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Many drug3 in use at thn present time are of such a
complex nature that it is impossible to predict at all accurately
the strength of a particular preparation by considering the
ingredients and processes involved in producing it. In such
cases the strength of every preparation of the drug has to be

deternined experimentally after the manufacturing process is
complete. Experiments of this nature involving biological

ogical assays or. more common
In its most general form the expe

material are called b bioassays.

ent consists of

measuring the activity of a preparation of a drug, which we

shall call the test preparation, in a biological system. This
informa ty
depend very heavily on the particular
biological material used, and it is
from experiment to experiment. What

n alone is of little practical use since the act
of the test preparation wi

ely to vary considerably
required is a measure
of the activity of the test preparation that is independent of

the biological system used to determine it. Such a measure is
obtained by carrying out slmultanuously a si

lar experiment
using a standard preparation. A measure of the activity of
the test preparation relative to the standard preparation is
then available and this should be
medium involved i

dependent of the biolo

the experimentation. Standard preparations
of drugs are normally of an arbitrarily defined strength.

For many drugs national or international standards have been
adopted, and samples of these are available from an agreed
issuing laboratory.

Bioassay experiments take several different forms depending
on the substances and the assay medium concerned. One possibility
is that specified doses of both test and standard preparations
are administered to experimental units and the resulting quantitative
responses recorded. Dose-response relationships are of various
types, but for a wide class of drugs the log-doBo response curve
is roughly linear for a range of doses, and flattens out fur
doses above or below this range giving a sigmoid curve altogether.
In the ideal btoassay the tost and standard preparations behave
as If they contain different concentrations of the same active
ingredient, and go the two log-doae response curves will have



Identical shapes but

1 be displaced horizontally. In practice
the active ingradicnt of the two preparations Is usually similar
but not Identical so this Is only approximately true. In these

assays the

ear sections of the log-dose response curves for

the two substances will be approximately parallel, and consequently
they are Known as paralle
In the assay is the hol

ine assays. The feature of interest

ontal distance between the linear sections
of the two log-dose response curves, which Is called the log
potency ratio. Corranonly occuring pharmaceutical substances

calibrated in tl

way are i

sulin, vitamin C, and many antibiotics.
The results of parallel line bioassays have been analysed

for many years using sampling theory techniques. Parallel

regression lines are fitted to the linear sections of the two

log-do3e rosponse curves using the method of least squares,and

normal residuals are assumed. The equations of the fitted lines

Ys mys * bixs"xs)"
yt - W *

where b Is the common slope of the lines, Xg and ys are the
means of the log-doses and responses for the standard preparation
and vg is the fitted response for a log-dose Xg of the standard
preparation. The suffix T refers to the test preparation in

a similar way. The estimated log potency ratio M is then the
difference in the log-dosos of the two substances required to
give the same fitted response, that is

v avV T -(S->T>
b

The sampling distributions of lys-yT) end b are both normal
distributions and are mutually

dependent so confidence |
for the log-potency ratio can be calculated using Iler’s

theorem.  Frequently information from several assays reeds to
be combined, and

one takes the above approach this proveo

a difficult problem which has remained unsolved for many years.

Several empirical methods, in the form of weighted




averages. were suggested by Finney (1964). and more recently a
procedure haa been described by Armltege et al (1976) which is
equivalent both to genera
likelihood estimation.
the: we have considered the problem outlined
above from a Bayesian point of view, along the lines laid out
by Lindley (1971a)and de Finetti (1975).

We begin by taking a critical look at the parametrization

ed least squares and to maximum

In thi

of the standard approach. An unusual feature is that the
parameter of central interest, the log potency ratio, does not
appear in the basic model. In the Bayesian framework information
about the likely value of a parameter is expressed, both before
end after an experiment, in the form of a distribution. This
seems very difficult to do unless thoBS parameters in which one
is primarily interested occur exp

tly in the model. Hence
our first decision about the model we should use is that the log

potency ratio should occur explic

ly in our basic formulation.

There now remains the task of deciding on the remai

ng
ation of the modal. Mathematically a model for two
parallel linear regressions set at a certain distance apart can

paramet

be described using three parameters. Physically one can associate
four simple meaningful quantities with the situation: the
horizontal distance between the lines, the Joint slope o* the
lines and the two intercepts of the lines. The decision before
us is which two of the last three quantities to include as
parameters in our model. We have come to the conclusion that the

correct model will depend on the precise experimental situation

under consideration. The problem we are primarily concerned to
study is that of calibrating a relatively unknown tost substance
with a relatively wellknown standard. In this cast we be

eve
that the experimenter would be most happy about quantifying his
prior beliefs about the regression line for the standard
preparation completely, and then quantifying, possibly independentl
his prior beliefs about the likely log potency ratio of the

test preparation when compared with the standard. If normally

stributed errors are assumed then we have the following model
for observations on the standard preparation:

y - N(u*Bx,02)



where y is the response, :is the log-dose, 8 is the slope of
the regres

a, its intercept and
a2 the residual variance Also we have the following model for
observations on the test preparations

y . N(0*B(u*x),02).

where w is the log potency ratio. Combining these two into a
single equation the basic model is

y - N(at-Biiz*Bx,02),

where z is a dummy variable taking the value O when a dose of
the standard preparation is used and 1 when a dose of the test
preparation is used.

This model has an obvious disadvantage in that it is
nonlinearj however we believe that our parameterization is a
more natural one than the one used in the standard sampling
theory analysis, and in particular we believe that the problem
of combining information from several different assays on the

some pair of substances is made logically simpler by this
approach.

In the following chapterswe explore the consequences
of adopting this model and we follow closely the ideas set out
by Lindley & Smith (1072) for the
where necessary to this non

ear model, adopting them
inear case.




Chapter 2.  Analysis of d Single Aucoy With Known Residual
variance

2.1 The Mudel

The first analyaio wo sha’ attempt is that of a single
assay. For initial simpl

city we shall assume that the residual
variance is known, and then in a later chapter we shall remove
this restriction. To carry out our first analysis we shall

use the following two stage model:

1st stage: y - N{ia*Bpz*ex),02}

where y i3 the response, x is the log-dose, and z is a dummy
variable taking value O when a dose of the standard preparation
is used and 1 when a dose of the test preparation is used. The
second stage of the model describes prior knowledge about the
parameters in the first stage: oqf60, end the elements of £
are assumed known. Wo have considered a general case where

all the elements of Z can be non-zero, but in many cases some
of the off-diagonal elements wi

I be zero. The appropriate
form in any particular case will depond on the precise nature
of the prior information available.

As an example of a case where some of the elements of
£ are zero, let us consider the following situation. Suppose
wo want to determine the activ

ty of a test preparation of
vitamin D by comparison with a well known standard, and
suppose we are going to carry out this particular assay on
chickens. It bo happens that we have carried out many assays
on this medium using our currant standard and other tost preparations,
but the only assays we have done with our current pair of
substances have used rats insteau of chickens.
By considering the results we have obtained in the past
for the standard preparation in assoys on cl

kens, w .hould
be oble to form an idea of what to expect next tima. Let the



intercept with the x-axis, and the slops of the linear part of
the log-doae response curve be a & 6 respectively. le construct

values aQ, BO, In, Ei?. 122 such that to a raaeonabl

Also, by considering the extent of the

near part of the log-dose
response curve in past assays we should be able to decide on
the range of doses to be used for the standard preparation.

Quite independently of the above we now consider the
results of the rat assays. Let the log potency ratio of the
two substances concerned be u. We construct values uQ and £33
such that approximately

V - N{s0.E33}

We can now decide on the range of doses to be used for the test
preparation and then on the final design. A method for
designing assays is discussed in Chapter 3.

Amalgamating the prior information from the two separate
sources the second stage of the model becomes

The situation described above will occur rather infrequently.
However, the implied structure for | will hold approximately
In many cases where prior information about the log putencyi
rotlo of the two substancos concerned is o. isoed separately
from prior information about the behaviour of the atondard
preparation using the current assay medium.



2.2 Posterior Olstributlon-

After the assay results have bean obtained we can multiply
together the liKelihood and the prior density, as given by 2.1, to
form the posterior density of the three parameters a,8 ard u up to
a multiplicative constant.

This gives:

la,a.ufglo.xp-~[a2in*i:l A*2arEKi*urz1*E12)* s A Ex12*2pjixi z1*u2Ezi )’

-26/Ex1y1*UEy1zi»B0E2a»00E12-(u-Uo"

\ - - .

where n is the number of subjects in the assay. .z and x°
refer to the i th .subject, 11+ is the lij)th element of 1’1, and

summations are from i”l to - n unless otherwise i

cated.

As might be expected, this does not correspond to any
standard distribution, and consequently its properties are
difficult to examine. For example, we have been unable to find
either the mean or the variance analytically. We can, however,
find the mode. This occurs at
a-1yi-Oui:zl-FIEXI *a0E11-(B-60)ri2-(w-po)ri3

n ¢ E11

0-EXiyi*v.EyiZi-aEx1-upEZi*00E22- (a-a0)EN2-(L-U0)J:23.
wyw [
Ex .2*2nEx .z .*h2Ez 2*E22



W-6ry1Z1-B2Ex121-06J:21*WOE3i - (a-a0)E13- (B-Bo ):23

”

If one has very little prior Knowledge about a, B & p.

the elements of E will become extremely large, and consequently
the elements of | 1 will become very email. In the limiting case
of no prior Knowledge they w

I all be zero and the mode will
occur at

e-y-Bpz-Bx .

B-Exly1*pEy1Zi-onx-apnz

Ex12*2pExiz1*p2Ezi 2

FeEyizi-0Ex
2
BEZ.,
where y is the average of y~, yA,... yn< z is the average of
22>...zn and x is the average of x*, x?. Ssubstituting

for a in the expression for p. and for a and p in the expression
for 6 gives

(u*)

7z

- EGA-)(yA-y) and similarly for SXK. Sx; __o .y,



The expressions for/Sandyu.. although disguised by the use
of the dummy variable z, are exactly the estimates of elope of
regression line and log potency ratio obtained by the standard
sampling theory analysis. This can easily be seen as follows.

If we dispense with the dummy variable z we have the following
relationships:

Seyz"'ngnT

where suffices s and T refer to standard and test preparations
respectively. On substituting these relationships into the
modal values for and we get

#-iCx1-xB) (yl-yB)

By examining the form of the Joint posterior density
given in 2.2« it can be seen that the Joint distribution of
a and 0 for a Fixed value of u is in the form of a
normal

ivariate

tribution. We can therefore integrate over a and 0



to obtain the marginal posterior density of u up to a r.ul
constant. This calculation gives

*CI*|y)«c|v| *exp-1{p2i;33-2»)CaoEl 3*00J23*u0E33)-
[Lfir

11 OE12“1 polE13

b-rxly i *UEy1z1*00E22 +a0E>2-Cu-uo )E23

Again, this density does not correspond to any standard
distribution, end it is even more intractable than the Joirt
posterior density in the sense that the mode cannot be found
analytically. For a closer investigation of its behaviour we
have resorted to numerical techniques in special casesi see
section 2.5.

The posterior marginal density of O can be found in a

ar fashion and appears no less complicated.
In our subsequent discussion, either for theoretical
simplicity, or as an approximation to a real situation, we may
wish to consider the case where we have little or no prior
information about one or more of the parameters in our model.
For example, reduction of prior information about 0 would cause
*22 to get bigger, and eventually to t»nq to infinity. Da.'uie
allowing the limiting situation of no prior Knowledge to occur
we should examine carefully the consequences for the posterior
distributions involved.

In the f
aboutpcauses the Joint posterior donsity to be unnormed. This

Towing argument we show that prior ignorance

does not happen when there is no prior Knowledge about a or 3.
We assume throughout that for at least one of the preparations at
least two different doses are administered.
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P ETT -
r

£M (£23)2*E22(EN3)2-2EI12£13E23*1 3)2Ex.2-2E13£23Ex.*nCE23)2

ENI£22-(E12)2*1 {En Ex12-2E32EX1*nE22)*n 5"

a2 ar

It can eas

y be shown that p>0 for all the cases under
consideration, and hence

/// f(a.8.wydadfldw< -

Now suppose £33-*-. B(p)”1l, and as in the previous case C(w)

becomes a constant. Hence

71/ F(a,f3.p)dadBdu»s "exp nf 1.dp

This completes the argument.

If we had not satisfied the initial assumption of at least

two doses being used on one preparation, our argument would still
have held provided A(u)} O for all®A. From 2.7 this will be
true if

ENIE(x1*yz1)2-2E126(x1*uz1)*nr22> 0.

that le if either £22} 0, or EII>0 and a non-zoro dose of the
standard is used. This will happen when either we have some
prior information about the slope of the log-dose response line
of the standard, or we have some prior information about the
intercept of this line with the y-axls and experimental Knowledge
about some other point on it, thus enabling the slope to be
estimated.



In the light of the preceding result we shell in our
subsequent discussion consider using uniform priors for o

a parallel

ine bioassay one obtains information about log

potency ratio in a rather indirect way and consequently the
resulting information is imprecise. The result compares with
the fact that in the standard sampling theory analysis the

log patency ratio is estimated by the ratio of two statistics
whose sampling distributions are normal and mutually independent.
Consequently the sampling distribution of the estimate of log
potency ratio has no finite moments.







to the mode of the Joint posterior density for finite samples
when the terms involving the p

r knowledge are neglected,
»80 2.4 & 2.5. A- is Ind . li .ire the
estimates of 6 i u g

en by the standard sampling theory analy:

It can easily be shown that the variance of O is equal to the
sampling variance of the standard estimate of slope, and that
the variance of y in equal to the approximate formula frequently
used as the sampling variance of the standard estimate of log
potency ratio.




2.4 Estimation of Log Potoncy Ratio

Following de Finettl (1975) we foal that, within tha
Bayesian framework, the natural way to present the solution of
a statistical problem Is to give tho relevant posterior distribution.
In the present case this is the marginal posterior distribution
of u. in the context of - it. drugs rei |
labelled with particular strengths and so there is a need for
a more concise representation of the available information In
the form of a point estimate of v and also possibly a confidence
interval.
We shall approach the problem of point estimation from a
decision theoretic point of view, and we shall assume for the
sake of defi

iteness that a quadratic loss function is appropriate.
1 be the

1

imensional numerical Integrations. At the
present time there are fast and reliable computer packages

which perform one-dimensional numerical integrations of the

type required and so this calculation should not present too

In this case the best estimate of log potency ratio

marginal posterior mean of p , calculation of which
involve two one-

great a problen. If necessary, howevpr, one could approximate
the marginal posterior mean by the marginal posterior mode,
the calculation of which is a much simpler problem numerical

A further possible estimate of the log potency ratio is
the value of p at the mode of the Joint posterior distribution
of a,8, and p es given by 2.3. If large quantities of data
were available the Joint posterior distribution of a,8 and p
would be approximately multivariate normal, and the J
would be approximately equal to the mari

nt mode

al posterior means.
However, data from a si

gle assay are unlikely to be sufficiently
extensive for this to be the case.
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Figure 2.4  Karginal posterior density of p for the generated dato
set when the prior distribution for p is j(0.000,0.0149)




Variance of Value of

marginal  Value of at mode
Marginal posterior y ot  of Joint
posterior  distribution marginal  posterior
mean of of u  posterior  density
u *(@.5.ply)
0.207 0.0336 0.236 0.229
0.253 0.0313 0.264 0.257
0.270 0.0313 0.290 0.285
0.110 0.0172 0.120 0.114
0.389 0.0146 0.369 0.366
0.632 0.0182 G.G19 0.621
0.0719 0.0111 0.0763 0.0723
0500  0.0149 0.412 0.00974 0.411 0.410
1.000 0.0149 0.777 0.0131 0.769 0.772

TablB 2.2 Features of somé post'Tinr distribution:, using thn
generated data set for varying prior distributions

Parameters of the prior distribution  Parameters of the approximate
normal posterior distribution

Mean vo Variance £33 Variance 022
0.000 0.500 0.229 0.0281
0.500 0.500 0.257 0.0281
1.000 0.500 0.28S 0.0281
0.000 0.0296 0.122 0.0149
0.500 0.0298 0.372 0.0149
1000 0.0298 0.G22 0.0149
0.000 0.0149 0.0801 0.00993
0.500 0.0149 0.414 0.00093
1.000 0.0149 0.748 0.00993

Tablo 2.3  Parameters of the approximate normal posterior
distribution jsing the generated date set for varying prior
distributions.



2.5 A Generated Data r.et

In tl

section we shall Illustrate the ldeas laid out

In the previous sections with the aid of on artificially

generated data sat. Data for a 4 - point assay with 8 measurements
at each point were constructed with the following parameter

a-.1.0,
6- 1.0,
W owo0.5,
02 - 0.2.

The log doses were 1.0 and 2.0 for the test preparation and
1.5 and 2.5 for the standard preparation. The data are given
in Table 2.1.

Taking the prior distributions to be uniform for o and
8 and N(po, £33) for p , the posterior density of p is

*tp |y)" (Sxx*2pSxz*w2Szz)" "exp (Sxy*pSyz)2

202CSxx*2pSxz*p2522)
i-Cp-Po)2

2*33

Using large sample theory the approximate posterior distribution
of p is N(0.243, £.0208). For various prior distributions of p
the constant of integration was found numerically using Causs-
Hermits quadrature as described by Froberg (1985). Serna
exanples of the resulting posterior densities are illustrated

in Figures 2.1 - 2.4. The values of 0.0290 and 0.0149 for the
prior variance of p are intended to represent situations

where the prior information carries approximately the same

amount of information as the data, and approximately twice as
much information as the data. For each of the prior distributions
considered the value of p at the mode of the Joint posterior
density of a, 0 and p, the value of p at the mode of the marginal
posterior density of p. and the mean and variance of the




marginal posterior distribution of p ware calculated. The
results are given

Table 2.2. Tha marginal posterior mean
of p is theoretically the best point estimate of u, but we can
see that in thi

case both the value of p at the node of the
marginal density of p and its value at the mode of the Joint
posterior density of a. 0, and p are good approximations to
the marginal posterior mean. Of these two modal approximations
tha one based on the marginal posterior distribution should
on theoretical grounds be the better one, although for this
data set the estimate based on the Joint distribution is
closer to the marginal posterior mean for almost all the prior
distributions considered.

on Inspection the densities illustrated in Figures 2.1 -
2.4 look as if they may not be very different from normal
densities. This raises the question as to whether they can
be reasonably approximated by normal densities. If satisfactory
approximations could be found it might be poss e to apply
them without access to a computer. The density corresponding
to the large sample approximate distribution is illustrated
In Transparency 1 inside the back cover. Comparison of the
transparency with Figures 2.1 - 2.4 shows this density to be
a reasonable approximation to the small sample density only

when there is little prior information available. A more

useful approximation might be obtained by combining the prior
information with the approximate large sample distribution in

some way. Suppose tha approximate large sample distribution of p
for a data set is N(M.S2), and suppose we treat the experimental
data as if it were a single observation fl from a normal distribution
with variance S2. The posterior distribution of u would then

be [i * NCpg, <R2) where






Chapter 3. Use ut the Prior Distribution in Ursigntnr the
Experiment.

3.1 Introduction

Whan we have available prior information about the
parameters in an assay, it seem3 reasonable that thi3 information
should Influence the doses used.

The use of prior distributions in designing experiments
for parameter estimation in non-

inear models has been discussed
by Draper S Hunter C1967). We shall now give a short summary
of the relevant parts of this paper. Suppose we wish to make

n observations of the form

13k cit (it 2 eeenj

where the ers are independently normally distributed with
zero mean and variance 0? x - txj, X2....x")T is a vector of

k variables, 6 *(6:,82... .8p)T is a vector of p parameters to
be estimated, and fix,8) 1s a non-linear function of x & 0.
Suppose we also have available prior information about the fI's
in the form of a multival

te normal distribution with mean e
and covariance matrix t.

We should like to chooae the n points x*(i"1, 2, ...n)
to obtain the best posterior distribution. The criterion for
best 1s taken to be to maximize the final posterior density
both with respect to e and x.li«l, 2, ...n). By approximating
f(x1# 0) by the first two terns Iti reyloi expei n it ut
@®n, the maximum likelihood estimator of 8 after the experiment

has been carried out, the best design is found to be that which
maximizes

IXTX & 0*E"»]
with respect to x.(i"l» 2, ...n), where the (i.J)** element of X
is af(ii* e)|

8ej 1 e-en



bo the (J.K)th element of XTX 1*

Since @n is not available before the experiment la performed,
we have to approximate 9n by 67 thuB obtaining a practically
applicable criterion.

3*2.  Application to Parallel Line Blo,”;ijy

In using this procedure to design a parallel line
bioassay we shall use the model as stated at the beginning
of chapter 2.

In this particular application a further constraint wi

be imposed by the biological system on which the assay is
performed, because the assay is restricted to lie in the linear
part of the log-dose response curve. We sha

assume that the
log-dose response response curve is linear for both test and
standard preparations for responses lying between two particular
values which we estimate to be yj & y2. We must try and restrict
the doses used so that the responses will lie between these

two values. We have to decide on the doses before carrying out
the assay, and so we must rely on our prior information in

doing this. Consequently we shall choose the points
such that

» % %« 7,0 . (B

The region which satisfies these constraints is a convex hull
and we lhall call it the feasible region.

To return to the optimizing criterion of Draper ft Hunter,
in this application  f(x. q)-a*0iiz*0x and 6T0-(e .= .Uq*.




EL.

~otai
CUOEZI*EXD) Wy ¢ g v “orziz*rz
ot cowran

Suppose m.of the doses are on the test preparation,

average of these log-doses

and the

is xT» Similarly ng of the doses

on the standard preparation and the average of the log-doses

S s»2  Si3
12 gy s23

3 s23 $33

are

is

In practice o2 would usually be unknown and so S would have to

be estimated rather than £.

Ixtx*o2e

* Cn*Sil>

InT Vnsv™

(nTBO*S13)

Thi3 notation gives

TVAVYV L -5t 1 (W oslY)

CiT(s:T*"T,0lo"sni

#{nTnsBo2*nS33-2nT60SI 3*nT802S 11*Su $33-(S13)2} Exia

4<-nsB02-1»02s1 1*260S 1,-s™ )nT*;T2

+2(0 S1s-533) n n x.x



+2(u0S 115 33-y0 (S13)2*n

€k

* terms not involving the Xj
If we fix  at a particular positive integer no bigger

than n. the above expression will be a convex function of the
\ if the matrix G i3 positive definite, where

is the J x J identity matrix .,

X k is th® J x K matrix whose elements ore nil 1.

£ will be positive definite if and only if all its

principal minora are positive, is implies two sets of
conditions:
1. Pmg>0, o*m*nT

2. ((p*IN(p*nTg)-nTIs2)>0 , 1ilSng

Considering the first set of conditions,

p*mg-(nT-«@)(nse02+00a8 11-2005 13»S15) «FiS3,*StlS , - (513)2



From its de

tion, S-o 2E where E Is the covariance matrix
of a multivariate normal distribution and 02 is a variance.
Hence S w

1 be positive defi

ite and consequently

I alao be positive definite. Thi

implies that

6025 11-280S 13*533-(RBo-1")s* (a0-iy. $33, and {Sn $33-(S13)2 - |s*|

are all strictly positivej so it follows that p*mq will be strictly
positive for m-0, 1, ...n" and the first set of ccn- itions is
always satisfied.

Considering the Becond set of conditions, on substitution
(P*Ir)*(p*nTqg) - nTis2-(ns-1)S3T*SLIS3T- (S13)2. This will be
strictly positive for 1*1, 2, ...nr from tha posi
of s*.

ive definiteness

Hence we have the result that for fixed nT
Ix"X~02!1 11 is a convex function of the x*

zation of |xTX*a2E~1] .

We can now apply the criterion of Draper & Hunter by
first fixing the number of doses on each of the test and standard
preparations and maxi ing the resul

ing expression for

ize it with respect to n.

First let us fix the number of doses on the test
preparation at nT, leaving (n-nr) doses on the standard
preparation. Maximization of [TX*o2e”1| over the feas

e
legion then amounts to maximizing a convex function over a
convex hull

The maximum w therefore lie in a vertex of the

le region. This means that for each of the two preparations

feasi
the doses will lie at the ends of the permitted range. Suppose
Kkt doses of the test preparation and kg doses of the standard

preparation are at the highest permitted levels. Then from the

constraints, 3.1, kT of tha xA will take value
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Inserting theai

IXTX*o 2£%11,. 2 .

T 1A 2 fe"s».J-»0isn.2

0 ,.2 w "

*kS2*0 (-nH.,

‘kTfr v onrn/ "M -~ - T.02s1..sllsl (s33)2}
~nS@0S23“80S1,523*s13s 23*. 25i3_si33,3)J
' “nTB02s11°nrB0s*3-~"122"3.s 1is23iJ
1"« involvin,
e »iP.n,s [XTx.0Jj- S
-in b. gonoan if for *» w T

ths matrix H :
S 20 °*»3tiv. 0sfinlt



Inserting these expressions into 3.2, we have

IXTX*02r » k~r2 {-nseo2-B02S2“*2B0S* -S33>

702

+kg2r2 t-nTB02-SS3}*2kTksr2 {-S33+B0S13}

io2 602

kT j r2 {nTnc802*nS33-2nTB0S 13*nT802Su *SI1S33

-2

If .

n_B $23-8 Sn S23*S13523*B S12513-513533)

#kg j r2 {nTnsBo2”nS33-2nTBYE 13*nTBQ2S I1*SIIS -

#2r Ayi-00]AnTBO2Su -nTBOS 13*S11S33-(513)2}
#2r {-n_8 2512*n_B S23-512533*S13523>

+ terms not involving kT or kg . (3%3)

Considering |XTX*02i 1] as a quadratic form in (k~,ks)T

IXTX»0 21 1] will be concave if the matrix H is positive definite.



“
(nsBo2*B02S i1-280S13*SJ3) CS$33-80S13)

(533-BqS13) (nTB02*S33)
For H to be positive definite we need

1. ns802*B02S11-2B0S13*S33? 0,

2. B02{nTnseo2*nTBo2Su -2nTB0oS13*nS33*S11S33-(S13)2} > 0.

These conditions are both satisfied duo to the positive definiteness
of s*

It follows that |XTX*o2E_ 1| will achieve its maximum at
the solution of the two simultaneous linear equations

3 IXTx*o21™1] -0 ,
& 3 IXTX*02E_I|- O
*S
From 3.3 this is the point
Kt - nT-$237(yl-fio*r/2) S13 . (3.4)

2 r rBo

Kg - ng*s23-(yl-ao*r/2) (S13-B0S11) - BOSI12 #

2 r rBo r

Assuming the values obtained for k" and kg are such that
kT

es in the interval fb.n") ond kg lies in the interval
c0.ngl we con now substitute these values back into |xTX<<j2i“3|
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SU_S21.513

Manes wa have the result that the optimal design is to place

and ks dosB3 at tha highest possible dose for the test and

doses at the lowest possible dose for the test and standard
preparations, where kT< kg (nJ-kT) & (0g-kg) are as given above.

This procedure does not quarantae to place an integral
number of doses at each point in the design. To overcome this
difficulty we suggest the pragmatic approach of setting nT equal
to that Intagor nearest to the value given by 3.5, and then using
this integral value of nT. finding kT and kg from 3.4 by the
same method.

In order for the solution 3.6 toimeaningful. n mi.f

- n$ SII-2S13t n

,S13-5" + S»> - S1*

2 2 @1

It does not seem possible to interpret these inequalities in any

detail for the general experiment. One case when they will all
hold is when the elemonts of S * are small compared with n ,

that is the elements of E”1 are small compared with n/c2 . This




will occur whan tha prior information ia rethar diffuse when
compared with the amount of information one hopes to gain from
tha experiment. It is quite possible to find examples where
not all the inequali

ies hold. Suppose the optimal value for

nT given by 3.5 is greater than n. Intuitively this naans that
able about the
standard preparation that aven if we devoted the whole experiment
to the test preparation we would s

there ia so much more prior information ava

I Know less about it than
about the standard preparation. A first suggestion would be
to sot nT equal to n and then use 3.4 to find kj. However,
even in the case where a groat deal

s already known about the
standard preparation

I rarely be desirable to carry out an
assay where the standard preparation Is not used at al

possible compromise might be to use jast two doses of the

standard, one at each of the extreme dosage levels. Cases where
nT lies in the interval Co.n] but kT lies outside
range might be more happ

s permitted
y solved by setting kT equal to

0 or nT. whichever was appropriate. The same applies to kg

3.4 Two Examples

Suppose we wish to calibrate a relatively new test
preparation with a well-known standard. Typically our prior
knowledge about tho test preparation will be vague compared

with our prior knowledge about the standard preparation. However,
Just considering one preparation, our prior opinions about the
response for different doses will be equally precise, or in other
words ths variance of our prior predictions of responses at
different doses will be equal. Suppose we consider the fallowing
model i

st etegei  y - N(la**6iiz*8(x-xMS) ).02}

2nd stage:






In terms of the constr:

ts given by 3.1 xg-yyyj-207
200

substituting these values of the elements of S * In the general
design given by 3.6 wa leve Kj«(i|-kjan + 02

and Ks - (ns-Kg)-n _ 02 . Hence the optimal design in th

4 4

example Is to place  n + 02 doses at each of the extremi

of the possible range for the te3t preparation and n _ 02

doses at each of the extremities of the possi

e rango for the
standard preparation. The inequalities given by 3.7 reduce to
the single inequality 02/n . If this is not satisfied it
indicates that a priori a groat deal is Known about the standard
preparation and one should devote all the available resources
to exploring the test preparatlcr..

A second commonly occurring situation is that the prior
Knowledge about test and standard preparations is symmetric in
the sense that we Knew as much about one substance as we do
about the other. We can model this situation as followsi

1st stage: y - N{(al*6m(z-J)*B(x-x"g-j.)) .02}

where xMgT is the average of the nld-polnts of the permitted
range of log-doses for the two substances. The predicted
responses for doses occurring in the optimal design are for the
highest doses on both preparations y"ao i-JO0#>*f#Ixus-xMST)



and for the lowest doses on both preparations y"«ol"100bo*Bo (*L3_*rigi

All these four predi

ons have variance rjeJiaCxus-xrlsT)2*4CA2*B02)Es

We can relate the general model to this example by setting
0-a1-6u-OxMST and 00"aol-Bobo"BoXRIST in the gener.il model.

7n -
From the first of these relations and from the diagonal form of

the covariance matrix, it follows that we need in the general model

MUOERZ Bi3 iy SToiu (9)2:2-10ai:3-16 [i:3H -(XFET*1 "0 11:2X" leol:sI"
El2 E22 E23

EI3 E23 E33 “1BqE3 0o £3

Hence the elements of S * are

,T*>V(r*-*Bo2r3 , 160 IxfiST*iwo
\ fa

x T*luo)2r2

13

substituting these values of the elements of s"1 into
the generol optimal design given by 3.6 we have

~N-Ky~Kg-Kj.~ns*n = Hence the optimal design in this case

>



to place one quarter of the available doses at each of the four
extreme dose points. As one might expect from the general
symmetry of the situation the inequalities given by 3.7 are
always satisfied in this case.





















4.3  Estimation of Log Potency Ra

Suppo3s we are In the position of uniform prior Knowledge
for o and 8 . The way to proceed Is then clear. \We can obtain
the marginal posterior distribution of u up to a multiplicative

constant, as given by 4.4 , and with the help of one-dimensional

numerical Integrations we can obtain the posterior mean of w and

ence Intervul for It.
Unfortunately, the above will rarely be the case, and we
shall have to resort either to more complex numerical techniques
or to approximations. An exact numerical treatment would find
the marginal posterior density of w numerically from the Joint
posterior density of y and 02 , as given by 4.2 i and then base
inferences and decisions concer

ng u on this numerical density.
This procedure requires a two-dimensional numerical
integration. Such Integrations ere quite possible a: _
demonstrated in section 4.5, however the computing power required
Is considerable, possibly more than might be available to a
laboratory carrying out bloassays. In add
any satisfactory computer packages that wi

on we have not found

carry out numerical
integrations in more than one-dimen3lon. As a result of this we
feel that approximations which require fewer computing facilities
ere worth considering.

Suppose we have available a certain amount of prior Knowledge
about a and 8 = hut not a great deal. One possibility would be
to disregard this information and proceed as in the first paragraph
of this section. We shall demonstrate in section 4.4 that the
posterior density for p converges uniformly to the posterior
density for u givsn uniform prior distributions for a and 6, as
prior Knowledge about a and 8 becomes more ond more vague.

If there is substantial prior Knowledge about a and 8
then the above approximation will not be satisfactory since it
neglects a substantial amount of information. In this case there
are two possible types of approach.

The first is to estimate v by its value at the mode of a
Joint density. There are several Joint densities to choose from,
for example w(a.8.U.02]y) . «(a,B.uly) and *Cp,o2ly) . OF these
one would expect the mode of »(u#02]y) to be the beet approximation



*>v* to the marginal posterior meon of u sinco it is baaed on the Joint
distribution of two parameters rather than three or four. All
these modal estimators suffer from the defect that there is no
obvious confidence interval that can be associated with them,
unless the assays are large enough for the Joint densities to
be approximately normal.

The second type of approach is based on a suggestion by
Box ft Tlao (1973). The data Bhould contain quite a lot of
information shout 02 , and consequently the density *(02|y)
should be reasonably sharp, with most of its probab

ty mass
concentrated over a small region about its marginal mode.o2 say.
Consequently, integrating over 02 in *(w,02|y) will be nearly
equivalent to assigning the modal value to a2 in *(ulo2.y) .
Unfortunately we cannot obtain a2 analytically. We can, however,
obtain It numerically by carrying out a series of one-dimensional
numerical integrations. If this is not possible, due to restrictions
on the use of computing time, or.e could approximate 02 by the value
of 02 at the mode of ir(u,02]y) . This type of approach lend3 to
an approximate numerical posterior density for v from vihich tho
posterior mean and a confidence Interval could be estimated.




4.4 An Argument Supporting an Appro-.1- \ PR S
Section 4.3.

In this section we shall show that, as prior knowledge
about a and 8 becomes more and more vague, the posterior density
of p converges unifornly to the posterior density of p assuming
uniform prior distributions for a and 8 as given by 4.4.

Wo shall assume throughout that S , S and S are

greater than two.
Let
V)
fefnX(p)}_iCo2) 2 QxP‘;Z%ZJVX*SW’VZ_iEI].{“D*J (p2-2pp )EJ3. (4.5)
)

(V)

Vo tnXCP))"il°2) 2 exp-J_ {vX*Ey,2)exp-1
102

(to2 W) +0-Z 17UXP" a TVa . . n-1,2,3,.... @.6)

V.omn XCu)  m2nX(p)J b
b
wherB W(p)-Eu (Ex12*2pEx1z1*p212z12)-2112E(x1*pz1)*nE22,
X(Pp)«Sxx*2p5xz*p2Szz
Y(p) mSxy*pSyz ,
Z  WE" E22-(E**)2

any ¢ acEu »SAEL2 - (p- #)EN*

am
02 m n
VAR .en22 +aln-Cp-pJE23
02 02
v w = ~
N ey livy
¥ Y W 02 m J
K e *lzi - Biv . 2pExlzi # p2Ezi2

yy - /\o2 02 TZ /)



This is équivalant to considering a sequence of prior distributions
for a. B and u whose variance matrices have invarsos

e, 13
mnoon oo
£12 g 123
noomoom
113 123 £33

Every matri

in this sequence is positive definite if the first
member Zy 1 is positive definite.

We wish to show that for all ey 0, there exists
an M such that for all M,






It can easily be shown that for posi

Un.u.o2)n

n f Sxx-S2xz L
O\ szz 3

and for negative p

C(*.w.02)4 tc,u*"-t3U3K 2W2-tIW*50

£ fsxx-S2xz
s2l Szz )

where CQ. Cl. £2» and €3 are constant independent of m, p or 02

e"“E23n Stt-1z12/eu 133 (112)21
7- Fol« -« J

cw will be strictly negative for all « and all , banco
C(n.p.02) will be bounded abovei that is Ctm.M.02)A C for

I'm, all uand all 02*.Q8,w) = Lastly vX*Eyi2> 0, so

for nil 02fcQ,«) . Relating these Inequalities to 4.6 we have



We would like to show that for any large 4 there
exists an M such that for all m~H

for all p . This will be true if there exists an M such that for all
mM. If - fj 4c for all p and all 02«to.«)
3
We shall need the result that
(n*v) )

for all p and all 02fc£0,43 = where p is the large sample mean of

Let us first consider the case where p is either very large
and positive or very large and negative. Applying identities
already obtained to 4.5 and 4.6 we have that

Mexp-J(p2-2ppo)E33*expC(m»p,02)}

For any 4 and c, exp-J(p2-2pp )133" 4c/6A for all p such that

Ip1~ K. for sufficiently large K.

It can eas

y be shuwn that for positive






whet*« RCv), S(u) and T(y) are polynomials in y with coefficients
independent of m and 02. If we consider yfct-K.K), then
€(m,y,02) will be bounded both above end below for all m and all
02fc£o,63. Hence for sufficiently large m

exp *{p(eol 1J*BOE23)*C(m,y.a2)j

be arbitrarily close to 1 for all y<(-K,K). The same applies

fl ¢02W(u) 0 ) 1
1 mX(y)  m2nX(y)J

Consequently, by examining 4.7 we can see that for sufficiently
large fl |f-fj < «& for all m>M, all 02[j3.63 and all y in

any finite interval (K..).



We »hall now try out our ideas on some genuine data.

Table 4.1 contains data from four repllcata assays of the
antibiotic tobramyoin. The assays are carried cut in patria dishes
in which there is a layer of agar gel containing organisms.

Wells are cut in the agar gel and filled with a d03e of the
preparation of antibiotic. The antibiotic will then diffuse into
the gel in a zone around the well and the organisms will be
inhibited from growing in this zone. The size of the inhibition
zone will depend on the amount of antibiotic in the well and the
response variable measured is the area of the inhibition zone.

In this section we shall consider the data from the first assay

in isolation. The first task

to decide on values for the
parameters of the prior distributions. Ve have used the following
values for the second stage parameterst

The values of oo> BO and uo were obtained from the data for the
rema

ng three tobramycin assays, and I was chosen so that we
would expect the pricr Information to carry about half as much
weight os the data in the analysis. We have set v>A»0 in the
prior density ofo2as the data should contain a substantial
amount of information about 02.

We have followed several of the suggestions made in section
4.3 for the estimation of log potency ratio and our results are

summarized in Table 4.2 and Figures 4.1 - 3. The different

ar. The mean and mode of the
marginal distribution of u are a little higher than the other

estimates of p are all very s

ample mean is somewhat lower. The

marginal density of u and the two approximate mar

nal densi

obtained in the first case by ignoring the prior information about
a and 6 , and in the second case by assuming a2 is known and equa

to its value at the mode of the Joint distribution of p and 02 , are
illustrated in Figures 4.1 - 4.3. The three densities can be









Mean
Mode
Modo
Mode
Mode
Meen
Mode
Mean

of
of
of
of
of
of
of
of

nely)

iryly)

*(a.B,u.a2ly)

w(a.6,uly)

it(w,azly)

ir(tily) assuming TH.E22"*"
n(wly) assuming  i»£22%"
s(uly,02)

(92 1Is value of o2 at mode of
n(u.o2ly) )

Mean of Approximate Large Sample
Distribution.

Raaults of analysis of first tobramycin assay wk

prior parameters

-.00979

-.00941

-.0120 20900. 637C. 49000.
-.0120 28900. 6370.

-.0127

-.0123

-.0126

-.0127

-.0173 20900. 6370. 52100.

.29 X 105 .1 - .6x10* O 0
.64 X 10F 0 .2x105 0
1.00 0 0 -4x10_
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Chapter 0. py.tmsiun c* the to Account fur a Fora Complex
Structure.

5.1 Introductlon

Very commonly, experimental design -features are incorporated
into the design of assays. For example, with assays using

ve
creatures such as rats a complete assay might consist of several
identical assays each carried cut on a set of litter mates. This
type of design la a randomized block design.

In other types of assays such as free fat cell assays the
experimental units may at some point be placed in a square
configuration while undergoing some form of treatment. It may
be thought likely that there are two sources of variation

corresponding to the vertical and horizontal position of an
experimental unit in the square. If this 1b the case then it
may be possible to arrange the experimental units in a Latin
square design. Suppose there are p* experimental units arranged
in a pxp square, then there would be p dosage levels in the
assay, each occurlng once in each row in the square, once in

each colunn in the square and p times altogether in the assay.

We have tried to extend our basic model, as described

in chapters 2 and 4, in two separate ways to cover the two
types of design described above.

For the randomized block design, assuming g blocks with
m experimental units in each block we have used the following
model for an observation in the kth block:

st stage: ylK . N{(a*cr*8pz~*8x1),02} i

independently for 1-1,..

kl,...q .

2nd stage:

ek . N(0,0ae) i independently for k-1,

The prior distribution for oach t is assumed independent of that



for every other e and also of the prior distributions for

For the pxp Latin square design we have assumed the
following model for an observation in the kth vertical and the
1th horizontal positiont

1.t yu(1) -

independently for k*1,

fij “ N(0,02%) i independently for 1*1,...p A

“N(0,02) i Independently for k*1,...p

where again independence of the prior distribution for eachy
and 6 from all other prior distributions is assumed.

Before preceding with calculating any posterior distributions
one or two remarks seem appropriate.

Firstly, these two models are rore complicated than our
basic model in that more parameters are Involved. Consequently
we expect those posterior distributions which are obtainable

analytically to be more complicated and in general to involve more
parameters than in the previous case. In order to make inferences
about the log-potency ratio we should therefore expect to have

to rely more heavily than before cn approximations and numerical
techniques.

Secondly, we have assumed exchangeability between the
individual cs, yu and 6s respectively. We should like to stress
that this assumption may not always be appropriate, especially
In the case of the Latin square design where in many cases
prior considerations would Indicete yi < Y2<

Lastly, if we had posed uniform prior distributions for
means of the es, ys and 6s instead of fixing them at thu partloular
value of zero, then we should have had to Introduce constraints
into the model of the type discussed by Smith (1973). This wou
have mads the model conceptually more complicated. Given the
exchangeab

. < YP .

ty assumption, eny prior information about the meanu



Of the cb, Ys. and 6a can be fully incorporated Into the prior
distribution of a . Hence there is no loss of general in
fi

ing the means.



5.2 Randomized 3lock Design With Known Variance:,

We shall first conaidar tho randomized block design and
in this sec

n we shall assume that both the residual variance
02 and the between blocks variance 02 are known.

Wa can multiply together the likelihood and the prior
densities as given by 5.1 to obtain, up to a multiplicative
constant, the Joint posterior density of all quantities involvedi

wCa,B.u.e|....cqly)«eiip-i]aa’ENI*maj*S2 };7E | CxAAPXjZAu2*n)j
q B m i q q m

E* * 1I\*2aB\lI2*R E Ox »viz )(*2maE e *2B't ¢ E Cx.mz )
k-1 Kh2 a2l ( o02i-1 02 k-1 K 02 k-1 KI-1

-2a(00E| 1*BOEI2-Cp-wo)E13* ™ =}

<72

~2B{S0E22.a0E 12 (u-uo)E23*a E ty~1}
L 02i-1 02 i-1 J

-2» E y.KeK*v2r33-2u(aoZ13*BOE23*ii0E33) } , (5.3)

02k-1 J
q m q n
«h.r £ £ vih. Vv " o« »l» — »-k-1 1 »IK -

mg k-1 i-1 qk-1 m -1

The mode of this density occurs at

a .. -mge. -mgd(x*[i2)*a Ell-(S-fl )E12-(u-p )EI3
222

I (xlyl*wyl.21) =
02i-1 0]

*@)Ix*pi)>B#E22-C «-« lin*-C

£ E  (Xj2*2ux"2j*%i2272)*E2



-2 02
.t1-B2qIxAz1-mg6 (a*c.)>=u *3-[u-a0)ll I3
gs2rzi2 « |
k-1

As in the case of the simple model, for given u , the other
parameters are Jointly normally distributed and so we can obtain the
marginal posterior density of p up to a multiplicative constant:

iTp2E33-2pfa0E 13+80123+00E33)- C T " "¢’
d d
el el

9 -

where c-mqy.. ¢ a 111»» 112-(p-p )E13
02

ixlyl.*u>1.21)*90i 22*a0i 12-(»-»0>c2> .

and W is the matrix whose inverse is









5.3 Randonlmd Block Design With Unknown Variances

In proctlcs the residual variance, a2 , and the between
block variance, a2c# wi be unknown and should be regarded as

parameters in the modal. Following section 4.1 we shall use the
relevant conjugate prior distributions which are that vX has a
X2-distribution on v degrees of freedom where v, X, ve> XE

are known constants. If we call the expression on the right hand
side of the « sign in 5.3 fiCa,B.u,ej,...eq), then the Joint
posterior density of a,8,v,ci,..,eq>02 and o2c is

n(a,6,Prei..... eq,02.02e |y)«(02)

[6))

The mode of this density occurs at the point given by 5.4 with

qm
02>vX*1 1 (ylK-«-cK-6ez1-Bx1)2
k-11°1,
mgrv*2
q
(5-8)
k-1
«

o* and 0*(. Since the former possibility leaves a distribution
of 3 parameters w

parameters we con:

e the latter leaves a distribution of (3*q)
er here only the former possib

Carrying out the integration we get

(5.9)



whera f2Cw.02.02c) is the expression on the right hand side of
the « sign in 5.5.

Unfortunately, in the general case, we can proceed no
further. The exact numerical treatment would require a
threa-dimensional numerical integration. Such an integration
should be quite possible but we have not at present attempted
it. It would probably he prohi

tively expensive for routine
analysis of data. Consequently we must resort to some approximations.
Taking the approach suggested in the last paragraph of section

4.3 we could assign the values of 02 and 02 at the mode of
*(p.02.02cly) to the marginal distribution of p for known

variances. This approximation should be quite good as regards

02 since the data should contain a substantial amount of information
about the residual variance. Unfortunately the same cannot be
said for °2C- This problem could be surmounted in part by
assigning the value of o2at the node of *(p,02,02 |y) to the
Joint distribution of p and o2e for known 02, if(p.02£ J02,y) and
then finding the mode of the marginal distribution of 02t> given
the assigned value of 02, by a series of one-dimensional numerical
integrations over p.

In the case where wa have uniform prior distributions for
o and 8 we can proceed slightly further. From 5.6

@r-Jg*v) @+**2)
*(p.02.02¢ |y,En .E22 ~ )« (02) 2 (o2t) 2 Wil

(5.10)

If we now make a transformation of variables from p, 02 and 02" to
p,oa and S? where S2 -02/02c , we have






5.4 Latin Square Desi

To avoid repetition we shall consider the Latin square design
with unknown residual, between row and between column variances
straight away. Ve shall assume the relevant conjugate prior
distributions and use a notation s

lar to that n section 5.3
Taking the model as stated in 5.2 the Joint posterior
density of all guanti

irca.8.P.Yi....Yp.«i..... «p,02.0% ,02F |y)«(02) 2

X exp-j
02 1-1

P P
42 1 YhE 6x 2alE”, C.)*aoE1l*SoE>2-(u-uo)E,31
azkd  1-1

P P
“ZE_ 1 V«.iV2EE yeilel6i






- )>23-(a-«0U 13

y=E W y..(1)Zi-£ B2rx
02 1-1 £ of.

£ etZj2*133

- B @

whera y. - 11 y and 6. - 1€ 6

..ép giving tha Joint

Wa can tegrata over a,6,yi....Yp.6j

posterior denslty of w,02,02, and 02f :

S (P2Rv*2)  _tpruy*2) _(p*v<«2)
«(M.02»02Y .024 |y)«(02) 2 () 2 (02f) 2 Jul *




U2E33-2u(a0E I3*ROE23*y0E33]- f *

where f-£7y..(.)*aQE 11*BoE12-(u-yo) T
02

g-£ E §..[i)(x1*uzi)*Bor22*aoE12-iu-wo)E13

02i-1

VeV © KL
02

Jx-£5-7-3 . 1-l.p.
02

and U Is tha matrix whose Inverse Is

E117 E12*p2 (x*pz)
w2 02
p
r12*p2 (x*iiz) E22%E E  (x2+2ux121%p2:2)
02 021-1
£ i) 1
f.i»

T
2
P (x*p2)1
> -2p
ey o3
ifp /i~vp
cp  epep



Un U2 - lp “inp

ul2 w2 u**1PT ut e

moooA
w>p Uillp  (U331p*U3jp) " anip

W lp tTip <icip.uf,jp>

ip

r2ze | Cx| * 2pk1; 2/ AKIZ*p2 (x*y2)j I
02i-1

(M 22%E 7 (XA *2yxizl*u2zl, )j-2¢ | j:i2*¢(5%iiid Cx*pz)*¢| 111 *E2n

X G*ul)2 Ip/ci ¢+ 0A

IV Cj

»-\fﬁ*filz *eFKezz*e £ (x2*2ux Z U2z 2)i -p3/c2*qA(x*nz)*t

‘2" [HpR*pga*ob \£,2t£i-0"_ (x»iz) »
Lv\ “% -tf) 02 0202 J



U13*-£02 TE22-r.1 2 (x*VZ)t (Sxx*2pSxz»u23zz)J f

»V

Ujit, -pq2fz22-112 (xMii)*p (Sxx*2uSxz*w232z)

«V

u22'/ pg2*pg2*o* \lu *jicE
°2- °2a °2 02«!

Ww3--po2(111 (i*wz)-E12)

Uaw— £02 (E11 (x*uz)-ri2) =

u33-02r
102/02*pi

Q 1 .0/ \
1339 p2AIE 11 1x *uz) 2-2E12(x*uz)»E22%E (Sxx*2pSxz*W2S22) )
i

==\ o

#PO2AEL1E22-(£12)2¢E>>p (SXX*2USXZ*M252Z)Nj A02 & P

UdN= jo2 (In 122- U 12)2" « pZI1 (Sxx*2uSxz*p25z2)J *



@
um,-o2r

a®/ 2*p)

1 P2W t11C;*ijz)2-2E,2 (i*1i2)*i:22%E (5xx*2ySxz*u252z))
]

L -5 " o

#pO2~ENIE22-CE12)2%1% £ (Sxx*2wSxz*w2Szzl jj~02/02*p"

Ab in the case of the block design we can proceed
no further analytically. An approximate posterior density for

W can be obtained by assuming 02,02% and o2fi are known and that
they take the values at the mods of *(w,02,**Y,o0a4|y).

The case of uniform prior distributions for a and 6 is
again similar to that of the randomized block design.

We con write Ura2uQ, f-fQ/02. [|*|#/**, hK@/a2, Kk*1,...p,
J1°J1e70%» 1"1%%**p* where 0. g0. hKGi K-1....P<jlo,
1-i only involve 02.°2y and 026 in the ratios a2/02 and

«2/02a. Ve can transform to the variables u,02,52y*02/02" and
$27"02/02", and then integrate over 02 giving the posterior density

of u.s" av






5.5 An Example! Factor VIII Data

In this section we analyse data from an assay of factor
v Factor VIIl is one of the chain of enzymes responsible for
blood clotting in man and deficiency of factor VIII leads to
haemophilia. The reaper Ln the assay is

the time taken for a clot to form after a dose of factor VIII
is edded to a set of reagents. The larger the dose the more
quickly a clot Is formed so the slope of the fitted regression
lines will be negative. The data are given in Table 5.1. The
assay was repeated on five consecutive days and so our theory
for randomized block designs is appropriate.
Before analysing tho data we had very

tle idea of the
likely results and so we have used uniform prior densities for
aand B and let v«0 In our prior distribution for 02. Ve
cannot put vA-0 in the prior distribution for 02 since this
inplies that the block effects are all zero, a point which

has been discussed by LIndley (1571 b), and so we have put
VCUXC*1. A uniform prior distribution for  la not I Y
for the reasons discussed in chapter 2 and so we have taken

the prior distribution for y to be N(0.0, 1.5). This prior
distribution and the one for 02 are based on Introspection and
rather arbitrary. It is clear from the posterior distributions
that the prior distribution for u carries very little information
compared with the data, while the prior distribution for 02

carries aB Ittle information as possible and is not contradicted
by the data.

The results of our analysis are summarized in Table 5.2
and Figure 5.1. The varlou:. > log
vary similar Indeedi however, there is a

iscrepancy between the
modal estimates of 02 and 02 from s(a.B.u.ci,...cs.02,92 |y) and
tho modal estimate of S$2»02/02t from n(u,S2[y).



Standard Preparation Test Preparation

Dosa )200 )400 Yoco )200 1400 )aoo
lay

1 15.0 22.5 27.0 21.0 25.0 30.0
2 15.0 16.5 19.5 17.25 21.25 25.0
3 18.0 24.25 30.5 20.5 28.5 36.0
4 15.5 18.75 22.25 18.5 21.75 27.5



52,02 1y)

Mods of n(o,B,y,ci»..

o - -20.5
g - -15.9
M - -.257
cl - .504
c2 " -r347
c3 - 3.29
c* - -1.95
02 - 1.52
02t - 3.79

Mods of *(u.S2|y)
u - -.251

s2 - .261

Msan of «Culy. S2)

(s2 16 ths valus of S2 at ths nods of wCp,S2]y))

Tabla 5.2 Ru..i,Hs of rtn.iiyul:. it y li i
parameters ~»0.0 K33-1.5, v-A-0.
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Chapter 6. A Ko-Jol L-n..t

Ing Information From Several Assays.

6.1  Introduction

In many cases tha noad arises to combina information from
several different assays, and wo shall devote the noxt few chapters
to considering this problem. The model that we shall consider
first is a model combining information from several assays and
we shall assume our p

r Knowledge of the parameters of every

assay to be exchangeable. This modal is a straight forward
extension of the two stage model for the analysis of a single

assay that was diacussud in chapter 2 to a three stage modal

The extra stage is necessary since the data will now contain
some information about the parameters in the second stage of the
model. Suppose we wish to combine information from m assays,

then the modal is as follows«

1st stages vy, . N : independently for
2nd stag.: /a,\ . N li\ , independently for
j-1....m

Istages jo\.

«
Where the suffix J refers to the assay in the scrips . Xj Is
a matrix of the form

Xi - 1z x.jl
1710 xjj




and nj is the number of responses in tha Jth assay. For the
moment we assume all variances and covariances to be Known.

Thera are two main situations where this model may be
appropriate. The first is where a manufacturer has made
several batches of a preparation, has calibrated them all against
the same standard using the same assay medium, and wishes to
make inferences about the manufacturing process in general. The
second is in co

aborative assays where several laboratories carry
out assays using the same pair of substances and wish to combine
their results. In this latter case one could argue that the

true potency ratio wi

be the same in each assay and therefore
the model should stipulate that the Mj are all identical. However,
each assay will be carried out by a different person in a
different laboratory, and it may bo that for some types of assay
the effect of variation in personal technique is groat enough

to make such an assumption unreasonable. A nodal which does

stipulate that the Pj are all identical discussed

chapter 7.
For both the cases described above the model is rather crudes
in tha first case we have not allowed for any trends in the
parameters, and in the second case we have assumed that all the
assays are carried out on the same medium. The model could be
extended to cover either of these re

ements.
In both the coses described above interest w

centre

on the second stage parameters. In tha case of the manufacturer
carrying out assays on different batches of a preparation,
estimates of the second stage parameters could be used in
estimating the parameters of a prior distribution for the

analysis of an assay on a further batch of preparation. In

the collaborative assay, inferences about tho log potency ratio of
the two substances under investigation would Ideally be baaed

on the marginal posterior distribution « 1y .



6.2 Posterior ni-tritutions for Known Covarljr.co i

Before comb

ng tho information from tha data with our
prior information, wa need to combina tha information in tha
second and third stages of the modal. Wa get the following
prior density for tha first and second stags parameters:

*(«o»00*lo*ai*81*U1 *mam”em ,wrJni,n2"n3*

where a =/ 1 and similarly for 3 and u
m J-1

Combining tha above density with the likelihood, the Joi

posterior density of tha first and second stage parameters

*tc,0*8o wo*ai sl

eeam” Bm* Ih""ni,n2*n3) *

-xp-1




©-3)

IT our prior knowledge at the third stage of the model Is

extremely weak, the elements of @ 1 will be zero, and those terms

Involving £ 1 In the exponent of (6.3) will disappear. The conditions
under which (6.3) is a normed density when ¢ 1-0 will be investigated
at the end of this section.

The mode of (6.3) occurs at the pointi

a\ - imE*1*jID"1

1WA i -V K> aoE11-(BJ-60)ELK(u
k-1

“«,-1 * 0" krV- WKj’e



The modal values for the first stage parameters of an
Individual assay are very similar to the mode of the Joint posterior
density of the first stage parameters In the analysis of a
single assay as given by 2.3. There are two slight differences.
Firstly. In this case, the second stagu parameters a ,B , and
Wo are themselves modal values whereas in the single assay case
they were Known, and secondly, t a second stage variance | has
a slightly different status
assay case | expresses our op

the two casos. In the multiple
ion about the similarity of the
parameters of the different assays, while tho strength of our
opinion about the Ilhely location of the parameters is expressed

In the third stage variance t . 3y integrating over the second
stage parameters <« and uq in £6.2) we have that the prior
density for m S.anBm, s

65



where V* is the 3m x 3m matrix E 0 -—— 0% (iij f

and Ta*\"™ CEi*)S~1CmZ"1**-1) « jm

Hence the prior distribution for the first stage parameters
of an Individual assay, say the Jth is

/eA -ni W « IE"»
() p r

In tha singla assay case t expresses the strength of our op
on the two sources of vari

on and 1 be comparable with

(£48) in the multiple assay case.

By integrating over 0481,...an>8n in 6.3 we can find the
't posterior density of aQ ,BO»uo«ui

LeLum «

*i@0*00" Jo*Ul*,,um~ " f1 *n2*n3)a 7 |
J-1

£ {pJ2£3i-2wj (a0£13*80E23*UoE31)}
31



°3% 1 -
0* k-1

Unfortunately we cannot Integrate over In (6.6).

This means wb cannot obtain the marginal distributions of the
parameters we are interested

in analytically. In general we
1 not be able to

nd these distribu

ns numerically either,
ce to do so would Involve carrying out numerical
in m dimensions. If we are

s

ntegrations
interested in the three second stage
parameters a0.80.vo. we could estimate then by the mode of G.6.

Even this mode cannot be found analytically but must be obtained
numerically. If, as in collaborative assays,
in ug but not in oq or 0gq, we can
1

we are interested
integrate over oq and BO in 6.B

W(WO Mx..wm [ni.n2.nj)-[v 1*s*1E VALTV* lyAWp-i z Lj

i-i 7 =



where t

U 11 ¢°21, *iJ being the (ij)th clement of «1

[eH

s"1- [rii e>] ,
[el2 E*J
nJ
E
K-1
and X-R_1 E OE  (U-woINjVI/ridy *u @i2
J-1 J-1 tYUNE23/ *12*22

oV >

one could estimate y by the mode of 6.7. This can be found
numerically.

We can proceed one stop further and find the Joint density
of by integrating over yQ in B.7. This density will
rarely be of any priictical interest but it 1s useful in
investigating the conditions under which it is permissible to
Lunaidwi uniform pi lx-»for all three third stage parameters.

If we set ¢ @ n(yj-...ynly) . then




If we cell the expression on the right hand side of the « sign
g(ui,...wn) then the posterior density of and consequently
all the other posterior densities given In this section, will be
normed when * "A-0 only if the m-dImensional
7o g(lij--..ulddw] .. .dwlll Is i
we give a loose argument
finite.

integral

ite. In the following paragraphs
Indicating when this Integral will be
We have not given a rigorous proof since sue

J proof,
although straightforward, would be very lengthy.

We assume that there are at least two assays under consideration,
and that for each of them at least two different doses have been
administered for at least one preparation,
of each preparation has been administered.
1 Is a positive definite symmetric matrix.
expressions

and at least one dose
We also assume that
Examination of the

and |s Vili| ~
J-1% ¢

shows them to be bounded above and below for all

Wj, J«l,...m, and to tend to f

ts as ell the become



simultaneously large in absolute value. Also [s" ViQil ~

is always strictly greater than zero since

symmetric positive definite matrix. Hence if all

the Uj are large in absolute value

for some positive constant k.

Also, we have the following limiting results!

- nj
zJ ¢ 11IE

k-1












x oxp-d i
80-F2
wo-nj

*d
0
0
30-n2
MO-n3 (6.11)

The mods of this distribution occurs at the point glv/an by 6.4
except that 02j. J“l»...m and tiM elements cf T , NI
of being constants are now given by

Integrating over aj.

o.ri.m.o02]

in 6.11 we obtai

.um ,0am lyi»..ym.ni,n2.n3.%,v,A,R,p) ®



- tni*v+2) _amw»2) G-I m

(*x) 2 ...Co2 ) 2

"VJ

E33)}

ipJ2E J3-2wJ (a0Z I3»60E:

E»1112 1>»112
E,2E22 z12r22
O 11323 3323

and Integrating over ao and 8Q in 6.13 we obtain

L MALO2Q]yi - . .ym .rij.n2.n3. %5 V. XR,A)

wCuQ.Z 1.Ui.o!

_( i»v»2) _(mwve2)

cd)t 2 2

«\h »...»1 WE Q

(a2l °mJ J-1

where ¥, S and X are a* defined in section 6.2



I estimates of all the second stage parameters ore ~
required we suggest using the mode of 6»13. Alternatively If

only p Is of Interest we suggest using the node of 6.14 . We
do not feel altogether happy about these suggestions since there
are so many nuisance parameters in both 6.13 and 6.14 In the

types of situation where the present model is appropriate there
moy well be fairly large amounts of data ava

able. In spite
of this, unless an enormous number of assays are involved,

the amount of information about the second stage parameters may
not be very greatj not enough to assume that either 6.13 or 6.14
approximate- to a mul g
on the modal estimates would be to find an approximation to the
marginal

istri

ution of the parameters of interest. An
attempt to do this might be made along the lines suggested
in the last paragraph of section 4.3.

Suppose we have data from m s

ar assays, and suppose
we have, by whatever method, obtained estimates of = .t .M
end 1. We now wish to use these estimates in deciding on the
parameters of a prior distribution for the analysis, using the
model of chapter 4, of one further assay which we expect to
be sim

ar to our previous assays. We can use our estimates of
aQ,So and uq directly as the Second stage means, but M Should
not use E directly as the second stage variance. Thera are

two reasons for this. Firstly we must remember that 1 plays a

different role in the two models, and tha appropriate prior

variance of

11 be L (in the second model) plus tha posterior

variance of i secondly we cannot be absolutely certain that

the assay we are about to analyse is comparable with our previous
assays. Experimental conditions may have changed soma way
without our Knowledge. In principle, one could cope with the
first of these points theoretically by finding the approximate
variance of the estimates of the means. However tha distributions
Involved are very comp

ated and we suggest that tho experimenter
take tho pragmatic approach of adding on to I a matrix, possibly






6.4 An Example; Insulin Uuta

In Tabloa 6.16.1/. 6.3 we have data for 11 aseaye of
A1-B29 diacetyl insulin against standard insulin. The 11 test

preparations of A1-B29 diacetyl insulin are repeated dilutions

of the same stock solution. It Is unlikely that the stock
solution changed appreciably during the period in which the
dilutions were made, however, we expect there to be some

va

ion in the strength of the test preparations due to
Inaccuracies in the d

ion process.
Before analysing the data we have to choose values for

the parameters of our prior distributions. We have put v«0

and $ 1*0 . This should not cause any difficulties provided we

allow t23 to be non-znro. It remains to choose values for

p and g. Letting R»0 and p*Q would give the Jeffreys® ignorance

prior distribution, but ubb of such a prior distribution causes

the Joint posterior density of all the parameters (6.11) to

be te whan Uj -Wj,! 3" 1»eee™ and -

To avoid this we have set p-3. the smal

est value consistent
with the convergence of the prior distribution of Z- . In the
prior distribution of t”1, E(1-1)-pR-1, EO we can choose a
value for R by making a guess at £ and multiplying it by 3.
since we have very little

dea of what Z may be, we have taken

as our guess its unbiased estimate obtained from the maximum
likelihood estimates of the parameters. The maximum likelihood
estimates have the same values as the large sample means and

are given In Table 6.if. Using the resulting value of R we

have calculated the mode of the Joint posterior density of

all the parameters, given by (6.11), and tho mode of the posterior
density of (a0>Bo.P0.E~1,m,02!...@.°2n) given by (6.13). In
order to check the sensi

ity of the procedure to our guess
at Z we have repeated the procedure with a guess ten times and
one tenth our original one. The results ere shown in Tables
65 -6.7.

If we compare the two modes in Teblo 6.5 with the large
sample means in Table 6  the a’s.Bj"s enJ the two sets of
PA*s and 0.2°» in Table B.5 are all pulled together compared
with their large sample counterparts as one might expect.
Comparing”the two modes in Table B.g with each other, the =



Tabi« 8.1

Doan (pinol 1 )

A1-B29 Dlaoetyl Insulin

48.45

76.68

118.29
14.54
21.00

48.85

72.68

193.61
14.54
21.80
43.61
87.21

48.45 48.45

72.68

145.36

290.72
17.44
21.80
29.07
29.07
43.61

25.C9
33.73
47.54
57.38
35.22
38.27
44.76
55.27

33.41
46.74
56.54
67.95
27.49
39.06
59.24

8.64
13.09
24.41
28.52
10.02
15.46
21.89
29.85

17.73
19.16
38.36
13.48
37.42
11.40
22.12
12.95
20.25

onta from ssveral assays of Ai-B2i dlacetyl

InmiIn cy.ulff.t Insulin,

32.74
46.42
50.15
59.32
33.76
37.11
51.72
57.18

39.01
48.25
57.13
61.17
35.19
33.39
56.78
12.57
14.71
22.57
32.39
10.24
11.38
20.65
28.85

12.76
19.28
34.54
23.91
33.92

9.69
23.98
12.75
22.33



Dosa Ipmol 1 *

AsBjy

LV AL »1-02. dIvE
Tabla 6%2 R
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Cose Cp.nol Response

In3ulln  Ai-Bjq Dia atvl Insulin

n 13.08 19 94 14.10
34.89 52 57 60.62
58.14 73 15 72.22

34 38 13 37 19.15
57 30 29 17 37.97
85 95 45 91 50.17
128 93 64 35 59.59

fatila 6.3 Hata from saveral assays of A1-029 dlacotyl
Insulin against. Insulin (continued).









of S*@#**1» en™ the li."i are almost the sane although the

fira 1639 dispersed In the first mode compared with the
second mode. The estimates of E are very similar with the
n of Ejj where there is a considerable difference.
guoss at | was E 1 150, -.61 -78.

-.078
330.

ilar to our estimates

The diagonal elements and £73 are si
but E12 differs from either of the estimates. 123 also
differs from our estimates although the two estimates are very
similar in this case.

Comparing the two modes in Table 6.g with their counterpart
in Table 65 , the estimates of a .B .u . the a;’s, the

o’ 0" o
and the pr*s have scarcely changed. There have been smal

changes in the estimates of the o” ’s and substantial ones in

the estimate of E. The discrepancy seems to be greater for the
larger R than the sma
comparing Table 6.7 with its counterpart In Table Q.5 except

er R. Very similar remarks apply when

here the *e do not seam to be so sensitive to changes in r .



b)

Assay

Tabla
w(ao ,
for i
fias

4600 -2300.

-16. 2.3
-2300. 2.3 12000.
8 02
1 37.9 201 755 38.5
2 419 222 -98.4 45.5
3 15.2 0952 -103. 17.3
4 7.1 651 -54.7 29.8
5 B.47 232 -83.2 8.60
6 22.0 .202 - 5.60
7 13.7 2113 -88.2 5.20
8 13.3 462 772 32.4
g 6.89 ~200 -88.9 9.60
10 1.0 .234 8.1 12.2
1 27.7 595 . 82.4
7O\ "1 18 1 - 6l1. -2.04 -301.
( v S -2.04 246 2.01
\ vo) \*77 -301. 2.01 1547.
R - "46. -10 -23
-.16 021 -.023
-23. -023 120
8 02
1 37.9 . -60.1 31.4
2 39.9 .233 -84.3 74.3
3 14.3 ~0027 -79.0 26.0
4 12.4 432 52.3 30.3
5 9.54 78 -70.8 21.8
6 20.5 .193 -77.9 33.9
7 13.0 .18 -76.4 10.1
8 17.3 .317 -65.8 55.2
g 6.87 201 -66.7 12.5
10 11.3 .238 -52.6 6.23
1 30.2 513 u58.4 92.6
6.6 node of
BO.YO.E .0j.8j.iJi .8 «.*».P.p)

nsulin assay data with prior parameters 4 1«0. p«3 and
Indicated















J KI J*)
r

VoE £ i*10-'v (kj-veot,v (°) 0 "D *tlsyIE

m nj
I £ 8)1 -1
02j-1 k-1 13s

Supposa we have vary Ilttle prior knowlodgs of the
location of either a .§ or u. lWe will than have ¢ 1«0 and
1 "C. It wlll ba shcun at tha end of this section that auch
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utions do not cause tha postarior distributions

distribution of v.*i .ee.om 8" occurs at tha point






and Bj-1i . This notation is
1

slightly different from that of chapter B. In tha case £ 1-0 ,

1 “0 tha marginal distribuiton of \ simplifies to
*33

In order to sea if this density is normed we need to
examine the expression on the right hand side of the « sign in
7.7. if thi Integral of this expression with roepoct to v

is te then we can safely put £ -0 and 1 »0, and wa can
*33
easily show that this is so. If we make the same assumptions

about the assays as in section 6.2, examlnation of the tarmo
Inside the exponent shows them both to be bounded above and below
for all v and to tend to finite limits as u becomes large in
absolute value. The same applies to the term

noo, - .
I t *(0j*E ) Djl 1 . That the Integral is finite now follows

J-1*

from the fact that, provided m is at least 2,






7.3 Large Sample Distribution:;

Using the theory described in section 2.3 we can show that
the distribution of y,ax,Bi....a ,B as the number of responses
in each assay becomes very large is asymptotically

a3y ...y )N

whor. ,-t BjS IykJ-»j-83«RJ)2RJ

~j-y-3-SjUZ.J-Sj1.0 1

V£ L'kj* kJI1(ykJ-J1 - J-1-- " >



Z Bj2522J)-(SyzJ-2BjSxzJ-28jUSzzJ)

\SXXA*2ySxz*W2SzZ" J

NLXINVZ) 1 (XL MZo )2

J - J J -
- (Sxx*2wSxz*u2Szz) MSyz-BJpSzz)

BJ(2.JSxxJ-2j.0SxzJ-i

2BJuSzzJ*2BJISxzJ-SyzJ

If wb now turn back to the node of the Joint posterior
distribution of P,«i,Bi,...a ,Bm we can sea that in the case
where ¢_1»0>and 1«0, given by 7.5, the mode occurs at a point

33

where the are weighted averages of the large sample means
and the overall average of the 0j, adjusted for dependence on
the Bj. The weights depend on the size of the assays, the residual
variance and the second stage covariance matrix C. Weighted
averages of this type occur frequently in expressions for
posterior means using linear models, see for example Lindley
(1971 b). Parallel remarks apply to the value of the 8" at
this mode. The expression for u at the mode has a sim

ar form
to the large sample mean, however after substitution for aj =g
in the one case and aj*®j in the other, the two values will not
be Identical.

The equations for the mode of the Joint density of

ESS






7.4 A Pathologicjl Example

We hava had very little success In trying to examine the
form of the posterior distribution of V analytically! the algebra is

too complicated. Wo have concentrated instead on two special

cases: in section 7.6 we attempt to combine genuine data from
Beveral assays which are in good agreement with one another, and
in this section we examine highly artificial data from two assays
which disagree violently with one another.

Suppose we carry out two four-point assays, in both of
which log-doses of ¢! and -J are administered for both test and
standard preparations. Suppose that in the first assay each point
is rep

ated just once, and in the second assay each point is

replicated a times, the same response occuring for each dose

throughout the replications, the responses are as given in
Table 7.1. Ve assume d to be non-negative, c to be small, and

the re uval variance to be the same for both assays and equal to

02 ent statistics from these two assays are:
(*1-0 . 5.2-0 .
$1-0 y-2-0 ,
i1-1 - 5.2-1 .
Sxx*1 * Sxx"® »
- Sxy'a 1
siz-° - saz*® -
ELE s2 -ad
sL-1- mE-.

These assays are Intended to provide completely contradictory
Information about p, with the second assay containing a times as
much information as the first. In addition to values of a greater
than 1 we shall also consider values of a lying between 0 & 1. This
corrsponds to the first assay being replicated and not the second.

Looking at the first assay by itself we have the following
large sample results:






4 (1*d2)

and similarly, looking at tho second assay by itselfc

-1

If we combine the information from the two assays we have the
following equations for the large samplo means«

Bi* -du*l
c2*1

Bj- du*l
52+

Eliminating  and B2 from the expression for \iwe have the
following quadratic for u

d(a-1)u2 ¢ (1-d2)(1*a)p-d(a-1J - 0 . (7.11)

If a»1 and d*1 then p»0 , and if 09d91 than any valua of p
satinfiea the equation. If a*1 than we have the following two



solutions for us

where b-(1-d2)(1*a)
2d(a-1)

In order to see which of these solutions occurs at a maximum i

tha likelihood we need to examine the matrix of second derivatives

of the log-livelihood. A solution to the equations 7.10 will be
a maximum if the following matrix is positive definite:

A 2v o o 28Bi

2u 2ya* 0 0 38iu*c

0 o 4a 2au 2aB2

o o 2ai a(2u2ed) a(302p-

261 (30iw'd)  2aB2 eC3g2u-d)  2(612%j

The matrix will be positive definite if all its principal minors
are strictly positive. If a is strictly positive the first four
principal minora are always strictly positive, ard after a little
algebra it can bo shown that the fifth principle minor is
strictly positive if

2du(a-1) + (-d2)(1*a)~C . (7.13)

If »-1 then 7.13 is satisfied if d<1. |If a<l then 7.13 Ic
satisfied if y* -b- /b1 , anci if a>1 we need u- -b*J b2*1l

It can easily be shown that where there are two solutions to 7.11
tha second solution is at a point which is neither a maximum

nor a minimum in the elihood. We can investigate the

behaviour of the solutions to 7.11 for varying a and this 1s

ths case d<1. This is intui

ively a very pleasing result. The
maximum likelinood valuo always falls in the range (-d,*d) and

it lies near -d whon the first array contains much more information
than the second, near *d whan the second assay contains much more



Figure 7.1  Schematic repress® ition of the eolutione to equation
7.11 for varying a. An unbroken line represents a maximum in the

elihood and a dotted line a second stationary point in the elihood.



ormation than the first, end it equals 0 when the two as3ay3
contain equal amounts of information. In the case 1, the
maxinun likelihood value always lies outside the range (-d, *d).
This can be explained as follows. The data are now better

ned if fi. and 3X lie near zero with opposite signs, than
if p. lies near zero. If and lie near zero so will fi,
and  and small values of (V and j% imply large values of the
maximum likelihood value for fx. The case d»1 is the borderline
between the two previous cases, The maximum likelihood value
takes the value -1 when a<1 and *1 when a >1. When a-1
the elihood has no maximum.

The asymptotic variance of u is

q2(1ep)2 _ .
(1-d2) @ +a)-2pd(1-a)

whore p is the relevent solution to 7.11.

We have examined the small sample case by plotting the
posterior density of p for various values of d and a. In each
case we have let p , the prior mean of p, equal d, so that the

second assay supports out prior beliefs while the first one

contradicts them. We have lot 9 1-0 and changed the second stage
variances according to our value of d so that the discrepancy
between the essays when compared with the strength of the prior
information remains roughly the sare. For illustration we have
taken 02»1_ throughout. In our fir3t example d* with second

stags variances £ and £33~ . The resulting

posterior density of p when a1 and a-5 are lustrated in

Figura 7.2. As wa might <;xpnct from the large sample results
the density is unimodal, with mode

ng near -d when a-2

and near *d when a*5. The densities are both «lightly skewed
to the right because we have taken po»*1. The case d»l.



0 - 733"~ 1@ Illustrated In Figura 7.3 for a-2 and
3 3

SREN

wr

a-5, and it is very similar to t o case d-1. The posterior

densities for these two values of d remain unimodal and of

similar shapes even when the residual variance is very smalli

we have examined cases down to c2-1/10,C00. Finally we have taken
£33-6. This is

lustrated in Figure 7.4 for

a-~ , 1 and 3. In the case a-J_ .he dar ity in birr.odal, tho modes

occuring at h--4.2 and P-7.6, wl e value« OF

(-2,4) are extremely improbable. When a*1 the density is
unimodal, with mode at p-7.4. while negative values of v are
extremely Improbable. The asymmetry in the situation is caused
by the prior information. When a-3 the density is again unimodal
with mode ac U-8.4. Although this mode io at a vul .
substantially greater than 4. it i3 closer to 4 then in the case
a-1. thus following the behaviour of the large sample caaa.
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7.5  Unknown Variances

We now consider the residual variance (Tx and the second
stage covariance matrix% as parameters in the model. We shall
assume that our prior knowledge about each of them i3 independent
and follows the relevant i ributlon, and so we have
the following prior densitiesi
w*2)

*(02|v.X) ® (a2) 2 exp_ v.. jc2> 0

202

*-3)
and s(I_L[R-p) « [E] 2 axp-d trELIR iZ > 0

where R is a 2 x 2 matrix, f is an integer and the values of
R. /, v and X depend on the nature and precision of our prior
knowledge .

In this section we shall assume that our prior knowledge
of the location of a ,6Q and u is vague, and consequently
4 -0 and 1 »0 . This may not be a valid assumption for any

733

particular application, but our arguments can easily be adjusted
if necessary.

The Joint posterior density cf all the parameters in the

~(ao<eo.P.ai.Bi....gn.em.02.r-1

LYMVXRA) «



v*2)
X Co2) 2 Bxp-

. (==3)
2 exp-Jtre~

Intagrating over *Q and BQ In 7.14 tha Joint posterior density
of the remaining parameters is

* (y.ai.Bi,...an,en,02.£71]yj.«cooym . v<x,R,A) m

Tha mode of thi6 density occurs 3t the point given by but
where 6 and X , instead of being Known* ar®

(7.16)



Integrating over 02 and £ 1 In 7.15 the
of is

nt posterior density

«(p.ai e, e dyi .. RP> @

€7.17)

The mode of this density also octors at the point 7.5. except
02 and £ are now estimated by

VX»E

(7.16)

= the denominators these ere the sem equetlone as 7.16.

Returning to 7.15 and integrating over 0j,6i....a ,6
the Joint posterior density of p.o2 and £~1

iru.o2.  Iyi....y@.v,x-R,p) « (@)
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cv*2)
x Co2) 2 exp- VX
202

-3)

x el 2 oxp-JtrE *R

Integrating over ao and Bo in 7.14 the Joint posterior density
of the remaining parameters is

w (w.ai,6 Lam#8m.02.M 1]yi,...ym.v,X,R,">) «
Q%)
Co2) 2 [15] 3 wp-n2
The mode of this density occurs at the point given by but

. by

€7.16)






Integrating over a2 and | 1 in 7.15 th9 Joint posterior density
of M.ai,01,...an#6m is

s(v.ai.fti,.= =am3m]yi...ymv,X.R,p) «

The nods of this density also occjrs at -he point 7.5, except
a2 ano | ara now estimated by

VX*E

) Ui [ 1

(7.18)

Returning to 7.15 and integrating over a»,8i....a",8m

the Joint posterior density of \.,.a2 end E 1 is

froo*r «\

CyMV.XR.p) - (02)




17.19)

wharo 8j, bj and 0*. J - 1 a r e as defined in section 7.2. ThB
mode of this density cannot be found analytically.

In the case ¢ 1*t), although not otherwise, we can proceed
one step further by transforming from the variables u.o2 and
t A to u.02 and S A where S A 02_ 7, crd inter,roting over 02.
This gives the posterior density of u and S~-1

»CW.s’

Iyiy v.X.R.0) - Is| J{jj* 1

(7.20)



when« aao—ozaa, bJO-D"bJ find PJO“TZ: J*1

of this density cannot bo found analytically.

Again the

As in several of our previous models mb cannot find the
marginal posterior density of n analytically. We could find an
ation to It by substituting an estimate of 5 in 7.20.
Alternatively, with only three n

appro:

ance paranmeters involved,

calculation of the density numerically is not out of the question.

However, in contrast to the previous cases, if we are combining

a fairly large number cf assays, we may have available a
substantial amount of information about both U and S. Consequently
the Joint posterior distribu

different from - multiva

n of Uand S may not be very

te normal distribution. In this case

the value of V at the mode of the Joint density would be approximately
equal to the mean of its marginal posterior distribution, and

an estlmato of the precision of our information about u could

also be made by looking at the curvature of the Joint density

at its mode.

The theory described In chapter 5 to take account of
experimental design features In a single essay extends str:
forwardly both to the present modal and to the mqdel described
in chapter 6. We havu not repeatad the theory for either of

these two cases since the algebra is cumbersome and no new ideas
ara involved.



7.6 An Examplat Tobramycin Cjt;

We shall now analyse tha Cata from four replicate assays
of the antibiotic tobramycin given in Table 4.1. We have
assumed that our prior Knowledge cf tha likely values of the
parameters Is vague md su wu have eat v*o, 1 *0, and c_1-0

Eii

in our prior distributions. If we let R-0 and p-0 the Joint
posterior density of all the parr-stars (7.14) is infinite
when dj-ac> Pj"P0» J=1....mand ¢=C, so, following section 6.4
we hove put P*2 and chosen our value of R by estimating 1 from
the large sample means, which are glvan in Table 7.2.  The

unbiased estimate of Z In this case is not positive definite
so we have taken as our estimate the sums of squares and
cross-products of the large sanple means divided by 3.

Using the above parameters in our prior distributions we
have estimated w in several differ nt ways. We have then
repeated the exercise with R ten times and one tenth our

L value. 3.
obvious feature of these results is that all our estimates of
@ are almost identical« wr.otuwer distribution they oru bjsed on,
and regardless of R. An approximate posterior density of n is
given in Figure 7.5. Transparencies 7 and a reveal this to
be almost unchanged both for the smaller and for the larger R.

As regards tha other pars-*rsrb, ir the mode of the Joint
density of p.aj.fl

..am,8m,02,6 , the ar's and the SA"s are
pulled together compared with the large sample means, but are
largely independent of our choice of R. The estimates of Z
depend quite heavily on our choice of R. Our original guRSs
at 1 wasE *fefl100. 7230.* and ti
1880.J

estimate of Z based on the middle value of R.

In the mode of tha Joint density of u and S 1, the estimate
of S again changes with our value of R, and there are soma

s is consistent with our

inconslistancloo betwean our estimates end our estimates of £
and a2

the previous cose.






Mode of »(v.ai.fti.

a) R-r.4x105

[.1x10s
v .0185
ai 28900.
a2 28700.
a3 29000
< 28900
8j 6370.
B2 8380.
63 6410.
B, 6400.
EIl 32800
Ei2 6230
E22 2290.
02 52000.

a) R- £.4x10s
.1x10s

S22

a) R» A4x10*

[.1x10s
s- fi.61
[ =500
riaan  .0185
noda  .0185

with prior pirva

R X 2R L

.1x10* .I1x10*1  c¢) R- r.4x106 .1x10s
4x10%*) 4x 1031 [-1x10*  .4x10*
cub . .0186.
28600. 28800.
256C0+ 28700.
28900. 29000.
28900. 28900
6390 6370
0330. 6370
6400. 6430
6400. -
8430. 230000.
1140. 56700.
264. 21600.
52200. .
.1x10M b) P- [.4x10* .1x10¥1 c) R- 1.4x10s .1x1061
.4x10%J [-1x10™ .4x10sJ [-1x10s  .4x10s)
L0185 .0185
1.14 5.51
.362 1.54
(127 .601
A.P.p.S)
.1x1081  b) R-F.4X1CT .1x10™] ¢) R-r.4x106 .1x10%1
.4x10 j L.1x10* .4x103) [-1x10®  .4x10j
50071 §»fl.14 .3621 S* ¥5.51 1.541
.1660 L .362 .127 11.54  .60Lj
.0165 L0186
.0185 .0166

v-u, 21‘1_.]. 3-2 and R os indicated
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Chapter 6. Conclusions.

B.1  General Remarks

We feel that we have been on the whole successful In our
attempts to look at parallel line bioasaay from a Bayesian point
of view. We feel also that despite the algebraic complexities
involved there are advantages to be gained from our nonlinear
formulation of the problem, and we are satisfied that the major
ideas behind the theory for the Bayesian linear model set out by
Lindley & Smith (1972) carry over to this non-linear case.

A major advantage of our approach when compared with the
standard sampling theory approach is that logically the way to
proceed is very straightforward! the marginal posterior density
of the log potency ratio should be calculated. This contrasts
markedly with the theoretical complexities of combining information
from several different assays using the sampling theory approach

in its standard near formulation.

A second advantage of our oporooch 1» thet fu
made of any available prior information. Biological assay is

use cun be

perhaps rather unusual in that fairly precise information about the
potencies of both test and standard preparation is normally available
before an assay is carried out. This is because the experimenter

is restricted to estimating potency from doses which lie in the
linear section uf the log-dose response curve, and the rango of

doses for which this is so will depend critically on the potencies
of the preparations concerned. In the absence of previous data a
pilot study in the form of a small assay is often carried out
before the main assay. Typically the results of this pilot study
are used only to determine the doses for the main assay and are
then ignored. In our present approach further use could be made
of the results of such a pilot study in estimating the parameters
of the prior distributions to be used for analy:
of the main assay.

A tl
assays together is that we can make use of the fact that the

g the results

d advantage of our approach when considering several

results of the separate assays are likely to be similar to one
another. This fact is ignored in all the sampling theory approaches
to the problem that we have seen.



8.2 Poss

ies fot Further

Wa do not fool that this thasis is in any sansa a completa
treatment of the problem In hanc. One particular point which
deserves further theoretical invsstigation is the es

ation of

log potency ratio in cases where its marg
obtainable analytically. Multi

al distribution is not

mensional numerical integrations
e a partial answer to the problem, and fac s for

carrying these out are likely to be better in the future than they
have been in the past. The a

prov.

ty to carry out Buch integrations

up to five dimensions would enable numerical estimation of the
marginal density of p in all the cases considered except that of
chapter 6. In this case the dimension of the integration necessary

to estimate the posterior mean of p s 7*2n where m is the
nunber of assays for which information is available.

Thera are two other points which we feel deserve a fuller
treatment than wa have given them. The first is the possibility

of using a loss function other than a quadratic one in the point

estimation of log potency rat

For drugs such as antibiotics
an overestimate of the potency is a more serious fault than on

underestimato, and this Indicates that an asymmetric loss function
might be more appropriate than a symmetric one. We feel that this
topic would be best approached by a detailed consideration of
one cr two particular drugs.

The other point which would be worth pursuing is a more
sophisticated approach to the es*lImation of p

r distributions
from past assays. Trends in both the assay medium and the test
preparation may occur and allowance should be made for thi

Wa feel that an approach very similar to our approach

to parallel line assays could be made to slope-ratio assays. Slope
ratio assays are similar to paralisi lire assays except that the
response in the biological system is now linearly related to the
dose of preparation administered rather than the log-dose. The
residual variance is again assumed approximately normal. Suppose
tho slope of the linear section cf the dose-response curve for
the standard preparation is B, then the slope of the corresponding
line for the test preparation is oB whara o is tho potency ratio
of the test preparation in turn» of the standard. The first
stage of a model for the analysis of a slope ratio assay would



thus be

y _ N{(a*apxz*8x(1-z) )» a2 =

..a,z and a2 have tha sane Interpretation ns in the paral
line case, and > is now tha doss administered rathar than tha
log-dose. Other aspacts of tha problam are idantioal with the
y be adapted

parallel lino case and much of our theory can easi
by replacing x and z in the parallel-line case by xz and x(1-z)

in the slope-ratio case.
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the presence of synergism between two drugs which

have similar actions. An example is given.
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1 Introduction

Suppose two drugs produce quantitative responses
which are qualitatively similar. If mixtures of the
drugs are applied, the question arises as to whether

the drugs arc addi

ve or synergistic. By additive

we mean that one drug can be replaced at a constant
proportion by the other without affecting the response,
and by synergistic we mean that the potency of a
mixture of the drugs depends not only on the potency
of the Individual drugs but also on the proportions

in which they are mixed. The type of joint action



described by the additive model is often called

simple similar action, see for example Finney (1971)
and Ashford and Cobby (1974) = We use the word
synergism to denote any kind of deviation from
additivity, including both potentiation and antagonism.
The model that we use is a mathematical one. We have
not attempted to represent the underlying mode of
pharmacological or biological action of the drugs as
Ashford and Cobby (1974) have done. Kinney (1971)
has considered the equivalent qualitative case. W
devise a test to detect the presence of such synergism
between the two drugs. The direction of the synergism

can be determined graphically

2. The Test

The two drugs, Aand B, and all mixtures of them
are assumed to have parallel log-dose response curves
which are linear over the same range of responses.
We assume that an assay 1ms been carried out on q
mixtures of the drugs, one mixture being pure A.
We place no restriction on the number of doses of
each mixture assayed, except that more than one dose
must be used in at least one mixture. This is
necessary in order to be able to estimate the slope
of the linear part of the log dose response curve, and
hence to obtain the residual sums of squares. We have
also assumed that each point in the assay is replicated
n times although very similar theory holds when different

points are replicated differing numbers of times



J

k

We test the null hypothesis. Ho, that the effect
of the drugs is additive against the alternative,
that the strength of any particular mixture is a
property of that mixture alone. This general
alternative will cover most types of synergism between
the drugs.

Under the null hypothesis we assume that a dose
of x units of A and s units of B is equivalent to a
dose of x-"ix units of A. Let the jth dose of the
1th mixture be (x~, Sj.) and the kth replicate
response be y~jk* The model is

E yijk* “ a + P 108 *xij
Errors are assumed independently normally distributed.
For any fixed the regression parameters can be
estimated using maximum likelihood This gives

residual sum of squares!

where m is the total number of different doses in the
assay, y... is the mean response for the entire assay,
and yij* tho mean resP°ns* for the jth dose of the
itH mixture. This residual sura of squares has mn-2
degrees of freedom. In order to find the maximum
likelihood estimate of (i we minimise the above expression
numerically with respect to u. This minimum is the
residual sum of squares under Ho, RSS~ with mn-|

degrees of freedom.



Under the alternative hypothesis we assume that
in the ith mixture a dose of x units of A and z unit!
of Uarc equivalent to a dose of x + units of A

The model

i, =13j-
Errors are again assumed independently normally
distributed.
In the ith mixture let - PA~jj» then the model
becomes

E <"ijk> “ Yi + P 10i <Xij + *iJh
where S a+plog{ (1L +APi>/ (1 +Pi)l
For that mixture which is pure A the corresponding
~ is not defined since pi is zero. From this
formulation the alternative hypothesis can be seen
to be symmetric with respect to the two drugs A and B
This model is linear, and so straightforward estimation
of the parameters by maximum likelihood is possible

The residual sum of squares, RSS »
ma

< £ log(xAi +
J r.

ri i
on mng-1 degrees of freedom, where is the number
of different doses of the i*h mixture that occur, and

y~.. is the average response for the i* mixture.






E*yijk* “ a + P log X «xij + Uxii))»
Wrtth 7 xnj 7 (xAj o+ and

the potency ra

of B in terms of A. In the above discussion f(irY) is
completely general except that f(o) - (1) - 1, but a
parametric form could be posed for it. A point estimate
of f(ir") for each of the various mixtures can be
obtained from the isobol.
3. An Kxatnplo

The topic utider investigation is the interaction

of insulin and a chemically modified insulin, A1-B29

suberoyl insulin, at the cel

ar lovel. The response
measured is the conversion of (3-3H) glucose to toluene
extractable lipids in isolated rat fat cells (Moody et al,
1974)« The two drugs produce parallel log dose response
curves which are linear over the range under consideration.
The data are given in Table 1.

Table 1 here
The residual sums of squares for these data are RSS® "260.1
with 53 degrees of freedom, and RSSU - 194-4 with 48 degrees

ha
of freedom. The toot mwdi tie La with f and |8

of freedom, and is significin® at the level. Hence ti
assay provides strong evidence that the effects of the two
drugs are not additive.

Figure 1 hare
An isobol (see Figure 1) indicates that greater amounts

of the two substances aro required when they are

combination than when applied independently, thus
suggesting antagonism. Thenproducibility of these

results in furtheir assays will be reported elsewhere.
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