feasible region. This means that for each of the two preparations 

the doses will lie at the ends of the permitted range. Suppose 

Kt doses of the test preparation and kg doses of the standard 

preparation are at the highest permitted levels. Then from the 
constraints, 3.1, kT of tha xA will take value ,

6o2S ll-2ßoS l3*S33-(ßo-l')s* (ao-iy. S 33, and {Sn S 33-(S1 3) 2} - |s* |





Inserting theai
lnlo ,.2 w> ^

|XTX*o 2£“1I,. 22 ,
"  ' 1 ^  2 ‘•"s».J-»0is n . 2

*kS2‘'J ( - n H . , ! ! ,

‘ k T f r V n r n , ‘ “ ' ‘ M , , - ^ , , , , - T . 0 2s 1 . . s l l s l , (SJ3)2}

~nS®0S23“8oS 1,s23*s13s 23*. 2si3_siJ3 ,3)J  

’  J  ' ‘nTBo2sI1'nrB0s*3~'12Z'3.s lis23i J

1 " «  involvin,

c»"»iP.n„s |XTx.oJj.

- i n  b. oonoa^ if
ths matrix H

(3.3)

fo™  *» w T ,

-  2‘  ° ° » 3 t i v .  0 s f l n l t



Inserting these expressions into 3.2, we have 

1 XTX*o2r »  |-k^r2 {-nseo2-Bo2S2‘*2B0S“ -S33>

7 o 2

♦kg2r2 t-nTB02-SS3}*2kTksr2 {-S33+B0S13}

i©2 602

♦ kT j r2 {nTnc802*nS33-2nTBoS 13*nT802Su *SllS 33

Iv
if•2r

Bo

♦2r i-n_B S23-8 Sn S23*S1 3S23*B Sl2Sl3-Sl3S33)

♦kg j r2 {nTnsBo2^nS33-2nTBt)S 1 3*nTBQ2Sl 1 *SllS -

Iv
♦2r ̂ yi-o0|^nTB02Su -nTB0S 13*SllS 33-(S13)2}

♦2r {-n_8 2S l2*n_B S23-S12S 33*Sl3S23>

♦ terms not involving kT or kg . ( 3 *3 )

Considering |XT X*o2i: l| a s  a q u a d ra tic  form in (k^,ks )T , 

|XTX»o 2I l| will be concave if the matrix H is positive definite.



- “|

(nsBo2*B02S il-28oS 13*SJ3) CS33-80S13) .

(S33-BqS 13) (nTB02*S33)

For H to be positive definite we need

1. ns802*B02S 11-2B0S 13*S33? 0,

2. B02{nTnseo2*nTBo2Su -2nTBoS13*nS33*SllS 33-(S13)2} >  0.

These conditions are both satisfied duo to the positive definiteness 

of S* .

It follows that | XTX*o 2E_1 | will achieve its maximum at 

th e  solution of the two simultaneous linear equations

3 |XTX*o2l"l| - 0 ,

& 3 |XTX*o2E_l|- 0 .

• S

From 3.3 this is the point

Kt - nT-S23^(y1-fio*r/2) S 13 . (3.4)

2 r rBo

Kg - ng*S23-(yl-ao*r/2) (S13-B0S 11) - B0S 12 #

2 r rB0 r

Assuming the values obtained for k^ and kg are such that 

kT lies in the interval fb.n^J ond kg lies in the interval 

CO.ngl we con now substitute these values back into |x TX<<j2i “3 |
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Manes wa have t h e  r e s u l t  t h a t  the optimal design is to  place 

and ks  dosB3 at t h a  h ig h e s t  possible dose for the test and

doses at the lowest possible dose for the test and standard 

preparations, where kT< kg (nJ-kT ) & (Og-kg) are as given above.

This procedure does not quarantae to place an integral 
number of doses at each point in the design. To overcome this 
difficulty we suggest the pragmatic approach of setting nT equal 

to that lntagor nearest to the value given by 3.5, and then using 

this integral value of nT . finding kT and kg from 3.4 by the 
same method.

I*.
In order for the solution 3.6 toi meaningful. n mi.f

It does not seem possible to interpret these inequalities in any 
detail for the general experiment. One case when they will all 

hold is when the elemonts of S ' are small compared with n , 

that is the elements of E”1 are small compared with n/c2 . This

- n $  S ll-2S13£  n

,S13-S”

2 2

♦ S»> - S 1*

(3.7)

r 2 2 g



will occur whan tha prior information ia rethar diffuse when 

compared with the amount of information one hopes to gain from 

tha experiment. It is quite possible to find examples where 

not all the inequalities hold. Suppose the optimal value for 

nT given by 3.5 is greater than n. Intuitively this naans that 

there ia so much more prior information available about the 

standard preparation that aven if we devoted the whole experiment 

to the test preparation we would still Know less about it than 
about the standard preparation. A first suggestion would be 

to sot nT equal to n and then use 3.4 to find kj. However, 
even in the case where a groat deal is already known about the 

standard preparation it will rarely be desirable to carry out an 

assay where the standard preparation Is not used at all. A 

possible compromise might be to use jast two doses of the 

standard, one at each of the extreme dosage levels. Cases where 

nT lies in the interval Co.n] but kT lies outside its permitted 
range might be more happily solved by setting kT equal to 

0 or nT. whichever was appropriate. The same applies to kg .

3 .4  Two Examples

Suppose we wish to calibrate a relatively new test 

preparation with a well-known standard. Typically our prior 

knowledge about tho test preparation will be vague compared 

with our prior knowledge about the standard preparation. However, 

Just considering one preparation, our prior opinions about the 

response for different doses will be equally precise, or in other 

words ths variance of our prior predictions of responses at 
different doses will be equal. Suppose we consider the fallowing 
modeli

1st etegei y 

2nd stage:

-  N ( la * * 6 iiZ * 8 ( x -x MS) ) .o 2}





In terms of the constraints given by 3.1 x^g-yyyj-20^

Substituting these values of the elements of S * In the general 
optir-idi design given by 3.6 wa leve Kj«(i|-kjan + o2 ,

and Ks - (ns-Kg)-n _ o2 . Hence the optimal design in this

example Is to place n + o2 doses at each of the extremities

of the possible range for the te3t preparation and n _ o2

doses at each of the extremities of the possible rango for the 

standard preparation. The inequalities given by 3.7 reduce to 
the single inequality o2/n . If this is not satisfied it 

indicates that a priori a groat deal is Known about the standard 
preparation and one should devote all the available resources 
to exploring the test preparatlc r..

A second commonly occurring situation is that the prior 

Knowledge about test and standard preparations is symmetric in 
the sense that we Knew as much about one substance as we do 

about the other. We can model this situation as followsi

where xMgT is the average of the nld-polnts of the permitted 

range of log-doses for the two substances. The predicted 
responses for doses occurring in the optimal design are for the 

highest doses on both preparations y’,ao i-J0#W>*f#lxus-xMST)

20o

4 4Ei

4 4Ej

1 s t  s ta g e :  y - N{ (a1 *6m (z -J ) *B(x-x^g-j.)) ,o2}

v



and for the lowest doses on both preparations y"«ol"l0ol»o*Bo (*L3_*rigT^ 

All these four predictions have variance rj♦ JTaCxus-xrlsT)2*4C^2*B02)Es

We can relate the general model to this example by setting 

o-a1-6u-0xMST and 0,o"ao1-Bob o"BoJ<MST in the gener.il model.

7 "  ~

From the first of these relations and from the diagonal form of 

the covariance matrix, it follows that we need in the general model

^11 El2 E i 3 [ i i ' t x „ ST. i u (J) 2 : 2 - l ! ;a i :3 - i6 | i :3 H - (x fE T * ! " o l!:2X' ! e o !:sl"

El2 E22 E2 3

El 3 E2 3 E33 “ 1 BqE 3 0 £3

Hence the elements of S * are

, T * > V ( r*-*Bo2 r 3 , l6olxf1ST*iwo 

\ £a

♦lu )/ij-l(x T*luo )2r2

13

Substituting these values of the elements of s”1 into 

the generol optimal design given by 3.6 we have 

^■n^-Ky^Kg-Kj.~ns *n • Hence the optimal design in this case is



I
I t o  p la c e  one q u a r te r  o f  th e  a v a i la b le  d o ses  a t e a c h  o f  th e  fo u r

extreme d ose points. As one might expect from the general

symmetry of the situation the inequalities given by 3.7 are 

a lw a ys satisfied in this case.

I















4.3 Estimation of Log Potency Ratio

Suppo3s we are In the position of uniform prior Knowledge 

for o and 8 . The way to proceed Is then clear. We can obtain 
the marginal posterior distribution of u up to a multiplicative 

constant, as given by 4.4 , and with the help of one-dimensional 

numerical Integrations we can obtain the posterior mean of w and 

a confidence lntervul for It.
Unfortunately, the above will rarely be the case, and we 

shall have to resort either to more complex numerical techniques 

or to approximations. An exact numerical treatment would find 

the marginal posterior density of v> numerically from the Joint 

posterior density of y and o2 , as given by 4.2 i and then base 

inferences and decisions concerning u on this numerical density.

This procedure requires a two-dimensional numerical 

integration. Such Integrations ere quite possible a: .. 

demonstrated in section 4.5, however the computing power required 

Is considerable, possibly more than might be available to a 
laboratory carrying out bloassays. In addition we have not found 
any satisfactory computer packages that will carry out numerical 

integrations in more than one-dimen3lon. As a result of this we 

feel that approximations which require fewer computing facilities 
ere worth considering.

Suppose we have available a certain amount of prior Knowledge 

about a and 8 • hut not a great deal. One possibility would be 

to disregard this information and proceed as in the first paragraph 
of this section. We shall demonstrate in section 4.4 that the 

posterior density for p converges uniformly to the posterior 

density for u givsn uniform prior distributions for a and 6, as 

prior Knowledge about a and 8 becomes more ond more vague.

If there is substantial prior Knowledge about a and 8 

then the above approximation will not be satisfactory since it 

neglects a substantial amount of information. In this case there 
are two possible types of approach.

The first is to estimate v by its value at the mode of a 

Joint density. There are several Joint densities to choose from, 

for example w(a.8.U.o2 |y) . «(a,B.u|y) and *Cp,o2 |y) . Of these

one would expect the mode of »(u#o2|y) to be the beet approximation



*>V' to the marginal posterior meon of u sinco it is baaed on the Joint

distribution of two parameters rather than three or four. All 

these modal estimators suffer from the defect that there is no 

obvious confidence interval that can be associated with them, 

unless the assays are large enough for the Joint densities to 
be approximately normal.

The second type of approach is based on a suggestion by 

Box ft Tlao (1973). The data Bhould contain quite a lot of 

information shout o2 , and consequently the density *(o2 |y) 

should be reasonably sharp, with most of its probability mass 

concentrated over a small region about its marginal mode.o2 say. 

Consequently, integrating over o2 in *(w,o2 |y) will be nearly 

equivalent to assigning the modal value to a2 in *(u|o2.y) . 

Unfortunately we cannot obtain a2 analytically. We can, however, 

obtain It numerically by carrying out a series of one-dimensional 

numerical integrations. If this is not possible, due to restrictions 

on the use of computing time, or.e could approximate o2 by the value 

of o2 at the mode of ir(u,o2 |y) . This type of approach lend3 to 
an approximate numerical posterior density for v from vihich tho 

posterior mean and a confidence Interval could be estimated.



4.4 An Argument Supporting an Appro-.1 -_\ ,__ . •... ; lr
Section 4.3.

In this section we shall show that, as prior knowledge 

about a and 8 becomes more and more vague, the posterior density 

of p converges uniformly to the posterior density of p assuming 
uniform prior distributions for a and 8 as given by 4.4.

Wo shall assume throughout that S , S and S are

greater than two. 

Let

(n*v)
f«{nX(p)}_iCo2) 2 exp-_Lexp--L JvX*Syy-V2 (p){e2°2l xuTT j <p-J (p2-2pp )EJ3. (4.5)

V tnXCP))"il°2) 2 exp-J_ {vX*Ey,2)exp-l

(n*v)

lo 2

( t o 2 W(p) ♦ o-Z I ' U x p ^ a TVm am
V. mn XCu) m2nX(p)J

bm b

. m-1,2,3,.... (4.6)

wherB W(p)-Eu (Ex12*2pEx1z1*p2Iz12)-2Il2E(x1*pz1)*nE22, 

X(p)«Sxx*2p5xz*p2Szz ,

Y(p) ■Sxy*pSyz ,

Z ■E“ E22-(E**)2 .

am ■ny ♦ a<>£ u  »S^E12 
o2 m m

- (p- #)£l*

bm ■‘ V i * •
o2 o2

e ^ 22 ♦ a J ^ - C p - p J E 23

V
t - - 1) N “'«i • ¿ ,iV)
y  m )

W o2 m J

K  • “Izi • ii* , 2pEx1zi # p2Ezi2

y y  • / \ o 2 o2" T 2“ " / J



This is équivalant to considering a sequence of prior distributions

for a. B and u whose variance matrices have invarsos

£ll L 12 I»3
m m m

£12 l22 l23
m m m

I 13 I23 £ 33

Every matrix in this sequence is positive definite if the first 
member Zy 1 is positive definite.

We wish to show that for all e y  0, there exists 
an M such that for all M,





It can easily be shown that for positive p

Um.u . o 2 )^

n_ f Sxx-S2xz L 

fiX\  Szz J

and for negative p

C(*.w.o2 )4 tc,u*'-t3U3K 2 W 2-tlW*50

£  fsxx-S2xz 
S2l  Szz J  .

where CQ . Cl. £2» and €3 are constant independent of m, p or o2

e"“E23n S t t-Iz 12/ e u I33 (I12)2 1

7- .* 1 «  -« J

Cw will be strictly negative for all «  and all , banco

C(n,p,o2 ) will be bounded abovei that is Ctm.M.o2)^  C for

all m, all u and all 02*.Q$,w) • Lastly vX*Eyi2 > 0, so

for nil o2fcQ,«) . Relating these Inequalities to 4.6 we have

<  %



tlii) We would like to show that for any large 4 there
exists an M such that for all m ^ M

for all p . This will be true if there exists an M such that for all 
m ) M .  |f - f j  4c for all p and all o2«to.«) .

3

We shall need the result that

(n*v) tn*v)

for all p and all o2fc£0,43 • where p is the large sample mean of 

Let us first consider the case where p is either very large 

and positive or very large and negative. Applying identities 
already obtained to 4.5 and 4.6 we have that

M exp-J(p2-2ppo )E33*expC(m»p,o2 )} ,

For any 4 and c, exp-J(p2-2pp )I33^  4c/6A for all p such that 

|p|^ K. for sufficiently large K.

It can easily be shuwn that for positive





whet*« RCv), S(u) and T(y) are polynomials in y with coefficients 

independent of m and o2. If we consider yfct-K.K), then 

€(m,y,o2) will be bounded both above end below for all m and all 

o2fc£o,63. Hence for sufficiently large m

exp ^{p(eoIlJ*B0E23)*C(m,y.a2)j

will be arbitrarily c lo s e  to 1 for a l l  y<(-K,K). The same applies 

to

f l  ♦ o2W(u) ♦ o^£ ) _1
1 mnX(y) m2nX(y)J

C o n seq u en tly , by exam ining 4 .7  we can s ee  th a t  f o r  s u f f i c i e n t l y  

large fl | f - f j  <  «£ f o r  a l l  m> M, a l l  o 2*[j3 .6 3 and a l l  y in 

f 3
any finite interval (-K..K).

L

P

1 .



We »hall now try out our ideas on some genuine data.

Table 4.1 contains data from four repllcata assays of the 

antibiotic tobramyoin. The assays are carried cut in patria dishes 
in which there is a layer of agar gel containing organisms.

Wells are cut in the agar gel and filled with a d03e of the 

preparation of antibiotic. The antibiotic will then diffuse into 

the gel in a zone around the well and the organisms will be 

inhibited from growing in this zone. The size of the inhibition 
zone will depend on the amount of antibiotic in the well and the 

response variable measured is the area of the inhibition zone.

In this section we shall consider the data from the first assay 

in isolation. The first task is to decide on values for the 

parameters of the prior distributions. We have used the following 
values for the second stage parameterst

The values of oo> B0 and uo were obtained from the data for the 
remaining three tobramycin assays, and I was chosen so that we 

would expect the prlcr Information to carry about half as much 

weight os the data in the analysis. We have set v>A»0 in the 
prior density of o2 as the data should contain a substantial 

amount of information about o2 .

We have followed several of the suggestions made in section 

4.3 for the estimation of log potency ratio and our results are 

summarized in Table 4.2 and Figures 4.1 - 3. The different 

estimates of p are all very similar. The mean and mode of the 

marginal distribution of u are a little higher than the other 
ample mean is somewhat lower. The 

marginal density of u and the two approximate marginal densities 

obtained in the first case by ignoring the prior information about 
a and 6 , and in the second case by assuming a2 is known and equal 

to its value at the mode of the Joint distribution of p and o2 , are 

illustrated in Figures 4.1 - 4.3. The three densities can be







U ■ ß o2

Mean of n(p|y) -.00979

Mode of ir(y|y) -.00941

Modo of * (a,ß,u,a2|y) -.0120 20900. 637C. 49000.

Mode of w(a.6,u|y) -.0120 28900. 6370.

Mode of it(w,a2 |y) -.0127 .
Meen of ir(ti|y) assuming ÏH.E22'*” -.0123

Mode of n(w|y) assuming i »£22'*"' -.0126
Mean of s(u|y,o2)

(92 Is value of o2 at mode of
-.0127

n(u.o2 |y) )

Mean of Approximate Large Sample -.0173 20900. 6370. 52100.

Distribution.

Raaults of analysis 

prior parameters

of first tobramycin assay wlti?

.29 X 105 

.64 X 101*

.1 - .6x10*
0

0 0 

.2x105 0

1.00 0 0 .4x10_
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Chapter 0 . py.tmsiun c ‘ the to Account fur a f-’ora Complex

Structure.

5.1 IntroductIon

Very commonly, experimental design -features are incorporated 

into the design of assays. For example, with assays using live 

creatures such as rats a complete assay might consist of several 

identical assays each carried cut on a set of litter mates. This 
type of design la a randomized block design.

In other types of assays such as free fat cell assays the 

experimental units may at some point be placed in a square 

configuration while undergoing some form of treatment. It may 

be thought likely that there are two sources of variation 

corresponding to the vertical and horizontal position of an 

experimental unit in the square. If this 1b the case then it 
may be possible to arrange the experimental units in a Latin 

square design. Suppose there are p* experimental units arranged 
in a pxp square, then there would be p dosage levels in the 
assay, each occurlng once in each row in the square, once in 

each column in the square and p times altogether in the assay.

We have tried to extend our basic model, as described 

in chapters 2 and 4, in two separate ways to cover the two 
types of design described above.

For the randomized block design, assuming q blocks with 

m experimental units in each block we have used the following 

model for an observation in the kth block:

1st stage:

2nd stage:

y1K . N{(a*c^*8pz^*8x^),o2} i 

independently for 1-1,...m. k»1,...q ,

eK . N(0,oae ) i independently for k-1,...q .

The prior distribution for oach t is assumed independent of that



for every other e and also of the prior distributions for

For the pxp Latin square design we have assumed the 

following model for an observation in the kth vertical and the 

1th horizontal positiont

1.t yu(1) - .

independently for k*1,...p, 1*1,...p, i-1,...p ,

Y. “ N(0,o2 ) i Independently for k*1,...p ,
* Y

fij “ N(0,o2^) i independently for 1*1,...p ^

where again independence of the prior distribution for each y 

and 6 from all other prior distributions is assumed.

Before preceding with calculating any posterior distributions 
one or two remarks seem appropriate.

Firstly, these two models are rore complicated than our 

basic model in that more parameters are Involved. Consequently 
we expect those posterior distributions which are obtainable 

analytically to be more complicated and in general to involve more 

parameters than in the previous case. In order to make inferences 

about the log-potency ratio we should therefore expect to have 
to rely more heavily than before cn approximations and numerical 

techniques.

Secondly, we have assumed exchangeability between the 

individual cs, yu and 6s respectively. We should like to stress 

that this assumption may not always be appropriate, especially 
In the case of the Latin square design where in many cases 

prior considerations would lndicete yi <, Y2< ••• < YP .
Lastly, if we had posed uniform prior distributions for 

means of the es, ys and 6s instead of fixing them at thu partloular 

value of zero, then we should have had to Introduce constraints 

into the model of the type discussed by Smith (1973). This would 

have mads the model conceptually more complicated. Given the 

exchangeability assumption, eny prior information about the meanu



Of the c b , Ys. and 6a can be fully incorporated Into the prior 

distribution of a . Hence there is no loss of generality in 

• fixing the means.



5.2 Randomized 31ock Design With Known Variance:,

We shall first conaidar tho randomized block design and 

in this section we shall assume that both the residual variance 
o2 and the between blocks variance o2 are known.

Wa can multiply together the likelihood and the prior 

densities as given by 5.1 to obtain, up to a multiplicative 

constant, the Joint posterior density of all quantities involvedi

wCa,B.u.e|....cq |y)«eiip-i|aa^Ell*ma'j*S2̂ };**♦£ I C x ^ ^ p X j Z ^ u 2* ^ ) j

q , m i q q m

*Z E* * !l\*2aB\ll2*R E Cx »viz )(*2maE e *2B t c E Cx.mz )
k-1 Kl̂ o2 a2J ( o2 i-1 J o2 k-1 K o2 k-1 Kl-1

-2a(ooEl  1*B()El2-Cp-wo)E1 3*mq̂ . • }
<72

-2B{soE22.aoE12-(u-uo)E23*a  E t y ^ l }
L o2i-1 o2 i-1 J

-2» E y.KeK*v2r33-2u(aoZ13*B0E23*iioE33) } , (5.3)
o2k-1 J

q m q m

« h . r .  £ £ vlh . V  ■ «  » 1 »  —  » - k- I  1 » I K -
mq k-1 i-1 qk-1 m i-1

The mode of this density occurs at

a-mq y . . -mqc.-mq3(x*|i2)*a El l -(S-fl )£12-(u-p )E13 ,

o2 a2 a2

I (x 1y 1*My1 .2 1 ) ■ «(• ♦ «.) lx * p i)> B #E22- C « - «  l i» * -C ii-y # )E23
o2i-1________________oj____________________________________________

£  E (Xj 2*2ux ẑ j*»j2z 2̂ ) *E22



m ♦ 1_ 
~2 02

. t1-B2qIx^z1-mq6 (a*c. ) > • u ‘3-[u-ao ) 1 1 J l-7 3

gs2rz12 ♦ I33

qK-1
i-U and z-IE z± 
mi-1 mi -1

As in the case of the simple model, for given u , the other 

parameters are Jointly normally distributed and so we can obtain the 

marginal posterior density of p up to a multiplicative constant:

if p2E 33-2p{a0E13*B0i:23*UoEJ3)- C T w 'c' ’

d d

el el

9 -

where c-mqy.. ♦ a I11»» I12-(p-p )E13 ,

o2

«■a * ix1y1.*u>1.21)*90i22*a0i12-(»-»0>c2> .
02 i-1

and W is the matrix whose inverse is







as

5.3 Randonlmd Block Design With Unknown Variances

In proctlcs the residual variance, a2 , and the between 
block variance, a2c# will be unknown and should be regarded as 

parameters in the modal. Following section 4.1 we shall use the 

relevant conjugate prior distributions which are that vX has a
„2

X2-distribution on v degrees of freedom where v, X, ve> X£ 

are known constants. If we call the expression on the right hand 
side of the « sign in 5.3 fiCa,B.u,ej,...eq ), then the Joint 

posterior density of a,8,v,ci,..,eq>o2 and o2c is

The mode of this density occurs at the point given by 5.4 with

o* and o‘(. Since the former possibility leaves a distribution 

of 3 parameters while the latter leaves a distribution of (3*q) 
parameters we consider here only the former possibility. 

Carrying out the integration we get

n(a,6,P»ei.....eq ,o2.o2e|y)«(o2)

e )
q'

(5.7)

q m
o2»vX*I I (y1K-«-cK-6ez1-Bx1)2 

k-11°1_________________________
mq*v*2

q
(5.8)

k-1

q<

(5.9)



whera f2Cw.o2 .o2c) is the expression on the right hand side of 
the « sign in 5.5.

Unfortunately, in the general case, we can proceed no 

further. The exact numerical treatment would require a 

threa-dimensional numerical integration. Such an integration 
should be quite possible but we have not at present attempted 

it. It would probably he prohibitively expensive for routine 

analysis of data. Consequently we must resort to some approximations. 

Taking the approach suggested in the last paragraph of section 
4.3 we could assign the values of o2 and o2 at the mode of 

*(p.o2.o2c ly ) to the marginal distribution of p for known 

variances. This approximation should be quite good as regards 

o2 since the data should contain a substantial amount of information 

about the residual variance. Unfortunately the same cannot be 

said for °2C - This problem could be surmounted in part by 
assigning the value of o2at the node of *(p,o2,o2 |y) to the 

Joint distribution of p and o2e for known o2, if (p.o2£ | o2,y ) and 

then finding the mode of the marginal distribution of o2t> given 
the assigned value of o2, by a series of one-dimensional numerical 
integrations over p.

In the case where wa have uniform prior distributions for 
o and 8 we can proceed slightly further. From 5.6

If we now make a transformation of variables from p, o2 and o2^ to 

p,oa and S? where S2 -o2/o2c , we have

(fr-Jq*v) (q + * * 2 )
*(p.O2.02c |y,Em .E22 ~ ) « ( o2 ) 2 (o2t) 2 I w J 1

q m

(5.10)





ea

5.4 Latin Square Design.

To avoid repetition we shall consider the Latin square design 
with unknown residual, between row and between column variances 

straight away. We shall assume the relevant conjugate prior 
distributions and use a notation similar to that n section 5.3 .

Taking the model as stated in 5.2 the Joint posterior 
density of all quantities io

irCa.8.P.Yi....Yp.«i.....«p,o2.o2v ,o2f |y)«(o2) 2

P P

x exp-j

o2 1-1

1-1 k-1 J

P P
2a|£^,♦2 I YhE 6 x 

a2k«1 1-1
C.)*aoE1l*SoE>2-(u-uo)E,3l

P P
“Z£_ 1 v « . i v 2 E £ y• i 1 •1 6i





y=£ u>: y . . ( 1 ) Z i-£  B2r.x. !*»-(•-• )>:23- ( a - « o U 13

o2 1-1__________ £ _________of__________________________________________

£  etZj2*!33

- p p 
02-vX*E E (y

' 6 ó 6

whera y. - 11 y and 6. - 1E 6

Wa can integrata over a,6,y i ....Yp.6j,...ép giving tha Joint

posterior denslty of w,o2,o2 , and o2r :Y 0

- (P2 *v* 2 ) _ t p*vy*2 ) _(p*v<«2)
«(M.o2 »o2Y.o24|y)«(o2) 2 (o2^) 2 (o2fi) 2 |u| *

T v X  v X  P P 2  T
-I vì*I li x* V i  • « « yn i m l

r  ■*, •*, J



U2E33-2u(a0EI3*ß0E23*y0E33]- f '
T

U f

Z g

hl

h
P

h
P

il Jl

. V .
where f-£^y..(.)*aQE 11*ßoE12-(u-yo )í  ,

o2

g-£ E ÿ..[i)(x1*uzi)*Bor.22*aoE12-iu-wo )E13 . 
o2i-1

V £  V (<)
O2

k-1,...p.

jx-£ 5-^-J
O2

. 1-1....p.

and U ls tha matrix whose Inverse ls

E11^
„2

E12*p2(x*pz)

o2

T
£  1 
2 ~ 2P

r12*p2 (x*iiz)

O2

p
E22*£ E (x 2+2w x 1z1*p 2z2) 

o2l-1

T
p (x*pz)1 
,» • 2P

f,1- »
£  (x*|iz) 1

\°y °'J

i f p  / i ^ ï p  
°2 '°2 °2)

J



Un U ,2
u“ ! p “ i ' ! p

u 12 U22 u* * ! PT u“ ! pT

u ‘ >’ P U il lp
n\ ^

(U33I p*U3jJp) “ « » ip

u ' * ! p “ î ' i p “ • - ip < i C i p. u í , j p >

I 22* £  I Cx | * 2p k 1; 
o2i -1

2 ^ -^Kl2 *p2 (x*yz)j J

¿ ^ 22*E Z (x 1í *2yxi z 1*u2z 1, ) j - 2 ¿ | j : i 2 * ¿ ( 5 * i i i J  C x * p z )* ¿| ll l *£2^

X û*u l ) 2 lp/çi ♦ o A  ,J V°î °ij
»•/fisi *£12 *£!LÎ/e22*£ £ (x 2*2u x Z ♦U2z 2)i -p3/c2*q2\(x*nz)*tVr\ -H\ °21-1

’2“  [~/pq2*pqa*ol> \ £ ,2 t£ Í -o^ ___(x»»iz ) »
L v \  ‘%  -tf) o2 o2o2 J



U13*-£02 ÍE22-r.l2(x*vz)t£  (Sxx*2pSxz»u23zz)J f

»V

Ujit, -p q2f z 22- I 12 (xM ii)*p (Sxx*2uSxz*w23zz) ) ,

« V

u22“/  pq2*pq2*o ‘* \ l u * j ¿ c £

°2- °2a °2 o.2«!

U2 3 --p o2 ( I l l ( i* w z )-E 12) ,

Uaw— £02 (£ll(x*uz)-r12) ■

U33-02r

l02/02*pi

(2) I , ,  / \
1*3 3*1 p202 fE11 Ix *uz)2-2E12(x*uz)»E22*£ (Sxx*2pSxz*w2Szz) ) 

[•*. \  °! '

♦po2^t11£22-(£12)2«E>>p (Sxx*2uSxz*M2Szz)^j ̂ O 2 ♦ p'j 

U JW— jo2 (ln I22- U 12)2̂  ♦ pZll(Sxx*2uSxz*p2Szz)J ’



(.t)
Um,-o2r

C«J2/ 2*p)

■  P2W t 1 1 C ;* ijz)2-2E, 2 ( i * li2 )* i:22*£ (5xx*2 yS xz*u 2S z z ) )

L • S ' ° 2 '

♦po2^EllE22-CE12)2*l“ £  (Sxx*2wSxz*w2Szzl jj^o2/o2 *p^

A b in the case of the block design we can proceed

no further analytically. An approximate posterior density for 
W can be obtained by assuming o2,o2^ and o2fi are known and that 

they take the values at the mods of *(w,o2,**Y,oa4|y).

The case of uniform prior distributions for a and 6 is 
again similar to that of the randomized block design.

We con write U^a2UQ, f-fQ/o2. |*|#/**, hK(j/a2, k*1,...p,

Jl'Jle70*» l"1****P* where f0. g0. hK(ji K-1....P<jlo,

1-i,...p. only involve o2.°2y and o26 in the ratios a2/o2 and 

«2/o2a. We can transform to the variables u,o 2,52y *o 2/o 2^ and 

S2^"02/o2^, and then integrate over o2 giving the posterior density

o f  u .S ' aV





5.5 An Example! Factor VIII Data

In this section we analyse data from an assay of factor 

VIII. Factor VIII is one of the chain of enzymes responsible for 
blood clotting in man and deficiency of factor VIII leads to 

haemophilia. The reaper Ln the assay is

the time taken for a clot to form after a dose of factor VIII 

is edded to a set of reagents. The larger the dose the more 

quickly a clot Is formed so the slope of the fitted regression 

lines will be negative. The data are given in Table 5.1. The 

assay was repeated on five consecutive days and so our theory 

for randomized block designs is appropriate.
Before analysing tho data we had very little idea of the 

likely results and so we have used uniform prior densities for 

a and B and let v«0 ln our prior distribution for o2. We 

cannot put v^-0 in the prior distribution for o2£ since this 

implies that the block effects are all zero, a point which 
has been discussed by Llndley (1S71 b), and so we have put 
V C“XC“1. A uniform prior distribution for la not I . M  .

for the reasons discussed in chapter 2 and so we have taken 

the prior distribution for y to be N(0.0, 1.5). This prior 

distribution and the one for o2 are based on Introspection and 

rather arbitrary. It is clear from the posterior distributions 

that the prior distribution for u carries very little information 

compared with the data, while the prior distribution for o2 

carries aB lttle information as possible and is not contradicted 
by the data.

The results of our analysis are summarized in Table 5.2 
and Figure 5.1. The varlou:. > log

vary similar lndeedi however, there is a discrepancy between the 

modal estimates of o2 and o2 from s (a.B.u.ci,.. .cs.o2 ,<j2 | y) and 
tho modal estimate of S2»o2/o2t from n(u,S2|y).



Standard Preparation Test Preparation

Dosa )200 )400 )oco )200 )400 )aoo

lay

1 15.0 22.5 27.0 21.0 25.0 30.0

2 15.0 16.5 19.5 17.25 21.25 25.0

3 18.0 24.25 30.5 20.5 28.5 36.0

4 15.5 18.75 22.25 18.5 21.75 27.5

5 18.0 22.0 27.0 22.0 26.0 31.5



Mods of n (o ,ß ,y ,c i» ...C5,o2,o2 Iy)

o - -20.5 

ß - -15.9 

M - -.257 

C| - .594

C2 “ -.'3.47 
c3 - 3.29
ci* - -1.95

o2 - 1.52
02t - 3.79

Mods of * ( u .S 2 |y)

u - -.251 
S2 - .261

Ms an of «Cu|y. S 2)

(S2 1b ths valus of S2 at ths nods of wCp,S2|y))

Tabla 5.2 Ru..i,Hs of rtn.iiyul:. i t y  I i ¡ ¡

p a ra m ete rs  ^ » 0 . 0 . K33- I . 5 , v-A-0.
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Chapter 6 . A Ko-Jol L-.n ..t-lnlng Information From Several Assays.

6.1 Introduction

In many cases tha noad arises to combina information from 

several different assays, and wo shall devote the noxt few chapters 

to considering this problem. The model that we shall consider 

first is a model combining information from several assays and 

we shall assume our prior Knowledge of the parameters of every 

assay to be exchangeable. This modal is a straight forward 
extension of the two stage model for the analysis of a single 

assay that was diacussud in chapter 2 to a three stage modal.

The extra stage is necessary since the data will now contain 

some information about the parameters in the second stage of the 

model. Suppose we wish to combine information from m assays, 

then the modal is as follows«

1st stages y, . N : independently for

2nd stag.: /a,\ . N l i\ ,

'• I

I stages j o \ . «

(::) It:) 1

independently for 
j-1....m .

Where the suffix J refers to the assay in the scrips , Xj Is 
a matrix of the form

Xj - 1 Z,j x.jl

1 ZlJ xjj

L1 v  w]



r
-

and nj is the number of responses in tha Jth assay. For the 

moment we assume all variances and covariances to be Known.
Thera are two main situations where this model may be 

appropriate. Th e  first is where a manufacturer has made 

several batches of a preparation, has calibrated them all against 

the same standard using the same assay medium, and wishes to 
make inferences about the manufacturing process in general. The 

second is in collaborative assays where several laboratories carry 

out assays using the same pair of substances and wish to combine 

their results. In this latter case one could argue that the 
true potency ratio will be the same in each assay and therefore 

the model should stipulate that the Mj are all identical. However, 

each assay will be carried out by a different person in a 

different laboratory, and it may bo that for some types of assay 
the effect of variation in personal technique is groat enough 

to make such an assumption unreasonable. A nodal which does 

stipulate that the Pj are all identical is discussed in chapter 7.
For both the cases described above the model is rather crudes 

in tha first case we have not allowed for any trends in the 

parameters, and in the second case we have assumed that all the 

assays are carried out on the same medium. The model could be 

extended to cover either of these refinements.

In both the coses described above interest will centre 

on the second stage parameters. In tha case of the manufacturer 
carrying out assays on different batches of a preparation, 

estimates of the second stage parameters could be used in 

estimating the parameters of a prior distribution for the 

analysis of an assay on a further batch of preparation. In 

the collaborative assay, inferences about tho log potency ratio of 

the two substances under investigation would Ideally be baaed 

on the marginal posterior distribution v< 1 y .



6.2 Posterior ni-tritut ions for Known Covarljr.co i

Before combining tho information from tha data with our 

prior information, wa need to combina tha information in tha 

second and third stages of the modal. Wa get the following 

prior density for tha first and second stags parameters:

*(«o»0o *lio*ai*8l*U1’ * ■am'em ,wrJni,n2'n3* “

where a ■ ^  l and similarly for 3 and u .

m J-1

Combining tha above density with the likelihood, the Join 

posterior density of tha first and second stage parameters is:

* tc,o*8o'wo*ai'Sl,lil"  ••am'Bm'llm^'ni,n2*n3) *

-j; "j-j
•xp-l



(6.3)

If our prior knowledge at the third stage of the model Is 

extremely weak, the elements of ® 1 will be zero, and those terms 

Involving £ 1 In the exponent of (6.3) will disappear. The conditions 

under which (6.3) is a normed density when ♦ 1-0 will be investigated 

at the end of this section.

The mode of (6.3) occurs at the pointi

a \  - ¡mE‘1*jJ1)"1 ml*

nj

1 ‘W A i - V
k-1

KJ>
aoE11-(BJ -60)El:l-(u

«,-1 * O ' k r V ' W K j ’ •

i  1 “ v -j V *  • ‘ 2i
Oj k-1



1C4 -

The modal values for the first stage parameters of an 

Individual assay are very similar to the mode of the Joint posterior 

density of the first stage parameters In the analysis of a 

single assay as given by 2 .3 . There are two slight differences. 

Firstly. In this case, the second stagu parameters a ,B , and 

Wo are themselves modal values whereas in the single assay case 

they were Known, and secondly, t a second stage variance I has 

a slightly different status in the two casos. In the multiple 
assay case I expresses our opinion about the similarity of the 
parameters of the different assays, while tho strength of our 

opinion about the llhely location of the parameters is expressed 

In the third stage variance t . 3y integrating over the second 
stage parameters <̂ ,«o and u q in £6.2) we have that the prior 
density for m ,3i,ui.... .a^,Bm , i s

T -1 
(V*)

■;:ig

£  r P
! "M . ! l i f p

Wm u * ;

(6.5)



where V* is the 3m x 3m matrix E 0 -----  0* (iij f la

o . ’ •. ; 
T • . Q
0 - • ■ C E

-2i
l2

and í a* \ "  C£**i*)S~1 CmZ"1**-1) « j rup ............................. (;;)
Hence the prior distribution for the first stage parameters 

of an Individual assay, say the Jth is

/ • A  - n Í M  • lE" »(:■ ) p  r
In tha singla assay case t expresses the strength of our opinion 

on the two sources of variation and will be comparable with 

(£♦$) in the multiple assay case.

By integrating over 0481,...am>8m in 6.3 we can find the 

Joint posterior density of aQ ,B0»uo«ui».•.um «

* i®o*0o'‘Jo*Ul‘,,um ^ ' ,’u *n2*n3)a 7 l-jl* 
J-1

£ {pJ2£3i-2wj (ao£l3*8oE23*uoE 3J)}

J-1



"J
”"d °3‘i  1 '

O* k-1

Unfortunately we cannot Integrate over In (6.6).

This means wb cannot obtain the marginal distributions of the 

parameters we are interested in analytically. In general we 
will not be able to find these distributions numerically either, 

since to do so would Involve carrying out numerical integrations 

in m dimensions. If we are interested in the three second stage 

parameters a0.8o .vo. we could estimate then by the mode of G.6. 

Even this mode cannot be found analytically but must be obtained 
numerically. If, as in collaborative assays, we are interested 

in u q but not in o q or 0q, we can integrate over o q and B0 in 6.B 

I . . . ....

w(w0.Mx..wm |ni.n2.nj)-|v'1*s'1E V ^ I ' V *  l y ^ W p - i  z L j - ^ i

j -i * / j-*«L

i



where t"1- U 11 ♦‘21, *iJ being the (ij)th clement of «'1 .

[?12 H
s'1- [rii e>2] ,

[ e12 E“ J

nJ
E

K-1

and X-R_1 E

J-1

♦E (»'J-wo)njVJ/r i 3 y  *u «>12

J-1 ’  ‘  \E23/  *12*22
♦lV *

One could estimate y by the mode of 6.7. This can be found 
numerically.

We can proceed one stop further and find the Joint density 

of by integrating over yQ in B.7. This density will
rarely be of any priictical interest but it 1s useful in 

investigating the conditions under which it is permissible to 

Lunaidwi uniform pi lux-» for all three third stage parameters.
If we set ♦ '«0 in n(yj... .ym | y ) , then



ioa

If we cell the expression on the right hand side of the « sign 

g(ui,...wm ) then the posterior density of . and consequently

all the other posterior densities given In this section, will be 
normed when * ”^-0 only if the m-dlmensional integral 

/.../ g(|ij....u|n)dW|...dw||| Is finite. In the following paragraphs 
we give a loose argument Indicating when this Integral will be 

finite. We have not given a rigorous proof since sue ,i proof, 

although straightforward, would be very lengthy.

We assume that there are at least two assays under consideration, 
and that for each of them at least two different doses have been 

administered for at least one preparation, and at least one dose 

of each preparation has been administered. We also assume that 

I Is a positive definite symmetric matrix. Examination of the 
expressions

and |s VjUj |  ̂ shows them to be bounded above and below for all 

J-1* '

Wj, J«1,...m, and to tend to finite limits as ell the become



simultaneously large in absolute value. Also |ŝ  VjQj | ^

J-1* ’
is always strictly greater than zero since

symmetric positive definite matrix. Hence if all

the Uj are large in absolute value

for some positive constant k.

Also, we have the following limiting results!

ai?“ 3*1“ 1

5

— 7—  nj
zJ ♦ Ill£

k-1









z ' 

J-1
*d

0
0

x oxp-J -Hi

®0-f*2
w0-nj

30-n2

M0-n3 ( 6 . 11 )

The mods of this distribution occurs at the point glv/an by 6.4 
except that o2j. J“1»...m and tlM elements cf T. , ll 

of being constants are now given by

Integrating over aj. in 6.11 we obtain

o. r 1. m . o 2] .um ,oam lyi»..ym .ni,n2.n3.^,v,A,R,p) ■



- tni*v + 2 ) _ Cnm»v»2) _ Cm»/»-1») ! m

(o*x) 2 ...Co2 ) 2 |>:|

'VJ

ipJ2EJ3-2wJ(aoZl3»60E2i»li0E33)}

f t ) '

E»1!12 
E,2E22 
r 1 3 23

I>»I12

z12r22
e 33e23

and Integrating over ao and 8Q in 6.13 we obtain 

wCuQ.Z 1.Ui.o2i,...Mnl.o2(n|yi...ym .rij.n2.n3.*>.v.X.R,^)

_( i»v»2) _ ( m»v«2) _ )

c«1.)" 2 2 1« ’
£JL' m /„
2 I;'1*;"1; VjOj I'1/-

3-i''
IvJ

• \ h  »...»1 \»E Cl

(a2l °mJ J-1

where ¥, S and X are a* defined in section 6.2 .



If estimates of all the second stage parameters ore ^

required we suggest using the mode of 6»13. Alternatively If 

only p Is of Interest we suggest using the node of 6.14 . We 

do not feel altogether happy about these suggestions since there 

are so many nuisance parameters in both 6.13 and 6.14 In the 

types of situation where the present model is appropriate there 

moy well be fairly large amounts of data available. In spite 

of this, unless an enormous number of assays are involved, 

the amount of information about the second stage parameters may 
not be very greatj not enough to assume that either 6.13 or 6.14 

approximate- to a mul *"t
on the modal estimates would be to find an approximation to the 
marginal distribution of the parameters of interest. An 

attempt to do this might be made along the lines suggested 

in the last paragraph of section 4.3.
Suppose we have data from m similar assays, and suppose 

we have, by whatever method, obtained estimates of • ,t ,M 

end I. We now wish to use these estimates in deciding on the 
parameters of a prior distribution for the analysis, using the 

model of chapter 4, of one further assay which we expect to 
be similar to our previous assays. We can use our estimates of 

aQ,So and u q directly as the Second stage means, but M  Should 

not use E directly as the second stage variance. Thera are 

two reasons for this. Firstly we must remember that l plays a 

different role in the two models, and tha appropriate prior 

variance of ill be L (in the second model) plus tha posterior

variance of i secondly we cannot be absolutely certain that

the assay we are about to analyse is comparable with our previous 

assays. Experimental conditions may have changed in soma way 
without our Knowledge. In principle, one could cope with the 

first of these points theoretically by finding the approximate 

variance of the estimates of the means. However tha distributions 

Involved are very complicated and we suggest that tho experimenter 
take tho pragmatic approach of adding on to I a matrix, possibly





6.4 An Example; Insulin Uuta

In Tabloa 6.16.1/. 6.3 we have data for 11 aseaye of 

A 1-B29 diacetyl insulin against standard insulin. The 11 test 

preparations of A 1-B29 diacetyl insulin are repeated dilutions 

of the same stock solution. It Is unlikely that the stock 

solution changed appreciably during the period in which the 

dilutions were made, however, we expect there to be some 

variation in the strength of the test preparations due to 

Inaccuracies in the dilution process.
Before analysing the data we have to choose values for 

the parameters of our prior distributions. We have put v«0 

and $ 1*0 . This should not cause any difficulties provided we 

allow t2 3 to be non-znro. It remains to choose values for 

p and g. Letting R»0 and p*Q would give the Jeffreys' ignorance 

prior distribution, but u b b of such a prior distribution causes 

the Joint posterior density of all the parameters (6.1 1 ) to 

be infinite whan Uj -Wj,! J"1» •••"*» and •
To avoid this we have set p-3. the smallest value consistent 
with the convergence of the prior distribution of Z~ . In the 
prior distribution of t”1, E (I-1)-pR-1, EO we can choose a 

value for R by making a guess at £ and multiplying it by 3.

Since we have very little idea of what Z may be, we have taken 

as our guess its unbiased estimate obtained from the maximum 

likelihood estimates of the parameters. The maximum likelihood 
estimates have the same values as the large sample means and 

are given In Table 6.if. Using the resulting value of R we 

have calculated the mode of the Joint posterior density of 

all the parameters, given by (6 .1 1 ), and tho mode of the posterior 

density of (ao>Bo .P0.E~1, m , o 2!...• W(n.°2m ) given by (6.13). In 
order to check the sensitivity of the procedure to our guess 

at Z we have repeated the procedure with a guess ten times and 
one tenth our original one. The results ere shown in Tables
6 .5  - 6 .7 .

If we compare the two modes in Teblo 6.5 with the large 
sample means in Table 6 the a^s.Bj's enJ the two sets of 

P^'s and O.2 '» in Table B.5 are all pulled together compared 

with their large sample counterparts as one might expect. 

Comparing'the two modes in Table B.<g with each other, the •



Doan (pinol 1 )

Insulin

14.54

2 1.0 0

34.03
58.14

14.54

21.00

14.54 

21.80 

43.61 

87.21 

48.45

17.44

21.80

29.07

29.07
43.61

A1 -B29 D la o e ty l In s u lin

25. C9
33.73

47.54 

57.3B 

35.22

38.27 

44.76

55.27

33.41

46.74

56.54 

67.95 
27.49 

39.06 

59.24

8.64

13.09
24.41 

28.52 

10.02  

15.46 

21.89 

29.85 

17.73 

19.16 

38.36 

13.48

37.42 

I 11.40

22.12 

I 12.95 

I 20.25

Tabi« 8.1 Onta from ssveral assays of Ai-B2i dlac«tyl

48.45

76.68

118.29

.

48.85

72.68
193.61

48.45
72.68

145.36

290.72

lnmlln cy.ulff.t Insulin,

32.74

46.42

50.15

59.32

33.76 

37.11 

51 .72

57.18 

39.01 

48.25 

57.13 

61.17
35.19

33.39 

56.78

12.57 
14.71

22.57
32.39 

10.24 

11.38 

20.65 
28.85

12.76 

19.28 

34.54

23.91

33.92 

9.69

23.98

12.75
22.33
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11

Cose Cp.nol Response

In3ulln

13.08

34.89

58.14

Ai-Bjq Dia atvl Insulin

19 94 14.10

52 57 60.62

73 15 72.22

34 38 13 37 19.15

57 30 29 17 37.97
85 95 45 91 50.17

128 93 64 35 59.59

fatila 6.3 Hata from saveral assays of A 1-O29 dlacotyl 
Insulin against. Insulin (continued).







of S*®#**1» •n^ the li.'i are almost the sane although the
flra 1639 dispersed In the first mode compared with the 

second mode. The estimates of E are very similar with the 

exception of E jj where there is a considerable difference.
Our initial guoss at I was E 1 150. -.61 - 78 .

-.078

330.

The diagonal elements and £^3 are similar to our estimates 

but E 12 differs from either of the estimates. I23 also 

differs from our estimates although the two estimates are very 
similar in this case.

Comparing the two modes in Table 6 .g with their counterpart
in Table 6 .5 , the estimates of a ,B ,u . the a. ’s, the B.'s o o' o i i
and the p^*s have scarcely changed. There have been small 

changes in the estimates of the o ^ ’s and substantial ones in 

the estimate of E. The discrepancy seems to be greater for the 
larger R than the smaller R. Very similar remarks apply when 
comparing Table 6.7 with its counterpart In Table Q.5 except 

here the *e do not seam to be so sensitive to changes in r .



4600.

-16.
-2300.

-2.3

-2300. 2.3 12000.

8 o2

Assay 1 37.9 201 -75.5 38.5
2 41.9 222 -98.4 45.5
3 15.2 0952 -103. 17.3
4 7.11 .651 -54.7 29.8
5 B.47 .232 -83.2 8.60
6 22.0 .202 - . 5.69
7 13.7 .113 -88.2 5.20
8 13.3 .462 -77.2 32.4
g 6.89 .209 -88.9 9.60

10 11.0 .234 -48.1 12.2
11 27.7 .595 . 82.4

/ ®„\ " I  18
•7 \

I - 611 . -2.04

(  I .292 -2 .04 .246

\ vo) \ *77 -301 . 2.01

b) R_ - ” 46. .10 -23
-.16 .021 - .023

-23. .023 120

8 o2

Assay 1 37.9 . -60.1 31.4
2 39.9 .233 -84.3 74.3
3 14.3 .0927 -79.0 26.0
4 12.4 .432 52.3 30.3
5 9.54 .178 -70.8 21.8
6 20.5 .193 -77.9 33.9
7 13.0 .118 -76.4 10.1
8 17.3 .317 -65.8 55.2
g 6.87 .201 -66.7 12.5
10 11.3 .238 -52.6 6.23
11 30.2 .513 ■58.4 92.6

Tabla 6. 6 node of
w(ao ,Bo,y0 .E .oj.8j.iJi . .n .8

for insulin assay data with prior parameters 4 1«0.

-301.
2.01

1547.

«.'».P.p)

p«3 and
fi as Indicated











J KJ J *J • r

v ± £ i*10- ‘ v ( » k j - v - t , , v ( ° )  ï  ‘ ” î  * t 1 > y " l£

i £ £“

1 V  ‘» u - r V i o ’V j  -h.
m nj

l  £ 8J 1 • I
o2j-1 k-1 Ï3S

Supposa we hâve vary llttle prior knowlodgs of the

location of either a .8 or u. We will than hâve ♦ 1«0 and o o  *
1 ”C. It wlll ba shcwn at tha end of this section that auch

t u
impropar prior distributions do not cause tha postarior distributions 

to be unnormad. In thla case tha iroda of tha Joint postarior 

distribution of v.*i . • • .<»m . 8^ occurs at tha point

a i .  *n
O*





o

and Bj-i

- 131 -

"j V V l,:-j’

V V 1̂ ’  u k j*  V ’

This notation is

slightly different from that of chapter B. In tha case £ 1-0 ,

1_ “0 tha marginal dlstribuiton of Vi simplifies to

*33

J-1 J-1  ' I

In order to sea if this density is normed we need to 

examine the expression on the right hand side of the « sign in 

7.7. if thi Integral of this expression with roepoct to v. 

is finite then we can safely put £ -0 and 1_ »0, and wa can

*33
easily show that this is so. If we make the same assumptions 

about the assays as in section 6.2, examlnation of the tarmo 

Inside the exponent shows them both to be bounded above and below 

for all v and to tend to finite limits as u becomes large in 
absolute value. The same applies to the term 

m , .-1 ,
|l t '(Dj*E ) Dj| 1 . That the Integral is finite now follows

J-1*

from the fact that, provided m is at least 2,





7.3 Large Sample Distribution:;

Using the theory described in section 2.3 we can show that 

the distribution of y,ax,Bi....a ,B as the number of responses 

in each assay becomes very large is asymptotically

*(b.ai.Bl....a .3 |y ...y ) . N

wh.r. ,-t BjS lykJ-»j-83«RJ)2RJ

•j-y-J-SjUZ.J-SjI.J I ,

V £ 1,'kj*“'kJ 1(yk J - J 1 • J-1-— "  >



z Bj 2SZZJ-(SyzJ-2BjSxzJ-28jUSzzJ )

\Sxx^*2ySxz*W2Szz^ J

n.(x.J*VZ.) I (X...MZ..)2

J -  J J -
-(Sxx*2wSxz*u2Szz) MSyz-BJpSzz)

B J(z.JSxxJ-2 j.J S x zJ-i 

2BJuSzzJ*2BJSxzJ-SyzJ

If w b  now turn back to the node of the Joint posterior 

distribution of P,«i,Bi,...a ,Bm we can sea that in the case 

where ♦_ 1»0>and 1_ «0, given by 7.5, the mode occurs at a point

^33
where the are weighted averages of the large sample means 
and the overall average of the Oj, adjusted for dependence on 

the Bj. The weights depend on the size of the assays, the residual 

variance and the second stage covariance matrix C. Weighted 

averages of this type occur frequently in expressions for 

posterior means using linear models, see for example Lindley 

(1971 b). Parallel remarks apply to the value of the 8^ at 
this mode. The expression for u at the mode has a similar form 

to the large sample mean, however after substitution for aj •®j 

in the one case and aj*®j in the other, the two values will not 
be Identical.

The equations for the mode of the Joint density of...
ESS





7.4 A Pathologicjl Example

We hava had very little success In trying to examine the 

form of the posterior distribution of V analytically! the algebra is 

too complicated. Wo have concentrated instead on two special 

cases: in section 7.6 we attempt to combine genuine data from 
Beveral assays which are in good agreement with one another, and 

in this section we examine highly artificial data from two assays 

which disagree violently with one another.
Suppose we carry out two four-point assays, in both of 

which log-doses of ♦! and -J are administered for both test and 
standard preparations. Suppose that in the first assay each point 

is replicated just once, and in the second assay each point is 

replicated a times, the same response occuring for each dose 

throughout the replications, the responses are as given in 
Table 7.1. We assume d to be non-negative, c to be small, and 

the residual variance to be the same for both assays and equal to

o2. The sufficient statistics from these two assays are:

¿•1-0 . 5.2-0 .

$•1-0 , y-2-o ,

i.1-1 • 5.2-1 .

Sxx‘1 * Sxx"® »
• Sxy'a 1

siz-° - s«z‘° •
s ‘ ~ d , S2 -adyz

sL - 1 • ■ E - .

These assays are Intended to provide completely contradictory 

Information about p, with the second assay containing a times as 

much information as the first. In addition to values of a greater 
than 1 we shall also consider values of a lying between 0 & 1. This 

corrsponds to the first assay being replicated and not the second.

Looking at the first assay by itself we have the following 

large sample results:





d (1*d2)

and similarly, looking at tho second assay by itself«

-1

If we combine the information from the two assays we have the 
following equations for the large samplo means«

Bi* -du*1

C2*1

Bj- du*1

52*i

Eliminating and B2 from the expression for \i we have the 
following quadratic for u

d(a-1)u2 ♦ (1-d2 ) (1*a)p-d(a-1 J - 0 . (7.11)

If a»1 and d^1 then p»0 , and if o9d91 than any valua of p 

satinfiea the equation. If a^1 than we have the following two



solutions for us

where b-(1 -d2)(1*a) .

2d(a-1 )

In order to see which of these solutions occurs at a maximum in 

tha likelihood we need to examine the matrix of second derivatives 

of the log-livelihood. A solution to the equations 7.10 will be 
a maximum if the following matrix is positive definite:

A 2v 0 0 2Bi

2u 2ya *1 0 0 38iu*c

0 0 4a 2au 2aB2

0 0 2ai a(2u2«-1 ) a(302p-

26l (30iw‘d) 2aB2 eC3g2u-d) 2 (6 12 * j

The matrix will be positive definite if all its principal minors 

are strictly positive. If a is strictly positive the first four 
principal minora are always strictly positive, ard after a little 

algebra it can bo shown that the fifth principle minor is 

strictly positive if

2du(a-1) ♦ (1 -d2)(1 * a ) ^ C  . (7.13)

If »-1 then 7.13 is satisfied if d <  1. If a <.1 then 7.13 lc____

satisfied if y* -b- •/ b^*1 , anci if a > 1 we need u- -b* J  b2*1 .

It can easily be shown that where there are two solutions to 7.11 

tha second solution is at a point which is neither a maximum 

nor a minimum in the likelihood. We can investigate the 

behaviour of the solutions to 7.11 for varying a and this 1s 

' • •
ths case d <1. This is intuitively a very pleasing result. The 

maximum likelinood valuo always falls in the range (-d,*d) and 

it lies near -d whon the first array contains much more information 
than the second, near *d whan the second assay contains much more



Figure 7.1 Schematic repress' ition of the eolutione to equation

7.11 for varying a. An unbroken line represents a maximum in the 

likelihood and a dotted line a second stationary point in the likelihood.



information than the first, end it equals 0 when the two as3ay3 

contain equal amounts of information. In the case 1, the 

maximum likelihood value always lies outside the range (-d, *d). 

This can be explained as follows. The data are now better 

explained if fi. and 3 X lie n ear zero with opposite signs, than 

if p. lies near zero. If and lie near zero so will fl, 
and and small values of (V and j% imply large values of the 

maximum likelihood value for fx. The case d»1 is the borderline 

between the two previous cases, The maximum likelihood value 

takes the value -1 when a < 1  and *1 when a >1. When a-1 
the likelihood has no maximum.

The asymptotic variance of u is

q2 (1 
(1-d2) (1

♦p)2 _ ,
♦a)-2pd(1 -a)

whore p is the relevent solution to 7.11.

We have examined the small sample case by plotting the 
posterior density of p for various values of d and a. In each 

case we have let p , the prior mean of p, equal d, so that the 

second assay supports out prior beliefs while the first one 

contradicts them. We have lot 9 1 -0 and changed the second stage 

variances according to our value of d so that the discrepancy 

between the essays when compared with the strength of the prior 
information remains roughly the sare. For illustration we have 

taken o2»1_ throughout. In our fir3t example d*^ with second

and £33»^ . The resulting

posterior density of p when a-_1_ and a-5 are illustrated in

Figura 7.2. As wa might <;xpnct from the large sample results 

the density is unimodal, with mode lying near -d when a -2

and near *d when a*5. The densities are both «lightly skewed 
to the right because we have taken po»*1 . The case d»1.

stags variances £



E ■ 1 0 • ^33'^ 1® Illustrated In Figura 7.3 for a-2 and
“ 4 3 3

0 1 
3

a-5, and it is very similar to t o case d-1. The posterior

densities for these two values of d remain unlmodal and of 

similar shapes even when the residual variance is very smalli 

we have examined cases down to c2-1/10,C00. Finally we have taken 

E33-6. This is illustrated in Figure 7.4 for

a-^ , 1 and 3. In the case a-J_ .he dar ity in birr.odal, tho modes

occuring at h--4.2 and P-7.6, while value« Of .

(-2,4) are extremely improbable. When a*1 the density is 

unimodal, with mode at p-7.4. while negative values of v are 

extremely Improbable. The asymmetry in the situation is caused 

by the prior information. When a-3 the density is again unimodal 
with mode ac U-8.4. Although this mode io at a vul . 

substantially greater than 4. it i3 closer to 4 then in the case 
a-1. thus following the behaviour of the large sample caaa.
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7.5 Unknown Variances

We now consider the residual variance (Tx and the second 

stage covariance matrix %  as parameters in the model. We shall 

assume that our prior knowledge about each of them i3 independent 

and follows the relevant i rlbutlon, and so we have

the following prior densitiesi 

(v*2)
*(o2 |v,X) ■ (a2 ) 2 exp_ v*. j c2> 0 ,

2o2

(P-3)

and s(I_ 1 |R.p) « |£ | 2 axp-J trE_lR i Z >  0 .

where R is a 2 x 2 matrix, f* is an integer and the values of 

R. /», v and X depend on the nature and precision of our prior 

knowledge.
In this section we shall assume that our prior knowledge 

of the location of a ,6Q and u is vague, and consequently
4 -0 and 1_ »0 . This may not be a valid assumption for any 

^33
particular application, but our arguments can easily be adjusted 

if necessary.
The Joint posterior density cf all the parameters in the

•(ao<eo.P.ai.Bi....c,m.em.o2.r-1iyi....ym,v.X.R./») «



_ (v*2)
X Co2) 2 Bxp-

2a2

. (<*- 3 )
x | E| 2 exp-JtrE~lR

Intagrating over *Q and BQ In 7.14 tha Joint posterior density 

of the remaining parameters is

* (y.ai.Bi,...an,em ,o2.£’1|yj.«-»ym . v <x,R,^) m

Tha mode of thi6 density occurs 3t the point given by 

where 6 and X  , instead of being Known* ar'
but

(7.16)



Integrating over o2 and £ 1 In 7.15 the joint posterior density 
of is

«(p.ai.Bi... •«„•¿Jyi • • .R.P> 01

C7.17)

The mode of this density also octors at the point 7.5. except 
o2 and £ are now estimated by

vX»£

9,u

■ W | l J >

!
(7.16)

• the denominators these ere the s e m  equetlone as 7 .16 . 
Returning to 7.15 and integrating over oj,6i....a ,6 

the Joint posterior density of p.o2 and £~1 is

ir(u.o2. |yi....y(P.v,x.R,p) « (a*)
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Cv*2)

x Co2 ) 2 exp- vX 

2 o2

CP - 3)
x |e | 2 oxp-JtrE *R

Integrating over ao and Bo in 7.14 the Joint posterior density 

of the remaining parameters is

w (w.ai ,6i,.. .am#8m .o2.^ 1 |yi,.. .ym . v,X,R,^>) «

Co2) 2 |E|

Cm*/»-**)

J «»p-^2

The mode of this density occurs at the point given by 

, by
but

C7.16)



P A C  £

M I S S I N G



Integrating over a2 and I 1 in 7.15 th9 Joint posterior density 

of M.ai,0 1,...am#6m is

s ( v .a i . f t i , . • •am»3m|yi. . .y m,v ,X .R ,p ) «

The nods of this density also occjrs at -.he point 7.5, except 

a2 ano I ara now estimated by

vX*E

-
U j  [ \*j7j

(7.18)

.
Returning to 7.15 and integrating over a»,8i.. . .a^,8m 

the Joint posterior density of \.,a2 end E 1 is

. f !  *r « \
s(u.ai.E'1 |yl....yfn,v.X.R.p) - (o2) -----j|E|



17.19)

wharo 8j, bj and 0^. J - 1 a r e  as defined in section 7.2. ThB 

mode of this density cannot be found analytically.

In the case ♦ 1*t), although not otherwise, we can proceed 
one step further by transforming from the variables u.o2 and 
t  ̂ to u.o2 and S  ̂ where S  ̂ o2 _ ^, ¿rd inter,roting over o2 .

This gives the posterior density of u and S~1

»Cw.s“ ’ | y i . . .y  .v.X.R.o) - |s|

lm -1 - r 1 I-*‘V ?  ' eJ J{ j j *  *?‘v 1

(7.20)



when« a, -o2a,, b. -0*b. find D, “T2: J*1....m. Again theJo J JO J ~JO 
of this density cannot bo found analytically.

As in several of our previous models m b  cannot find the 

marginal posterior density of m analytically. We could find an 

approximation to It by substituting an estimate of 5 in 7.20. 

Alternatively, with only three nuisance parameters involved, 

calculation of the density numerically is not out of the question. 

However, in contrast to the previous cases, if we are combining 

a fairly large number cf assays, we may have available a 
substantial amount of information about both U and S. Consequently 

the Joint posterior distribution of U and S may not be very 

different from • multivariate normal distribution. In this case 
the value of V at the mode of the Joint density would be approximately 

equal to the mean of its marginal posterior distribution, and 

an estlmato of the precision of our information about u could 
also be made by looking at the curvature of the Joint density 

at its mode.
The theory described In chapter 5 to take account of 

experimental design features In a single essay extends straight­

forwardly both to the present modal and to the mqdel described 

in chapter 6. We havu not repeatad the theory for either of 

these two cases since the algebra is cumbersome and no new ideas 

ara involved.



7.6 An Examplat Tobramycin Cjt;

I

We shall now analyse tha Cata from four replicate assays 

of the antibiotic tobramycin given in Table 4.1. We have 

assumed that our prior Knowledge cf tha likely values of the 

parameters Is vague m d  su wu have eat v*o, 1_ *0, a nd c_1-o

Ejj
in our prior distributions. If we let R-0 and p-0 t he Joint 

posterior density of all the parr-stars (7.14) is infinite 

when dj-ao> Pj'P0» J=1....mand ¿ = C, so, following section 6.4 

we hove put P*2 and chosen our value of R by estimating I from 

the large sample means, which are glvan in Table 7.2. The 

unbiased estimate of Z In this case is not positive definite 

so we have taken as our estimate the sums of squares and 

cross-products of the large sanple means divided by 3.

Using the above parameters in our prior distributions we 

have estimated w in several differ nt ways. We have then 
repeated the exercise with R ten times and one tenth our 

L value. .3.

obvious feature of these results is that all our estimates of 

ta are almost identical« wr.otuver distribution they o ru bjsed on, 

and regardless of R. An approximate posterior density of m is 
given in Figure 7 . 5 .  Transparencies 7 an d  a reveal this to 

be almost unchanged both for the smaller and for the larger R.

As regards tha other pars-'rsrb, ir the mode o f  the Joint 

density of p.aj.fli,...am ,8m ,o2,£ , the a^'s and the S^'s are

pulled together compared with the large sample means, but are 

largely independent of our choice of R. The estimates of Z 

depend quite heavily on our choice of R. Our original guRSs 

at 1 was£ * feflIOO. 7230. *| and this is consistent w ith our
1880.J

estimate of Z based on the middle value of R.
In the mode of tha Joint density of u and S 1 , the estimate 

of S again changes with our value of R, and there are soma 

inconslstancloo betwean our estimates end our estimates of £ 

and a2 in the previous cose.





Mode of »(v.ai.fti. * * * * Vm *V*X'?*p 1

a) R-r.4x105 

[.1x1 0s

V .0185 
ai 28900.
a2 28700.
a 3 29000.
<*i» 28900.
Bj 6370.
B2 8380.
63 6410.
B., 6400.
Ell 32800.
E i2 6230.
E22 2290.
o2 S2000.

.1x10'

.4x10**J
.1x10*1 
• 4x 103I

.c u b ;. 
28600. 
256C0• 
28900. 
28900. 
6390. 
0330. 
6400. 
6400. 
8430. 
1140. 
264. 

52200.

c) R- r.4x106 . 1x10s

[.1x10* .4x10*

.0186.
28800.
28700.
29000.
28900.
6370.
6370.
6430..

230000.
56700.
21600.

.

a) R- f. 4x10s . 1x10^1 b) P- [.4x10“ .1x101* 1 c) R- 1.4x10s .1x106l
.1x10s .4x10*J [.1x1 O'* .4x10sJ [.1x10s .4x10sJ

.0185
1.61
.500

S22

ill---  ■

.0185
1.14
.362
.127

.0185
5.51
1.54
.601

.A.P.p.S)

a) R» ^4x10* .1x10S"| b) R-F.4X1C1* .1x10**] c) R-r.4x106 .1x10*1
[.1x10s .4x10 j |_. 1 x 10 ** .4x103J [.1x10® .4x10 j

S- fi . 61 .500*1 §»fl.14 .3621 S* J*5.51 1.541
[ • SOO . 166J L .362 .127J |1.54 .601j

riaan .0185 .0165 .0186

noda .0185 .0185 .0166

with prior p irvatir v-u, 2. 1*LJ. 3-2 and R os indicated
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Chapter 6 . Conclusions. 

B.1 General Remarks

We feel that we have been on the whole successful In our 

attempts to look at parallel line bioasaay from a Bayesian point 

of view. We feel also that despite the algebraic complexities 

involved there are advantages to be gained from our nonlinear 

formulation of the problem, and we are satisfied that the major 
ideas behind the theory for the Bayesian linear model set out by 

Lindley & Smith (1972) carry over to this non-linear case.

A major advantage of our approach when compared with the 
standard sampling theory approach is that logically the way to 

proceed is very straightforward! the marginal posterior density 

of the log potency ratio should be calculated. This contrasts 

markedly with the theoretical complexities of combining information 
from several different assays using the sampling theory approach 
in its standard linear formulation.

A second advantage of our oporooch 1» thet full use cun be 
made of any available prior information. Biological assay is 

perhaps rather unusual in that fairly precise information about the 

potencies of both test and standard preparation is normally available 

before an assay is carried out. This is because the experimenter 

is restricted to estimating potency from doses which lie in the 

linear section uf the log-dose response curve, and the rango of 

doses for which this is so will depend critically on the potencies 

of the preparations concerned. In the absence of previous data a 
pilot study in the form of a small assay is often carried out 

before the main assay. Typically the results of this pilot study 
are used only to determine the doses for the main assay and are 

then ignored. In our present approach further use could be made 

of the results of such a pilot study in estimating the parameters 

of the prior distributions to be used for analyzing the results 
of the main assay.

A third advantage of our approach when considering several 

assays together is that we can make use of the fact that the 

results of the separate assays are likely to be similar to one 

another. This fact is ignored in all the sampling theory approaches 
to the problem that we have seen.



8.2 Possibilities fot Further

Wa do not fool that this thasis is in any sansa a completa 

treatment of the problem In hanc. One particular point which 
deserves further theoretical invsstigation is the estimation of 

log potency ratio in cases where its marginal distribution is not 

obtainable analytically. Multidimensional numerical integrations 

provide a partial answer to the problem, and facilities for 

carrying these out are likely to be better in the future than they 
have been in the past. The ability to carry out Buch integrations in 

up to five dimensions would enable numerical estimation of the 

marginal density of p in all the cases considered except that of 
chapter 6. In this case the dimension of the integration necessary 

to estimate the posterior mean of p is 7*2n where m is the 

number of assays for which information is available.

Thera are two other points which we feel deserve a fuller 
treatment than wa have given them. The first is the possibility 

of using a loss function other than a quadratic one in the point 

estimation of log potency ratio. For drugs such as antibiotics 
an overestimate of the potency is a more serious fault than on 

underestimato, and this Indicates that an asymmetric loss function 

might be more appropriate than a symmetric one. We feel that this 

topic would be best approached by a detailed consideration of 

one cr two particular drugs.

The other point which would be worth pursuing is a more 

sophisticated approach to the es'lmation of prior distributions 

from past assays. Trends in both the a ssa y  medium and the test 

preparation may occur and a llo w a n c e  should be made for this.

Wa feel that an approach very similar to our approach 
to parallel line assays could be made to slope-ratio assays. Slope 

ratio assays are similar to paralisi lire assays except that the 

response in the biological system is now linearly related to the 

dose of preparation administered rather than the log-dose. The 

residual variance is again assumed approximately normal. Suppose 

tho slope of the linear section cf the dose-response curve for 

the standard preparation is B, then the slope of the corresponding 
line for the test preparation is oB whara o is tho potency ratio 

of the test preparation in turn» of the standard. The first 
stage of a model for the analysis of a slope ratio assay would



thus be

y _ N{(a*apxz*8x(1-z) )» a2 •

, ,a,z and a2 have tha sane Interpretation ns in the parallel

l in e  c a se , and >; is now tha doss administered rathar than tha 
lo g -d o s e . Other asp a cts  o f  tha problam are idantioal with the 
p a r a l le l  l in o  case and much of our theory can easily be adapted 
by replacing x and z in the parallel-line case by xz and x(1-z) 
in the slope-ratio case.
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A l ik e l ih o o d  r a t io  t e s t  i s  dev ised  to  d e te c t 

the p resence o f  synergism between two drugs which 

have s im ila r  a c t io n s . An example i s  g iven .

Keywords

BTOASSAY, INSULIN, LIKhXIHOOD RATIO, MAXIMUM 

LIKELIHOOD, SYNERGISM.

1. In trod u ct ion

Suppose two drugs produce q u a n tita tiv e  responses 

which are q u a lita t iv e ly  s im i la r . I f  m ixtures o f  the 

drugs are a p p lie d , the q u estion  a r is e s  as t o  whether 

the drugs a r c  a d d itive  o r  s y n e r g i s t ic .  By ad d it iv e  

we mean th a t  one drug can be rep laced  at a constant 

p rop or tion  by the other w ithout a f fe c t in g  the respon se , 

and by s y n e r g is t ic  we mean th at the potency o f  a 

m ixture o f  th e  drugs depends not on ly  on the potency 

o f  the In d iv id u a l drugs but a ls o  on the p roportion s 

in  which they are mixed. The type o f  jo in t  a c t ion

M .J. E l l i s



d escr ib ed  by th e  ad d it iv e  model i s  o f te n  ca lle d  

sim ple s im i la r  a c t io n , see f o r  example Finney (1971) 

and Ashford and Cobby ( 1974) • We use the word 

synergism t o  d en ote  any kind o f  d e v ia tio n  from 

a d d i t iv i t y ,  in c lu d in g  both  p o te n tia tio n  and antagonism.

The model th a t  we use i s  a mathematical one. We have 

not attem pted t o  represent the underlying mode o f  

p h a rm aco log ica l o r  b io lo g ic a l  a c t io n  o f  the drugs as 

Ashford and C obby (1974) have done. Kinney (1971) 

has co n s id e re d  the equ ivalen t q u a lita t iv e  c a se . We 

d ev ise  a t e s t  t o  d e te c t the presence o f  such synergism 

between the tw o dru gs. The d ir e c t io n  o f  the synergism 

can be determ ined  g ra p h ica lly .

2 . The T est

The two d ru g s , A and B, and a l l  m ixtures o f  them 

are assumed t o  have p a r a l le l  lo g -d o se  response curves 

which are l in e a r  over  the same range o f  responses.

We assume th a t  an assay 1ms been c a rr ied  out on q 

m ixtures o f  th e  drugs, one m ixture being pure A.

We p la ce  no r e s t r i c t i o n  on the number o f  doses o f  

each m ixture assa yed , excep t that more than one dose 

must be used in  a t le a s t  one m ixture. This i s  

necessary  in  o r d e r  to  be a b le  to  estim ate the slope 

o f  the l in e a r  p a r t  o f  the lo g  dose response curve, and 

hence to  o b t a in  the residu a l sums o f  squares. We have 

a ls o  assumed th a t  each po in t in  the assay i s  rep lica ted  

n times a lth ou gh  very s im ila r  th eory  holds when d if fe r e n t  

p o in ts  are r e p l ic a te d  d i f fe r in g  numbers o f  tim es.



We te s t  the n u ll h ypoth esis . Ho, that the e f f e c t  

o f  the drugs i s  add itive  aga inst the a lte rn a t iv e , 

that the stren gth  o f  any p a r t ic u la r  mixture i s  a 

property  o f  th at mixture a lon e . T his general 

a lte rn a t iv e  w i l l  cover most types o f  synergism between 

the d rugs.

Under the n u ll hypothesis we assume that a dose 

o f  x u n its  o f  A and s un its o f  B i s  equ ivalen t to  a 

dose o f  x-^ix u n its  o f  A. Let the jth dose o f  the

E rrors are assumed independently norm ally d is tr ib u te d . 

For any fixed  the regression  param eters can be 

estim ated using maximum l ik e l ih o o d . This g ives  

res id u a l sum o f  squares!

where m is  the to ta l number o f  d i f fe r e n t  doses in  the 

assay, y . . .  i s  the mean response f o r  the en tire  assay ,

degrees o f  freedom . In order to  fin d  the maximum 

l ik e lih o o d  estim ate o f  (i we minimise the above expression  

num erically w ith  respect to  u . T his minimum i s  the 

residual sum o f  squares under Ho, R SS^ with mn-.l 

degrees o f  freedom .

1th m ixture be ( x ^ ,  S j . )  and the kth 

response be y ^ jk * The model i s

r e p l ica te

E *y ijk* “  a + P lo® *xij

,J ,k  J

and y i j *  th o  mean resP°ns* f o r  the j th dose o f  the 

i tH m ixture. T h is  residual sura o f  squares has mn-2



Under the a l t e r n a t iv e  hypothesis we assume that 

in  th e  i th mixture a d o se  o f  x  un its o f  A and z  unit! 

o f  U a rc  equivalent t o  a dose o f  x +  u n its  o f  A. 

The model
" * ’ i-! ;i, =1Jj-

E rr o rs  are again assumed independently norm ally 

d is t r ib u te d .

In  th e  i th  mixture l e t  -  P ^ j j »  then the model

becomes

E <'ijk> “  Yi  +  P l 0 i  <Xi j  + * iJ h
where -  or + p l o g  {  (1  +  ^ P i > /  (1  +  Pi ) J  .
F or that mixture which i s  pure A the corresponding  

^  i s  not defined  s in c e  p i  i s  ze ro . From th is  

form u la tion  the a l t e r n a t iv e  hypothesis can be seen 

t o  be symmetric w ith  r e s p e c t  to  the two drugs A and B.

T h is  model i s  l in e a r ,  and so stra igh tforw ard  estim ation  

o f  the parameters by maximum lik e lih o o d  i s  p o s s ib le .

The res id u a l sum o f  sq u a res , RSS »
■a

• £ log(xAi +
J r . <0
ri i

on mn—q-1 degrees o f  freedom , where i s  the number 

o f  d i f fe r e n t  doses o f  th e  i* h mixture that o ccu r , and 

y ^ . .  i s  the average respon se  fo r  the i*  m ixture.





E *y ijk* “  a + P log x <xij + U*i i))»

%rtth 7T̂  “ x^j / (x^j + and is the potency ratio

of B in terms of A. In the above discussion f(ir^) is 

completely general except that f(o) - f(l) -  1, but a 

parametric form could be posed for it. A point estimate 

of f(ir^) for each of the various mixtures can be 

obtained from the isobol.3 . An Kxatnplo
The topic utider investigation is the interaction 

of insulin and a chemically modified insulin, A1-B29 

suberoyl insulin, at the cellular lovel. The response 

measured is the conversion of (3-3H) glucose to toluene 

extractable lipids in isolated rat fat cells (Moody et al, 

1974)« The two drugs produce parallel log dose response 

curves which are linear over the range under consideration. 

The data are given in Table 1.

Table 1 here

The residual sums of squares for these data are RSS^ ™260.1 

with 53 degrees of freedom, and RSSU - 194-4 with 48 degrees
h a

of freedom. The toot ■‘■•«ti tie La with f and |8 .....

of freedom, and is significin' at the level. Hence this 

assay provides strong evidence that the effects of the two 

drugs are not additive.

Figure 1 hare

An isobol (see Figure 1) indicates that greater amounts 

of the two substances aro required when they are in 

combination than when applied independently, thus 

suggesting antagonism. The^producibility of these

r assays will be reported elsewhere.results in furthei
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