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Estimation of Survival Probabilities for Use
in Cost-effectiveness Analyses: A Comparison
of a Multi-state Modeling Survival Analysis
Approach with Partitioned Survival
and Markov Decision-Analytic Modeling

Claire Williams, MSc, James D. Lewsey, PhD, Daniel F. Mackay, PhD,
Andrew H. Briggs, DPhil

Modeling of clinical-effectiveness in a cost-effectiveness
analysis typically involves some form of partitioned sur-
vival or Markov decision-analytic modeling. The health
states progression-free, progression and death and the
transitions between them are frequently of interest. With
partitioned survival, progression is not modeled directly as
a state; instead, time in that state is derived from the
difference in area between the overall survival and the
progression-free survival curves. With Markov decision-
analytic modeling, a priori assumptions are often made
with regard to the transitions rather than using the individ-
ual patient data directly to model them. This article com-
pares a multi-state modeling survival regression approach to
these two common methods. As a case study, we use a trial
comparing rituximab in combination with fludarabine and
cyclophosphamide v. fludarabine and cyclophosphamide
alone for the first-line treatment of chronic lymphocytic

leukemia. We calculated mean Life Years and QALYs that
involved extrapolation of survival outcomes in the trial. We
adapted an existing multi-state modeling approach to incor-
porate parametric distributions for transition hazards, to
allow extrapolation. The comparison showed that, due to the
different assumptions used in the different approaches, a
discrepancy in results was evident. The partitioned survival
and Markov decision-analytic modeling deemed the treat-
ment cost-effective with ICERs of just over £16,000 and
£13,000, respectively. However, the results with the multi-
state modeling were less conclusive, with an ICER of just
over £29,000. This work has illustrated that it is imperative
to check whether assumptions are realistic, as different
model choices can influence clinical and cost-effectiveness
results. Key words: oncology; survival analysis; Markov
models; cost-effectiveness analysis. (Med Decis Making
2017;37:427-439)

artitioned survival'™ and Markov decision-ana-

lytic modeling®” are two methods widely used
in cost-effectiveness analysis. In oncology, the three
health states—progression-free, progression and
death—are frequently of interest. Partitioned sur-
vival only considers the two curves for progression-
free survival and overall survival directly, with time
in progression calculated using the difference in
area between the two other curves. In contrast,
Markov decision-analytic modeling studies the clin-
ical pathway of disease by considering the three
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states of progression-free, progression and death
and the relevant transitions between them. All three
relevant transitions are considered simultaneously
rather than the separate modeling of the two out-
comes in partitioned survival. Markov decision-
analytic models are typically built in a spreadsheet-
based package over discrete time cycles using
cohort simulation, and a priori assumptions are
made with regards to the transition probabilities.
Such assumptions are based on what the modeler
deems appropriate, and therefore may not be based
directly on the observed data for every transition.
For example, background mortality rates are some-
times used to inform transition probabilities. In this
article, we use the alternative approach of multi-
state modeling for comparison with partitioned
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survival and Markov decision-analytic modeling.
Like Markov decision-analytic modeling, multi-
state modeling is a state-transition modeling
approach and, as such, models each of the transi-
tions of interest simultaneously. However, it uses a
continuous-time framework. Typically, the individ-
ual patient-level data is used to build survival
regression models for each of the transitions and
therefore the modelling is based wholly on the
observed data. There has been increased awareness
of multi-state modeling in the health economics lit-
erature:®° however, the method is still not com-
monly applied. In one study,® the authors described
the use of tunnel states in Markov decision-analytic
modeling as a way of building semi-Markov models
that relax the Markov property. They implemented
a semi-Markov approach that represented tunnel
states in an alternative way by using multi-
dimensional transition matrices. In another study,9
the authors used a multi-state model to inform a
microsimulation model for cost-effectiveness analy-
sis. It used exact times of transitions and, as such,
negated discrete cycles and provided an alternative
to tunnel states, thereby simplifying the process in
situations with many health states. The mstate'!
package in R'? was used for their multi-state model-
ing, and Excel for their microsimulation model. In
this paper, we build on previous work to calculate
transition probabilities. We adapt the existing func-
tionality of mstate based on semi-parametric Cox
regression to incorporate parametric regression of
transition hazards, with a range of standard distri-
butions, to allow for extrapolation of survival out-
comes and hazards that vary over time. Our
illustration of the multi-state modeling approach
involves this extrapolation and calculates mean Life

Received 31 August 2015 from Health Economics and Health
Technology Assessment, Institute of Health and Wellbeing, University
of Glasgow, Glasgow (CW, JDL, AHB); and Public Health, Institute of
Health and Wellbeing, University of Glasgow, Glasgow (DFM).
Financial support for this study was provided by a Doctoral Training
Grant from the Medical Research Council in the UK (MR/J50032X/1).
The funding agreement ensured the authors’ independence in design-
ing the study, interpreting the data, writing, and publishing the report.
Revision accepted for publication 29 July 2016.

Supplementary material for this article is available on the Medical
Decision Making \Web site at http://journals.sagepub.com/home/madm.

Address correspondence to Claire Williams, MSc, Health Economics
and Health Technology Assessment, Institute of Health and
Wellbeing, University of Glasgow, 1 Lilybank Gardens, Glasgow, G12
8RZ, UK; e-mail: c.williams.3@research.gla.ac.uk.

428 ¢ MEDICAL DECISION MAKING/MAY 2017

Years/QALYs in relevant health states for use in
cost-effectiveness analysis. Our approach focuses
entirely on multi-state modeling and therefore pro-
vides an alternative to microsimulation. Its imple-
mentation in R is described elsewhere,'® allowing
other modelers to adopt the approach.

Extrapolation of survival has received much
attention in the health economics literature in
recent years.'*'® Extrapolation of survival is often
needed because observations in clinical trials are
frequently not of sufficient length to follow each
patient to end of life. Latimer'® and Bagust'* have
debated approaches to estimating survival from
Kaplan-Meier curves for outcomes used in parti-
tioned survival, such as overall survival and pro-
gression-free survival. One way of extrapolating
survival is to use parametric regression. The multi-
state modeling approach presented in this article
extends this to state-transition modeling. The con-
tribution of this paper is to compare this multi-state
modeling approach to the two other common meth-
ods of partitioned survival and Markov decision-
analytic modeling, with a particular emphasis on
the different assumptions used with each of the
approaches.

DATA AND METHODS

Dataset Used for Illustration

To compare the multi-state modeling framework
with the two common approaches of partitioned
survival and Markov decision-analytic modeling, a
specific National Institute for Health and Clinical
Excellence (NICE) technology appraisal is used for
illustration - TA174." The economic model sub-
mitted by the manufacturer Roche to evaluate the
cost-effectiveness of rituximab for the first-line
treatment of chronic lymphocytic leukemia is
used as an example.?® Specifically, the three-state
Markov decision-analytic model developed by
Roche is compared to partitioned survival and
multi-state modeling.

The main source of data in this Markov decision-
analytic model is the CLL-8 trial.*' It compared
rituximab in combination with fludarabine and
cyclophosphamide (RFC) v. fludarabine and cyclo-
phosphamide alone (FC) for the first-line treatment
of chronic lymphocytic leukemia. The trial had the
outcomes progression-free survival and overall sur-
vival for each patient, allowing focus to be on the
three states of progression-free, progression and
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death (and the transitions between them). There
were 408 patients in the RFC arm and 409 patients
in the FC arm. There were 106 progressions, 23
deaths after progression and 21 deaths without pro-
gression amongst those in the RFC arm. In the FC
arm, there were 148 progressions, 27 deaths after
progression and 26 deaths without progression.

Patients were in the trial for up to 4 years and not
all of them were observed to the end of their life. It
was estimated that only 1.3% of the cohort would
survive beyond 15 years [20: p109] and this
informed the manufacturer’s decision to use a 15-
year time horizon. We used data from the same trial
for the partitioned survival and multi-state model-
ing approaches and used the same time horizon as
the manufacturer for comparison purposes.

Estimation of Mean Survival

Estimates of mean survival were obtained by cal-
culating the area under the extrapolated survival
curves. All areas under the survival curves were cal-
culated using the trapezoidal rule with increments
of 1/12 years, equivalent to the cycle length of a
month in the manufacturer’s Markov decision-
analytic model. However, due to computational
issues with the Gompertz distribution, the calcula-
tion of transition probabilities with the multi-state
modeling used increments of 1/12 years up to 9
years followed by increments of 1/144 years up to
the 15-year time horizon. This shortening of the
cycle length after 9 years was needed to overcome a
difficulty in meeting the requirement that differences
in cumulative hazards between consecutive time
points were below one. After this adjustment to
allow calculation of transition probabilities, only the
probabilities at 1/12-year increments were involved
in the trapezoidal rule calculations, consistent with
other approaches. Our choice of 1/144-year incre-
ments was based on the ease of calculation of mul-
tiples of 1/12. For each of the three approaches,
results for mean Life Years and QALYs are pre-
sented for each treatment arm. All Life Year and
QALY calculations were discounted at an annual
rate of 3.5%, the approach taken by the manufactur-
ers in their Markov decision-analytic model.

The next three sections detail each of the approaches
in turn.

Partitioned Survival

Partitioned survival involves partitioning overall
survival into states of interest. As the three states of
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interest in this illustration were progression-free,
progression, and death, the required partitioning of
overall survival is achieved using progression-free
survival. The two trial outcomes progression-free
survival and overall survival were each modeled
directly using parametric regression to allow for
extrapolation. This approach did not consider post-
progression survival directly. Instead, the mean
time in progression was derived from the difference
in the area under the two survival outcomes that
were considered directly. We considered six stan-
dard distributions in the modeling for each trial out-
come: exponential, Weibull, Gompertz, log-logistic,
log normal and generalized gamma. The assessment
of fit to the observed data for each of the predicted
probabilities was based on AICs, Cox-Snell resi-
duals and visual comparison with Kaplan-Meier
estimates.

Initially, for the two survival outcomes consid-
ered directly, we carried out extrapolation by fitting
parametric regressions to the whole Kaplan-Meier
curve and extending the predictions out to 15 years.
For progression-free survival, this approach pro-
duced predictions that adequately represented sur-
vival of zero upon extrapolation to 15 years.
However, this was not the case for overall survival.
There was a high level of censoring for overall
survival. By the end of the trial observation period
of 4 years, there were still 85% of patients alive.
None of the extrapolations using any of the distribu-
tions produced survival probabilities close to zero
by 15 years, with 50% being the lowest achieved.
Therefore, for overall survival, extrapolation based
on starting from the tail end of the Kaplan-Meier
curve was undertaken. An approach, outlined by
Tappenden and others,'® was used to fit a linear
regression to the tail of the Kaplan-Meier curve and
then back-transform the predictions to the equiva-
lent using a parametric regression. This approach
accommodated fitting regressions when the starting
time point was beyond zero and survival had
dropped below one, as is the case in the tail of a
Kaplan-Meier curve. It involved rearranging the sur-
vival function of the parametric distribution into a
function that had a linear, or other simple relation-
ship, with time. For example, when an exponential
fit to the tail data was desired, the exponential
survival function S(t) = e™ was rearranged into
log(S) = —At, which meant the linear regression
log(S) ~ t could be performed, with the intercept con-
strained to be zero. The coefficient for t in this linear
regression was then used as —\ in the exponential
survival function. Similarly, a rearrangement of the
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Weibull survival function S(t) = e ™" meant the line

log(-log(S)) = a + b log(t) could be fitted using linear
regression, with the coefficients of a and b represent-
ing log N\ and v, respectively. Time t was measured
from the start of the tail. The regression that was
fitted to the tail was then extrapolated to 15 years.
Each of the treatment groups was considered sepa-
rately. To decide the eventual “tail end” of the
Kaplan-Meier curve to use, each of the unique
observed times was considered as a starting point for
the tail. The starting point chosen was the latest time
that resulted in an extrapolation that reached zero by
15 years. This starting point produced predictions
that adequately represented a time horizon of 15
years for the FC arm but not the RFC arm. Therefore,
for the RFC arm, the survival probabilities in the
extrapolated period were derived by multiplying the
logarithm of the extrapolated probabilities in the FC
arm by the treatment hazard ratio from the observed
period, and then taking the exponential of the result.

Markov Decision-Analytic Modeling Approach
Adopted by the Manufacturer

The three-state Markov decision-analytic model
used by the manufacturer in their economic evalua-
tion submitted to NICE is shown in Figure 1.

The three transitions—progression-free to pro-
gression, progression-free to death without progres-
sion, and progression to death—were modeled. The
model measured time in discrete monthly cycles.
The manufacturers took the usual approach in
Markov decision-analytic modeling of assigning
transition probabilities before modeling started. The
assumptions made by the manufacturer for each of
the transitions were as follows:

e Progression to death

A monthly probability of 0.0405 was used, the same
for each arm. It was based on an assumption of a
constant death rate that was derived from the
inverse of the mean of 24.1791 months from the
Kaplan-Meier estimate of post progression survival.

e Progression-free to death

This was the observed rate of death while progres-
sion-free, or an age-specific background mortality
rate,”” whichever was largest. The observed
monthly probability of death whilst progression-
free was 0.0012 and 0.00139 in the RFC and FC
arms, respectively.
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Progression-free

Progression

Figure 1 Markov decision-analytic model diagram.

e Progression-free to progression

This was calculated by adding together the prob-
ability for progression-free to death and the prob-
ability of staying in the progression-free state, and
then subtracting the result from one. The probabil-
ity of staying in the progression-free state was based
on a Weibull regression fitted to the observed pro-
gression-free survival data that was then extrapo-
lated to 15 years. This was identical to the Weibull
regression used for progression-free survival in the
partitioned survival approach.

The model was built in Excel following a cohort
of patients from the initial progression-free state
over a series of cycles, with movement between
states based on the transition probabilities already
assigned. Extrapolation was performed by extend-
ing the probabilities to the target time horizon of 15
years. The manufacturer used a ‘“clock-reset”
approach in that, for the modeling of the progres-
sion to death transition, time was set back to zero as
patients first entered the progression state. In the
continuous time state-transition modeling frame-
work, resetting the clock in this way is considered a
semi-Markov approach. However, the approach
used was not semi-Markov in the typical sense
under the discrete time framework. This was
because it did not involve tunnel states or the use of
multi-dimensional transition matrices to incorpo-
rate time dependency, and only involved simula-
tion of a single cohort.
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Multi-state Modeling

The multi-state modeling approach fits the same
model as the Markov decision-analytic modeling
above, in that it uses the same three states and transi-
tions between them. Unlike with the approach com-
monly used in Markov decision-analytic modeling,
this multi-state modeling approach builds survival
regression models of each of the transitions directly
using the individual patient data. It uses the exact
time of transitions and therefore is a continuous time
state-transition framework, rather than the discrete
time framework used in Markov decision-analytic
modeling. The background to the method is explained
in a tutorial by Putter and others,* on which much of
the explanation in this section is based.

As with Markov decision-analytic modeling, two
types of models can be fitted with this multi-state
modeling approach: Markov and semi-Markov
models. Further details are available elsewhere.*’
With each of these models, it is possible to build
state-arrival extended models. The term “state-arri-
val extended (semi-) Markov” is described in the
tutorial by Putter and others®® as a model of an:

“i — j transition hazard that depends on the time
of arrival at state i.”

It involves including in a model a covariate that
represents patients’ histories and, as such, provides a
useful tool to help decide whether the Markov prop-
erty holds. The effect size and statistical significance
of the covariate (which could be time in the previous
state, or any function thereof) can aid the decision.

As a preliminary analysis, a Cox state-arrival
extended model for progression to death— includ-
ing a covariate for the time in the previous
state—was fitted. This was purely for the purpose of
aiding the decision of whether to accept the Markov
assumption. It was a Cox model in the sense that the
baseline hazard did not follow a specified distribu-
tion. It was strictly a Markov, rather than semi-
Markov, model because time was measured from
first entering the initial (progression-free) state. It
was only this transition that affected the decision of
whether the Markov assumption was reasonable, as
the other transitions did not involve any history as
they started in the initial state.

We found evidence to suggest the Markov prop-
erty did not hold (not shown) and proceeded to use
a semi-Markov approach. For each of the transi-
tions, a parametric approach to regression was then
taken to allow extrapolation of survival. In a similar
manner to the manufacturer’s Markov decision-
analytic model, extrapolation was carried out by
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extending the underlying distribution used for the
hazard to the target time horizon of 15 years.
Standard distributions were considered for the
modeling of each transition: exponential, Weibull,
Gompertz, log-logistic, log normal and generalized
gamma. AICs are often used to decide between dif-
ferent models. However, they only provide informa-
tion about the fit to the observed data, and not on
how reasonable the extrapolation looks. In addition,
we did not consider AICs, or other similar criteria,
because the approach involved modeling transition
hazards in a competing risks scenario. When com-
peting risks are involved, there is no longer the one-
to-one relationship between the hazard and survival
probabilities that there is in the absence of compet-
ing risks. That is to say, the hazard of a particular
event cannot simply be derived from the probability
of the survival, because survival is based on a com-
bination of two or more hazards rather than just
one. With competing risks, the term survival is
reserved for survival free from any of the events
(event of interest or competing). The concept of
cumulative survival from a particular event is not
meaningful in a competing risks setting, as it does
not recognize that competing events can also occur.
Instead, the cumulative incidence of a particular
event is used, as it recognizes that other events can
occur, through the use of survival free from any of
the events in its calculation. In addition, the effect
of a covariate on a hazard of an event can be differ-
ent from its effect on the cumulative incidence of
the event, due to the effect of the covariate on the
hazard of a competing event. More generally, in
multi-state models, state occupancy probabilities
involve combining the hazards for each transition
into that state. Therefore, comparing AICs of models
for hazards of individual transitions does not corre-
spond to assessing the state occupancy probabilities
that are ultimately of interest. AICs can be used in
competing risks scenarios when cumulative inci-
dences are modeled directly, such as in the Fine
and Gray subdistribution hazards model.**
However, there is no known equivalent to AIC, or
other similar criteria, appropriate for this approach.
Instead, the resultant model was chosen based on a
visual assessment of relevant plots that achieved a
balance of a good fit to the observed data and a rea-
sonable extrapolation to 15 years.

Software Used

All analysis was carried out using R version
3.0.1." The multi-state modeling was undertaken
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using the mstate package."' Adaptations were
made by the authors to accommodate parametric
regression rather than the Cox semi-parametric
approach. The phreg and aftreg functions in the
eha package®® and the flexsurvreg function in the
flexsurv package®® were used to fit parametric
regression models. The phreg function was used to
fit exponential, Weibull and Gompertz proportional
hazards models. Accelerated failure time log-logistic
and log-normal models were fitted using the aftreg
function. The flexsurvreg function was used to fit
generalized gamma models. The Cox cumulative
hazards were replaced with parametric equivalents
and were used as arguments in the mssample func-
tion for prediction purposes. 5000 simulations were
used with the mssample function to sample paths
from the multi-state model. The mssample function
simulates all relevant paths (all possible transition
journeys) through the multi-state model in order to
calculate transition/state occupancy probabilities.*”
Areas under the extrapolated survival curves were
estimated using the trapz function in the caTools
package.”® A tutorial explaining how to implement
the approach is detailed elsewhere.'®

RESULTS

Modeling Results for Each Approach

Tables 1A and 1B show the results of modeling
from the partitioned survival and multi-state model-
ing approaches, respectively. For the modeling of
progression-free survival in the partitioned survival
approach, a single Weibull regression was used
which was extrapolated to 15 years. For the model-
ing of overall survival in the partitioned survival
approach, the observed and extrapolated sections
were based on different models. The observed sec-
tion was based on a single exponential model. A
Weibull model was used for the extrapolated sec-
tion of FC and then the treatment hazard ratio in the
observed period was applied to the FC probabilities
to obtain those for RFC.

The modeling of progression-free survival (i.e.,
the composite event outcome progression or death
without progression) using the partitioned survival
approach resulted in a hazard ratio (95% CI) of
0.595 (0.473, 0.748), indicating a reduced risk for
the RFC group. This was very similar to the hazard
ratio of 0.572 (0.446, 0.735) from the modeling of
progression-free to progression using the multi-state
modeling approach. This was because the
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composite event progression or death without pro-
gression was dominated by progression events.

The modeling of overall survival (i.e., the event
outcome death with or without progression) using
partitioned survival over the observed period of the
trial had a hazard ratio of 0.753 (0.505, 1.123) for
RFC v. FC. When this outcome was split into the
two transitions—progression-free to death without
progression and progression to death—using multi-
state modeling, a change in the direction of the
effect was apparent for progression to death.
However, there was no evidence of a statistically
significant treatment effect for either of the two
transitions involving death in the multi-state mod-
eling approach or the modeling of death using the
partitioned survival approach.

The Markov decision-analytic modeling assumed
no treatment effect for progression to death—
equivalent to a hazard ratio of 1 with no uncertainty
whereas the multi-state modeling resulted in a treat-
ment hazard ratio of 1.408 (0.806, 2.461). No other
transitions in the Markov decision-analytic modeling
could be expressed as the equivalent of a hazard
ratio because the transitions were not modeled using
regression. The probabilities of transition were
instead based on the manufacturer’s assumptions.

Visual Assessment of the Fits

In this section, the fit from each of the modeling
approaches was assessed informally by inspecting
relevant plots.

Probability of Being in Progression

The vertical solid lines in Figure 2 (a) and 2 (b)
show the times at which there were less than 20
patients at risk of death after progression and there-
fore the proportion estimates were less reliable.
They therefore provide a dividing line between
the periods of observation and extrapolation. In
addition, the shaded areas show the 95% CI for the
observed proportions (created using 5000 boot-
strapped samples).

For the RFC arm, all approaches provided a good
fit to the observed data up until the vertical line
(Figure 2a). After this point, there was a marked dif-
ference between the approaches in where and when
the predictions of being in progression peaked. The
partitioned survival approach and the multi-state
modeling were the only methods to reach zero by
15 years.
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Table 1A Partitioned Sur

vival Modeling Results

Partitioned Survival Distribution Coefficient SE HR (95%) CI P Value
Progression-free survival Weibull
(event: progression or death)
Treatment: RFC v. FC —0.519 0.117 0.595 (0.473, 0.748) <0.001
Log(scale) 1.237 0.060
Log(shape) 0.310 0.051
Overall survival
(event: death with or without progression)
Observed period (0-3.6 years) Exponential
Treatment: RFC v. FC —0.284 0.204 0.753 (0.505, 1.123) 0.164
Log(scale) 2.753 0.137
Extrapolation (3.6—15 years)®
Weibull shape 2.257 0.484
Weibull log(scale) —4.377 0.659
Derived from a linear regression using the approach described elsewhere.'®
Table 1B Multi-state Modeling Results (Gompertz Distribution Used for Each Transition)
Multi-state Model Coefficient SE HR (95%) CI P Value
Progression-free — progression
Treatment: RFC v. FC 0.542 0.128 0.572 (0.446, 0.735) <0.001
Shape 0.474 0.068
Log(scale) —2.187 0.13
Progression-free — death without progression
Treatment: RFC v. FC —0.343 0.294 0.710 (0.399, 1.262) 0.243
Shape —0.487 0.207
Log(scale) —2.825 0.265
Progression — death
Treatment: RFC v. FC 0.342 0.285 1.408 (0.806, 2.461) 0.229
Shape 0.174 0.244
Log(scale) —1.627 0.267

For the FC arm, the partitioned survival and
multi-state modeling approaches provided a good
fit to the observed data up until the vertical line
(Figure 2b). The Markov decision-analytic modeling
only provided a good fit to the observed data up to
2.3 years. Again, there was a marked difference
between the approaches in the peaks. All three
approaches reached zero by 15 years as required.

Progression-free to Death Without Progression

Figure 3 shows, for each treatment arm, the com-
peting risk cumulative incidence estimate of
Progression-free to death without progression
together with the predictions from the multi-state
modeling. It can be seen that the multi-state
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modeling fitted the observed data moderately well.
These predictions were possible because the multi-
state modeling allowed the state occupancy prob-
abilities of death to be split into death without pro-
gression and death after progression.

Progression to Death

Figure 4 shows, for each treatment arm, the
Kaplan-Meier estimate of progression to death
together with the predictions from the multi-state
modeling and the manufacturer’s assumption. It can
be seen that the extrapolation for both methods was
fairly good at reaching one by 15 years. For RFC, the
multi-state modeling fitted the Kaplan-Meier esti-
mate quite well, and FC to a lesser extent. However,
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Figure 4 Progression to death.
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the manufacturer’s assumption was less well-fitting
to each of the treatment arms.

Progression-free Survival

The partitioned survival approach and the
Markov decision-analytic modeling were based on

the same fit to progression-free survival and there-
fore only one curve is shown to represent both
approaches (Figure 5). For both treatment arms,
each of the three approaches appeared to provide a
good fit to the Kaplan-Meier estimate. The extrapo-
lation using multi-state modeling reached zero some-
what earlier than the other approaches. This seems
more plausible, as it allows those patients who
reach progression to spend time in that state before
reaching the absorbing state death. It is compatible
with all patients reaching death by 15 years.

Overall Survival

Figures 6 (a) and 6 (b) show the Kaplan-Meier esti-
mates of overall survival together with the predictions
from each of the modeling approaches for the RFC
and FC arms, respectively. The partitioned survival
and multi-state modeling fitted the observed data
over the first 4 years reasonably well. The Markov
decision-analytic modeling overestimated survival
over the first 2 years. All approaches reached zero by
15 years for FC. However, the multi-state modeling
was the only approach to do so for RFC.

Comparison of Mean Life Years/QALYs

The comparison presented in this article is not a
congruous comparison, because the approaches did
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Table 2 Mean Life Years and QALYs

Partitioned Survival

Markov Decision-Analytic Model Multi-state Modeling

RFC FC Incremental RFC FC Incremental RFC FC Incremental
Mean Life Years 5.96 5.31 0.65 5.73 4.65 1.07 5.29 4.97 0.32
Mean Life Years Progression-free 4.10 2.92 1.18 4.11 2.93 1.18 3.35 2.55 0.81
Mean Life Years in Progression 1.86 2.39 —0.53 1.62 1.73 —-0.11 1.93 2.42 —0.49
Mean QALYs 4.40 3.77 0.63 4.26 3.38 0.88 3.84 3.49 0.35
Mean QALYs Progression-free 3.28 2.34 0.95 3.29 2.34 0.94 2.68 2.04 0.65
Mean QALYs in Progression 1.11 1.43 —0.32 0.97 1.04 —0.07 1.16 1.45 —0.29

Table 3 Incremental Cost-effectiveness Ratios

Partitioned Survival

Markov Decision-Analytic Modeling

Multi-state Modeling

RFC FC Incremental RFC FC Incremental RFC FC Incremental
Mean Life Years 5.96 5.31 0.65 5.73 4.65 1.07 5.29 4.97 0.32
Mean QALYs 4.40 3.77 0.63 4.26 3.38 0.88 3.84 3.49 0.35
Mean Total Cost £25,369 £15,123 £10,246  £25,595 £13,978 £11,617  £25,261 £14,960 £10,301
Cost per Life Year Gained £15,694 £10,825 £31,970
Cost per QALY gained £16,308 £13,189 £29,022

not make all the same assumptions with regards to
the transition probabilities/hazards. However, as
can be seen in Appendix 1, a model built using this
multi-state modeling approach and one created
using the common approach of Markov decision-
analytic modeling produced very similar results
when they made the same assumptions. We now
comment on how the different assumptions influ-
enced the differences in results between the
approaches.

Table 2 shows the mean Life Years and QALYs
for each of the approaches. Mean QALYs were cal-
culated by assuming a utility of 0.8 for the time
spent progression-free and 0.6 for the time spent in
progression, the approach used by the manufacturer
in the Markov decision-analytic model.

Table 2 shows that the manufacturer’s Markov
decision-analytic modeling resulted in larger over-
all benefits than any of the other approaches. This
was primarily due to that approach producing
smaller decrements whilst in progression of -0.11
for mean Life Years and -0.07 for mean QALYs.
This reflected the manufacturer’s assumption of no
treatment effect for the progression to death transi-
tion. They based this decision on the log-rank
test for the difference in Kaplan-Meier estimates of
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post-progression survival, which did not provide
evidence of a statistically significant effect of treat-
ment (P = 0.395). In contrast, the modeling of the
progression to death transition using the multi-state
modeling resulted in a hazard ratio of 1.408 for
treatment. This led to a decrement of -0.49 and -
0.29 in mean Life Years and QALYs, respectively,
whilst in progression. There were similar corre-
sponding decrements whilst in progression with the
partitioned survival approach of -0.53 and -0.32.

Another contribution to the differences in overall
benefit was the mean Life Years and QALYs spent
progression-free. The largest benefit was found
with the manufacturer’s Markov decision-analytic
modeling and the partitioned survival approach,
which used the same Weibull distribution to model
progression-free survival. Mean Life Years (QALYs)
gained of 1.18 (0.95) were found whilst progression-
free. The corresponding results were more modest
with the multi-state modeling at 0.81 (0.65).

The manufacturer’'s Markov decision-analytic
model had the largest overall benefit as a result of
the largest increment whilst progression-free and the
smallest decrement whilst in progression. In con-
trast, the smallest overall benefit was found with the
multi-state modeling due to the combination of the
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smallest increment whilst progression-free and a rel-
atively large decrement whilst in progression.

In Appendix 2, the results are shown separately
for the observed period of the trial and the unob-
served extrapolation period. The approaches were
generally comparable over the observed period.
However, in the unobserved extrapolation period,
more of a discrepancy was apparent.

The mean costs were then incorporated to allow
cost-effectiveness to be evaluated (Table 3). Details
of the assumptions made with regards to mean costs
as part of a full cost-effectiveness analysis can be
found elsewhere.'®

Table 3 shows that the partitioned survival
approach and manufacturer’s Markov decision-
analytic modeling deemed the treatment cost-
effective, with Cost per QALY gains of £16,308 and
£13,189, respectively. However, the results were
less conclusive when the multi-state modeling
approach was used, with a Cost per QALY gain of
£29,022, close to the maximum of the range of
£20,000 to £30,000 WTP threshold in the UK.

DISCUSSION

This article has compared survival estimates of
Life Years and QALYSs using the multi-state model-
ing approach and the partitioned survival and
Markov decision-analytic modeling approaches
commonly used in cost-effectiveness analysis. Cost-
effectiveness results were also compared between
the approaches. The different assumptions used for
the modeling of the transitions led to different
results. In particular, the discrepancy in the results
led to differing ICERs, which could affect the con-
clusions for cost-effectiveness. We recommend that
analysts liaise with clinicians and use registry data
and/or external sources to help gather evidence to
ensure assumptions are realistic. In our comparison,
for ease of demonstration across approaches, we
used the same 15-year time horizon as in the manu-
facturer’s existing Markov decision-analytic model.
However, when analysts are undertaking their own
modeling, we advocate checking that the time hori-
zon and extrapolation to that point is realistic in a
clinical sense, and to rigorously check all other
assumptions used in models. In our related analy-
sis, where the approaches used the same assump-
tions (Appendix 1), it was apparent that the actual
approach used had less of an effect on any discre-
pancy in the results than the differing assumptions
made within each approach.

ORIGINAL ARTICLE

Multi-state modeling is an alternative, elegant
way of estimating transition probabilities. This
multi-state modeling approach uses the individual
patient data directly to model the transitions and
negates deciding on transition probabilities a priori.
It uses the exact times of transition and, as such,
does not require modeling over (arbitrary) discrete
cycles, nor does it require the use of tunnel states.
Additionally, the multi-state modeling approach
demonstrated in this paper can incorporate para-
metric distributions for hazards, which, as well as
allowing extrapolation of survival, can permit hazards
that vary over time, if required. Given the modeling at
the individual patient level, multi-state modeling also
provides an alternative to microsimulation.?®

In this illustration, we had the individual patient
level data (IPD). This meant we were able to build a
state-arrival extended model to help decide whether
the Markov assumption was reasonable. We found
evidence to suggest a violation of the assumption
and proceeded to use a semi-Markov approach to
relax the assumption. When modelers have insuffi-
cient power to detect violations of the Markov
assumption, and have doubts over whether it holds,
then a semi-Markov, multi-state modeling approach
would be worth considering.

When IPD are not available, then a semi-Markov
approach can still be used, if Kaplan-Meier survival
curves related to all relevant transitions are avail-
able. However, if a Markov and/or state-arrival
extended approach is desired without IPD, then
information on relevant model coefficients will be
required from an external source. The cumulative
hazards necessary for the calculation of transition
probabilities can be derived from this model output,
instead of deriving them from direct regression
modeling of the data. Functions to perform multi-
state modeling without IPD are included in our
prior tutorial paper.*°

The modeling of the progression to death transi-
tion resulted in a hazard ratio for treatment of 1.408
with the multi-state modeling. It could be argued
that a hazard ratio of this magnitude is over-fitting
the data, given the size of the sample and the P
value associated with the hazard ratio. However, we
would argue that this should be used as a best esti-
mate of effect for a subsequent economic evaluation,
rather than just assuming no effect, which was
likely due to a lack of statistical power, and that the
uncertainty in model parameters be captured in sen-
sitivity analyses that are carried out later in the eva-
luation. A fuller assessment of the uncertainty in
the parameters is included in a tutorial-based
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paper, which demonstrates how to do an economic
evaluation wholly in R, including deterministic and
probabilistic sensitivity analyses.’® However, if
over-fitting is of concern, shrinkage®® or a Bayesian
approach®' can provide elegant solutions. We also
strongly encourage modelers to consider modeling
uncertainty by calculating bootstrapped confidence
intervals for the transition probabilities in each
model considered. This was outside the scope of
this paper and has been “left on the table”.

To allow for comparisons with the Markov
decision-analytic modeling adopted by the manufac-
turer, this illustration has been limited to a very
simple model using treatment as the only covariate in
the modeling of the three transitions. When IPD is
available, we recommend making full use of the data
and considering a multi-state modeling approach.
Incorporating other covariate information—whichever
modelling approach is adopted—would also be worth-
while, provided the number of patients experiencing
transitions was of sufficient size, and should lead to
improved predictions of transition probabilities with
reduced uncertainty.

When extrapolation is required for the parti-
tioned survival approach, deciding which method
to use is not trivial. However, the extrapolation of
survival can be even more complex with a state-
transition approach, such as the commonly used
Markov decision-analytic modeling or this multi-
state modeling framework. With the partitioned sur-
vival approach, there is only one Kaplan-Meier
curve at a time to consider and extrapolate for each
survival outcome. With the modeling of transitions,
the probabilities are not based on one outcome but
on transitions that are interlinked. The models
often include intermediate states with probabilities
that need to represent that patients can flow in,
flow out or remain in that state at any given time.
When evaluating different parametric distributions,
they should be considered for each transition simul-
taneously and this is not necessarily trivial. For
example, for this illustration, six standard distribu-
tions were considered for each of the three transi-
tions, which comes to 6° = 216 combinations for
each treatment before deciding on the final model.
Consequently, we recommend visually assessing
the fits to immediately rule out those that do not fit
well from any further consideration.

In the illustration in this paper, it was assumed
that transition times were known exactly for each
patient and were continuous, rather than being
measured discretely over a series of cycles, as in
the spreadsheets often used in health economics.
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Multi-state modeling using the continuous-time
framework is normally built with statistical soft-
ware. This means that there are no spreadsheets
that need to be set up ready to be populated, and
the syntax-based approach means that there is a
written record of what was done, all contained in
just one file. Building the model is a lot less com-
puter-intensive, and there can be considerable time
savings. For example, obtaining the state occupancy
probabilities from a Markov model using this frame-
work only requires one line of code that produces
output in 1 second. Even the simulation involved to
produce the state occupancy probabilities from the
semi-Markov model in this illustration only took 90
seconds. It is also possible to undertake multi-state
modeling when times are not known exactly but are
instead interval-censored using the R msm package,*
providing another efficient alternative to spreadsheets.

In each of the approaches presented in this
paper, the assumptions used with regards to transi-
tion probabilities/hazards did not appear to be
unreasonable at face value. Modelers, due to time
constraints, may limit the number of approaches
they consider to those with which they are most
familiar. However, the comparison illustrated in
this paper has highlighted that different assump-
tions can lead to different conclusions with regards
to effectiveness and cost-effectiveness. We therefore
recommend that any assumptions used are rigor-
ously checked to ensure they are realistic. We also
advise that the assumptions are subject to appropri-
ate sensitivity analyses as part of a full cost-effec-
tiveness analysis.
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