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Abstract
Excess hazard models became the preferred modelling tool in population-based cancer survival
research. In this setting, the model is commonly formulated as the additive decomposition of the
overall hazard into two components: the excess hazard due to the cancer of interest and the
population hazard due to all other causes of death. We introduce a flexible Bayesian regression
model for the log-excess hazard where the baseline log-excess hazard and any non-linear effects
of covariates are modelled using Low Rank Thin Plate splines. Using this type of splines will ensure
that the log-likelihood function retains tractability not requiring numerical integration. We demonstrate
how to derive posterior distributions for the excess hazard and for net survival, a population-level
measure of cancer survival that can be derived from excess hazard models. We illustrate the
proposed model using survival data for patients diagnosed with colon cancer during 2009 in London,
England.
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Introduction
Regression models for the excess hazard became the preferred modelling tool for cancer survival research
using population-based data1–3. In the absence of reliable recording of the cause of death for each cancer
patient, these models conveniently allow to filter out the hazard due to other causes of death, whilst
focusing inferences on the excess hazard only due to the cancer of interest. In this setting, the model
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is formulated as the additive decomposition of the total hazard into two components: the hazard due to
the cancer (the main quantity of interest, also designated as the excess hazard), and the hazard due to
all other causes of death, derived from population life tables (also known as background mortality or
expected hazard). This set-up allows inequalities in cancer survival to be investigated by looking at the
effect of multiple prognostic factors on the form of the excess hazard function or by deriving excess
hazard ratios for different sets of characteristics of the population. Model parameter estimates can also be
used to derive net survival, both at the individual-level and at the population-level, measuring the survival
that can be attributed only to the cancer of interest after accounting for all other causes of death4. Net
survival estimates can therefore be compared even if the expected hazard differs widely between sub-
populations of patients5. In their seminal paper, Estève et al.1 introduced the first regression model for
the excess hazard based on the full-likelihood specification using individual survival time data. In its
original formulation, the model was proposed on the log-excess hazard scale with the baseline log-excess
hazard modelled as a piecewise constant step function, and allowing proportional effects of covariates
and linear effects for continuous variables to be modelled. Proposed extensions to this model mainly
relaxed the non-proportionality and non-linearity assumptions for covariates and interaction terms, and
non-linearity for the baseline excess hazard, by modelling these terms with highly flexible functions
such as the commonly used B-splines or restricted cubic splines2,6. The tradeoff for the increased model
flexibility obtained with the use of splines, is the added complexity to the likelihood function, that requires
advanced numerical integration techniques such as the Cavalieri-Simpson integration2 or the Gaussian
quadrature6 to evaluate the cumulative hazard integral, which will no longer be a tractable function with
a closed-form solution.

This applies regardless of the framework of inference, whether frequentist or Bayesian, although
inferences for excess hazard models have mainly been based on the frequentist maximisation of the
likelihood function. Very few options are available for inferences within the Bayesian framework7–10, in
particular none describing the process of deriving a posterior distribution of net survival.

The purpose of this article is to introduce a flexible Bayesian regression model for the log-excess
hazard, based on individual-level data, with the following characteristics: a) the baseline log-excess
hazard is modelled using a flexible function; b) the log-likelihood function retains tractability so that
numerical integration is not required; c) the model can accommodate a variety of covariate effects: linear
and non-linear (also modelled using a flexible function), proportional and non-proportional; d) one can
derive a posterior distribution for the excess hazard, excess hazard ratios and net survival; e) the model
can be easily extended to include random effects and hierarchical data structures; f) inference can be done
within the Bayesian framework; g) and the model can be implemented using most Bayesian open-source
software.

Section 2 specifies the likelihood for the log-excess hazard model, introduces the formulation of the
flexible functions used in this article, and describes the Bayesian inference procedure, including the steps
to obtain a Bayesian posterior distribution for the excess hazard function, excess hazard ratios and net
survival. Section 3 provides an example of application of the proposed model based on the survival time
data of patients diagnosed with colon cancer during 2009 in London. Section 4 presents some concluding
remarks, discusses the limitations of our study, and proposes further extensions to this work.
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Methods

Likelihood formulation for the Excess Hazard Model (EHM)
Let (ti, xi, δi), i=1,. . . , n, ti > 0, denote a set of n time to event observations, measured from the date of
diagnosis of a cancer until the occurrence of death, with covariates xi and vital status indicator δi (δi=0
if censored, δi=1 if death occurred). The likelihood function of the full vector of parameters of interest θ
can be written in generic terms as

L(θ) =

n∏
i=1

h(ti, xi, θ)δi .S(ti, xi, θ) (1)

where h(ti, xi, θ) is the hazard function and S(ti, xi, θ) is the survivor function. Delayed entry or left-
truncation of observations, can be accommodated in the likelihood by including an additional term,
S(td, xi, θ), representing the survivor function for a pre-specified truncation time td ≥ 0, as

L(θ) =

n∏
i=1

h(ti, xi, θ)δi .S(ti, xi, θ)
S(td, xi, θ)

(2)

If td > 0 then S(td, xi, θ) 6= 1, and the likelihood in equation (2) allows delayed entry of
observations22, enabling study designs such as period analysis to be incorporated into the framework23.
If td = 0 then S(td, xi, θ) = 1, and the likelihood assumes no delayed entry, simplifying to equation
(1). For the purpose of this article, the likelihood in equation (1) is used from here onwards, assuming
no delayed entry of observations, but the likelihood in equation (2) could be used equivalently in what
follows below.

Considering only the individual contribution of observation ti, the log-likelihood can be written as

logL(θ) = δi.log(h(ti, xi, θ)) + log(S(ti, xi, θ)) (3)

Using the following relationship between the survival function and the cumulative hazard function
(H(ti, xi, θ))11:

log(S(ti, xi, θ)) = −H(ti, xi, θ) = −
∫ ti

0

h(u, xi, θ)du (4)

and replacing equation (4) into equation (3), the contribution of observation ti to the log-likelihood can
be rearranged as

logL(θ) = δi.log(h(ti, xi, θ))−
∫ ti

0

h(u, xi, θ)du (5)

An excess hazard model assumes the additive decomposition of the overall hazard, h(ti, xi, θ), into two
components:

h(ti, xi, θ) = hE(ti, xi, θ) + hP (ai + ti, zi) (6)

where, hE(ti, xi, θ) is the excess hazard function due to the cancer of interest for an observation ti with
xi a vector of observed covariates and θ a set of parameters. The second component, hP (ai + ti, zi), is
the general population hazard function for an observation ti, evaluated at the attained age at death (or age
at censoring): ai + ti, with ai the age at diagnosis and zi (zi ∈ xi) a subvector of covariates for which the
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population hazard is defined. The population hazard, also known as background mortality, represents the
hazard due to all other causes of death than the cancer of interest. It is assumed to be a known quantity,
taken as the age-specific mortality rates from existing population life tables, stratified as finely as possible
according to a subset of covariates zi. This subset of covariates usually contains less covariates than the
complete set of covariates available for the cohort of cancer patients, possibly including, in addition
to age at death (or censoring), gender and calendar year, socio-economic status, ethnicity or region of
residence12.

Replacing equation (6) into equation (5), the log-likelihood for an excess hazard model can be written
entirely as a function of the excess hazard and the population hazard:

logL(θ) = δi.log[hE(ti, xi, θ) + hP (ai + ti, zi)]−
∫ ti

0

hE(u, xi, θ)du−
∫ ai+ti

0

hP (u, zi)du (7)

Given that the population hazard hP (ai + ti, zi) is a constant, the last integral in equation (7) does not
depend on any parameters and thus can be dropped from the log-likelihood, which can be rewritten (up
to this constant) as:

logL(θ) ∝ δi.log[hE(ti, xi, θ) + hP (ai + ti, zi)]−
∫ ti

0

hE(u, xi, θ)du (8)

Modelling the Log-Excess Hazard function
Equation (8) specifies the log-likelihood for a generic excess hazard model. Inferences can be made by
specifying an appropriate model for the excess hazard function (hE(t, x)), which we here assume to have
a multiplicative effect of the covariates on the baseline excess hazard. It can be written as,

hE(t, x) = hE0
(t).exp(β.x) (9)

where, hE0
(t) is the baseline excess hazard; and x = (x1, x2, x3, . . .) a vector of observed covariates and

β = (β1, β2, β3, . . .) the vector of their corresponding parameters. In this article, we propose a model
for the logarithm of the excess hazard function, that can accommodate several types of covariate effects.
Taking the logarithm of equation (9), we can write, in generic terms, a model for the logarithm of the
excess hazard as

log(hE(t, x)) = log(hE0(t)) + β1.x1 + g1(x2) + g2(t).x3 + . . . (10)

where, log(hE0
(t)) is now the baseline log-excess hazard function; β1 is a linear and proportional effect

on the log-excess hazard of covariate x1; g1(x2) is a non-linear and proportional effect of a continuous
covariate x2; g2(t) is a non-proportional (i.e. time-dependent) effect of a covariate x3.

We choose different constructs of low-rank thin-plate (LRTP) splines to model the baseline log-excess
hazard any non-linear effects, and to accommodate time-dependent effects. These first-order polynomials
are a penalised type of radial basis splines13, that have been discussed by several authors for their simple
yet flexible nature, providing a good alternative to other spline constructs, such as B-splines and truncated
basis splines. In particular, LRTP splines exhibit fast Markov Chain Monte Carlo (MCMC) convergence
properties and conveniently result in tractable likelihood functions13,14. Murray et al.15 have introduced a
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unified framework for flexible, fully Bayesian analysis of overall survival using LRTP splines, providing
a detailed description of their formulation (15: Appendix-A), and also making available user-friendly
code for easy practical implementation. We follow this spline implementation in the work presented
here, and for completeness, in the next three sections, we provide a brief enunciation of the LRTP splines
we use to model the different components of the excess hazard model, but do not go into detail about
their implementation.

Modelling the baseline log-excess hazard We start by specifying a partition of the follow-up time
range as 0 = t̃0 < t̃1 < . . . < t̃k =∞, and following the model formulation published in Murray et al.15,
we define the model for the baseline log-excess hazard as,

log(hE0(t;α
∗)) = α∗0 + α∗1t+

K∑
k=2

α∗k(|t− t̃k−1| − |t̃k−1|) (11)

whereα∗ = (α∗0, α
∗
1, . . . , α

∗
K)
′

is the set of spline parameters. Under equation (11), the cumulative excess
hazard takes the expression,

HE0
(t;α∗) =

K∑
k=1

hE0
(sk;α

∗)[1− e−(sk−t̃k−1)(u
′
k,K .α

∗
(−1))]

u
′
k,K .α

∗
(−1)

(12)

where sk=max(min(t, t̃k), t̃k−1), α∗(−1) = (α∗1, . . . , α
∗
K)
′
, u
′

k,K = (1
′

k,−1
′

K−k), for k = 1, . . . ,K with

1
′

k a k-dimensional vector of ones. Implementation of this spline involves a series of transformations
to the spline parameters α∗, as well as constructing a time design matrix and a penalty transformation
matrix, as detailed by Crainiceanu et al.14 and Murray et al.15, so that the baseline log-excess hazard can
be rewritten in terms of these transformed components.

Modelling a non-linear effect of a continuous covariate We model any non-linear effect of a
generic continuous covariate x, as a smooth effect using a cubic LRTP spline defined as,

g(x;β∗) = β∗1(x− x) +
J∑
j=2

β∗j (|x− x̃j−1|3 − |x− x̃j−1|3) (13)

where, β∗ = (β∗1 , β
∗
2 , . . . , β

∗
J) is a set of spline parameters, x is the sample mean of covariate

x, and (x̃1 < x̃2 < . . . < x̃J ) is a partition of the covariate’s support range. Similarly to the model
specification for the baseline log-excess hazard, implementation will require one-to-one transformations
to reparametrise (13) in terms of β∗ 15.

Incorporating a non-proportional (time-dependent) effect of a covariate To incorporate a time-
dependent effect of a generic covariate x, we use the same time partition as used for the baseline log-
excess hazard as in equation (11), and define,

log(hE(t|x;α∗)) = (α∗0,0 + α∗1,0x) + (α∗0,1 + α∗1,1x)t+

K∑
k=2

(α∗0,k + α∗1,kx)(|t− t̃k−1| − |t̃k−1|)

(14)
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where α∗ = (α∗0|α∗1) and α∗q = (α∗q,0, . . . , α
∗
q,K)′ for q = 0, 1. Similarly to the model defined for the

baseline log-excess hazard, implementation involves a series of transformations to the splines parameters
α∗ to rewrite the time-dependent effect in terms of these transformed components15.

Prior distributions
For the Bayesian estimation we choose the following prior distributions for the model parameters:

• For the baseline log-excess hazard as specified in equation (11):

α0 ∼ N(0, 104), α1 ∼ N(0, 104)

αk|σα
iid∼ N(0, σ2

α), for k=2, . . . , K and σα ∼ U(0.01, 100)
(15)

• For the parameters of a non-linear effect in equation (13):

β0 ∼ N(0, 104)

βk|σβ
iid∼ N(0, σ2

β) , for k=2, . . . , K and σβ ∼ U(0.01, 100)
(16)

• And, for the parameters of a time-dependent effect as in equation (14):

αq,0 ∼ N(0, 104) , αq,1 ∼ N(0, 104) for q=0, 1

αq,k|σq,α
iid∼ N(0, σ2

q,α) for k=2, . . . , K and σq,α ∼ U(0.01, 100) for q=0, 1
(17)

Measures of interest: excess hazard and net survival
In addition to deriving excess hazard functions and excess hazard ratios for different sets of characteristics
of the population, another main quantity of interest that can be derived from an excess hazard model is
net survival. Net survival measures the survival in a cohort of cancer patients while considering that
the patients can only die from the cancer of interest. A common assumption made when estimating net
survival is that the censoring process is non-informative, i.e. the censoring process is independent from
the one that generates the events. The process becomes informative when a variable influences both
mortality hazards (the cancer-specific and the other-causes mortality hazard), leading to biased estimates
of net survival. For example, older patients are more likely to be censored, because of other causes of
death, than younger patients, making the censoring process informative. It has been shown that in order
to obtain an unbiased estimate of net survival from an excess hazard regression model, the variables
that define the population-life tables (from which the other-cause mortality is obtained), and that can
influence the censoring process, should be included in the excess hazard model formulation, even if
they are not the main focus of the analysis16. In population-based cancer research, one of the main
variables known to influence the censoring process is age at diagnosis, and thus it is advisable to include
it in all the log-excess hazard model formulations. It is also advisable to include other variables in the
model formulation, such as socio-economic status or region of residence, if life-tables stratified by these
variables are available for the population being studied.
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Bayesian estimation
After setting up a model for the log-excess hazard, possibly using a combination of several covariate
effects modelled using LRTP splines, as specified in the previous sections, the resulting log-likelihood
function retains tractability, and thus numerical integration techniques are not needed during the
estimation process. Markov Chain Monte Carlo (MCMC) techniques are used to sample from the
posterior distributions of all the model parameters. After model convergence has been assessed by
inspecting trace and density plots for each parameter, the saved parameter samples are used in a post-
estimation procedure to derive posterior distributions of the quantities of interest that can be obtained
from excess hazard models. We present post-estimation set-ups to derive posterior distributions of: i)
excess hazards, ii) excess hazard ratios for different combinations of population characteristics and iii)
net survival for the whole population and for sub-groups of the population.
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i) Deriving posterior distributions of excess hazards

Figure 1 shows schematically the post-estimation set-up to derive posterior distributions of excess
hazards for different combinations of population characteristics.

Figure 1. Step-by-step set-up to derive the posterior distributions of excess hazards.

The procedure can be summarised in the following steps:

Step 1 Create a matrix that saves for each parameter (say generically αi, i = 1, . . . , p) the number of
sampled Markov chain values (say ’m’) from their corresponding posterior distributions.

Step 2 Create a follow-up time sequence within the observed range of follow-up time (0,...,max(t)), and
create a matrix containing this time sequence and a combination of values from the variables
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entered in the model, chosen within the observed range of values for each variable (e.g. variables
X1 and X2 in Figure 1); Re-construct the LRTP splines as defined in the model using the values
in the matrix, both for the baseline log-excess hazard and all the covariate effects modelled with
LRTP splines.

Step 3 Use the first set of the ‘m’ sampled parameters to estimate an excess hazard function for each
combination of variables in the matrix using the follow-up time sequence.

Step 4 Repeat steps 2-3 ’m’ times for all the sets of sampled parameters (in turn) to obtain posterior
distributions of the excess hazard functions for all the combinations of variable characteristics.

Step 5 Summarise the posterior distributions of the excess hazards using the posterior means, 95%
credible intervals and other relevant quantiles.
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ii) Deriving posterior distributions for excess hazard ratios

Figure 2 shows the post-estimation set-up for deriving posterior distributions of excess hazards ratios.

Figure 2. Step-by-step set-up to derive the posterior distributions of excess hazard ratios.

Similarly to the procedure defined in Figure 1 for the excess hazards, the procedure to derive posterior
distributions of excess hazard ratios can be summarised as:

Step 1 Same as Step 1 from the set-up in Figure 1.

Step 2 Same as Step 2 from the set-up in Figure 1.

Step 3 Use the first set of the ‘m’ sampled parameters to estimate excess hazard ratios for different
combinations of variables in the matrix using the follow-up time sequence.
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Step 4 Repeat steps 2-3 ’m’ times for all the sets of sampled parameters (in turn) to obtain posterior
distributions of the excess hazard ratios for all the combinations of variables.

Step 5 Summarise the posterior distributions of the excess hazards ratios using the posterior means, 95%
credible intervals and other relevant quantiles.
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iii) Deriving posterior distributions of net survival
Figure 3 shows the post-estimation set-up for deriving posterior distributions of net survival for the whole
population.

Figure 3. Step-by-step set-up to derive the posterior distributions of net survival for the whole population.

The procedure to derive posterior distributions of net survival can be summarised as:

Step 1 Same as Step 1 from the set-up in Figure 1.

Step 2 Same as Step 2 from the set-up in Figure 1.
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Step 3 Use the first set of the ‘m’ sampled parameters to estimate a survival function for each entry of
the matrix using the follow-up time sequence.

Step 4 Calculate net survival for the whole population by averaging the survival functions for all the rows
of the matrix derived in step 3.

Step 5 Repeat steps 2-3-4 ’m’ times for all the sets of sampled parameters (in turn) to obtain posterior
distributions of net survival for the whole population.

Step 6 Summarise the posterior distributions of net survival using the posterior means, 95% credible
intervals and other relevant quantiles.

The implementation above will provide posterior distributions of net survival for the whole population.
We can also derive posterior distributions of net survival by sub-groups of the population, continuing from
step 3 in Figure 3 and averaging the survival functions within each sub-group of the population (e.g. by
sub-groups of the variable X2 as shown by step 4 in Figure 4).

Figure 4. Set-up to derive the posterior distributions of net survival by sub-groups of the population.
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Illustration using population-based cancer data
We illustrate the use of the proposed model using data obtained from the National Cancer Registry at the
Office for National Statistics (ONS) for all adult men (aged 15-99 years) diagnosed with a first, primary,
invasive malignancy of the colon during 2009 in London, England. All patients were followed-up to
update their vital status up to six years after diagnosis, until the 31 December 2015. The data variables
available for this analysis were: full dates of diagnosis, last follow-up and death, vital-status indicator
(dead or censored as alive at the end of follow-up), age at diagnosis (recorded as a continuous variable)
and deprivation categories (1-least deprived to 5-most deprived) defined according to the quintiles of
the distribution of the Income Domain scores of the 2011 England Indices of Multiple Deprivation17.
Background mortality rates were obtained for each cancer patient from population life tables for England
defined for each calendar year in 2009-2015, and stratified by single year of age, sex, deprivation category
and region of residence.

Descriptive statistics of the data were performed using the RStudio software (version 1.0.153)18.
Bayesian inferences were also performed in RStudio using the JAGS MCMC19 program accessed via
the R package ‘R2JAGS’. R code exemplifying the implementation of the model presented in this
illustration is available on the webpage of the Cancer Survival Group: https://csg.lshtm.ac.
uk/tools-analysis/.

The data comprised 1,140 patients. Death was observed for 628 patients (55.1%) over the maximum
follow-up period of 5.99 years. Survival time was measured from the date of diagnosis until the date
of death or the date of last follow-up. The overall median follow-up time was 3.7 years with standard
deviation SD=2.29 years. For patients that died, the median survival time was 0.84 years and for censored
patients the median survival time was 5.4 years. The mean age at diagnosis was 70.6 years (SD=13.24
years), and the 25%, 50% and 75% quintiles of the age distribution were 63.2, 72.4 and 80.6 years,
respectively. Within deprivation categories, patients were distributed as: 174 (15%) patients in the least
deprived category, 207 (18%) patients in the 2nd deprivation category, 223 (20%) patients in the 3rd
category, 273 (24%) patients in the 4th category, and 263 (23%) patients in the most deprived category.

A model was set-up for the log-excess hazard including age at diagnosis (A) and deprivation quintile
(dep) as main effect covariates. Four partitions (K=4) of the observed follow-up time (t) were chosen at
the 25%, 50% and 75% percentiles of the events (death) times at t̃=(0, 0.18, 0.84, 2.26, 6) years. The
model can be written as:

log(hE(t|α;β; γ)) = (α0,0 + α1,0A) + (α0,1 + α1,1A)t

+

K∑
k=2

(α0,k + α1,kA)(|t− t̃k−1| − |t̃k−1|) [part 1]

+ β∗1(A−A) +
J∑
j=2

β∗j (|A− Ãj−1|3 − |A− Ãj−1|3) [part 2]

+ γ ∗ dep [part 3]

(18)

where, [part 1] formulates the LRTP spline modelling the baseline log-excess hazard, incorporating the
time-dependent effect of age at diagnosis using the same follow-up time partition, with parameters α =
(α0|α1) and αq = (αq,0, . . . , αq,K) for q=0,1. [part 2] represents the LRTP spline modelling the non-
linear (smooth) effect of age at diagnosis using 3 partitions (J=3) of the observed age range at Ã=(16,
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44, 72, 99) years, with parameters βj , j = 1, . . . , J . A represents the mean age at diagnosis. For ease of
interpretation, age at diagnosis was centered at age 70. [part 3] formulates the linear and proportional
effect of deprivation, with parameter γ. This model has 10 parameters associated with the baseline log-
excess hazard formulation, including the time-dependent effect of age at diagnosis, and 4 parameters for
the regression parameters (3 for the smooth effect of age at diagnosis and 1 for the effect of deprivation).
Prior distributions were specified for these parameters using the priors defined in the Methods section,
including 3 hyperpriors for the variance parameters of these priors, adding up to a total of 17 model
parameters.

The model was fitted setting up 2 MCMC chains, each with 50,000 iterations, a burn-in period of
5,000 and a thinning of 3 to eliminate any existing autocorrelation among samples within the chains.
This resulted in a total of 30,000 sampled values from the posterior distributions of each of the 17
parameters. An examination of the trace and density plots of each parameter’s posterior distribution
did not indicate any convergence issues for these samples. The 30,000 sampled values from the posterior
distributions of each parameter, were saved and then used to implement the post-estimation procedure
described in Fig. 1 in order to derive posterior distributions for the excess hazard, excess hazard ratios
and net survival. Three ‘prediction’ sequences were created for follow-up time (monthly time points
up to five years of follow-up), age at diagnosis (individual integer ages within the observed age range
16-99 years) and deprivation category (1-5). A multi-dimensional matrix was then created to save the
results of the posterior distributions for each of the quantities derived, containing the combination of
values of all the ‘prediction’ sequences, and the number of sampled parameter values (30,000). Before
the post-estimation procedure was implemented, the splines modelling the baseline log-excess hazard and
the smooth effect of age at diagnosis, were reconstructed using the follow-up time and age ‘prediction’
sequences, maintaining the same spline specification as in the model.

The estimated posterior distributions were summarised by their respective means and other quantiles
of interest, such as the 95% credible intervals. For the purpose of this illustration, we present the results
in plots (Figures 5-7) showing the mean of each of the posterior distributions.

Interpretation summary: For this cohort of men diagnosed with colon cancer in 2009 in London,
England, the estimated mean posterior distributions suggest that: 1) the excess hazard peaks substantially
high, up to the first year after diagnosis, for men over 80 years when compared to patients aged 70 years.
Whilst for men aged 50 and 60 years their excess hazard is substantially lower, up to the first year after
diagnosis, when compared to men aged 70 years. 2); the excess hazard increases gradually for each unit
increase in the deprivation category; 3) The mean posterior net survival for the whole cohort shows a
moderate decay of the survival curve, reaching approximately 0.6 (60%) at 5 years after diagnosis.
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(a)

(b) (c)

Figure 5. Mean posterior distribution of the excess hazard ratios, showing: (a) a 3-Dimensional representation
by age and follow-up time; (b) a slice of the 3-D plot in Fig. 3a) over follow-up time for three ages of diagnosis
(50, 60 and 80 years, with 70 years the reference group); (c) a slice of the 3-D plot in Fig. 3a) over age of
diagnosis for four follow-up times (3 months, 6 months, 1 year and 5 years after diagnosis).
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(a)

(b) (c)

Figure 6. Mean posterior distribution of the excess hazard functions for deprivation category 1 (least deprived
patients), showing: (a) a 3-Dimensional representation by age and follow-up time; (b) a slice of the 3-D plot in
Fig. 4a) over follow-up time for four age groups (50, 60, 70 and 80 years); and (c) a slice of the 3-D plot in Fig.
4a) over age at diagnosis for four follow-up times (3 months, 6 months, 1 year and 5 years after diagnosis).
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(a) (b)

Figure 7. Posterior distribution of net survival, showing: (a) the mean posterior and the 95% credible interval
for the whole cohort; and (b) the mean posterior by deprivation category.

Discussion

In this article we introduce a flexible Bayesian regression model for the log-excess hazard, that can be
used to investigate inequalities in cancer survival using a range of covariate effects and accommodate
different data structures.

Bayesian excess hazard models are very few and none meet our list of criteria set in the Introduction
section. Fairly et al.8 proposed a model to examine spatial variation in prostate cancer survival using
Bayesian relative survival smoothing within a Generalised Linear Model formulation. The number of
events was assumed to follow a Poisson distribution, and two random effects were included in the
model: a spatially structured random effect for local smoothing and an unstructured random effect global
smoothing; Hennerfeind9 proposed a Bayesian geoadditive relative survival model using penalized P-
splines to model the log-baseline effect as well as the nonlinear and time-varying effects of covariates.
Spatial and normal random effects were also included in the model formulation; Cramb et al.10 introduced
a Bayesian flexible parametric model which extends a frequentist flexible parametric model on the log
cumulative excess hazard scale using restricted cubic splines20 by adding spatially structured random
effects.

We choose here to use Low-Rank Thin Plate splines (LRTP splines) to model the various components
of the excess hazard model because they offer a reasonable compromise between model flexibility and
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likelihood tractability, with a fast MCMC convergence13,14. Current inference practice for existing log-
excess hazard models are mainly done within the frequentist framework, by maximisation of the log-
likelihood, and numerical integration techniques are often needed to solve the integral defining the
cumulative hazard when flexible functions, such as restricted cubic splines or B-splines, are used to
model the different model components. Incorporating higher-dimensional splines would then require to
solve numerically extremely complex likelihood functions. Other existing excess hazard models, that
are defined on the log cumulative excess hazard scale, have the advantage of avoiding the use of such
numerical integration, because of the resulting tractable cumulative excess hazard, but the interpretation
of multiple time-dependent effects can be difficult at times when the excess hazard ratio for one variable
depends on the levels of the other variables, even without having defined interaction terms in the model21.

An additional advantage of using LRTP splines, initially proposed by Murray et al.15 to model overall
hazard, is that their construct is not sensitive to the choice of ‘knot’ location, as is the case with other
splines structures, such as restricted cubic splines or B-splines. Murray et al. advise on the selection
of a large number of equally spaced partitions of the follow-up time, so that the resulting model can
adequately capture the curvature of the hazard function.

In the analysis of the colon cancer data, we selected several partitions of the follow-up time (between
2 and 20), using a mixture of equally spaced and pre-defined intervals. Models were compared using the
Deviance Information Criterion (DIC)24, and the model presented in the results section (using 4 partitions
of the follow-up time) corresponded to the model with the smallest DIC. We found that less partitions
(four in our analysis) did adequately capture the shape of the excess hazard function for the cancer
analysed, and that partitioning the event times at the percentiles captured well the largest shift in the
decay of the function in the first year after diagnosis. The shapes of the baseline excess hazard function
and of the age-related function defined in our final model were also very similar to those estimated by
the frequentist flexible excess hazard model using higher-dimensional splines25. We also observed that
using less partitions substantially decreased computation time when fitting these models using MCMC
sampling (for example, time was reduced by a quarter when using 4 instead of 20 partitions), as there are
less parameters to be sampled. We note that fitting these models can be computationally very expensive,
varying from a few hours to a few days, depending on model complexity, the number of MCMC iterations
and the size of the matrices generated. Computation time can be reduced by the use of parallel computing,
the use of computers with Graphics Processing Units (GPU), or by exploring new advances in accelerated
computing such as GPU-accelerated packages26.

Eliciting informative priors for the model parameters was not within the aim of this study, and we opted
to choose vague priors for all the model parameters. In such a scenario, the mean posterior distributions
for the parameters and quantities of interest, would be closer to the Maximum Likelihood estimates
obtained using a similar model set-up.

A novel component that this article offers, is the implementation of a post-estimation procedure (as
described in Fig. 1), to derive posterior distributions for the excess hazard ratios, excess hazard functions
and net survival, based on the saved MCMC samples for each parameter. This procedure, as described,
derives posterior distributions using a predefined matrix that contains a combination of values of the
covariates within the observed range in the data, and it does not use the data for the whole cohort. The
estimation of excess hazards and excess hazard ratios is usually made for different sets of characteristics
of the cohort, and thus it is easier to construct a matrix to derive these posterior distributions. For net
survival, the estimation is made by averaging the individual survival curves, which can be done using one
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of two options: 1) use the whole cohort of observed data, estimate a survival curve for each observation
(following the same procedure as outlined in Fig. 1), and then average over the whole cohort to obtain an
estimate of net survival, or 2) use the matrix, estimate a survival curve for each combination of values of
covariates, and then average over these curves to obtain an estimate of net survival. The main advantage of
using a matrix over the observed cohort is the reduced computation time, especially when large cohorts
are analysed. In addition, when using a fixed covariate structure within the matrix, the results will be
internally standardised for those covariates, and thus when comparing net survival by sub-groups of the
cohort, this has the advantage that comparability will already be taken into account. For example, if
we consider two variables, age at diagnosis and deprivation, and estimate net survival by deprivation
category, averaging the individual survival curves within each deprivation group using the whole cohort,
if the age distribution within deprivation category is very different, the results will not be comparable.
But if we use a matrix with a fixed age structure for all levels of deprivation, the estimated net survival
curves will be comparable between deprivation categories.

One of the criteria we set up a priori for the implementation of the proposed model, was that it could
be easily extended to include one or more random effects to accommodate clustered data, and incorporate
hierarchical data structures. The Bayesian framework lends itself very nicely to specify models with such
characteristics. We have extended the model specified in equation (18) to add two random effects: one
clustering patients by area of residence, and another clustering patients by treatment center. Although
the model implementation was a straight-forward step from the previous model implementation (without
random effects), we found some convergency problems when using the open-source MCMC sampler, and
a substantial increase in computation time, depending on the size and number of clusters used (results
not shown). We propose as further extension to this work, to develop a dedicated MCMC sampler that
improves sampling from the parameters’ posterior distributions when using these more complex model
structures.

In summary, we have shown how a flexible Bayesian model for the log-excess hazard can be used for
population-based research, to investigate socio-economic inequalities in cancer survival using a range
of covariate effects modelled using LRTP splines. In our experience, we found that using LRTP splines
provides a good compromise between the achieved model flexibility and the retained tractability that
reduces computational intensity. Although constructing these splines involves many matrix calculations
in order to compute the necessary transformations to implement the splines, the user-friendly and
modifiable code that has been made available15 makes the implementation uncomplicated. In particular,
we think that the new post-estimation process we propose to derive posterior distributions for net survival
and excess hazards will be a very useful tool for cancer researchers in the production of cancer survival
statistics with relevance to health policy.
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