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Abstract

We explore the different types of causes that are commonly investigated by epidemiolo-

gists. We first distinguish between causes which are events (including actions) and

causes which are states. Second, we distinguish between modifiable and non-modifiable

states. This yields three types of causes: fixed states (non-modifiable), dynamic states

(modifiable) and events (including actions). Different causes may have different charac-

teristics: the methods available to study them, the types of possible biases, and therefore

the types of evidence needed to infer causality, may differ according to the specific

cause-effect relationship under study. Nevertheless, there are also substantial common-

alities. This paper is intended to improve understanding of the different types of causes,

and the different types of causality, that underpin epidemiological practice.

Key words: Epidemiological methods, causal inference, causes

Introduction

We need concepts of causality to act in the world in which

we live, but it is a notoriously unsettled question as to

how we arrive at such concepts in a satisfactory fashion.

Historical philosophical discussions about causality in-

clude little, if any, consideration of ‘types of causes’. Since

John Stuart Mill, it has been standard to admit a plurality

of causes for every event1 but not to assert that there are

Key Messages

• The causes that epidemiologists study can be classified as events or states.

• We can also distinguish between modifiable and non-modifiable states.

• This yields three types of causes: fixed states (non-modifiable), dynamic states (modifiable) and events.

• Different types of causes have different characteristics: the methods available to study them and the types of evidence

needed to infer causality may differ.

• There are also substantial commonalities, and all of these types of causes are amenable to epidemiological investiga-

tion, causal inference and causal effect estimation
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many types of causes. Neither did other philosophers do

so, to our knowledge, because the need for any distinction

was never acknowledged. However, it is evident that the

various causes studied by epidemiologists have different

characteristics. Some causes can be randomized in practice

(e.g. exercise), or in theory (e.g. smoking); some cannot be

randomized (e.g. sex, hypertension, genetics), but some of

these can be modified with interventions (e.g. interventions

to reduce hypertension). Thus, different types of evidence

are potentially available to study different causes, and dif-

ferent epidemiological and statistical methods may be

available and/or necessary to infer causality.

In this paper, we therefore consider the different charac-

teristics of the different causes that are studied by epidemi-

ologists, and we consider the implications of these

differences for epidemiological practice. Our aim is to find

a way of describing all of the (reasonable) causal questions

that epidemiologists may wish to ask, while acknowledg-

ing the differences between the kinds of causal knowledge

that we seek and the different methods we might use in

attempting to answer these questions.

Preliminary considerations

What is a cause?

Philosophers have debated the nature of causality for mil-

lennia. The starting point of post-Enlightenment thinking

about causation is David Hume, who gave two non-

equivalent definitions. The first of these dominated scien-

tific thought until the second half of the 20th century,

when there was a remarkable switch in a number of disci-

plines to the other concept.2

The first of Hume’s definitions is as follows.

. . .we may define a cause to be an object, followed by

another, and where all the objects similar to the first are

followed by objects similar to the second.

This says that, to be a cause, A has to be constantly fol-

lowed by B. This is known as a regularity theory or con-

stant conjunction theory of causation. However, Hume’s

very next sentence offers a different definition (1748):3

Or in other words where, if the first object had not

been, the second never had existed.

The phrase ‘in other words’ is incorrect, as many com-

mentators have noted. This distinction between the first

and the second definitions of Hume corresponds to the dis-

tinction between the positivist (inductive) and the realist

(counterfactual) approaches to science.2

Hume never followed up his second, counterfactual, defi-

nition of ‘cause’, and there was no serious development of

the idea that causation might be some kind of counterfactual

dependence, until the 1970s. Then, for some reasons that are

outside of the scope of this paper, counterfactual thinking

was simultaneously explored in philosophy, epidemiology,

law, economics and possibly elsewhere too.2 This approach

revolves around the idea that a cause is something without

which the effect(s) would not have happened, and is funda-

mental to the concepts of causation, and of types of causes,

which we explore in this paper.

Levels of causality

It should be noted that causality can be studied at many

levels,4 e.g. population factors such as socioeconomic posi-

tion, individual factors such as ‘lifestyle’, the organ burden

of an exposure postulated to be a carcinogen, or the effect

of an exposure on DNA methylation that leads to altered

gene expression. Understanding disease causation at differ-

ent levels is useful, as is ascertaining the extent to which

the observed effects at one level are explained by known

risk factors at other levels.4,5 For instance, tobacco smoke

may appear to be a risk factor operating at the individual

level. Yet the extent of exposure and susceptibility to expo-

sure may be affected by a wide range of political, economic

and social factors. The extent of exposure will be increased

if the tobacco industry has unfettered access to poor and

under-educated markets, which will lead to a public health

problem in developing countries; susceptibility may vary

between populations for genetic reasons; and concomitant

exposures such as asbestos may affect the risk.6 On the

other hand, tobacco smoke ultimately has effects at the cel-

lular and molecular levels, which may involve common

pathways to other causes of lung cancer.

Types of causality

As a preliminary, we should first consider a more funda-

mental level, in which it is accepted that there are two

types of causality that epidemiology might be aiming at:

the explanatory versus the interventionist. For example, in

a commentary on the occasion of the 40th anniversary of

the publication of the sufficient cause model by Rothman,

VanderWeele writes that:

The sufficient cause framework begins with the outcome

or effect to be explained and considers all of its possible

causes. Said succinctly, the potential outcomes framework

considers the effects of causes, whereas the sufficient out-

comes framework considers the causes of effects.7

This dovetails with the opinion by Glymour and

Glymour that:

There is a counterfactual/interventionist notion of cau-

sation—of use when one is designing a public policy to
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intervene and solve a problem—and a historical, or

more exactly, aetiological notion—often of use when

one is identifying a problem to solve.8

Glymour and Glymour state that one should not try to

twist the latter type of causality into an interventionist

framework, because it is useful by itself. We do not intend

to explore these distinction any further in this paper, but

we do wish to note it, since it underlies many current

debates about the nature of causality.

Epidemiological concepts of causation

Epidemiologists have often been uncertain or ambiguous

about the nature of causation. To the best of our knowl-

edge, the first definition was by Abraham Lilienfeld in

1957:9

A factor may be defined as a cause of a disease, if the in-

cidence of the disease is diminished when exposure to

this factor is likewise diminished.

MacMahon and Pugh10 defined a cause as:

An association may be classed as presumptively causal

when it is believed that, had the cause been altered, the

effect would have been changed.

Both descriptions address single causes. In contrast, in

1976, Rothman11 introduced a more general model of ‘suf-

ficient’ causal constellations. These are combinations of

‘component causes’ that when acting together are sufficient

for disease to occur. In this model, a cause is defined as:

. . .an act or event or state of nature which initiates or

permits, alone or in conjunction with other causes, a se-

quence of events resulting in an effect. A cause which

inevitably produces the effect is sufficient.

A disease will typically have many different causal con-

stellations (combinations of single causes) that would be

sufficient causes. Moreover, a particular factor may be a

component of more than one of these constellations. For

example, in a younger woman the constellation of causes

that leads to myocardial infarction may include use of oral

contraceptives and smoking. In an older man these might

be absent but other factors might come together to produce

the same outcome, such as diabetes and hypertension.

Rothman11 noted that ‘most causes of interest in the health

field are components of sufficient causes, but are not suffi-

cient in themselves’. The identification of all the compo-

nents of a sufficient cause is not necessary for prevention,

since blocking the causal role of one component renders a

specific sufficient cause insufficient. Philosophically, this

approach aligns with the work of Mackie on INUS

conditions (Insufficient but Non-redundant parts of a con-

dition which is itself Unnecessary but Sufficient for the oc-

currence of the effect), since each component of a sufficient

cause is usually both insufficient and not necessary, as

there might be other constellations of sufficient causes.12

Rothman’s framework makes explicit that an exposure

will only cause (at least some cases of) a disease if the nec-

essary co-factors are also present. Causation is context-

specific, and an exposure may cause disease in some popu-

lations, but not in others.13

More recently, a direct link between philosophical and

statistical thinking about causation was proposed with the

work of Judea Pearl.14–17 He has proposed three levels of

causation.18 The first involves observing regularities and

essentially corresponds to Hume’s regularity theory (i.e. in-

duction). The second involves deliberate alterations of the

environment (i.e. interventions), but can be conceived

within a counterfactual framework [if A had (not) been

done, would B have occurred?]. The third level of causa-

tion is more explicitly counterfactual [if A had (not) been,

would B have occurred?].

Distinction 1: states and events

In this paper, we distinguish between causes which are states

(e.g. having the BrCa1 gene mutation), and causes which are

events (e.g. smoking). A standard view in philosophy regards

the latter activities as events19–22; one also finds considerable

support for regarding them as facts,23,24 and occasional sup-

port for such other entities as features,25 tropes,26 states of

affairs,27 situations28 and aspects.29 We prefer the term

‘events’, since this is broader: for example, an earthquake is

an event which can cause death, whereas the use of the

terms ‘actions’ or ‘interventions’ implies some human

involvement.30,31

There has been a lengthy debate in epidemiology jour-

nals as to whether definitions of cause should be limited to

events, or can also include states. In particular, there has

been considerable debate as to whether states such as

‘race’,8,32,33 or obesity,34 can be regarded as causes and/or

whether it is possible to estimate their causal effects. Other

examples of states that can be regarded as causes include

diabetes as a cause of incident coronary heart disease, hy-

perthyroidism as a cause of atrial fibrillation, hypertension

as a cause of stroke and hypercholesterolaemia as a cause

of incident coronary heart disease. Thus, in clinical prac-

tice, states are routinely regarded as causes of disease, and

many preventive clinical and public health interventions

have been developed, e.g. statins to reduce cholesterol and

antihypertensives, as well as diet, exercise etc.

The definitions of Lillienfeld and some of the current lit-

erature about causality18,34,35 tend towards the narrower
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interventionist conception, which is consistent with the his-

torical role of randomized controlled trials (RCTs) in

health research,33 whereas Rothman and Pearl tend to-

wards the broader aetiological conception. In particular,

Pearl’s level 2 causality only applies to events (interven-

tions), but level 3 causation applies to both events and

states. This is because Pearl’s level 3 concept of a cause is

proposed within a counterfactual framework, and does

not specify or restrict the nature of the ‘exposure’. This is

exemplified by the fact that it feels natural to represent

both states (e.g. having the BrCa1 genetic mutation) and

events (e.g. smoking) as causes in a directed acyclic graph

(DAG).36

In the wake of recent debates, VanderWeele recently pro-

posed a definition of ‘hypothetical intervention’37 as the

specification of a potentially counterfactual state of expo-

sure in which the ‘state or event’ is sufficiently well speci-

fied. This approach allows a well-specified state [e.g. body

mass index (BMI) of 35 compared with BMI of 25] to be

regarded as a cause. Vanderweele’s approach can be viewed

as an attempt to reconcile the two viewpoints, in that states

can be accepted as causes since the comparison of two states

can be regarded as a hypothetical intervention.

Nevertheless, Pearl36 criticizes VanderWeele for not being

sufficiently explicit in this regard, and thus not inclusive.

In this context, it should be emphasized that regarding a

state as a cause is not merely a statistical assumption, but

is rooted in biology. Obesity is the state which has perhaps

received the most debate as to whether it is a cause, per-

haps because it seems a rather ‘fuzzy’ exposure that arises

from several different causes (nutrition, lack of exercise

etc.) and has several subtypes (brown fat, abdominal fat,

etc.). However, there is good biological evidence as to the

mechanisms by which the ‘state’ of obesity causes disease;

in particular, it involves adiposity, which produces ongo-

ing tissue inflammation and other bodily changes which

can result in diabetes, stroke and cardiovascular disease.38

Similarly, hypertension produces ongoing challenges to the

cardiovascular system which can result in stroke and car-

diovascular disease. The fact that these states are causes is

reflected in the fact that almost all interventions which

modify these states (e.g. gastric surgery, exercise, diet etc.)

produce changes in risk which are consistent with

those predicted by epidemiological studies of the causal

effects of these states. For example, genetic Mendelian ran-

domization studies and intervention studies on hyperten-

sion produce reductions in cardiovascular disease risk

which are very consistent with the risk estimates from ob-

servational cohort studies comparing different levels of

hypertension.39

In summary, the epidemiological literature has differed

over the distinction between the broader conception of

cause (‘if the first object had not been’), which might point

to an aetiological explanation, and the narrower concep-

tion (‘had the cause been altered’), which might point to an

intervention. Both are useful and necessary. The narrower

view may directly lead to action, but the broader view is

consistent with general biological explanations and also

with approaches in other areas of science,14 many of which

study phenomena that are clearly beyond the scope of any

intervention (e.g. astronomy or geophysics).

Different types of causes in epidemiological
practice

We will explore the characteristics of these different con-

ceptions of causes by discussing several examples of con-

stellations of different types of causes (Box 140). In Box 1,

Factor A and Factor B both affect the risk of disease.

People who are exposed to both factors have a higher dis-

ease risk than people who are exposed to only one, or to

none. The specific examples are discussed in more depth in

Box 1. These examples share the characteristic that Factor

A is a state (PKU gene, female sex, obesity), whereas

Factor B is an event (eating a high phenylalanine diet, sex-

ism, drinking alcohol). Some states (e.g. ethnicity, sex,

PKU genes) may only cause disease if other component

causes (e.g. racism, sexism, high phenylalanine diet) are

also present.

In these pairwise lists, one would usually regard only

Factor B and not Factor A as the targets for intervention

(diet but not genetics, sexism but not sex etc.).

Nevertheless, the states identified as Factor A are causes in

the counterfactual sense. We can represent each of these

states under Factor A with a variable, and if that variable

is assigned a different value from its actual value, then the

variable representing the outcome will also have a different

value. In this sense we can say that, had Factor A been dif-

ferent, then the outcome would also have been different.

These states may result in particular events which are

themselves causes of the outcome. Thus, being female

results in the proliferation of breast tissue during puberty,

high adiposity causes repeated tissue inflammation, insulin

resistance etc. These events are also part of the constella-

tion of causes satisfying the condition that, had they been

different, the outcome would have been different; but their

inclusion in the constellation does not exclude the state

which results in these events. Thus, this state is also in-

cluded in the constellation of things satisfying the condi-

tion that, had they been different, the outcome would have

been different. This means that states have counterfactuals

(‘to be or not to be’), much as actions have counterfactuals

(‘to exercise or not to exercise’).
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Box 1. Examples of types of causes

Figure 1 gives several examples in which two factors can each individually, and/or in combination, cause cases of disease.

Example 1 relates to the risk of phenylketonuria (PKU). This is a classic ‘genetic’ disease (albeit one that involves a

large number of genes) involving primarily intellectual disability. PKU results from a combination of the PKU genes

(Factor A), and a diet high in phenylalanine (Factor B). Each of these factors (having at least one of the PKU genes and

a high-phenylalanine diet) is a necessary but not sufficient cause of the disease. Together they form a sufficient cause,

i.e. the causal constellation that involves both of these ‘exposures’ is a sufficient causal constellation. We live in a world

where almost everyone has a high phenylalanine diet, whereas only a small proportion of people have the relevant

polymorphisms of the PKU genes. Thus, the disease appears to be almost entirely genetic, because having the genes is

essentially synonymous with developing the disease. Virtually 100% of the population variation is explained by genet-

ics, and almost none of it is explained by diet. Nevertheless, changing the genes is currently impractical, whereas

changing the diet can avert the disease. Consequently, PKU is regarded as a classically genetic disease, but the inter-

vention is environmental. This is because PKU is caused by the joint effect of the genes and the high-phenylalanine

diet: if either of them is not present (‘if the first object had not been’), then PKU will not occur. However, these two

causes are of different types. Having a high-phenylalanine diet is an action (eating!) that occurs several times a day,

and which can be conceived of as an intervention (we could randomize people to a high- or low-phenylalanine diet).

Having the PKU genes is a ‘state’ that is constant over time.

Example 2 involves another genetic cause, albeit a more complex one. The causes of breast cancer include various life-

style factors (e.g. drinking alcohol), together with female biological sex.14 Neither of these ‘causes’ is necessary or suffi-

cient (men who do not drink alcohol can get breast cancer, although it is rare, and women who do drink alcohol usually

do not get the disease). However, these two causes can individually, or in combination, increase the risk of breast can-

cer. In Hume’s second definition, if either or both of these risk factors were absent, then some of the cases of breast

cancer would not occur.

Example 3 provides a more complex (and possibly more controversial) example. In most jobs, women receive lower sala-

ries than men. The risk of having a low salary relative to the mean for a given job is strongly affected by two factors: fe-

male sex, and sexism (institutional and/or individual). The absence of either of these factors would dramatically reduce

the risk of having a low salary. Thus, both having female sex and living in a sexist society (or working for a sexist organi-

zation) are causes of lower-than-men salaries. Of course, although female sex is technically a cause in this formulation,

there is a natural reluctance to describe it as such, since this may be regarded as somehow implying that it is the ‘fault’ of

the group discriminated against. Thus, most would regard sexism as the fundamental cause of low salaries here (Krieger

and Davey Smith give a similar argument as to why racism is the main cause of ethnic inequalities in health32,41).

Certainly, this is the factor on which an intervention would be based (just as we intervene on diet, not PKU genes, to pre-

vent PKU-related mental illness). Thus, the ‘causal effects’ of female sex are due to societal problems, not genetics.

Example 4 involves ‘lifestyle’ factors and obesity as causes of diabetes. Once again, both of these factors are causes of

diabetes, and the risk is greatly reduced if one or both of these factors are not present.
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Distinction 2: modifiable and non-modifiable
states

In the examples in Box 1, we can also distinguish between

those states that we can imagine at least in principle being

modifiable (dynamic states), and those that appear in prin-

ciple non-modifiable (fixed states) (Table 1). For example,

genetics and sex are fixed. On the other hand, obesity can

be modified by exercise, diet, liposuction and other means.

The distinction is not completely clear-cut, since the

non-modifiability of many fixed states may be disputed

(e.g. in the future, genetic modification will become increas-

ingly possible). Thus, this distinction is not important for

our general argument, rather it just affects our assessment

as to whether a particular factor can currently be regarded

as a fixed state or a dynamic state in a given context and

time. For the purposes of the current discussion we will re-

gard genes as fixed states, and will thus regard genetic sex

as fixed, in contrast to gender identification which may

change over time and can therefore be regarded as a dy-

namic state. Similarly, genetic ancestry (we use this term

since race is an artificial construct32,41,42) is relatively fixed

whereas ethnic identity can change over time.42

Despite these differences, for all three types of causes it

is possible to specify an appropriate counterfactual con-

trast, and we can explore the biological mechanisms

involved. Thus for all of these types of causes we can inves-

tigate causality, both in epidemiological studies and

through other types of evidence. In each case, the problems

of causal estimation are similar (specifying the counterfac-

tual contrast clearly, avoiding or minimizing selection bias,

information bias, confounding—in general: ruling out al-

ternative explanations), although the relative importance

of the various types of bias, and the relative importance of

multiple types of evidence, may vary.

For dynamic states (e.g. obesity) events to modify them

(e.g. exercise) can be randomized. Thus, for dynamic states

(and for events) it is then possible to hypothesize an inter-

vention which may or may not be fully or partially effec-

tive, whereas for fixed states intervention is not possible,

even theoretically. As mentioned above, different interven-

tions will often produce different effects: interventions to

reduce blood pressure, cholesterol or obesity may have

similar (but not identical) effects, and add to the evidence

that high blood pressure, high cholesterol and obesity are

causes of mortality. Furthermore, as Pearl36 argues, such

interventions may have side effects which are different

from the effects of the main cause under study (e.g. an in-

tervention to reduce obesity by cycling may result in traffic

accidents, which are not a result of obesity). As mentioned,

the different real-life measures that are needed to stop or

Table 1. Characteristics of different types of causes

‘Fixed’ states Dynamic states Events

Examples Sex Gender Smoking a pack a day

‘Ancestry’ Ethnicity Racisma

Genetics Racisma Gene therapy

DNA methylation Exercise

Obesity Diet

High cholesterol Antihypertensives

High blood pressure

Can we explore the

mechanisms?

Yes (e.g. hormonal influences on

breast cancer risk)

Yes (e.g. obesity causes chronic

inflammation which increases

CVD risk)

Yes (e.g. effects of exercise on

development of collateral

vasculature and hence on CVD)

Can we make a counterfac-

tual contrast?

Yes (e.g. genetic comparisons) Yes (e.g. BMI ¼ 35 vs BMI ¼ 25) Yes (e.g. high exercise vs low

exercise)

Can we randomize? No (e.g. sex cannot be

randomizedb)

No (e.g. obesity cannot be

randomized)c

Yes (e.g. exercise can be

randomized)

Can we intervene? No (although we can intervene on

possible mediators or take

actions on intermediate states)d

Yes (we can carry out interven-

tions which reduce or increase

obesity)

Yes (e.g. interventions to encour-

age exercise)

CVD, cardiovascular disease; BMI, body mass index.
aRacism can be regarded both as a series of individual events and as a dynamic state (e.g. institutional racism).
bSex cannot be randomized by experimenters, although in practice one can regard it ‘as good as randomized’ at conception, which is also the case of point

mutations.
cInstrumental variable analysis (by Mendelian randomization) is a useful approach, e.g. by using ‘obesity genes’ to study the causal effects of obesity, but these

genes are themselves causes of obesity, rather than surrogates for obesity itself.
dIf sex ‘causes’ lower salaries or lower chance of tenure, one might carry out interventions on the committees that are responsible [see Hernán and

VanderWeele33]. If BrCa1 ‘causes’ breast cancer, one might intervene by prophylactic mastectomy, hormone use, regular screening etc.
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start ‘events’ (i.e. actions that people take) might also have

different health consequences. Thus, Greenland has em-

phasized that the potential benefits of interventions on

causes such as smoking will usually be less than might be

expected if we estimate the population attributable risks of

these causes.43

Studying states and events as causes

After having made the above distinctions, it is useful to

come back to the debate about the distinction between

states and events as potential causes. It has been argued

that one may not be able to draw causal inferences, or

make causal estimates for states, whereas one can do so for

events. However, in practice, there is no difference be-

tween these two types of causes in terms of how a study

needs to be conducted and analysed. For example, consider

a study which addresses two causes of incident coronary

heart disease—obesity and (lack of) exercise. Suppose we

were to design a cohort study following people from age

20 years and assessing their exercise rates at baseline and

changes in exercise rates over time; one might compare

those with (well-defined) high versus low levels of exercise,

and we would collect information on all possible con-

founders and adjust for these. Suppose that in the same co-

hort study following people from age 20 years, we also

assessed their BMI at baseline and changes in BMI over

time; one might compare those with (well-defined) high

versus low levels of BMI, and we would collect informa-

tion on all possible confounders and adjust for these.

Would these studies look any different, or would we ana-

lyse them in any different way? In fact, the relevant DAGs

and the appropriate data analysis would be very similar

(there would be some differences because the mediators

might be different), and there would be the usual problems

of minimizing selection bias and information bias and ap-

propriately controlling for confounding. The fact that the

former study can be conceptualized as being like a random-

ized trial (because exercise could be randomized), whereas

the latter cannot (because obesity cannot be randomized),

makes no difference in practice—and we would argue that

it also makes no difference in theory.

In the causal inference literature, the discussion of whether

states can be causes has often focused on the issues of consis-

tency, when there are different possible ‘versions of treat-

ment’. The consistency assumption requires that the exposure

be defined unambiguously: using interventionist terminology,

‘one needs to be able to explain how a certain level of expo-

sure could be hypothetically assigned to a person exposed to

a different level’.44 In other words, is the action (or interven-

tion) consistent across populations (or trials)? A major prob-

lem is that specifying the action (or intervention) too

precisely (e.g. lifting weights at a specified weight and timing

for 1 h before breakfast every morning) may make the study

findings of limited use (what about other types of physical ac-

tivity?). It may also make it impossible to compare across

populations (or to reproduce across trials). In contrast, it has

been argued34 that states such as obesity are not ‘well-de-

fined’ (and therefore lack consistency). We have argued else-

where that this criticism is largely tautological45—if the

definition of ‘well-defined’ involves specifying a well-defined

‘intervention’, then by definition, interventions (‘actions’,

‘events’) can be well-defined whereas states cannot be. In

fact, causes such as adiposity are straightforward to define

and measure—we can consistently and validly measure a per-

son’s BMI, and we can very precisely define the difference be-

tween a BMI of 35 and a BMI of 25.

VanderWeele argued in an earlier paper46 that states

can be regarded as causes, but he added the caveat that

valid causal estimation for states may be difficult, if not

impossible. He argues within an interventionist framework

that the quantification of the causal effect of a state

remains uncertain because different interventions on a

state might have different effects, i.e. there are multiple

possible interventions, and the causal effect of the state (a

‘composite cause’46) is estimated by some function of the

individual causal effects of these multiple interventions.

However, as we have argued above, and elsewhere,30 obe-

sity is not a ‘composite exposure’. Rather it is a single ex-

posure which causes mortality; it can be caused by

multiple factors, and can be reduced by multiple interven-

tions. Of course, BMI can be changed in ways (e.g. by cut-

ting someone’s arms off) that do not directly affect obesity-

related diseases. However, this just means that BMI is a

poor measure of adiposity, which is the underlying state

that causes obesity-related diseases.47 More generally, it

could be argued that different types of obesity carry differ-

ent mortality risks, and that we should study more specific

subtypes of obesity; but this applies to most exposures. We

are always estimating average population effects, for ex-

ample the average effect on mortality of a BMI of 35 versus

25, or the average effect on mortality of smoking 10 pack-

years versus 0 pack-years. This does not depend on specify-

ing interventions.

One final distinction should be mentioned. Some states

have considerable advantages when we are doing causal in-

ference. Some fixed states (e.g. being of male or female sex,

having a particular genetic mutation) have few, or even no,

potential confounders (for example, we can easily study

the different life courses of boys and girls born into the

same family, or of siblings with different genetic profiles).

Thus, we can often estimate the causal effects of these

states with more confidence and validity than is often the

case when studying events as causes. Rather than states
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being impossible to study, in terms of causal estimation, in

some instances, they are much easier to study.

There are several ways in which an estimate contrasting

people with different levels of a state is useful. It can be

seen as a form of aetiological causality. For example, con-

trasting the mortality between levels of serum cholesterol

or blood pressure estimates the amount of disease that can

be ascribed to these differences. Also, in contrasting the in-

cidence of breast cancer between BrCa1 carriers and non-

carriers, the amount of disease due to the gene is estimated.

Of course, as noted above, although it is possible to esti-

mate an overall effect of a state on disease occurrence, dif-

ferent actions on a state will have different effects; different

ways of treating hypertension or hypercholesterolaemia (e.g.

lifestyle, different drugs etc.), will have different effects—

but that does not detract from the causality of hypertension

or hypercholesterolaemia. Likewise, different actions on

persons who are carriers of BrCa1 (frequent screening, pro-

phylactic mastectomy, oophorectomy) will have different

actual effects, and will also yield estimates that are different

when contrasting carriers and non-carriers for the

occurrence of breast cancer. This is not different from what

we mentioned above, i.e. that different measures to stop

people smoking may have different effects.

Why does this matter?

In our view, considering states as causes, on equal footing

with events, is important because it enables investigators to

identify important scientific and public health problems.

We are only involved in research into the prevention and

reduction of hypertension, obesity etc. because epidemio-

logical studies have established these conditions as causes

of disease, and there is good biological knowledge about

the likely mechanisms.48 Thus, Pearl36 wrote:

Why do physicians communicate with each other

through these measurements, instead of through the

‘interventions’ that may change these measurements?

The reasons lie, again, in the scientific meaning of these

entities and their stability across domains.

States such as obesity have been considered as causes of

cancer by the International Agency for Research on

Cancer,48 and their causal effects can be studied not only in

‘standard’ observational studies, but also using techniques

such as Mendelian randomization which has the added ben-

efit of defining an ‘tendency towards obesity’ that existed at

birth, i.e. before middle-aged obesity actually developed.49

Once it has been established that a state is (or is likely

to be) a cause, this then produces a cascade of research

into the mechanisms involved (aetiological causality), and

this in turn leads to interventions (interventional causality)

to prevent disease by modifying these states. Furthermore,

in the example of obesity, epidemiologists have produced

quantitative estimates of its causal effects.48 The quantifi-

cation of the causal effect of a state serves two purposes: it

shows how much of the disease is due to that state (after

excluding confounding and other biases), and thus how im-

portant the state is in public health terms. As such, it shows

whether the state can become a worthwhile object of ac-

tion. It helps to give an explanation of how a particular

disease comes about. It is included in a narrative chain

about events, interacting with each other and the wider en-

vironment, from which can be gleaned which interventions

at what point might be most feasible.

The fact that states can be causes is relevant to many

common medical and public health questions. NIHCE

guidelines for the treatment of hypertension (a state) make

different recommendations depending on age and race/eth-

nicity (also states).50 Furthermore, often states become the

subject of feasible interventions through further research.

Hypercholesterolaemia was held to be a cause of cardio-

vascular diseases, long before effective treatment existed51;

several early attempts at lowering cholesterol by drugs, ex-

ercise or diet proved not very effective, but that did not de-

ter epidemiologists from continuing to see elevated

cholesterol as a cause, which was vindicated with the ad-

vent of statins.51

Discussion

The purpose of this paper has been to clarify how consider-

ing different types of causes and different types of causality

is necessary in epidemiological practice. Worthwhile inves-

tigations into causality are of two types: explanatory inves-

tigations and interventionist investigations.8 Causes can be

regarded as events or states, and the latter can be regarded

as dynamic or fixed. Furthermore, causation can be consid-

ered at a number of different levels.4,5 All of these types of

causes that exist at different levels are susceptible to causal

investigation, and whatever type of cause we are studying,

we need to consider the usual problems of selection bias,

confounding etc. However, the nature of the evidence in-

volved (e.g. whether or not it is possible to do a random-

ized controlled trial, or an observational study that closely

mimics one), and the level and type of auxiliary evidence14

required (e.g. whether mechanistic evidence is available),

may differ according to the type of cause under study and

may be highly context-specific. Although the possible

issues that one has to consider (such as biases) differ to

some extent when studying these different types of causes,

there are substantial commonalities. Every process of

causal identification and explanation involves a variety of

evidence, and usually no single study is definitive.
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