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Summary

Interim analyses are routinely used to monitor accumulating data in clinical trials.
When the objective of the interim analysis is to stop the trial if the trial is deemed
futile, it must ideally be conducted as early as possible. In trials where the clinical
endpoint of interest is only observed after a long follow-up, many enrolled patients
may therefore have no information on the primary endpoint available at the time of
the interim analysis. To facilitate earlier decision-making, one may incorporate early
response data that are predictive for the primary endpoint (e.g. , an assessment of the
primary endpoint at an earlier time) in the interim analysis.
Most attention so far has been given to the development of interim test statistics
that include such short-term endpoints, but not to decision procedures. Existing tests
moreover perform poorly when the information is scarce, e.g. , due to rare events,
when the cohort of patients with observed primary endpoint data is small, or when the
short-term endpoint is a strong, but imperfect predictor. In view of this, we develop an
interim decision procedure based on the conditional power approach which utilises
the short- and long-term binary endpoints in a framework that is expected to pro-
vide reliable inferences, even when the primary endpoint is only available for a few
patients, and has the added advantage that it allows the use of historical information.
The operational characteristics of the proposed procedure are evaluated for the phase
3 clinical trial that motivated this approach, using simulation studies.
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1 INTRODUCTION

Interim analyses are routinely used in clinical trials to guide trial design modifications and early stopping. They are for instance
used to decide whether the trial should be stopped for futility1,2, in case the state of evidence at the time of the interim analy-
sis leaves little hope that evidence of superiority would be found if the trial were to continue. The statistical rule to guide the
decision of whether or not to stop the trial early for futility is often based on conditional power.3,4,5,6 This monitoring approach
quantifies the probability that the null hypothesis will be rejected at the end of the study with a given statistical test, given the
primary endpoint data observed thus far. Computations of conditional power usually assume that the future primary endpoint
data will either be generated under parameter values specified in the initial study design (i.e. , under the design assumption), or
that they arise from the same distribution that generated the observed data collected so far, or that they will be generated under
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the null hypothesis. We will focus on the conditional power under the design assumption but our proposal will also apply for
these alternative assumptions.
In trials where the clinical endpoint of interest is only observed after a long period of treatment-free follow-up, many enrolled
patients may have no information on the primary endpoint available at the time of the interim analysis. Restricting the interim
analysis to those patients with long-term information available, may then result in lack of information to support futility deci-
sions. Delaying the time of the interim analysis to a time where a sufficient number of patients have their primary endpoint
available, may be less ethical and increase the costs if the trial were deemed futile. In particular, it may rule out the possibility of
stopping recruitment as all patients may then have been enrolled already. To support futility decisions, it then seems of interest
to replace the long-term primary endpoint by a short-term surrogate, when available. This, however, is only justified under the
strong assumption that tests for short- and long-term treatment differences are equivalent.7
For instance, the motivating phase 3 clinical trial was designed to evaluate the efficacy of a new experimental treatment
for multidrug-resistant tuberculosis on top of the standard of care regimen (referred to as background regimen BR) as com-
pared to placebo plus BR with regard to the proportion of subjects with a favorable treatment outcome (ClinicalTrials.gov,
NCT00449644).8 This requires confirmed culture conversion 60 weeks after randomization. Besides the clinical endpoint of
interest, confirmed culture conversion (cure) was planned to be assessed 16weeks after randomization (seeWeb Appendix A for
an overview of the study design). An interim analysis to decide if the trial should be stopped for futility, would ideally employ
the 16 week endpoint for patients for whom this, but not the 60 week endpoint is available. Basing the interim analysis only on
the short-term endpoint is generally not satisfactory as it shifts the focus away from the primary long-term endpoint. Treatments
may indeed be very similar with respect to their short-term effect, but differ with respect to their long-term effect, or vice versa.
This may, for example, be the case when treatments differ in time to response. Several approaches in the literature therefore,
instead, use information on short-term endpoints only to predict the primary long-term endpoint when it is missing. Marschner
and Becker9 introduced a Wald test based on the probability difference parameterization to address this problem for binary out-
comes assessed at two time points during follow-up. Kunz et al10 applied this estimator to a two-stage phase II oncology trial.
Niewczas, König and Kunz11 constructed decision-making rules based on the conditional power of the resulting test statistic
assuming a Brownian motion structure. Sooriyarachchi et al12 presented a score test, based on the log-odds ratio for success at
the final time point, for incorporating patients with binary assessments taken at three fixed time points, with the third assessment
time being the primary one. Whitehead et al13 compared the performances of four methods for incorporating binary observa-
tions taken at two time points into interim analyses: the score and Wald approaches, each with the log-odds ratio and probability
difference parameterizations. Their simulations have shown that all four approaches have good properties regarding the power
and type 1 error in moderate to large sample sizes. Similar methods for continuous data have also been considered in the litera-
ture.14,15 For example, Galbraith and Marschner14 adapted and extended the methodology described in Marschner and Becker9
to include continuous endpoints assessed at an arbitrary number of follow-up times. Hampson and Jennison16 generalized this
to a group sequential design for the situation where the primary endpoint is measured with delay.
In this article, we aim to improve performance in settings where the asymptotic theory, as used for the single known decision
procedure for this problem,11 may fail. In particular, when the number of patients with complete data at the interim assessment
is small, or the considered event is rare, the variance estimator of Marschner and Becker9 may perform poorly. A decision pro-
cedure based on this test statistic may then misrepresent the amount of information that is available at the interim assessment.
Similar problems may occur when the short-term endpoint is a strong predictor of the primary endpoint, for then their degree
of dependence may be difficult to assess well. We will overcome this problem by making use of a Bayesian procedure, which
avoids asymptotic approximations, thereby giving rise to a decision procedure that is more widely applicable. This not only pro-
vides a more robust conditional power17 but also brings the possibility of including historical data, which are often available
from earlier phases in development. If, for example, accrual occurs very quickly, the availability of primary endpoint data will
be limited until close to the end of the study. This makes it difficult to estimate the long-term response probability with a cer-
tain degree of precision early in the study. Using historical data to inform Bayesian priors may then help improve the certainty
of decisions made during drug development and as a result reduce overall costs. The need to incorporate historical data was
motivated by the tuberculosis example, introduced earlier in this section, where prior phase 2b trial data were available. Like
Marschner and Becker9, our focus throughout will be on binary short- and long-term endpoints.
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1.1 Motivating Context
The methods of this paper are likely to find greatest applicability in interim analyses of long-term binary endpoints where the
treatment under study is intended to cause a favourable/unfavourable short-term response that then could be sustained or lost in
the long-term. For example, in infectious diseases clinical trials, the clinical endpoint is often designed to evaluate some form of
disease remission after a sufficiently long treatment-free follow-up period. Certain subjects may achieve response (virus-free)
on treatment and continue to respond after treatment (and cure), while some relapse only after stopping the treatment. Others
may not achieve response at all.

2 INCORPORATION OF INTERMEDIATE DATA

2.1 Setting and Definitions
The methodology is introduced for the case of a two-treatment randomized controlled trial in n patients where the primary long-
term endpoint Y and the secondary short-term endpoint X on each subject are dichotomous observations. Assume that Y is
evaluated �Y time after randomization, and that X is evaluated using the same criteria at time �X ≤ �Y , both fixed and identical
time points for all subjects. Define PYj and PXj

(j ∈ {0, 1}) as the probabilities of respectively a successful outcome at the end
of trial (time point �Y ) and a successful short-term read-out at time point �X , in the experimental (j = 1) and control (j = 0)
arm. The primary hypothesis of interest,H0 ∶ PY1 = PY0 or � ∶= PY1 −PY0 = 0, will be tested against the one-sided alternative,
HA ∶ PY1 > PY0 or � > 0 at level � with power 1 − �. To evaluate this hypothesis, a Z-statistic for the difference in proportions
with pooled variance will be employed, although our proposal is readily applicable to any Z-test statistic of this hypothesis.
Suppose now that an interim analysis of the primary long-term endpoint Y will be conducted at information fraction tX for X
and tY for Y , representing respectively the ratio of the number of patients with observed short-term endpoint data at the time of
the interim analysis and the planned total sample size, and the ratio of the number of patients with observed long-term endpoint
data at the time of the interim analysis and the planned total sample size. These indicate, starting from the beginning of the study,
how far through the trial we are. Throughout, we will index an interim analysis by time t, with t fully determined by information
fraction tX and/or tY . In this paper, the main focus will be on the conditional power at a given information fraction tX and/or
tY assuming the distribution of the future primary endpoint data will be generated under the design assumed parameter values
PY1 = �1 and PY0 = �0, with �1 and �0 the values that were used for powering the study.

2.2 Conceptual Proposal
In the absence of early read-outs the conditional power calculations are based on only two cohorts of patients.3,4,18 A first cohort
includes all patients for whom the primary endpoint Y has been observed. The second cohort consists of all patients who have
not yet been followed through to the long-term follow-up time �Y . Their future primary endpoint data are then assumed to fol-
low a Bernoulli distribution with probability determined by the design assumptions. We will refer to this method, where one
endpoint is used, as the standard method.
(Include Figure 1 about here)
When early response data are available, we can distinguish three cohorts of patients (Figure 1) at information fraction t: a first
cohort of all subjects with both endpoints observed, a second cohort of all subjects with only the short-term endpointX observed
and a third cohort of all subjects without available data on X and Y . Our main motivation is to develop a method that extends
the standard method by using all the available data and reduces to it when X is independent of Y .
The future primary endpoint data for patients in cohort 3 are assumed to follow a Bernoulli distribution with probability deter-
mined by the design assumptions in each treatment arm. Our aim is then to use short-term endpoint data X to improve the
efficiency of the interim analysis on the long-term endpoint Y . This will be done by prediction of the unobserved primary end-
point Y based on early response data X for the subjects in cohort 2. Accordingly, the future primary endpoint data for early
responders and early non-responders in each treatment arm of cohort 2 are assumed to follow a Bernoulli distribution condi-
tional on the early response data with probability P (Y = 1|X = 1, A = j) for early responders and P (Y = 1|X = 0, A = j) for
early non-responders in the experimental arm (A = 1) and the control arm (A = 0). It is tempting to extract these conditional
probabilities directly from the available historical and cohort 1 data. However, this has the drawback that these probabilities then
do not reduce to the design assumptions �1 and �0 whenX is independent of Y , and that the approach hence does not extend the
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standard method. We therefore propose to parameterise the joint distribution of the repeated binary data in terms of PYj and the
conditional probabilities P (X = 1|Y = 1, A = j) and P (X = 1|Y = 0, A = j), denoted by respectively PXj |Yj=1 and PXj |Yj=0, in
treatment arm j ∈ {0, 1}. This variation independent parameterisation allows to incorporate the design assumption via PYj , and
to extract PXj |Yj=1 and PXj |Yj=0 from all information available in cohort 1 at the interim analysis. In doing so, we are assuming
that the data observed in cohort 1 are representative with regard to PXj |Yj=1 and PXj |Yj=0 for cohort 2. Using Bayes’ theorem, we
finally obtain

P (Y = 1|X = 1, A = j) =
PXj |Yj=1PYj

PXj |Yj=1PYj + PXj |Yj=0(1 − PYj )

P (Y = 1|X = 0, A = j) =
(1 − PXj |Yj=1)PYj

(1 − PXj |Yj=1)PYj + (1 − PXj |Yj=0)(1 − PYj )
.

We further define P d
Yj |Xj=1

and P d
Yj |Xj=0

as these conditional probabilities evaluated under the design assumptions:

P d
Yj |Xj=1

=
P (1)Xj |Yj=1

�j

P (1)Xj |Yj=1
�j + P

(1)
Xj |Yj=0

(1 − �j)

P d
Yj |Xj=0

=

(

1 − P (1)Xj |Yj=1

)

�j
(

1 − P (1)Xj |Yj=1

)

�j +
(

1 − P (1)Xj |Yj=0

)

(1 − �j)
,

(1)

where the superscripts (m) form = 1, 2, 3 express that the corresponding probability will be estimated based on the data in cohort
m. We can now verify that the proposed method reduces to the standard method whenX and Y are independent. Indeed, in that

case P (1)Xj |Yj=1
= P (1)Xj |Yj=0

= P (1)Xj
and thus P d

Yj |Xj=1
=

P (1)Xj |Yj=1
�j

P (1)Xj |Yj=1
�j+P

(1)
Xj |Yj=0

(1−�j )
= �j ; similarly P d

Yj |Xj=0
= �j . Furthermore, when

X = Y in cohort 1 so that P (1)Xj |Yj=1
= 1 and P (1)Xj |Yj=0

= 0, then P d
Yj |Xj=1

=
P (1)Xj |Yj=1

�j

P (1)Xj |Yj=1
�j+P

(1)
Xj |Yj=0

(1−�j )
= 1 and similarly, P d

Yj |Xj=0
= 0.

In that case, the proposal thus acknowledges that all information on Y is obtained for patients in cohort 2. More generally, Figure
2 shows the relation between the log odds ratio (for the association between X and Y ) and the marginal outcome probabilities
P (2)Yj

in cohort 2. If the observed X distributions in cohort 1 and 2 are equal, then P (2)Yj
varies between the observed value P (1)Yj

and the design assumption (Figure 2). If the observed X distributions in cohort 2 deviates from the X distribution observed in
cohort 1, P (2)Yj

need not lie in between P (1)Yj
and the design assumption.

(Include Figure 2 about here)

2.3 Analytical Proposal
In large studies where a test statistic Z with normal approximation is appropriate, we can approximate the conditional
power for the observed X and Y data, denoted by Dt, at any interim analysis time t. For a given value of P d

Y |X =
(P d

Y1|X1=1
, P d

Y1|X1=0
, P d

Y0|X0=1
, P dY0|X0=0

)′ and assuming that PY1 = �1 and PY0 = �0 for given values �1 and �0 (e.g. , design
assumptions), using analytical expressions along similar lines as in Lan and Wittes18 gives conditional power

CPt(�1, �0|P d
Y |X) ≡ P (rejectH0 at final analysis|Dt,P d

Y |X , �1, �0)

= P (Z1 ≥ z1−�|Dt,P d
Y |X , �1, �0)

= 1 − Φ

(

z1−� − Ec(Z1)
√

Varc(Z1)

)

,

(2)

with z1−� the (1 − �)-quantile of the standard normal distribution, � the significance level and Ec(⋅) and Varc(⋅) the conditional
expectation and variance of the test statistic, given the observed data at the interim evaluationDt, the parameter P d

Y |X and given
values �1 and �0 for the parameters of interest. To define Ec(⋅) and Varc(⋅), let mk,j be the number of subjects in cohort k of
treatment group j (k = 1, 2, 3; j = 0, 1), z(1) the test statistic in cohort 1 and n1 and n0 respectively the planned total sample
sizes in the experimental and placebo arm. Using a test statistic Z1 with normal approximation, the asymptotic mean Ec(⋅) and
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variance Varc(⋅) can be expressed as (see Web Appendix B)

Ec(Z1) = z(1)
√

m1,0
n0

+
�∗1 (P

d
Y |X) − �

∗
0 (P

d
Y |X)

�
√

1
r
+ 1

m2,0
√

n0
+

�1 − �0

�
√

1
r
+ 1

m3,0
√

n0

Varc(Z1) =
�2p
�2
m2,0
n0

+
m3,0
n0

,

where r = n1
n0

and

�∗1 (P
d
Y |X) = P

(2)
X1
P d
Y1|X1=1

+
(

1 − P (2)X1

)

P d
Y1|X1=0

,

�∗0 (P
d
Y |X) = P

(2)
X0
P d
Y0|X0=1

+
(

1 − P (2)X0

)

P d
Y0|X0=0

,

�2p =
1

( 1
r
+ 1)

[1
r

{

P (2)X1
P d
Y1|X1=1

(1 − P d
Y1|X1=1

) +
(

1 − P (2)X1

)

P d
Y1|X1=0

(1 − P d
Y1|X1=0

)
}

+
{

P (2)X0
P d
Y0|X0=1

(1 − P d
Y0|X0=1

) +
(

1 − P (2)X0

)

P d
Y0|X0=0

(1 − P d
Y0|X0=0

)
}]

,

� =
√

p̄(1 − p̄), where p̄ =
n1�1 + n0�0
n1 + n0

.

Note that the three terms of Ec(Z1) correspond with the three different cohorts, while Varc(Z1) only includes terms for cohort
2 and 3. The fractions

√mj,0
n0

(j = 1, 2, 3) and mj,0
n0

(j = 2, 3) represent how much information in the asymptotic expectation and
variance, respectively, is explained by the different cohorts. This approximation uses r = n1

n0
= m1,1

m1,0
= m2,1

m2,0
= m3,1

m3,0
, which improves

with increasing sample size. The above procedure is not readily feasible, however, because the conditional probabilities P d
Y |X are

unknown. Data from earlier studies (e.g. , phase 2b data in TB study) may provide - albeit with uncertainty - an initial estimate.
The observed data at the interim analysis allow to further improve these estimates, but acknowledging the resulting uncertainty
can be difficult, e.g. , when in a small cohort 1 we findX = Y for all subjects. We will therefore approximate the joint sampling
distribution of P d

Y |X by the joint posterior distribution, which is ideally specified based on historical data. A detailed description
of typical distributions is given in Section 2.3.1. We can then eliminate P d

Y |X from the conditional power (2) via integration

CPt(�1, �0) = ∫ P(reject H0 at final analysis|Dt,P d
Y |X , �1, �0)f (P

d
Y |X|Dt, �1, �0,H)dP d

Y |X

= ∫ CPt(�1, �0|P d
Y |X)f (P

d
Y |X|Dt, �1, �0,H)dP d

Y |X

= E
[

CPt(�1, �0|P d
Y |X)|Dt, �1, �0,H

]

,

with f (P d
Y |X|Dt, �1, �0,H) the (posterior) probability density of P d

Y |X given the observed data Dt at the interim analysis,
assumptions �1 and �0 about the parameters of interest and the prior information H which includes the historical data. We
refer to this quantity as the expected conditional power. The (posterior) probability distribution of P d

Y |X allows us to repeatedly
sample a sufficient number of vectors P d

Y |X = (P d
Y1|X1=1

, P d
Y1|X1=0

, P d
Y0|X0=1

, P d
Y0|X0=0

)′ from the (posterior) probability density
f (P d

Y |X|Dt, �1, �0,H), calculate the conditional power for each sampled vector of P d
Y |X values via formula (2) and subsequently

take the average over all these conditional power values. If the expected conditional power is below a certain, predefined cut off
value, the trial will be stopped and futility recommended. Guidelines for determining this cut-off are given in Section 2.4.
For non-normal tests (e.g. , Pearson chi-square test) or when the number of patients in cohort 1 is small (i.e. , less than 5 expected
events under the null hypothesis in one of the arms), we can determine the conditional power for a given value of P d

Y |X via
Monte Carlo simulations instead. As before, we then sample a sufficient number of replicates for P d

Y |X from its (posterior) prob-
ability distribution. For each value of P d

Y |X , we simulate the unobserved primary endpoint for each of the patients in cohort 2
and 3. For the patients in cohort 2, this is done by sampling the values of the primary endpoint from a Bernoulli distribution
with probability P d

Yj |Xj=1
or P d

Yj |Xj=0
(j = 0, 1), depending on whether the subject has achieved the early response or not. These

distributions are specific for each randomized arm. For patients in cohort 3, we sample the values of the primary endpoint from
a Bernoulli distribution with probability �1 and �0 in respectively the experimental and control arm. Based on the observed and
simulated primary endpoint data, we then evaluate the test. The conditional power is then defined as the fraction of trials in
which the primary hypothesis is rejected at the prespecified significance level. When there are less than 5 expected events under



6 VAN LANCKER ET AL

the null hypothesis in one of the arms, then this is best based on Fisher’s exact test or the test statistic after adding pseudo data,
1 success and 1 failure, to each sample group.19

2.3.1 Posterior Distribution of P d
Y |X

Assuming prior independence between (P d
Y1|X1=1

, P d
Y1|X1=0

) and (P d
Y0|X0=1

, P d
Y0|X0=0

), we can write f (P d
Y |X|Dt, �1, �0,H) as the

product of the posteriors f (P d
Y1|X1=1

, P d
Y1|X1=0

|Dt, �1, �0,H) and f (P d
Y0|X0=1

, P d
Y0|X0=0

|Dt, �1, �0,H). Since P d
Yj |Xj=1

and P d
Yj |Xj=0

are determined by PYj , PXj |Yj=1 and PXj |Yj=0, a joint distribution for P d
Yj |Xj=1

and P d
Yj |Xj=0

is implied by a joint distribution for
the latter two parameters and the assumed values �1 and �0 for PYj in arm j. Assuming a priori independence between these
three parameters, we can choose the prior distributions for the latter two separately.
We recommend non-informative Beta(0.5, 0.5) priors on PXj |Yj=1 and PXj |Yj=0 corresponding with a 2x2 table cross-classified
according to X and Y with value 0.5 in each cell. When historical data are representative for the current trial with respect to
the conditional probabilities PXj |Yj=1 and PXj |Yj=0, we can use these data to update these non-informative prior distributions as
follows. The informative Beta prior distribution for PXj |Yj=1 has parameters 0.5+x and 0.5+m−x if x out of them patients with
Y = 1 in treatment arm j of the historical dataset are early responders. Likewise, we can update the non-informative Beta(0.5,
0.5) prior distributions for PXj |Yj=0 to informative priors with parameters 0.5 + y and 0.5 + s − y if y out of the s patients with
Y = 0 in treatment arm j of the historical dataset are early responders. In practice, one needs to decide how much weight to
give to the prior patients, given that these patients come from another study and thus should not be given larger weights than the
cohort 1 patients. For more information on how to use prior belief of clinicians and historical data to elicit prior distributions,
we refer the reader to Spiegelhalter, Freedman and Parmar20. If the historical data are not representative, non-informative priors
may be more appropriate.
The likelihoods for PXj |Yj=1 and PXj |Yj=0 are based on the cohort 1 data and allow us to update the priors as before but now

using the cohort 1 data instead of the historical data. The posterior distributions allow to repeatedly sample replicates for PXj |Yj=1
and PXj |Yj=0 independently. Assuming PYj = �j , we can derive values for (P d

Yj |Xj=1
, P dYj |Xj=0

) via the analytical expressions (1)
in both treatment arms.

2.4 Cut-Off for the Conditional Power
A cut-off on the conditional power values specifies the value below which we stop the trial for futility. Its choice is important
when designing the decision rule; to avoid an increase in type 2 error while having sufficient ‘power’ of a correct futility
decision.21 If the cut-off point is chosen too low (high), the trial will be stopped too rarely (frequently). It is therefore important
to select a cut-off value that limits the impact on the power of the trial to detect true superiority. The type II error probability
can be partitioned as the probability of stopping for futility (and of a type II error) at the pre-specified interim analysis plus the
probability of continuation and non-significance at the final analysis.4
One approach for choosing an appropriate cut-off is to maximize power loss as a result of futility stopping for the protocol
planned superiority scenario(s). In particular, we infer a corresponding cut-off by running a sufficient number of simulations
under the different scenarios. For a given cut-off and scenario, the probability to stop for futility is calculated as the fraction of
trials in which the decision was to stop. We determine for each scenario the maximum cut-off for which the total power falls just
below the pre-specified minimal total power for that scenario. The final cut-off is the minimum over all these cut-offs.

3 SIMULATION STUDY

We carried out different simulation studies to compare the performance of the proposed method to the existing methods and to
evaluate its operational characteristics under a variety of true futility and superiority scenarios. The cut-off criterion, as described
in section 2.4, is used to investigate and compare the properties of the different methods.

3.1 Simulation Settings
In the motivating phase 3 clinical trial, superiority of the experimental arm over the control arm is claimed if the proportion
of subjects with favorable treatment outcome 60 weeks after randomization is significantly higher compared to the control arm
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at a one-sided significance level of 2.5%. Assuming a favorable treatment outcome rate of 60% and 73% in the control and
experimental arm respectively, 275 patients in both arms are required to attain 90% power with a Z-statistic for the difference
in proportions with pooled variance.22
Endpoint data are generated from a repeated binary data model under futility/superiority scenarios for the proportion of subjects
achieving a favorable outcome Y , varying assumptions on the proportion of subjects achieving X and varying assumptions
(strong, assumed and weak) on the log odds ratio logORj of Y for early responders versus early non-responders in treatment
arm j ∈ {0, 1}. Particularly, the short-term endpoint data X are sampled from a Bernoulli distribution with probability PX1

and PX0
in respectively the experimental and control arm. Accordingly, the future primary endpoint data for early responders

and early non-responders in each treatment arm are sampled from a Bernoulli distribution with probabilities conditional on the
early response data. These conditional probabilities are determined by the marginal probabilities for X and Y as well as the
log odds ratios. Table 1 provides an overview of the selected population models. Based on the observed phase 2b data, three
correlation scenarios ‘weak’, ‘assumed’ and ‘strong’ were generated, whereby the correlation was weaker, the same and stronger
respectively than the correlation assumed in the prior distribution. In addition to these correlations, a perfect predictor X of
Y (SUP.1 and FUT.1) and a very strong predictor X of Y (FUT.3) are considered. We furthermore assume that at the interim
analysis 10% of the patients have complete observations on the long-term outcome such that tY = 0.10 and 40% of short-term
observations are available such that tX = 0.40. This corresponds with an average of 54 patients in cohort 1, 166 in cohort 2 and
330 in cohort 3. These targeted proportions are recommended as the minimum values to obtain a reasonable probability to stop
for true futility and a negligible probability to incorrectly stop under superiority in this example.23 They are based on projected
recruitment at that time.
(Include Table 1 about here)
First, we compare the performance of the proposed method to the standard method and the method introduced by Niewczas,
König and Kunz11 (referred to as method NKK). In adition, we investigated different strengths of association between both
endpoints and the influence of the information fraction on the cut-off value and the ‘power’ of a correct futility decision.
Every scenario was run 100, 000 times. For each simulated trial the conditional power was calculated based on the analytical
approximations given in Section 2.3 for 2500 posterior samples forP d

Y |X . Prior distributions were selected based on the real phase
2b data. Details are given in Web Appendix D. For each scenario and decision criterion, the probability to stop for futility was
calculated as the fraction of trials in which the decision was to stop. The R-code is available in the R package FutilityStopping.

3.2 Simulation Results
3.2.1 Selecting a criterion for decision making
For method comparison a cut-off was set in such a way that a maximum reduction of 1% in power relative to an analysis without
futility decisions is allowed under the most plausible superiority scenarios SUP.2 and SUP.5 (See Table 1) and a limited power
loss (< 5%) under the less expected and even misleading scenarios (e.g. , SUP.3, whereby at interim the proportion of subjects
achievingX is not different between the randomized groups). The probability to stop for futility and the overall power in function
of the cut-off points are shown inWeb Appendix G. Similar patterns in opposite directions are seen. The overall power decreases
with increasing cut-off points, but stays around the design power of 0.90 up to cut-off points of around 0.51 under the different
superiority scenarios, except under SUP.3. Since we also want a reasonable probability to stop early in case of true futility and the
probability to stop for futility is increasing with increasing cut-off points, a stopping criterion of 0.51 for the expected conditional
power appears to perform best in terms of a limited power inflation (< 1% under SUP.2 and SUP.5) and a reasonable probability
of stopping for true futility. The probability to stop under a true futility scenario is 44% under FUT.1, 44.5% under FUT.3 and
varies from approximately 7.5% to 9% for the scenarios under the weak log odds ratio, from approximately 24% to 34% for the
scenarios under the assumed log odds ratio and from approximately 25% to 44% for the scenarios under the strong log odds
ratio (Table 2 and Web Appendix G). The probabilities to stop under futility scenario FUT.5, whereby at interim a difference in
proportion of subjects achieving a favorable treatment outcome X in favor of the experimental treatment is observed, under the
weak, assumed and strong log odds ratio are 5%, 18% and 19% respectively.

3.2.2 Comparison With the Standard Conditional Power and Method NKK
In this section, we compare the expected conditional power with the standard approach and method NKK. The latter assumes a
Brownion motion structure to calculate the conditional power based on a binary outcome measured at two time points. We refer
the reader to Web Appendix E for further details.
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In each trial, interim data were generated for 220 of the 550 patients (tX = 0.40) and primary endpoint data for 54 of them
(tY = 0.10). The cut-off value is determined using the same approach as for our proposal (see Section 3.2.1). Early stopping
for futility is recommended when the conditional power falls below 0.73 when the standard approach is used, below 0.60 when
method NKK is used or below 0.51 when the expected conditional power method is used. Note that the most appropriate cut-
off value differs between the methods, since for each method a different cut-off value leads to a small to negligible probability
of false early stopping in case of true superiority (maximum reduction of 1% in power under the most plausible superiority
scenarios and a limited power loss (< 5%) under the less expected) and a reasonable probability of stopping for true futility. The
probabilities to stop for futility under the different true futility scenarios are displayed in Table 2. Note that the superiority as
well as the futility scenarios coincide when evaluating the standard conditional power since we are only evaluating the primary
endpoint data which are simulated under the same distributions (e.g. , binomial distributions with probabilities 0.60 and 0.73
for respectively the control and treatment arm under superiority).
(Include Table 2 about here)
It can be seen that the overall probability to stop for futility increases when using the proposal incorporating short-term endpoints
compared to the standard approach, except at a weak log odds ratio where the results are similar. This is due to the different choice
of the cut-off. In general, the proposal seems to perform better than method NKK, except when the log odds ratio is reasonably
large (FUT.1 and strong FUT.3). The latter is due to the fact that method NKK ignores the uncertainty on the predicted values in
cohort 2whenX happens to equal Y for all subjects in cohort 1. Acknowledging this uncertainty is important however. Consider
for example an interim analysis where data for all patients are available; 50 in cohort 1 and 500 in cohort 2. Suppose that the
data in cohort 1 shows that X = Y : 22 patients with X = Y = 1 and 3 patients with X = Y = 0 in the experimental arm, and
18 patients with X = Y = 1 and 7 with X = Y = 0 in the placebo arm. Suppose further that 160 of the 250 patients in the
experimental arm of cohort 2 are early responders. If cohort 2 includes 177 early responders in the experimental arm, then the
conditional power calculated by method NKK is 0, meaning that at the time of the interim analysis the probability to reject the
null hypothesis at the end of the trial is 0; it equals 1 if cohort 2 includes 178 early responders in the experimental arm. In such
settings, it is impossible to obtain a conditional power different from 0 or 1 and it may jump between these two extreme values
when an early non-responder changes in an early responder or vice versa.
Similar simulations for tY = 0.20 and tX = 0.40 show that the advantage of using the expected conditional power decreases
with increasing cohort 1 sample size for a fixed interim sample size (see Web Appendix F). The difference in the amount of
information between the proposed and standard method decreases since the amount of data in cohort 2 decreases. Compared with
method NKK, this is due to the fact that the prior information becomes less important when the cohort 1 sample size increases.

3.3 Operational Characteristics
3.3.1 Strength of the Association
To further investigate the behaviour of the estimators, different strengths of association between X and Y were considered at
tX = 0.40 and tY = 0.20 : independent predictor (logOR1 = 0 and logOR0 = 0), weak correlation (logOR1 = 0.8 and
logOR0 = 0.5), weak/low correlation (logOR1 = 1.3 and logOR0 = 0.8) denoted by low3, weak/low correlation (logOR1 = 2
and logOR0 = 1.5) denoted by low2 , weak/low correlation (logOR1 = 3 and logOR0 = 2) denoted by low1, assumed
correlation (logOR1 = 4.1 and logOR0 = 2.3), strong correlation (logOR1 = 7.4 and logOR0 = 4.1) and perfect predictor
(logOR1 = 100 and logOR0 = 100). Identical probabilities of success for Y and X were chosen in both treatment arms:
PY 1 = PX1 = 0.73 and PY 0 = PX0 = 0.60 for the superiority scenarios and PY 1 = PX1 = PY 0 = PX0 = 0.60 for the true futility
scenarios.
(Include Figure 3 about here)
Figure 3 shows that the stronger the predictor, the higher the probability to stop under a true futility scenario without loss of
power. For the superiority scenarios we would expect the graphs to be in the reverse order, but this does not seem to be the case.
This is due to the fact that we rely more on the design assumptions as the log odds ratios become smaller (see Figure 2). If X
and Y are independent, we completely rely on the design assumptions. The curve is therefore similar -but higher due to the extra
variability induced by the posterior distribution- to the curve that we would get if we calculated the standard conditional power.
Since in practice, the association between X and Y is unknown, it is recommended to assume a range of association structures
between both endpoints (e.g. , a perfect predictor, an X which is independent of Y , the log odds ratio as observed in historical
data and the observed log odds ratio plus or minus 1.96 times its standard error) to protect against a large loss of power when
determining the cut-off value.
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3.3.2 Varying Information Fractions
To investigate the influence of tX on the cut-off value for the conditional power, we investigate the probability to stop for
true futility under scenario FUT.2 (assumed log odds ratio) for the cut-off value that results in a power loss of at most 1%
under scenario SUP.2 (assumed log odds ratio) for tY fixed at 0.10. The following information fractions for X were considered:
tX = (0.20, 0.30, 0.40, 0.50, 0.60). The probability to stop for futility under FUT.2 is 20% when tX = 0.20 (cut-off: 0.66), 28%
when tX = 0.30 (cut-off: 0.59), 35% when tX = 0.40 (cut-off: 0.51), 38% when tX = 0.50 (cut-off: 0.43) and 40% when
tX = 0.60 (cut-off: 0.35). The probability to stop for futility using the expected conditional power is shown in Figure 4. We see
that the higher the information fraction for X, the lower the cut-off point can be chosen and the higher the probability to stop
under a true futility scenario.
(Include Figure 4 about here)
To investigate the influence of tY on the cut-off value, we evaluate the probability to stop for true futility under scenario FUT.2
for the cut-off value that results in a power loss of at most 1% under scenario SUP.2 for tX fixed at 0.40. We consider the
following information fractions for Y : tY = (0.05, 0.10, 0.15, 0.20). The probability to stop for futility under FUT.2 is 34%when
tY = 0.05 (cut-off: 0.50), 35% when tY = 0.10 (cut-off: 0.51), 38% when tY = 0.15 (cut-off: 0.53) and 41% when tY = 0.20
(cut-off: 0.53). Thus, the higher the information fraction for Y , the higher the cut-off point that results in 1% power reduction and
the higher the probability to stop under a true futility scenario. Otherwise, the availability of primary endpoint data Y (cohort 1
data) improves the performance of the futility assessment; especially under scenarios where the observed outcome (in terms of
treatment difference) on theX data is different from the true treatment effect on Y , or lack thereof (see FUT.5 in Web Appendix
G).
(Include Figure 5 about here)

4 DISCUSSION

In trials where accrual occurs fast compared to the planned length of follow-up, few subjects will have primary endpoint data
until close to the end of the study. This makes it difficult to accurately estimate the long-term response probability early in the
study. We therefore proposed a method to incorporate short-term endpoint data (e.g. , an assessment of the primary endpoint at
an earlier time) and prior information for decision-making in the interim analysis. Our proposal assumes that the prior infor-
mation about the association between both endpoints and the observed association in cohort 1 are representative for cohort 2.
This requires that the dependence between both endpoints does not change over time. Whether this assumption is biologically
plausible, should be assessed a priori based on consultation with clinicians. In addition, we recommend comparing the baseline
covariates of patients in cohort 1 and 2 to assess whether the observed data in cohort 1 may be representative of the future data.
In future work we will propose methods that can weaken these assumptions by correcting for baseline covariates.
We generally found our proposal to perform better than the standard conditional power method and the conditional power method
introduced by Niewczas, König and Kunz11. The larger amount of information, obtained by incorporating short-term endpoint
data as well as historical data, resulted in a higher overall probability to stop for true futility.
The (minimal) values for tX and tY used in the example are specific to the context. In practice, one should do a simulation study
to determine the minimal number of patients needed in cohort 1 and 2 (or equivalently the proportion of patients with long-term
and short-term endpoint information) to obtain a reasonable probability to stop for true futility and a negligible probability to
incorrectly stop under the superiority scenarios. For the minimal tX , we propose using the minimal proportion of primary end-
point data needed for the standard conditional power to obtain a reasonable probability to stop for true futility and a negligible
probability to incorrectly stop under superiority as explained in Freidlin et al23 (e.g. , 37% for a one-sided 0.025 level design
with a power of 90%). Subsequently, we consider the minimal number/proportion of these patients needed in cohort 1 to obtain
a negligible probability to stop under the superiority scenarios and a reasonable probability to correctly stop under the true futil-
ity scenarios.
In the motivating study, any missing observation was dealt with as an unfavourable outcome. For subjects in cohorts 2 and 3
who already discontinued from the trial it is then known that they will not meet the criteria of a favorable primary endpoint,
even when they are not yet followed for the whole interval �Y . We recommend, however, that this information is excluded from
the analysis to avoid that the analysis is dominated by drop-outs. Thus, for the subjects in cohort 2 only available data up to �X
is included in the analysis, while for the subjects in cohort 3 no data is included. Although the proposed methodology has there-
fore been developed in the context of complete data, it still remains valid when data are missing completely at random. When
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data are missing at random, standard missing data methods (e.g. , multiple imputation) can be used to impute the missing data.
Conditional power computations are commonly evaluated at fixed values of the parameters PY1 and PY0 . It is more cautious how-
ever to average the conditional power function with respect to the current knowledge or opinion about PY1 and PY0 . The current
knowledge about the underlying value of these parameters can be summarized using prior Beta distributions. The predictive
power24 can then be derived by averaging/integrating the conditional power over different values �1 and �0 for respectively PY1
and PY0 , each one weighted according to the current belief about its probability by means of a (posterior) distribution. In con-
trast to the conditional power approach, it produces an unconditional, predictive probability of rejecting the null hypothesis and
it avoids having to assume specific values for PY1 and PY0 . It therefore also delivers a more robust power assessment.
This paper has focused on binary endpoints. An important generalization would be to enable continuous endpoints, whether
censored or not.
Our proposal is limited to trial designs where only one specific short-term response is identified. In principle, when repeated
measures at multiple intermediate time points are evaluated, including these repeated measures could provide further efficiency
gains. In future work we will therefore develop a more generic proposal to enable an interim evaluation of the treatment effect
based on a combination of biomarkers, patient characteristics and/or intermediate endpoints.
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GRAPHICAL ABSTRACT

Superiority Y X Strong logOR Assumed logOR Weak logOR Note
Scenario PY 0 PY 1 PY 1 − PY 0 PX0 PX1 PX1 − PX0 logOR0 logOR1 logOR0 logOR1 logOR0 logOR1
SUP.1 0.60 0.73 0.13 0.60 0.73 0.13 - - 100 100 - - X = Y
SUP.2 0.60 0.73 0.13 0.60 0.73 0.13 4.1 7.4 2.3 4.1 0.5 0.8 P (X = 1) = P (Y = 1), but possibly X ≠ Y
SUP.3 0.60 0.73 0.13 0.60 0.60 0 4.1 7.4 2.3 4.1 0.5 0.8 Futile X (False futility)
SUP.4 0.60 0.73 0.13 0.40 0.60 0.20 4.1 7.4 2.3 4.1 0.5 0.8 Larger effect in X (20%); P (X = 1) < P (Y = 1) in control
SUP.5 0.60 0.73 0.13 0.60 0.80 0.20 4.1 7.4 2.3 4.1 0.5 0.8 Larger effect in X (20%); P (X = 1) = P (Y = 1) in control
SUP.6 0.60 0.73 0.13 0.75 0.95 0.20 4.1 7.4 2.3 4.1 0.5 0.8 Larger effect in X (20%); P (X = 1) > P (Y = 1) in control

Futility Y X Strong logOR Assumed logOR Weak logOR Note
Scenario PY 0 PY 1 PY 1 − PY 0 PX0 PX1 PX1 − PX0 logOR0 logOR1 logOR0 logOR1 logOR0 logOR1
FUT.1 0.60 0.60 0 0.60 0.60 0 - - 100 100 - - X = Y
FUT.2 0.60 0.60 0 0.60 0.60 0 4.1 7.4 2.3 4.1 0.5 0.8 P (X = 1) = P (Y = 1), but possibly X ≠ Y
FUT.3 0.60 0.60 0 0.60 0.60 0 - - 7.4 10.7 - - P (X = 1) = P (Y = 1), but possibly X ≠ Y (stronger association)
FUT.4 0.60 0.60 0 0.73 0.73 0 4.1 7.4 2.3 4.1 0.5 0.8 P (X = 1) > P (Y = 1)
FUT.4b 0.60 0.60 0 0.73 0.73 0 7.4 7.4 4.1 4.1 0.8 0.8 P (X = 1) > P (Y = 1); same association in both arms
FUT.5 0.60 0.60 0 0.60 0.70 0.10 4.1 7.4 2.3 4.1 0.5 0.8 Effect of 10% in X (False superiority)
FUT.6 0.60 0.60 0 0.40 0.40 0 4.1 7.4 2.3 4.1 0.5 0.8 P (X = 1) < P (Y = 1)

TABLE 1 Parameters of the data generating models.

Weak log odds ratio
FUT.1 FUT.2 FUT.3 FUT.4 FUT.4b FUT.5 FUT.6

Proposal - 8.45 - 7.50 8.12 5.34 9.37
NKK - 2.26 - 2.30 2.27 2.19 2.22
Standard method - 12.32 - 12.32 12.32 12.32 12.32

Assumed log odds ratio
FUT.1 FUT.2 FUT.3 FUT.4 FUT.4b FUT.5 FUT.6

Proposal 44.08 34.24 44.50 24.15 25.63 17.93 26.07
NKK 63.46 9.91 53.53 6.17 9.85 6.89 6.30
Standard method 12.32 12.32 12.32 12.32 12.32 12.32 12.32

Strong log odds ratio
FUT.1 FUT.2 FUT.3 FUT.4 FUT.4b FUT.5 FUT.6

Proposal - 44.39 - 28.85 29.26 19.42 25.12
NKK - 28.95 - 11.09 13.73 15.05 8.47
Standard method - 12.32 - 12.32 12.32 12.32 12.32

TABLE 2 Probability to stop for futility under different true futility scenarios for the proposed method with the NKK method11

and the standard conditional power for tX = 0.40 and tY = 0.10: . The cut-off values were determined based on a maximum 1%
power reduction under SUP.2 and SUP.5. Since FUT.1 is the futility scenario whereX = Y , and thus logOR1 = logOR0 = ∞,
the results are only displayed for the assumed log odds ratio. Similar for FUT.3 where we only have a (very) strong odds ratio.
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FIGURE 1 Available data at the interim analysis. Note that “cured” and “not cured” correspond with Y = 1 and Y = 0,
respectively.
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FIGURE 2 Change in predicted P (2)Yj
= P d

Yj |Xj=1
P (2)Xj

+ P d
Yj |Xj=0

(

1 − P (2)Xj

)

when P (1)Yj
is smaller than the design assumption as

a function of the strength of the association log
(

P (Y=1|X=1,A=j,C=1)P (Y=0|X=0,A=j,C=1)
P (Y=0|X=1,A=j,C=1)P (Y=1|X=0,A=j,C=1)

)

, where C = 1 for subjects in cohort 1.

FIGURE 3 Probability to stop for futility under FUT.2 and SUP.2 for different strengths of the association between X and Y
in function of cut-off points using the expected conditional power.
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FIGURE 4 Probability to stop for futility for varying choices of tX and fixed tY = 0.10 under scenario FUT.2 (assumed log
odds ratio) for the cut-off value that results in a power loss of at most 1% under scenario SUP.2.

FIGURE 5 Probability to stop for futility for varying choices of tY and fixed tX = 0.40 under scenario FUT.2 (assumed log
odds ratio) for the cut-off value that results in a power loss of at most 1% under scenario SUP.2.
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