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A B S T R A C T

The particle Markov-chain Monte Carlo (PMCMC) method is a powerful tool to efficiently explore high-di-
mensional parameter space using time-series data. We illustrate an overall picture of PMCMC with minimal but
sufficient theoretical background to support the readers in the field of biomedical/health science to apply
PMCMC to their studies. Some working examples of PMCMC applied to infectious disease dynamic models are
presented with R code.

1. Introduction

In many fields of the applied sciences, inference from time-series
data is an important class of problems. A standard modelling approach
is to develop a mechanistic model (deterministic or stochastic) that
captures the temporal dynamics of the target phenomenon, and then
optimise the model parameters so that the theory and observation are
consistent. If the likelihood of the observed data is available in a
functional form, parameter estimation is relatively easy; Markov-chain
Monte Carlo (MCMC) is a widely-used approach that can efficiently
sample from high-dimensional parameter space. On the other hand,
when one wishes to model the observation process (e.g., measurement
error) in addition to the dynamic process (i.e. time evolution of the
system, which may be subject to process error), oftentimes the model
needs to be separated into two parts: the dynamic model that generates
the true outcome and the observation model that generates the ob-
served data. The true outcome is not directly observable (hidden vari-
ables) and needs to be inferred. There is a method called data aug-
mentation that enables MCMC to handle such hidden variables by
simultaneously estimating both the parameters and the hidden vari-
ables. However, hidden variables in a time-series analysis with T time
steps have T different values which are correlated with each other, and
such high correlation between variables tend to substantially slow
down the mixing of MCMC.

Particle Markov-chain Monte Carlo (PMCMC) has been proposed to
overcome this weakness of MCMC in time-series analyses (Andrieu and
Doucet, 2010). To efficiently explore time-varying hidden variables,

PMCMC incorporates Sequential Monte Carlo (SMC; also known as
particle filtering) (Doucet et al., 2001) into MCMC. SMC is an inference
method designed to efficiently estimate time-dependent hidden vari-
ables. By combining the strengths of MCMC and SMC, PMCMC serves as
a powerful estimation framework to explore high-dimensional para-
meter space in dynamic models.

Despite potentially high demands for efficient inference tools in
time-series analysis, PMCMC has not yet attracted enough attention
from practitioners in biomedical/health science fields including
biology, ecology, epidemiology and public health. This may be because
many of the previous methodological literature on PMCMC required the
researcher to have a strong mathematical and statistical background as
well as a basic understanding of both MCMC and SMC, which might not
always be expected in aforementioned fields (especially in early-ca-
reer). To fill this gap, in this paper we attempt to provide the readers
with an overall picture of the PMCMC framework while including the
minimal but sufficient theoretical background of the method so that the
reader can be confident when applying PMCMC to their own research
questions. Assuming that the readers have a basic understanding of
Bayesian inference and MCMC (see, for example, (Funk et al., 2018) in
this special issue for an overview), we first introduce in Section 2 the
conceptual framework of PMCMC without too much technical detail.
We do not include in the main text the technical and theoretical details
of SMC, which is the key component of PMCMC, and rather treat it as an
external algorithm to outsource the computation of the (marginal)
likelihood to. This is to ensure that readers with an understanding of
SMC or those who are more interested in the actual application of
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PMCMC can more easily get an overview of the PMCMC method. In-
terested readers may refer to Appendix B where the technical aspects of
the SMC algorithm are described. In Section 3, we present multiple
examples of typical inference problems and how PMCMC can be im-
plemented in R to analyse the time-series data.

2. Basic framework of PMCMC

2.1. Overview of PMCMC and suitable inference problems

PMCMC is especially suited for inference of time-series data. The
specific class of inference problems targeted by PMCMC is called
Hidden Markov Process (HMP; also known as the state-space model)
(Mac Donald and Zucchini, 1997). We will describe the properties of
HMP in the next section in detail, but in short, HMP is a process where
the system has unobservable (hidden) “state variables” which change
over time, and the next state depends only on the current state and not
on any previous states (Markov-process). Although the state variables
are not directly measured, observation data is available which may
contain (potentially limited) information on the state variables. Fa-
miliar examples of HMP in infectious disease modelling include the
commonly-used Susceptible-Infectious-Recovered model (SIR model)
(Hethcote, 2000)1 and its stochastic extensions (Allen, 2008; Cooper
and Lipsitch, 2004). The SIR model is based on a set of ordinary dif-
ferential equations (i.e., its behaviour is solely determined by the cur-
rent state) and thus constitutes a Markov process. Researchers try to
understand the transmission dynamics by applying mathematical
models to the observed data; however, when data is generated with
measurement errors (e.g., underreporting or diagnostic errors), the true
state of the system is not directly reflected in the data at hand.
Nevertheless, such data should contain relevant information and we
may still be able to infer the true transmission dynamics, given a
plausible understanding of the measurement process translating the
hidden states into the observed data. PMCMC is a method to efficiently
achieve this aim, by inferring the hidden variables alongside the model
parameters from indirect observations.

Typically, PMCMC is better suited than other algorithms when the
time evolution involves stochasticity and the data is reported with er-
rors (including underreporting and modification). If the time evolution
is deterministic or the data is reported without errors, the direct like-
lihood of the data is usually available and a conventional MCMC ap-
proach will suffice. In general, the following conditions result in typical
inference problems that may benefit from the use of PMCMC:

1. The user wants to apply a parametric model to time-series data to
infer a dynamical system. The model has parameters that are static
over the time course as well as time-dependent variables2 .

2. The data is not a direct observation of the model outcomes and
specific observation processes are involved, e.g., measurement
error, bias, missing data or partial/modified observation.

3. For a given set of parameters, the time evolution of the system and
the observation processes are both modelled as probabilistic dis-
tributions and are available in functional forms (at least numeri-
cally).

4. The time evolution of the system is a Markov process; i.e., the time
evolution is fully predicted by the current state without the previous
history.

5. Interdependency between parameters and state variables prevents

efficient inference using other methods including MCMC.

In particular, Conditions 2 and 5 are the most crucial points that
highlight the need for PMCMC over other methods including MCMC.
The existence of hidden state variables, one of the key properties of
HMP, often brings a computational difficulty in inference problems. In
short, the difficulty arises from the need to “integrate out” the hidden
variables; here we illustrate this challenge. Let us consider an HMP
where xt is the hidden state variable and yt is the observed data at time
t. In infectious disease modelling, xt may be the true number of in-
fectious individuals and yt the reported case counts, which are poten-
tially multidimensional when the data is stratified by, e.g., age or lo-
cation. The time evolution of xt is governed by parameter θ (e.g.,
transmission rate), and we are interested in the posterior distribution of
this parameter: p(θ|yt) and in many situation not in the underlying xt's.
Bayes theorem states that p(θ|yt)∝ p(yt|θ)p(θ), and we need to compute
the likelihood of the data p(yt|θ) to perform Bayesian inference. This
likelihood is often referred to as the marginal likelihood, as it is a
marginal distribution of p(xt, yt|θ) on yt. For simplicity, let us first
consider that there are only two time steps (t=1, 2) and that the initial
state x1 is known (thus all the observation about the process is given by
y2 only). In this two-step case, we need to compute p(y2|θ) to infer θ,
and this marginal likelihood is given as

∫=p y θ p y x θ p x x θ( | ) ( | , ) ( | , )dx ,2 2 2 2 1 2 (1)

where p(y2|x2, θ) and p(x2|x1, θ) are probabilistic distributions for the
observation and time-evolution processes, respectively. Here, the
hidden variable x2 needs to be integrated out to calculate the marginal
likelihood giving the posterior of the parameters given y2. If this in-
tegration (over x2) is readily available as a function of θ in an exact
form, Bayesian inference is easily implemented by MCMC or other
methods. Such cases are, however, very rare in actual applications, and
generally the integration on the right-hand side of Equation (1) needs to
be numerically approximated by Monte Carlo sampling (which does not
necessarily use a Markov chain), where many samples of x2 are gen-
erated and the integral is computed from the values of p(y2|x2, θ)p
(x2|x1, θ) over the samples. The easiest idea might be to sample x2 from
a uniform distribution within the possible range of x2 and perform the
Monte Carlo integration (Press et al., 2007). However, this approach is
extremely inefficient as x2 becomes high-dimensional. To achieve a
practical level of efficiency, x2 must be selectively sampled from
plausible regions, i.e. regions with high probability.

The same applies to general cases with more time steps (t=1, 2, .. .,
T), but the computational challenge further scales up. The state variable
x is now a time series of T steps, and the whole time series x1:T={x1,
x2, .. ., xT} needs to be sampled from plausible regions. Compared with
the earlier example with only two time steps, finding plausible regions
of a long time series of x is increasingly difficult. It becomes unrealistic
to independently sample all the hidden states because the distribution
of xt is restricted by the previous state xt−1. If the time series is short
enough, the plausible regions of x may be adaptively explored by
MCMC targeting the joint distribution p(x, θ|y)∝ p(y|x, θ)p(x|θ)p(θ)
(this approach is known as data-augmentation MCMC Gelfand and
Smith, 1990; Neal and Kypraios, 2015); but for longer time series, a
small change in each time step accumulates over time, resulting in a
massive diversity in the plausible trajectories of x even with the same
parameter (see Fig. 1). MCMC is not well suited for sampling from such
sparse and highly-correlated parameter spaces and typically suffers
from unacceptably slow mixing when applied to HMP inference pro-
blems.

Let us use a simple random-walk model as an example to review the
above discussion. The example is very simple so that it is easier to
follow, but one can easily extend the model by assuming more complex
mechanisms. Full documentation for this example, including im-
plementation of SMC and PMCMC, can be found on a Github repository

1 The SIR model is usually formulated on a continuous time scale, but its
numerical computation essentially requires temporal discretisation and can be
seen as a discrete-time Markov process.

2 If instead the model is free of static parameters and only has time-dependent
variables to estimate, PMCMC does not have supremacy over Sequential Monte
Carlo (SMC).

A. Endo, et al. Epidemics xxx (xxxx) xxxx

2



(https://github.com/akira-endo/Intro-PMCMC). In this model, we as-
sume that xt is normally distributed around the previous state, i.e.,

�∼ −x x σ( , )t t 1 , with a non-random initial state x1= 0. The data is
observed as a rounded integer with a Gaussian measurement error

�= −y xround( ( , 0.1))t t 1 . First, consider a two-time-step case (T=2)
where the observation was (y1, y2)= (0, 1). Although a substantial
amount of information is lost because of the crude observation process,
we can still extract certain clues from the data. Noting that y1 does not
provide additional information as x1 is known, Equation (1) translates
into

� �∫= =p y σ r x x σ( 1| ) (1; ( , 0.1)) ( ; 0, )dx ,2 2 2 2 (2)

where � �= ≤ < ∼r x y y x(1; ( , 0.1)) Pr[0.5 1.5; ( , 0.1))]2 2 . This ex-
ample is actually a rare case where the likelihood function is available
in a functional form:

= = + − +p y σ σ σ( 1| ) Φ(1.5; 0, 0.01 ) Φ(0.5; 0, 0.01 ),2
2 2 (3)

where Φ(x;μ, σ) is the cumulative normal distribution, and σ can be
estimated with this likelihood. However, this holds only when T=2,
and adding a third time step makes the functional-form likelihood un-
available. If Equation (3) were not available, the integration (Eq. (2))
would have to be approximated by Monte Carlo integration, i.e., by
drawing samples {X2} uniformly from the range [0, 2]3 and averaging
the value �

�

x σ
x

( ; 0, )
( ; 0, 2)

2
2

. This might work for such a short time series (with a
1-dimensional variable), but not for a longer time series. Consider
T=5, σ=0.5 and observed data y1:5= (0, 1, 1, 1, 2). Even with only
five time steps, we can observe a wide variety of time series x1:5 con-
sistent with the observation (Fig. 1). That is, if we uniformly sample

from the possible time series shown in Fig. 1A, the majority of the
samples will have very small likelihood values and be of little use.
Moreover, because of the high correlation between the successive
states, the data-augmentation MCMC will not be efficient.

PMCMC has overcome this challenge in exploring and marginalising
out time-evolving hidden variables by employing sequential Monte
Carlo (SMC) as a sub-algorithm inside MCMC. As SMC exploits the
temporal structure of the data for the inference of time-evolving vari-
ables, PMCMC making use of SMC can also utilise its strengths. Section
2.3 will illustrate how SMC is coupled with MCMC to accelerate the
sampling of the hidden state variables.

2.2. Hidden Markov process

In this section, we will describe the structure and the properties of
Hidden Markov Process (HMP). HMP is also referred to as the state-
space model and is characterised as a Markov process where the in-
ternal state is not directly observed. A Markov process is a stochastic
process whose future time evolution is predicted solely by the current
state and is independent of previous states. Let xt represent the state
variable of the system following a Markov process. Conditioned to xt,
the probabilistic distribution of xt+1, the state variable at the next time
step, is written as a function of the current state xt:

=+ +p x x f x x( | ) ( | )t t t t1 1 (4)

For example, a recursive sequence at+1= at+1 is interpreted as a
(non-random) Markov process, while at+1= at+ at−1 is not, because
the transition from t to t+1 depends also on the past state at−1. A
Markov process is thus characterised by the state variable xt and the
time evolution process f(xt+1|xt). In infectious disease models where xt
denotes the true incidence, f(xt+1|xt) may represent the process of
transmission.

In HMP, an observation process is added to the Markov process
(Fig. 2). The state variable xt is no longer directly observed, and ob-
servation yt is now given as a random variable depending on xt. The

Fig. 1. Example of a hidden Markov process. A random-walk hidden Markov process model where the state variable xt evolves following a Gaussian kernel and is
observed with a Gaussian measurement error and rounding. (A) A large sample of simulated trajectories among all the possible trajectories of x1:5. (B) Simulated
trajectories consistent with data y1:5= (0, 1, 1, 1, 2). (C)–(D) Histograms of x1:5 consistent with y1:5. The red lines represent the observed data.

3 because x2 is unlikely to fall outside of this range given y2= 1. Technically
we introduce a very small bias here as the x2 could fall outside of this interval
due to the measurement error. Given that the standard deviation of the normal
component of the observation error is 0.1, this probability may be almost
negligible.
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probabilistic distribution of observing yt is a function of xt:

=p y x g y x( | ) ( | ).t t t t (5)

The observation process g(yt|xt) may reflect inherent factors in-
volved in observation, e.g., measurement error, bias or partial/modified
observation. A typical example of observation process g(yt|xt) in in-
fectious disease modelling is underreporting, because not everyone who
is sick will visit the GP/hospital and/or will not always be diagnosed
correctly. This is often represented by a binomial process with a certain
reporting probability ϵ; i.e., g(yt|xt)= Bin(yt; xt, ϵ). Inference on HMP
requires extracting indirect clues on the hidden state xt from yt, taking
in account the possible modification g(yt|xt). The main components of
HMP are: time-varying hidden state variables xt, its time evolution
process f(xt+1|xt), time-series observations yt and the observation pro-
cess g(yt|xt). In inference problems employing the HMP framework the
hidden state xt and the time evolution process f(xt+1|xt) are usually of
interest. The function f is modelled with a set of parameters θ (f= fθ)
and θ is estimated from data as well as xt. In some cases, the observation
process gθ (also shaped by parameters) may also be investigated. For
example, transmissibility β in the SIR model determines the time evo-
lution process f(xt+1|xt) and is usually of interest in modelling studies.
In addition, when underreporting of disease incidence is expected, one
might wish to simultaneously estimate the reporting probability which
characterises the observation process gθ.

The importance of the Markov property may not be self-evident.
However, it plays a vital role in reducing the complexity of the model
structure; the Markov property allows for the use of SMC, which is
relatively simple and computationally-inexpensive. Appendix A de-
scribes the implications of the Markov property for interested readers.

2.3. Sequential Monte Carlo as a sub-algorithm to approximate the
marginal likelihood

The biggest challenge in the inference of Hidden Markov Process
(HMP) is to efficiently sample hidden state variables. To obtain the
marginal likelihood p(y1:T|θ), the time-dependent hidden variables xt
have to be sampled and marginalised out. Because of the strong de-
pendency between the successive states xt and xt−1, sampling the whole
time series x1:T at once is an inefficient way to explore the large variable
space (as shown in Fig. 1). A straightforward remedy for this problem is
“step-wise sampling” of xt using observation yt at each time step. Al-
though the full time series x1:T may exhibit substantial variability, a
one-step transition from xt−1 to xt is usually relatively straightforward.
Rather than sampling the whole time series x1:T, one can sequentially
narrow down the distribution of xt with observation yt. By shadowing
the time evolution process while calibrating the hidden state step-by-
step, plausible realisations of x1:T are efficiently generated. Once a set of
plausible trajectories of x1:T is available, the likelihood p(y1:T|θ) is
computed based on the generalised form of Equation (1):

∫=p y θ p y x θ p x θ( | ) ( | , ) ( | )dx .T T T T T1: 1: 1: 1: 1: (6)

Sequential Monte Carlo (SMC; also known as particle filtering) is
designed to implement this “step-wise” sampling. PMCMC outsources
the whole sampling process of x1:T to SMC given the current parameter
θ and data y1:T. With supplied θ and y1:T, SMC produces a set of samples
for the time series (or “trajectories”) {X1:T} and the corresponding
marginal likelihood p(y1:T|θ) sequentially. Samples Xt at each time step
are sometimes called “particles”. We outlined the technical details of
SMC in Appendix B for interested readers, but to summarise, the SMC
algorithm consists of the following steps:

• For t=1, 2, .. ., T, sample the current state xt using the samples of
the previous state xt−1 and the current observation yt. The target
distribution to be sampled from is characterised by the probabilities
for the time evolution and observation processes:

∝ =− − −p x x y θ p y x θ p x x θ g y x f x x( , | , , ) ( | , ) ( | , ) ( | ) ( | )t t t t t t t θ t t θ t t1 1 1 (7)

• Using the produced samples of time series x1:T, approximate the
marginal likelihood p y θˆ ( | )T1: based on the following equation:

∫ ∫

∏

∏

=

=

=
−

=
−

p y θ p y θ p y y θ

p y x θ p x θ p y x θ p x y θ

( | ) ( | ) ( | , )

( | , ) ( , )dx ( | , ) ( | , )dx .

T
t

T

t t

t
t

T

t t t t t

1: 1
2

1: 1

1 1 1
2

1: 1
(8)

The key component in this algorithm is sampling xt from the dis-
tribution (Eq. (7)). The bootstrap filter, the standard algorithm for SMC
(detailed in Appendix B), achieves this by generating particles based on
fθ(xt|xt−1) and then filter those particles based on gθ(yt|xt) so that the
resulting samples follow Eq. (7). Fig. 3 illustrates how the SMC algo-
rithm works when applied to the random-walk model in Section 2.1.
For each time step, the candidate particles are generated from the
previous state: �∼ −x x σ( , )t t 1 , and then only those consistent with the
observation are selected and stored. Comparison with Fig. 1 shows that
the SMC efficiently produces samples of xt consistent with the data yt
from a diverse space.

2.4. PMCMC algorithm

SMC being used as the sub-algorithm, the algorithm of PMCMC
(where standard Metropolis-Hastings is used as the MCMC algorithm) is
given below. Algorithm 1 shows pseudocode; application examples in R
will be presented in Section 3.

1. Arbitrarily choose an initial parameter value θ(0) (step n=0). Run

Fig. 2. Schematic image of a hidden Markov process. x denotes hidden state variables and y denotes observations. Time evolution and observation processes are
characterised by probabilistic distributions fθ and gθ.
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SMC to generate samples {X1:T} and the approximated marginal
likelihood p y θˆ ( | )T1:

(0) . Randomly choose one trajectory x T1:
(0) from

{X1:T}.
2. For step n≥ 1, propose a new parameter value θ*(n) by sampling

from the proposal distribution q(θ*(n); θ(n−1)) based on the previous
value θ(n−1).

3. Run SMC to generate samples X{ * }T1: and the approximated marginal
likelihood p y θˆ ( | * )T

n
1:

( ) . Randomly choose one trajectory x *T
n

1:
( ) from

X{ * }T1: as a candidate for a MCMC sample for this step4 .
4. Compare the marginal likelihood with that in the previous step

−p y θˆ ( | )T n1: 1 . With probability

⎡
⎣⎢

⎤
⎦⎥−

−

−

p y θ
p y θ

q θ θ
q θ θ

min 1,
ˆ ( | *)

ˆ ( | )
( ; *)
( *; )

,T n

T n

n n

n n

1:

1: 1

1

1 (9)

update θ(n) = θ*(n) and =x x *T
n

T
n

1:
( )

1:
( ). Otherwise, keep the values from

the previous step: θ(n) = θ(n−1) and = −x xT
n

T
n

1:
( )

1:
( 1).

5. Repeat 2.-4. until the Markov-chain converges.

Here, SMC only serves as a function which returns the approximated
marginal likelihood p y θˆ ( | * )T

n
1:

( ) and a sample of x1:T (the algorithm of
SMC is detailed in Appendix B). The other part of the algorithm is the
same as the Metropolis-Hastings MCMC. An experienced user of MCMC
can easily incorporate most known MCMC techniques, e.g., block
sampling, adaptive MCMC or data augmentation. One exception is
Gibbs sampling: if the conditional samplers for θ and x (i.e., p(θ|x1:T,
y1:T) and p(x1:T|θ, y1:T)) are available, one may wish to alternately
sample θ and x to improve the efficiency of the MCMC steps. However,
combining PMCMC and Gibbs sampling requires a specific technique

which Andrieu et al. referred to as “the conditional SMC update”. For
details of this procedure, refer to the section “Particle Gibbs sampler” in
the original paper (Andrieu and Doucet, 2010).

There is an important property that must be noted about the ap-
proximated marginal likelihood p y θˆ ( | * )T

n
1:

( ) returned by SMC. So far, to
communicate a handy overview on the idea of PMCMC, we have not put
much emphasis on the fact that p y θˆ ( | * )T

n
1:

( ) is not the exact marginal
likelihood but an approximation, which randomly fluctuates at each
implementation due to its Monte Carlo nature. PMCMC works in the
exact manner we have illustrated if the employed SMC is well designed
and returns sufficiently accurate p y θˆ ( | * )T

n
1:

( ) ; even if this does not hold,
repeated implementation of SMC in the MCMC iterations assures that
the final MCMC samples converge to the target distribution p(θ,
x1:T|y1:T). It has been shown that the number of particles used in SMC,
which determines how good an approximation is, does not affect the
distribution to which PMCMC is converging. This property implies that
an SMC employed in PMCMC does not need to be tuned as carefully as
one directly applied to inference problems on its own. Section 4 in the
original paper (Andrieu and Doucet, 2010) by Andrieu et al. provides a
formal demonstration.

Algorithm 1. Particle Markov-chain Monte Carlo (PMCMC)

θ(0)⟵ θ0
⟵p y X θˆ ( ), { } SMC( )θ t T1: 1: (0)

⟵π p yˆ ( )θ t
(0)

1:

sample ∼x X{ }T T1:
(0)

1:

for n=1, .. ., N do
θ*(n)∼ q(·|θ(n−1))

⟵ *p y X θˆ ( ), { } SMC( )θ t T n
1: 1: ( )

⟵*π p yˆ ( )n
θ t

( )
1:

sample ∼*x X{ }T
n

T1:
( )

1:

⟵ ⎧
⎨⎩

⎫
⎬⎭−

−

−
* *

*
U min 1, ·π n

π n
q θ n θ n

q θ n θ n
( )

( 1)
( ( 1) | ( ) )

( ( ) | ( 1) )

Fig. 3. Sequential Monte Carlo (SMC) procedures applied to the random-walk model. Candidate particles are generated by the time evolution process fθ and then
filtered given observation gθ. Coloured and grey lines correspond to accepted and rejected particles, respectively.

4 Only one sample from X{ * }T1: is stored to construct a MCMC chain for x1:T.
Random sampling at each MCMC step assures that the resulting MCMC chain is
invariant

A. Endo, et al. Epidemics xxx (xxxx) xxxx

5



u⟵Unif(0, 1)
if u < U then

θ(n)⟵ θ*(n)

⟵ *x xT
n

T
n

1:
( )

1:
( )

π(n)⟵ π*(n)

else
θ(n)⟵ θ(n−1)

⟵ −x xT
n

T
n

1:
( )

1:
( 1)

π(n)⟵ π(n−1)

end if
end for

2.5. Practical considerations for implementation

2.5.1. Tuning of PMCMC: the number of particles
An important decision when performing PMCMC is the number of

particles to use when fitting to the data (Pitt et al., 2012). Too few
particles will lead to a large variation in the marginal likelihood esti-
mation and, therefore, to poor mixing in the MCMC chain. On the other
hand, increasing the number of particles results in a higher computa-
tional load. If the computational load is tolerable, one could choose an
arbitrary number (which is sufficiently large for SMC to approximate
the marginal likelihood); in a typical inference problem, 100-1000
particles usually work well. Otherwise, one could also optimise the
number of particles using certain package functionalities (e.g., RBi.-
helpers). A general rule-of-thumb adopted by the RBi.helpers R package
(see Section 2.5.4) is to choose the number of particles which keeps the
variance of the log-likelihood around the mode below one.

2.5.2. Computation time
The computation time of PMCMC is highly dependent on the model

you are trying to fit, but in typical cases, fitting can easily take from a
couple of hours to a day. The computational complexities of the model
components (f and g), the number of particles employed and the tuning
of the MCMC component (e.g., choosing an appropriate optimal pro-
posal distribution) are important determinants of computational time
and should be considered to optimise PMCMC. Particle-based methods
are relatively easier to parallelise; if multicore processors are available,
one could parallelise the algorithm to reduce the total run time (which
may be automatically done by some packages). Also note that some
tools (e.g., LibBi) support the use of graphics processing units (GPUs),
which have far greater computational performance than ordinary cen-
tral processing units (CPUs) in terms of parallelisation (Murray, 2012,
2013; Murray et al., 2016). Although using GPUs may require addi-
tional technical knowledge, it can substantially reduce the computa-
tional time (even by a factor of 50-100 in some cases) if implemented
successfully.

2.5.3. Using packages vs writing from scratch
There are a number of open source implementations of the PMCMC

algorithm available, such as LibBi, RBi, NIMBLE and POMP (see the
next section). Which one to use depends a lot on what environment you
are comfortable with. It is also possible to write an implementation
from scratch, but this can be challenging as it requires both technical
skills and a thorough understanding of the algorithm. Meanwhile,
writing one or two simple PMCMC implementations (e.g., examples in
this paper) from scratch will be helpful for a beginner to get familiar
with the method. Once you are clearer of the overall picture by pro-
totyping simple working examples, you can reduce the amount of work
by using existing tools while avoiding the risk of misuse.

2.5.4. Useful tools
Here are some of the tools available for the implementation of

PMCMC (though not inclusive), which may be useful for the readers
who wish to try out PMCMC in their own studies. All listed tools sup-
port MCMC and SMC as well as PMCMC.

• LibBi (http://libbi.org/): a C++ based software library for HMP
(Murray, 2013)

• NIMBLE (https://r-nimble.org/): an R package for Bayesian in-
ference based on the BUGS language [M. Auzenbergs et al.]

• pomp (https://kingaa.github.io/pomp/): an R package for HMP

• RBi (https://cran.r-project.org/web/packages/rbi/): an R package
for using LibBi in R. Some useful functionalities are available in the
RBi.helpers package (https://github.com/sbfnk/RBi.helpers).

3. Examples

In this section, we provide two examples of PMCMC implementation
from epidemic modelling. The first example is the Reed-Frost model, a
simple epidemic model with stochasticity. The second example is the
Dureau model, a compartmental model with time-varying parameters
to model transmission. The first example will illustrate how PMCMC
(and SMC as a part of it) is combined with epidemic models, and the
second example will show an application of PMCMC to more complex
models, which may be more likely to be used in real epidemic settings.
For each example, implementation procedures and practical con-
siderations (including how PMCMC was tuned) are discussed.

3.1. Reed-Frost model

3.1.1. Model and Data
The Reed-Frost model is a discrete-time stochastic model with each

time step representing a new generation of infectious agents (Abbey,
1952), which can be understood as a discrete, stochastic version of
Susceptible-Infectious-Recovered model. During the period between
two time steps t− 1 and t (one generation), each of the susceptible
individuals has a probability p of getting infected by any of the in-
fectious individuals. The probability of escaping infection from all the
infectious individuals is (1− p)It−1 and thus the number of infectious
individuals at the next time step (i.e. the ones who did not escape in-
fection) can be drawn from a binomial distribution with probability
1− (1− p)It−1.

∼ − −
= −

−

−

−I S p
S S I

( , 1 (1 ) ),
.

t t
I

t t t

1

1

t 1Bin

(10)

The Reed-Frost model can be made into a hidden Markov process
(HMP) by using (Sn, In) as the state variables and employing an ob-
servation process. Here we assume that we only detect a fraction of the
infected individuals; the observed case counts are assumed to follow a
negative binomial distribution of size s with a mean probability of de-
tection pobs. The HMP is then represented as

=
∼ = =

X S I
Y p I s

( , ),
NegBin(mean · , size ).

t t t

t tobs (11)

We generated a simulated dataset with the model (Eq. (11)), and fitted
the model using both SMC and PMCMC. The total population N
(= S+ I) was set as N=10, 000, and the initial state (S1, I1) was set by
drawing from a Poisson distribution, i.e., I1∼ Pois(λ=5), S1=N− I1 .
The person-to-person probability of infection p was set at p=0.00015.
A simulated data of fifty time steps was produced.

3.1.2. Implementation and tuning
As the computational load of the model was trivial, the number of

particles was simply set to a sufficiently large number (1,000 particles).
The code was written from scratch and can be found on a Github re-
pository (https://github.com/akira-endo/Intro-PMCMC).

3.1.3. Results
3.1.3.1. SMC. Using the true parameter value p=0.00015 for the
probability of transmission, we applied a SMC to the simulated data.
The inference of the hidden states is shown in Fig. 4. The algorithm can

A. Endo, et al. Epidemics xxx (xxxx) xxxx

6



reconstruct the hidden states, which can be in return used to compute
the marginal likelihood. In Fig. 5, the marginal log-likelihood is
calculated for different value of the transmission parameter. With
enough particles the estimation provides a smooth profile of the
marginal likelihood as expected.

3.1.3.2. PMCMC. PMCMC (with the Metropolis-Hastings MCMC
algorithm) was performed to estimate the parameter p. The PMCMC
algorithm is able to perform inference of the parameters from the model
by using the marginal likelihood approximation computed from the
SMC step. In Fig. 6, an example of such a Markov chain is shown. The
chain is able to explore the region of a high density of the posterior for
the parameters of the model after convergence.

3.2. Dureau model

3.2.1. Introduction
This example is a re-implementation of the model first presented by

Dureau et al. (2013). The pandemic influenza epidemic in 2009 in the
UK exhibited two waves, which cannot be explained by the typical SEIR
type of mechanisms used to describe influenza transmission and the
study explored whether this could be explained by changes in the
transmission rate over time, due to school holidays. They explored a
number of models. In this example, we will explore their simplest
model. The data used was a weekly time-series of the clinical cases
derived from the official number provided by Public Health England
(Baguelin et al., 2010) in the UK during the 2009 pandemic. The code
and data for this example can be found on a Github repository (https://
github.com/akira-endo/Intro-PMCMC)

3.2.2. Model
The model is borrowed from the original study (Dureau et al.,

2013). The modelled states are: susceptibles (S), exposed (E), infected
(I) and recovered (R).

Fig. 4. Inference of the Reed-Frost
model by SMC. The blue line represents
the hidden states of the Reed-Frost
model. The red diamonds are the ob-
servations from the system. The green
lines are the mean trajectories of the
particles resulting from the SMC algo-
rithm, and the green ribbons denote the
95% credible intervals of these parti-
cles.

Fig. 5. Marginal log-likelihood calculated for some values of the transmission parameter near the “true” parameter used to generate the simulated data. The SMC
algorithm with 5,000 particles was used. The vertical red line indicates the transmission parameter used to generate the simulated data.
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with Z the cumulative number of new infections per seven days and x
the log-transformed transmissibility. δ(tmod7) is the Dirac delta func-
tion, which causes Z to reset to zero when tmod7=0, i.e., every seven
days. The latent and infectious periods correspond to

k
1 and

γ
1 , respec-

tively. The amplitude of the stochasticity in the transmission rate is
controlled by the parameter σ.

3.2.3. Likelihood
The likelihood of the data was assumed to be log-normally dis-

tributed in the original manuscript. Not everyone infected ends up
visiting a GP, either due to asymptomatic infections or the patients’
likelihood to consult a GP. Therefore the authors assumed that the true
incidence was ten times higher than the number of GP visits. This
correction was further supported by a serological survey (see Dureau
et al., 2013 for further details).

� �=Z y τ y Z τ( | , ) (log( ), log( /10), )i i

3.2.4. Priors
Most parameters in the model have a wide uniform prior, except for

the latent period, which was assumed to be normal distributed with
mean 1.59 and standard deviation 0.02, the infectious period, which
was normal distributed with mean 1.08 and standard deviation 0.075
and the initial recovered (immune) population, which was normal
distributed with a mean of 0.15 and standard deviation of 0.15 (trun-
cated between 0 and 1; Dureau et al., 2013).

3.2.5. Implementation and tuning
The model was fitted using the RBi and RBi.helpers packages, which

were designed to interface with LibBi from within R (Murray, 2013). To
ensure efficient mixing of the PMCMC algorithm we took the following
approach. First, we took 1000 samples with the proposal distribution
set to sample from the prior. This means that instead of taking proposal
samples close to the current parameter values, proposal samples are
taken from the whole prior distribution. As a result, the algorithm
sampled from a much wider distribution, making it more likely to find a
good starting value. This is a sensible approach if you have no a priori
indication of a valid starting value.

Next, we called the adapt_particles and adapt_proposal functions
provided by the RBi.helpers package. The first function runs the model
with an increasing number of particles until the variance around the log
likelihood is lower than 1. This ensured that the variance is not so high
that it hampers mixing, but still kept the number of particles as low as
possible, to reduce computational load. We started with a low number
of particles (16 particles), and after running adapt_particles we found
that 128 particles were sufficient to realise low log-likelihood variance.
The adapt_proposal function adapts the parameter proposals, such that
the number of accepted samples during the MCMC step is reasonable (in
this case we set the acceptable limits between 0.05 and 0.4 of the
proposals accepted). After these adaptions, we ran the inference for
5000 samples as a burn-in period. Finally we ran the full inference with
5000 samples and thinning every 5 samples, resulting in a 1000 pos-
terior samples in total. The run time was just over 1 hour on a work-
station from 2015, using 8 cores in parallel.

3.2.6. Results
Fig. 7 shows the results of the data fitting. The top panel shows the

incidence data (red dots), with two distinct epidemic waves, and the
model prediction. As shown, the model was able to reproduce both
waves. The middle panel shows transmissibility over time, with an
apparent dip between day 50 and 100. This dip can be confirmed by
comparing the transmissibility to the transmissibility at time 0 (bottom
panel), which shows that between day 50 and 100 the transmissibility is
below the starting transmissibility in all cases. The dip in transmissi-
bility coincides with the holiday period and the decline of the first
epidemiological wave.

Fig. 6. Markov chain for the transmission parameter. The chain is expected to consist posterior samples based on the likelihood approximated by SMC (shown in
Fig. 5).
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4. Discussion

PMCMC is an estimation method that combines SMC with MCMC
and is especially suited for inference of HMP, whose likelihood is
usually intractable. PMCMC uses particles to efficiently sample plau-
sible trajectories of hidden state variables to integrate them out, while
(potentially high-dimensional) parameters are explored by the MCMC
framework. As HMP is a model with time evolution, their parameters
and hidden variables are usually intercorrelated. When applied to
HMPs, PMCMC generally performs better than data-augmentation
MCMC, which typically exhibits slow mixing when parameters and
hidden variables are highly correlated.

Infectious disease dynamics often involve stochastic time evolution
of unobserved variables (e.g., the true number of infections which may
not be fully reported). However, deterministic SIR model, which is
widely used for computational convenience, neglects the possible sto-
chastic fluctuation of the system. Deterministic models are also unable
to capture stochastic behaviours in situations with small numbers (e.g.,
extinction) (Roberts et al., 2015). PMCMC will be a feasible approach to

such complex models with stochasticity. Camacho et al. (2015) esti-
mated the temporal trend of Ebola virus disease in Sierra Leone using a
stochastic SEIR model. They accounted for temporal variation in the
transmission rates which was assumed to follow the Wiener process,
and PMCMC is well suited for such model settings. A similar framework
was also used for real-time forecasting of the Ebola outbreak in Africa
(Funk et al., 2018). Other applications include a multi-host dynamics
model of bubonic plague (Didelot et al., 2017) and a phylodynamic
analysis of a poliovirus outbreak (Li et al., 2017).

Other related methods may be used in place of PMCMC. Iterated
filtering (Ionides et al., 2006, 2015) is a frequentist-type alternative of
PMCMC, which finds the maximum likelihood estimate instead of
posterior samples. The extended Kalman filter (Jazwinski, 1970) could
replace the SMC component in PMCMC; this method is computationally
simpler than SMC but is subject to certain assumptions (Gaussianity and
approximate linearity). SMC2 (Chopin et al., 2013) is a method based
on a similar framework to PMCMC, where the MCMC component of
PMCMC is replaced with another SMC. That is, instead of iteratively
updating parameter θ, SMC2 generates a set of particles in a joint space

Fig. 7. Model inference results. Top panel shows the GP consultation results, with the points showing the actual data points. The ribbons represent the 95% and 50%
credible intervals in incidence, and the black line shows the median. The middle panel shows the transmissibility over time and the bottom panel the change in
transmissibility relative to the initial transmissibility.
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θ× x and then filters them to approximate a joint distribution p(x, θ|y).
SMC2 may be particularly useful when the original particle distribution
is localised due to informative priors.

The limitations of PMCMC must be noted. PMCMC is an extension of
MCMC and thus it inherits the weaknesses of MCMC including high
computational load, the requirement of a well-chosen proposal dis-
tribution and slow mixing in the presence of correlation between
parameters. PMCMC requires that the time-evolution and observation
processes (f and g) are given and tractable; if they are intractable, al-
ternate likelihood-free methods need to be sought, e.g., approximate
Bayesian computation (ABC). Moreover, as PMCMC uses a finite
number of particles, the approximation can become poor when the
hidden state x is high-dimensional (e.g., a spatiotemporal model with a
large number of spatial units). In such cases, parametric approaches
including the extended Kalman filter and integrated nested Laplace
approximation (Rue et al., 2009; Blangiardo et al., 2013) may be more
appropriate.

When applied to the appropriate subset of inference problems,
PMCMC can serve as an efficient sampling method for HMPs with in-
tractable likelihood. PMCMC enables infectious disease modellers to
employ more complex epidemic models to account for the stochastic
and partially-observed nature of real-world outbreaks.
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Appendix A. Importance of Markov property for the use of SMC

The Markov property of HMP, which assures that f(xt+1|xt) is a function of only the current state xt and not of the past states, provides a useful
attribute in estimation. In sequential Monte Carlo (SMC), which is employed as a sub-algorithm of PMCMC, the observation yt is used to infer the
hidden state xt (inferring the hidden states from the observations is sometimes referred in the literature as “filtering”). Due to the Markov property, yt
is independent of the previous states x1:t−1 if xt is given. This means, inversely, that the observation of the future yt+c (c≥ 1) does not affect the
posterior probability of the current state xt given xt+1. It is shown as follows, noting that p(yt+c|xt+1, xt)= p(yt+c|xt+1),

=

=

+ +
+ + +

+ +

+

p x x y
p y x p x x p x

p x y
p x x

( | , )
( | ) ( | ) ( )

( , )
( | ).

t t t c
t c t t t t

t t c

t t

1
1 1

1

1 (13)

In the SMC algorithm, as seen in Sections 2.3 and B, xt is sampled sequentially in a forward direction. Eq. (13) promises that once xt is sampled
and fixed, subsequent observations yt:T does not directly affect the distribution of the past states x1:t−1. A Bayesian update of the distribution of xt
alone can thus represent all the possible influence of yt on x1:t, allowing for the sequential sampling without moving back and forth.

Appendix B. Inside structure of SMC

For readers interested in the technical aspects of SMC, here we outline the most basic SMC algorithm: the bootstrap filter. The bootstrap filter
(BF) is a special case of methods called sequential importance (re)sampling (SIS/SIR), which infer hidden state variables by sequentially filtering
particles based on importance sampling (IS). After introducing the basic settings, we first describe the concept of IS and then introduce SIS/SIR
algorithms using BF as an example. Lastly, we mention some approaches to addressing the so-called particle degeneracy problem, which may cause
the SMC algorithms to fail.

B.1 Basic settings of SMC

SMC (also known as particle filtering) is a method particularly designed for inference on hidden Markov processes (HMPs; see the main text,
Section 2.2). SMC can efficiently produce samples of the hidden states x1:T from the conditional distribution pθ(x1:T|y1:T), and also approximate the
marginal likelihood pθ(y1:T). Data y1:T, the initial state samples from the prior distribution pθ(x1) and the time evolution/observation processes
fθ(xt|xt−1) and gθ(yt|xt) need to be defined for SMC. SMC then sequentially samples hidden state variables xt from the step-wise conditional prob-
ability pθ(xt|y1:t). Note that the contribution of θ to the system is fully represented by fθ and gθ. Therefore, within SMC, we can assume that θ is fixed
(so are fθ and gθ). The notation pθ(·) = p(·|θ) is used to indicate that θ conditions the probability but can be left out from consideration.

In SMC, samples of xt are called “particles”. The basic idea of SMC is to sequentially update the distribution of xt with fθ, gθ and y1:t for t=1, 2, ..
., T to produce a set of “time-series particles” x1:T. Ignoring the actual procedures to generate samples from given distributions for now, the algorithm
of SMC is described as follows:

1. For t=1, sample the initial state x1 from

∝p x y g y x p x( | ) ( | ) ( ),θ θ θ1 1 1 1 1 (14)

and compute the initial marginal likelihood as

∫=p y g y x p x( ) ( | ) ( )dx .θ θ θ1 1 1 1 1 (15)

2. For t=2, .. ., T, given the previous state pθ(xt−1|y1:t−1), sample xt from

∫
∝

=
−

− − − −

p x y g y x p x y

g y x f x x p x y

( | ) ( | ) ( | )

( | ) ( | ) ( | )dx ,
θ t t θ t t θ t t

θ t t θ t t θ t t t

1: 1: 1

1 1 1: 1 1 (16)
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and compute the marginal likelihood as

∫
=

=
− −

− −

p y p y p y y

p y g y x p x y

( ) ( ) ( | )

( ) ( | ) ( | )dx .
θ t θ t θ t t

θ t θ t t θ t t t

1: 1: 1 1: 1

1: 1 1: 1 (17)

Although the formulations are relatively straightforward, it is not always easy to directly sample from these distributions. The key concept, which
SMC uses to sample from the distribution defined as above, is to generate and then filter particles each time step so that the resulting particles
represent the target distribution (this is where the term “particle filtering” originates). First, candidate particles {X′t} are randomly generated.
Particles for the previous state {Xt−1} and the time evolution process fθ are usually used to generate {X′t}. {X′t} does not generally follow the target
distribution pθ(xt|y1:t); SMC produces from {X′t} a new set of samples {Xt} that represents the target distribution pθ(xt|y1:t). This process of converting
the candidate particles {X′t} into the proper particles {Xt} is referred to as “filtering”. In the most standard SMC, the bootstrap filter (BF), one of the
resampling algorithms called importance sampling resampling (ISR), is used to filter particles.

B.2 Importance sampling/importance sampling resampling

Importance sampling (IS) and importance sampling resampling (ISR) are generic sampling methods for probabilistic distributions which are
difficult to sample from but whose density functions are available. Let π(x) be the target distribution from which we cannot directly sample. Instead
of sampling from π(x), an easily-sampled distribution π′(x) is used as a proposal distribution. Samples of size N generated from π′(x), ′X{ }i( ) (i=1, 2,
.. ., N), are then given “importance weights” w i( ) such that

∑

∝
′

′ ′

=
=

w π X
π X

w

( )
( )

,

1.

i
i

i

i

N
i

( )
( )

( )

1

( )

(18)

Combined with the importance weights, ′w X{ , }i i( ) ( ) is considered as a (weighted) sample set following the target distribution π(x).
Theoretically, the proposal distribution π′(x) can be arbitrarily chosen if a sufficient number of samples ′X{ }i( ) are generated. However in

practice, π′(x) must be similar to π(x) so that a finite number of weighted samples ′w X{ , }i i( ) ( ) closely approximates the target distribution. If π(x) and
π′(x) are very different, only a few samples in ′X{ }i( ) will fall within the likely region of π(x), and the weights of most samples become nearly zero.
Meanwhile, x with too low π′(x) to be realised is never sampled regardless of π(x). Importance sampling with an ill-chosen proposal distribution
(which usually yields bipolarised weights) results in a scarcity of informative samples, and thus the weighted samples do not properly represent the
target distribution (Fig. 8). Choosing a proposal distribution that resembles the target distribution is important to ensure that the weighted samples
are representative. Kish's effective sample size (ESS) (Kish, 1965) is one of the useful indicators to evaluate whether a weighted sample set is a good
approximation of the target distribution.

Weighted samples can be bothersome to handle. In such cases, weighted samples obtained from IS are resampled to yield unweighted samples: N
samples are drawn from the weighted samples ′w X{ , }i i( ) ( ) with replacement, and then the new samples {X(i)} will be an unweighted sample set
following π(x). By resampling, particles with low weights are filtered out, so that the more informative samples remain in the set of particles. This
approach is called importance sampling resampling (ISR).

B.3 Sequential importance sampling/resampling and the bootstrap filter

Sequential importance sampling (SIS) or sequential importance resampling (SIR) are natural extensions of IS/ISR for the SMC framework. They
sequentially generate particles following the conditional distribution pθ(xt|y1:t) using the particles of the previous state ( ′− −w X{ , }t

i
t

i
1

( )
1

( ) in SIS, −X{ }t
i

1
( ) in

SIR) which follows pθ(xt−1|y1:t−1). Although SIS is faster than SIR because it can avoid the computational burden caused by the resampling process,
SIS is known to be ill-performing for longer time series due to the so-called “particle degeneracy” problem. We have seen in Fig. 8 that in IS, the
resulting weighted samples are not representative when the proposal distribution is not close enough to the target distribution. Unlike SIR, which
“resets” the weight wt each step, SIS keeps updating the weight −wt 1 sequentially over time. Because SIS repeatedly implements IS, which always
decreases the ESS of the weighted samples (unless π(x)= π′(x)), at the limit T→∞ the ESS of the SIS samples converge to 1, i.e., all samples but one
are effectively lost. SIR is preferred to SIS as an algorithm for SMC for this reason, and thus we limit our focus to the bootstrap filter (BF) in this

Fig. 8. Importance sampling resampling (ISR) using different proposal distributions. (A) The target distribution � (0, 1) and the proposal distributions � (1, 1.5) and
� −( 2, 0.5). (B) (C) Samples obtained by the importance sampling resampling method. For each proposal distribution, 500 samples were drawn, weighted and
resampled.

A. Endo, et al. Epidemics xxx (xxxx) xxxx

11



paper. See, for example, Doucet and Johansen (2011) for the SIS algorithm and its weaknesses.
Equation (16) implies that samples obtained by applying fθ to the previous particles, ′ ∼ −X f x X( | )t

i
θ t t

i( )
1

( ) , can be used as a proposal distribution for

ISR. Noting that ∝
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g y x( | )θ t t
p x y
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i( ) is computed from the observation probability gθ as
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Weighted particles ′−w X{ , }t
i

t
i

1
( ) ( ) are then resampled according to w{ }t

i( ) to produce an unweighted sample set X{ }t
i( ) . In the end, starting from the

initial particles generated from pθ(x1), samples of hidden trajectories {X1:t} are obtained by sequentially applying ISR to the particles. fθ is used to
propose candidate particles, which are then weighted by gθ and resampled. In the above algorithm, particles with very small weights are removed
(filtered out) from the sample set; combined with its conceptual similarity to the bootstrap method, this type of SIR using −f x X( | )θ t t

i
1

( ) as a proposal
distribution is called the bootstrap filter.

Finally, an SMC algorithm employing BF is described below (see Algorithm 2 for a pseudocode).

1. For t=1, approximate the initial marginal likelihood as the sum of gθ for the initial prior samples ′ ∼X p x{ } ( )i
θ1

( )
1 :
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and obtain the posterior samples X{ }i
1
( ) by resampling ′X{ }i

1
( ) with weights
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2. For t=2, .. ., T, generate samples ′X{ }t
i( ) by applying fθ to each of the previous samples −X{ }t

i
1

( ) :

′ ∼ −X f X(·| ),t
i

θ t
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1
( ) (22)

approximate the incremental marginal likelihood as

∑= ′−
=

p y y
N

g y Xˆ ( | ) 1 ( | ),θ t t
i

N

θ t t
i

1: 1
1

( )

(23)

and resample from ′X{ }t
i( ) with weights
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to obtain X{ }t
i( ) . When resampling, also reorganise −X{ }t

i
1: 1
( ) so that X{ }t

i
1:
( ) for each i constitutes a trajectory of the same particle.

3. After completing T steps, return the samples of trajectory X{ }t
i

1:
( ) and the approximate marginal likelihood = ∏ = −p y p y p y yˆ ( ) ˆ ( ) ˆ ( | )θ t θ t

T
θ t t1: 1 2 1: 1

The algorithm presented above is the simplest BF algorithm, and there are many other variant algorithms for SMC, including

• Adaptive resampling: particles are resampled when only certain resampling criteria are satisfied to reduce the computational burden involved in
resampling

• Auxillary particle filtering: future information yt+1 is also used to sample xt for a better proposal distribution

both of which are introduced in Doucet and Johansen (2011).

Algorithm 2. Sequential Monte Carlo (SMC) with the bootstrap filter (BF)

Input: θ, N
′ ∼X p x( )i

θ1
( )

1 , for i=1, .. ., N

′⟵w g y X( | )i
θ

i
1
( )

1 1
( ) , for i=1, .. ., N

⟵⎛

⎝
⎜

⎞

⎠
⎟∑ = =

w̄
w i

i
N w i

i N
1

1
( )

1 1
( )

1,...,

∼ wI NMultinom({1, ..., }, ¯ )i 1( ) , for i=1, .. ., N ▷ *Multinomial resampling

′⟵X Xi I i
1
( )

1
( ( ) )

⟵ ∑ =l wˆ
i
N i

1 1 1
( )

for t=2, .. ., T do

′ ∼ −X f X(·| )t
i

θ t
i( )

1
( ) , for i=1, .. ., N

′⟵w g y X( | )t
i

θ t t
i( ) ( ) , for i=1, .. ., N

⎜ ⎟⟵⎛

⎝

⎞

⎠∑ = =

w̄
wt

i

i
N wt

i
i N

1
( )

1
( )

1,...,

∼ wI NMultinom({1, ..., }, ¯ )ti( ) , for i=1, .. ., N ▷ *Multinomial resampling

′⟵X Xt
i

t
I i( ) ( ( ) )
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⟵ ∑ =l wˆ )t i
N

t
i

1
( )

end for

⟵ ∑ =p y lˆ ( )θ T t
T

t1: 1
Output:{X1:T}, p yˆ ( )θ T1:
*Other resampling methods may be used; see Section “Methods to handle diversity in particles”.

B.4 Methods to handle diversity in particles

SIR methods, including BF, resample the particles at each time step to filter out particles corresponding to unlikely posterior probabilities
pθ(xt|y1:t). Although this helps SIR to keep only particles within the plausible regions of pθ(xt|y1:t), it comes with another problem over time.
Resampling with replacement results in replicate samples. This means, in the long run, particles with higher probabilities have so many duplicates
that the resulting particles may lack diversity. This loss of diversity caused by resampling is also referred to as particle degeneracy. Possible options
to alleviate this degeneracy is to use alternative resampling methods (residual, stratified or systematic resampling Douc and Cappe, 2005) in place of
the multinomial resampling. Algorithm 3 shows the most common method: systematic resampling, where an interval [0,1] is divided into subregions
proportional to the weights and equally-spaced N points are used to sample from those subregions. The resample-move method (Gilks and Berzuini,
2001) is another common approach that addresses the particle degeneracy. In the resample-move method, the resampled particles are jittered around
the neighbouring region (See Doucet and Johansen, 2011; Gilks and Berzuini, 2001 for technical details). The resample-move method propagates the
particles with higher weights so that the important regions of the posterior pθ(xt|y1:t) are more densely sampled while avoiding particle degeneracy.

Algorithm 3. Systematic resampling

Input: =w w w¯ ( , ..., )N(1) ( )

u∼Unif(0, 1)
for i=1, .. ., N do

I(i)⟵ (The smallest integer I that satisfies ≤ ∑− +
= wi u

N j
I j1

1
( ))

end for
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