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Abstract

Obesity correlates with hematol ogical malignances including leukemias, but risk of specific
leukemia subtypes like Acute Promyelocytic Leukemia and underlying molecular
mechanisms are poorly understood.

We explored multiple datasets for correlation between leukemia, Body Mass Index and
molecular features. In a population-based study (n=5.2 million), we correlated Body Mass
Index with promyelocytic, other acute myeloid, lymphoid or other leukemias. In cross-
sectional studies, we tested body mass index deviation in promyelocytic leukemiatrial
cohorts from what expected based on national surveys. We interrogated The Cancer Genome
Atlasfor transcriptional signatures and mutations enriched in promyel ocytic leukemia and/or
obesity and confirmed correlation between body mass and FLT3 mutationsin promyelocytic
leukemia cohorts by logistic regression.

In the population-based study, Hazard Ratio per 5 kg/m? increase was: promyel ocytic
leukemia 1.44 (95% CI 1.0-2.08); non-promyel ocytic acute myeloid leukemias 1.17 (1.10-
1.26); lymphoid leukemias 1.04 (1.0-1.09); other 1.10 (1.04-1.15). In cross-sectional studies,
body mass deviated significantly from expected (Italy p<0.001, Spain p=0.011, USA
p<0.001). Promyel ocytic leukemia showed upregulation of polyunsaturated fatty acid
metabolism genes. Oddds of FLT3 mutations were higher in obese acute myeloid leukemias
(Odds Ratio=2.4, p=0.007), whether promyelocytic or not, a correlation confirmed in the
pooled promyel ocytic leukemia cohorts (OR 1.22, 1.05-1.43 per 5 kg/m?).

These results strengthen the evidence for obesity as abona fide risk factor for myeloid
leukemias and in particular APL. FLT3 mutations and polyunsaturated fatty acid metabolism

may play a previously underappreciated role in obesity-associated |leukemogenesis.



Introduction

The aetiology of Acute Myeloid Leukemia (AML) remains poorly understood. Genetic
predisposition or clear exposure to environmental mutagenic agents (Smoking, benzene,
radiation, prior chemotherapy) can be demonstrated only in a minority of cases . Ageisan
independent risk factor, probably linked to progressive mutation accumulation and clonal
stem cell expansion accompanying aging 2. Though obesity has recently emerged as a
prominent risk factor for avariety of solid tumors®, its impact on hematological neoplasmsis
comparatively less studied. A moderate but consistently positive correlation between body
mass index (BM1) ad incidence of leukemias has been identified in observational studies*®.

Y et, none of the collected evidence has been considered sufficiently strong to consider obesity
as abona fide risk factor for AML ®’. Most studies did not distinguish between
myeloid/lymphoid and acute/chronic forms, nor between genetic subtypes within each form.
AML is recognized as a highly heterogeneous disease with genetically diverse subtypes®.
Subtypes have radically different outcomes and, similarly, their risk may be differentially
affected by environmental factors. Identification of subtype-specific risk associations,
however, is made difficult by their rarity.

A genetic subset of AML, Acute Promyel ocytic Leukemia (APL), is characterized by a
specific chromomal translocation (t15;17), homogeneous biology and response to clinical
agents All-Trans Retinoic Acid (ATRA) and Arsenic Trioxide, which have rendered it the
most curable form of AML to date’. We previously demonstrated that the risk of relapse after
ATRA/Idarubicin is significantly increased in overweight/obese APL patients™. In the present
report, we investigated the association of overweight/obesity with risk of developing APL and

other leukemias. We describe the results of multiple studies across four Western populations



with significantly different dietary regimens and prevalence of obesity. The studies were
concordant in demonstrating increased risk of developing APL in overweight/obesity
subjects. In an effort to generate mechanistic hypotheses to explain this relationship, we
analyzed transcriptomic and mutational data from the AML project in The Cancer Genome
Atlas (TCGA)™ and identified alterations selectively associated with obesity and/or APL

which may be involved in obesity-associated leukemogenesis.

M ethods

Detailed methods are provided as supplementary material

UK population-based study: data collection and statistical methods

Methods for the UK population study were described in depth previously °. The study was
approved by the London School of Hygiene and Tropical Medicine Ethics Committee. To
identify outcomes of specific leukaemia sub-types, CPRD clinical records were searched for
codes relating to specific leukemia subgroups. We controlled for multiple covariates at time
of the BMI record(s): age, smoking status,; alcohol use, previous diabetes diagnosis, index of
multiple deprivation, calendar period, and stratified by sex.. We excluded people with missing
smoking (49 206/5.24 million [0.9%]) and alcohol status (394 196/5.24 million [7.5%)]. All

Cls are presented at the 95% level.

Cross-sectional studies: data collection and statistical methods

APL cases from Spain were extracted from the PETHEMA database to include 414 cases
diagnosed between 1998 and 2012. APL cases from Italy were 134 adult patients treated with
AIDA protocol included in the previously described cohort *°. APL cases from USA included
the entire cohort of the published AML TCGA project * (n=20) plus 22 additional APL cases,
unselected for any clinical variable, diagnosed at Washington University (Expanded TCGA

cohort). For all case cohorts, BMI was measured at the time of diagnosis.



Data collection was approved by the Research Ethics Board of each participating institution,
as referenced ™. Data source for expected BMI in the local population are described in the

supplementary methods.

Expression data analysis

Expression data (RPKM matrix) were downloaded from the AML TCGA dataportal. . The
Quantitative Set Analysis for Gene Expression method as implemented in the QUSAGE
package *° in the R programming language (v 3.2.3) was used to conduct supervised gene set
enrichment analysis. We focused on the KEGG collection as it is enriched for metabolism-

associated gene annotations'.

Mutational data analysis

For the analysisin the TCGA data, mutational data were retrieved from the TCGA AML
paper'! and AML driver genes (restricted to those with at least 2 mutations in the dataset)
were downloaded from IntOgen *.

For the analysis of the retrospective cohort, FLT3 Internal Tandem Duplication (ITD)

mutational data were provided by the referring centers.

Role of the funding source
Funding sources had no role in study design, collection, analysis, and interpretation of data;

report writing nor decision to submit the paper for publication
Results

Population-based cohort study in the UK
Overall characteristics of the 5.24 million UK adults included in this study have been
described previously®. 5.833 subjects with adiagnosis of "leukemia" over the observational

time were included in the present analysis. These events were further classified in the



following groups: "APL" (n=26), "non APL-AML" (n=1.012), lymphoid leukemias ("LL";
n=2.823) and "other" (n=1.972). Median time |apse between BM| measurement and diagnosis
was similar across subgroups (APL: 1,810 days, AML: 2,280 days; LL: 1,928 days; other:
1,894 days).

Wefit BMI as a three-knot cubic spline and as alinear term. There was no evidence of non-
linearity (p=0.94), suggesting that the relationship was best described by the linear model.
After adjusting for covariates, per each 5 kg/m? increase we obtained hazard ratios (HR) of
1.44 for APL (95% confidenceinterval (Cl) 1.0-2.08), 1.17 for non APL-AML (95% CI 1.10-
1.26), 1.04 for LL (95% CI 1.0-1.09) and 1.10 for other leukemias (95% CI 1.04-1.15)
(Figure 1 and Table 1). Stratification by gender suggested a stronger effect for male gender in
APL (HR 1.82, 95% CI 1.10- 3.00 vs female HR 1.19, 95%CI 0.67-1.98), although the
sample size becomes very small (n=13 each). Together, these results suggest that higher BMI

is associated with increased risk of all sub-types of leukemia, particularly APL.

Cross-sectional studiesin Italian, Spanish and USA trial cohorts

Though APL showed the strongest association with higher BMI in the cohort analysis
described above, results were not conclusive due to the small number of cases identified
(n=26) and the consequently wide confidence intervals. To strengthen the evidence, we
carried out retrospective case-control studies using cohorts of APL patients from national
registries of clinical trials from Spain (PETHEMA) and Italy (GIMEMA) and patients from
the USA-based AML genome sequencing study (the AML TCGA cohort with 22 additional
cases characterized at Washington University-St Louis). In al three groups, APL diagnosis
was established using gold standard diagnostic procedures.

Demographic characteristics of the three case cohorts (Italy n=134, Spain n=414 and USA
n=42) are described in Table 2. Gender (female 53.0%, 55.2%, 50% respectively) and age

(median of 45, 45 and 47 respectively) were similarly represented. Information on ethnicity



was unavailable for the Spanish and Italian cohorts, whereas white, black and hispanic
ethnicities were represented in the USA cohort.

To generate control groups for comparison, we obta hed anthropometric data from
epidemiological surveys of the general population in the different countries. Asthe
prevalence of obesity has increased dramatically in most countries in the last decades
(especialy USA), we obtained data that were as close as possible to the median year of
diagnosis (2002 for Italy, 2003 for Spain, 2007 for USA) (Table 3 and Methods).

In al three cohorts, there was strong evidence that the observed BMI distribution for cases
across WHO BMI classes was different from that expected under the null hypothesis of no
association (Italy p<0.001, Spain p=0.011, USA p<0.001; Table 3) in gender-, age- and
ethnicity- (for USA) matched controls. In particular, in all 3 datasets, there were more cases
than expected in the higher BMI groups, irrespective of gender in all cohorts apart from
Spain, in which significance was not reached for males (p=0.130), despite asimilar trend

(Table 3).

Correlation of TCGA transcriptomics data with BMI and AML subtype

The availability of the TCGA dataset prompted us to search for signatures that could suggest
amechanistic rationale for the association between APL and obesity. We interrogated
available AML transcriptomes with supervised gene set enrichment analysis using quSage ™.
Focusing on the KEGG gene set collection, APL was associated with increased activity of 13
and decreased activity of 64 out of 186 gene sets (figure 2A, table 4 and supplementary table
S1). Intriguingly, among significantly upregulated gene sets we found pathways associated
with the metabolism of long-chain unsaturated fatty acids (linoleic and arachidonic), which
are precursors of eicosanoids mediating inflammation-associated cancers'®. Also noticeable
was the APL -associated upregulation of Insulin and Insulin-like Growth Factor (IGF1)

receptors, but not leptin receptor (figure 2B); insulin signaling-associated pathways were also



specifically upregulated in obese vs non-obese APL patients ("type |1 diabetes mellitus" and
"insulin signaling”, supplementary table S1).

No pathway was significantly enriched in obese vs non-obese patients among non-M 3 cases.

Correlation of mutational data data with BMI

We then asked whether obesity is associated with specific driver mutationsin AML in the
TCGA cohort. Out of 23 established driver genes mutated at least twice in the cohort,
mutations in FLT3 were positively associated with obesity (33/88 obese vs 22/110 non-obese,
p=0.007, Odds Ratio=2.4, False Discovery Rate (FDR)= 0.16, figure 3 and supplementary
table S3). When we analysed the two main classes of FL T3 mutations separately (Tyrosine
Kinase Domain, TKD and Internal Tandem Duplication, ITD), the association held
statistically significant for ITD (24/88 obese vs 14/110 non-obese, p=0.01, Odds Rati0=2.6)
but not for TKD (9/88 obese vs 8/110 non-obese, p=0.6). In APL, where all FLT3 mutations
were ITD, the correlation remained statistically significant (6/12 obese vs 0/8 non-obese,
p=0.04). In non-APL AMLs, with 32 ITD and 17 TKD, overall FLT3 mutations were still
significantly enriched in obese patients ((27/49 obese vs 22/102 non-obese, Odds Ratio=2,
p=0.04) but not when analysed separately (p=0.11 for ITD and 0.44 for TKD).

We then attempted to validate this finding in the APL cohorts, for which dataon FLT3ITD
(table 5). In the pooled analysis (163 mutated patients/ 569 total), OR of havingaFLT3 ITD
was 1.22 (95% Cl 1.05-1.43) per each 5 kg/m? increase. In the individual cohorts, results
were significant in the Italian (30/114 mutated, OR 2.35, 95% CI 1.25-4.42) and USA (14/41
mutated, OR 1.44, 95% CIl 0.93-2.24) cohorts, but not in the Spanish (119/414 mutated, OR

1.09, 95% CI 0.89-1.33).

Discussion
In this work we provide substantial evidence for an association between elevated BMI and

risk of developing AML. The risk was particularly high with the APL subtype, with an



estimated 44% HR increase per each 5 kg/m?. This was qualitatively confirmed by comparing
expected vs observed BMI distributions in APL cohorts across three western countries (US,
Spain and Italy) with different obesity prevalence and dietary habits. Additionally, we provide
hypothesis-generating evidence for molecular mechanisms underlying such association, in
particular the possible involvement of pro-inflammatory fatty acid metabolism and mutations
of thetyrosin kinase FLT3.

Our epidemiological results expand a growing body of literature identifying
overweight/obesity as a bonafide risk factor for leukemias. The most recent meta-analysis
reported an adjusted relative risk of 1.14 (95% CI, 1.04-1.26, Pr =" 0.008) for acute myeloid
leukemias overall®. Despite increasing evidence, the notion of obesity as a risk factor for
leukemia remains widely overlooked’. Among the highly heterogeneous AML subtypes, APL
is the most clinically and biologically coherent. We and others previously showed that in
APL, but not in other AMLs, an elevated BMI significantly affects outcome >*°. This isalso
in line with the few retrospective studies that have assessed APL as a separate disease entity
2021 No study had addressed this question prospectively, a task made difficult by the rarity of
the disease but made possible in our case by the very large study population (5.2 million). The
largest prospective study to date (EPIC), which revealed a statistically significant higher risk
only in female AMLs, but not in other gender and biological subgroups®, was based on a
relatively small number of incident cases, only 671 out of 375,021 participants over 11.5
years of median follow-up. The use of orthogonal epidemiologica approachesis a strength of
the study, as it attempts to mitigate some weaknesses of each design. Registry-based studies
have little patient selection bias, providing results that are more comparable to real-life
scenarios. However, the quality of case identification is likely to be sub-optimal; erroneous
assignment of APL to the general AML ICD code might "deplete” incident cases and further

reduce statistical power. Case-control studiesin the context of clinical trials, on the other
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hand, offer the advantage of gold-standard diagnosis but might be affected by significant
patient selection biases. This may have counter-selected obese patients in the present study,
since the correlated comorbidities may be associated with limited access to clinical trials.
Another limitation of the study is that we could not provide the same degree of geographical
homogeneity for control subjects in the case-control studies. This may be particularly relevant
for the US, known to have ample state-specific differences in BMI distribution. However, this
variation is mainly due to demographic parameters®, such as age, sex and race, and is
therefore at least partly accounted for in our multivariate analysis. We also note that our USA
APL cohort includes a single patient of hispanic ethnicity. Hispanics are considered at higher
incidence of APL, although some large studies based on Surveillance, Epidemiology, and
End Results (SEER) data dispute this commonly held conclusion %

Understanding the molecular mechanism causing increased cancer risk in obese subjectsis
crucial for adequate nutritional prevention, given the sustained rise of obesity worldwide,
particularly in emerging economies. The possibility to match transcriptional and mutational
profiles from TCGA to patient clinical and BMI data provided an opportunity to generate
hypotheses grounded on actual data. However, extracting biological significance from large
molecular datasets remains challenging. Shifting analytical focus from single genes to gene
sets or pathways may allow to capture signals even when the changes affecting individual
genes are minimal, provided they are coherent. The gene set-based method we employed here
for transcriptional analysis does not assume equal variances, resulting in improved sensitivity
and specificity over similar competing methods™. Our main finding is the upregulation of
severa genesinvolved in the metabolism of pro-inflammatory -6 polyunsaturated fatty acids
(PUFA, linoleic and arachidonic) in APL. These molecules areincreased in the plasma of
metabolically impaired subjects, including the obese®*, and may lead to elevated production of

derivative molecules with multiple effects in signaling and inflammation, enhancing
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leukemogenesis through several independent mechanisms: direct growth promotion,

generation of genotoxic oxidative stress, immune modulation*®?

and generation of
endogenous agonists for Peroxisome proliferator-activated receptors (PPAR)®. PPARs are
known insulin sensitizers 2’ and their transcriptional targets are upregulated in APL
(Supplementary Table S2); APL expressed higher levels of insulin and IGF1 receptors and its
growth may thus be favoured by the increased insulin/IGF1 levels in obese subjects>%.
Elevated generation of PUFA-derived eicosanoids by APL cells may also explain the
association between obesity and ATRA differentiation syndrome (DS) *°, as eicosanoids
strongly promote leukocyte adhesion and chemokine release in the lungs .

Finally, the association between FLT3 mutations and a higher BMI, although unconfirmed in
the larger Spanish cohort, is an intriguing finding that we think deserves additional research.
FL T3 mutations are associated with specific metabolic dependencies which may be
differentially affected by the systemic nutritional state®. It cannot be entirely ruled out that
geographical differencesin dietary compasition may account for the discrepancies in the
association between BMI and APL risk (weakest in Spain) and FLT3 mutations (null in
Spain). Consistent with this highly speculative view, arecent EPIC substudy revealed marked
differencesin nutritional patterns between European nations. Despite sharing a theoretical
propensity for "Mediterranean” diets, Italy and Spain were highly polarized especially in
terms of average polyunsaturated fatty acid consumption (3 vs 38% of the participantsin the
highest quintile) .

In conclusion, based on evidence provided here, we propaose to include obesity among
environmental factors increasing risk for myeloid neoplasms and in particular APL.

Additional studies with experimental models will clarify the molecular determinants of this

relationship and test whether and how specific nutritional components like PUFASs can
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determine specific mutational and transcriptional alterations able to influence teh natural

history of the disease.
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Tables

Table 1. Hazard ratios from the UK population study

Disease No. of events Adjusted HR (per 5kg/m?increasein BMI) 95% ClI

APL 26 144 1.00, 2.08
AML 1012 117 1.10, 1.26
LL 2823 104 1.00, 1.09
Other 1972 1.10 1.04, 1.15
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Table 2. Description of the cr oss-sectional cohorts

Itay Spain USA
No. 134 No. 414 No. 42
Age 18- 35 46 (34.3) 113 (27.3) 13(31.0)
36-50 34(25.4) 145 (35.0) 12 (28.6)
51- 65 40(29.9) 102 (24.6) 11(26.2)
>65 14 (10.4) 54 (13.0) 6(14.3)
Median (IQR) 45 (31-57) 45 (34-57) 47 (33-60)
Gender Male 63 (47.0) 227 (54.8) 21 (50.0)
Female 71(53.0) 187 (45.2) 21 (50.0)
Y ear of diagnosis Median (range) 2002 (1997-2010) 2003 (1996-2012) 2007 (2001-2011)
Race White - 36 (85.7)
Black 5(11.9)
Hispanic - 1(2.4)
BMI Median (IQR) 26 (23-28) 26 (23-29) 34(28-39)

IQR: Interquartile range
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Table 3. Observed BMI distribution in APL cases and expected BM|I distribution in

general population (percentagesin brackets)

All Males Females
Italy BMI Obs Exp? P-val Obs Exp°® P-val Obs Expd°® P-val
77.8 29.0 48.8
<250 | 48(35.8) <0.001 | 16(25.4) <0.001 | 32(45.1) <0.001
(58.0) (46.0) (68.7)
25.0- 448 28.0 16.8
71 (53.0) 42 (66.7) 29 (40.8)
29.9 (33.4) (44.5) (23.6)
>=300 | 15(11.2) | 11.4(85) 5(7.9) 6.0 (9.5) 10(14.1) | 55(7.7)
Total 134 134 63 63 71 71
Spain | BMI Obs Exp® P-val Obs Exp°© P-val Obs Expd°® P-val
172 189.9 85.0 104.9
<25.0 0011 | 79(34.8) 0.130 | 93(49.7) 0.033
(415) (45.9) (37.4) (56.1)
25.0- 156 158.1 103.2 55.9
99 (43.6) 57 (30.5)
29.9 (37.7) (382) (455) (29.4)
66.0 38.8 27.2
>=30.0 | 86(20.8) 49(21.6) 37(19.9)
(15.9) (17.1) (14.6)
Total 414 414 227 227 187 187
USA BM I Obs Exp® P-val Obs Exp® P-val Obs Expd® P-val
12.8
<250 | 2(48) <0001 | 1(48) | 53(254) | 0002 | 1(48) | 75(357) | 0003
(30.6)
25.0- 13.7
13 (31.0) 5(23.8) | 7.9(37.7) 8(38.1) | 5.8(27.6)
29.9 (32.6)
30.0-
12(286) | 8.6(20.5) 9(42.9) | 4.8(23.0) 3(14.3) | 3.8(18.0)
34.9
>=350 | 15(35.7) | 6.9(16.3) 6(28.6) | 29(139) 9(429) | 3.9(188)
Total 42 42 21 21 21 21

Expected frequencies were obtained from the BMI distribution in the general population of

the area of the APL cases, period of APL diagnosis and in addition: ®age class and sex; "age

class, sex and race; “age class; “age class and race.
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Table 4. Significantly upregulated KEGG pathways in APL vs AML in TCGA

pathway.name log.fold.cha | p.Value | FDR
nge
KEGG_RENIN_ANGIOTENSIN_SY STEM 0.6503 0.0023 | 0.0093
KEGG_LINOLEIC_ACID_METABOLISM 0.6381 0.0002 | 0.0010
KEGG_GLYCOSAMINOGLY CAN_BIOSYNTHESIS _ | 0.4217 0.0000 | 0.0000
HEPARAN_SULFATE
KEGG_GLYCOSPHINGOLIPID_BIOSYNTHESIS LA | 0.3391 0.0003 | 0.0017
CTO_AND_NEOLACTO_SERIES
KEGG_ALANINE_ASPARTATE_AND_GLUTAMAT | 0.3258 0.0009 | 0.0039
E METABOLISM
KEGG_ARACHIDONIC_ACID_METABOLISM 0.3221 0.0037 | 0.0130
KEGG_GLYCOSAMINOGLY CAN_DEGRADATION | 0.3208 0.0000 | 0.0001
KEGG_HISTIDINE_ METABOLISM 0.2996 0.0044 | 0.0148
KEGG_ARGININE_AND_PROLINE_METABOLISM | 0.2582 0.0001 | 0.0008
KEGG_LIMONENE_AND_PINENE_DEGRADATION | 0.1662 0.0087 | 0.0250
KEGG_CARDIAC_MUSCLE_CONTRACTION 0.1475 0.0084 | 0.0245
KEGG_PROTEIN_EXPORT 0.1439 0.0066 | 0.0204
KEGG_PATHWAYS IN_CANCER 0.1346 0.0169 | 0.0428
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Tableb. Logistic regression of BMI and FLT3 ITD mutations

BMI All 3 cohorts ITALY SPAIN USA
163/569* 30/114% 119/414° 14/412
OR(95%Cl) | OR(95%CI) | OR(95%CI) | OR (95% Cl)
Sunitincrease | 1.22(1.05-1.43) | 2.35(1.25 1.09 (0.89- 1.44 (0.93-
4.42) 1.33) 2.24)
> 25 vs <25° - 4.40 (1.63- 1.15 (0.75- -
11.9) 1.78)
> 30 vs <30° - - - 6.46 (1.21-
34.5)

aMutations/ All patients; ® Given the small number of obese patientsin Italy and Spain, we compared
overwei ght/obese patients ver sus normal weight patients (i.e. BMI > 25 vs <25). Given the small number of
normal weight patientsin USA, we compared obese patients ver sus non-obese patients (i.e. BMI > 30 vs <30).

Figure Legends

Fig 1: relationship between BMI and log-hazar d ratio (HR) for leukemiasin the UK population. (A) APL;

(B) other AMLSs; (C) lymphoid leukemias; (D) all leukemias. Mean (dark line) + 95% confidence intervals

(shaded area) is plotted.

Fig 2: Differential activities of KEGG pathways and insulin/leptin receptorsin the M3 vs non M3 quSage

comparison in the TCGA. (A) Activity score with 95% Cl of 186 KEGG gene sets; significant gene setsare

color-coded in red (if upregulated) or green (if downregulated) (B) Insulin/IGF1 receptor pathway and leptin

receptors. Mean + 95% confidence interval are plotted

Fig 3. Association between obesity and FLT3 mutations. (A) Bubble plot representing odds ratio vs -logP

value of any mutation in 23 driver genesin the TCGA AML cohort. FLT3 (in red) isthe only gene with False

Discovery Rate < 0.25. Bubble size reflects the number of obese patients with a mutation. Data are tabulated in

supplementary table S3
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Supplementary methods

UK population-based study: data collection and statistical methods

Methods for the UK population study were described in depth previously '. The study was approved by the London School of Hygiene and
Tropical Medicine Ethics Committee. Briefly, data were collected from the UK Clinical Practice Research Datalink (CPRD), which contains
computerised primary-care records from general practitioners who use the Vision IT system and have agreed at the practice level to participate
(covering about 9% of the UK population). The CPRD dataset is representative of the UK population in terms of age, sex, ethnicity and BMI
when compared with census data > Study entry began 12 months after registration and we assigned BMI records as exposure only 12 months
after their recording, to guard against reverse causality (ie, BMI being affected by undiagnosed cancer). We included all people aged 16 years or
older with BMI and subsequent eligible follow-up time. BMI was recorded as per local general practice. Individuals with any record of cancer
before study entry were excluded. BMI records and diagnosis collected between years 1987-2012 were included in the analysis. To identify
outcomes of specific leukaemia sub-types, CPRD clinical records were searched for codes relating to: AML (ICD-10 codes: C92.0, C92.5,
C92.6, C93.0, C94.0, C95.0); APL (ICD-10 code C92.4); LL (ICD-10 code C91); and any other leukaemias that were not specifically coded
("other™).

Subjects were followed-up from study entry until the earliest of: first cancer diagnoses (any site), death, transfer out of CPRD, or last data

collection of the practice. To relate BMI to risk of each type of leukaemia, we fitted Cox regression models with attained age as the underlying



timescale. We fitted fully adjusted models, with BMI as a continuous linear term to estimate the average effect of a 5 kg/m? increase in BMI on
leukaemia risk. We also fitted a model including BMI as a 3-knot spline in case of non-linearity in the relationship with leukaemia risk; we
tested for evidence of non-linearity by conducting a likelihood ratio test comparing nested models with and without the non-linear terms in the
spline basis. We controlled for the following covariates at time of the BMI record(s): age (three-knot restricted cubic spline to allow for non-
linearity); smoking status (never smoker, current smoker, ex-smoker); alcohol use (non-drinker, current drinker [light, moderate, heavy,
unknown], ex-drinker); previous diabetes diagnosis; index of multiple deprivation (in quintiles, a measure of socioeconomic status); calendar
period (<1989, 1990-94, 1995-99, 2000—04, 2005-09, >2010); and stratified by sex. We excluded people with missing smoking (49 206/5.24

million [0.9%]) and alcohol status (394 196/5.24 million [7.5%]. All CIs are presented at the 95% level.

Cross-sectional studies: data collection and statistical methods

APL cases from Spain were extracted from the PETHEMA database to include 414 cases diagnosed between 1998 and 2012. APL cases from
Italy were 134 adult patients treated with AIDA protocol included in the previously described cohort *. APL cases from USA included the entire
cohort of the published AML TCGA project > (n=20) plus 22 additional APL cases, unselected for any clinical variable, diagnosed at
Washington University (Expanded TCGA cohort). For all case cohorts, BMI was measured at the time of diagnosis. Data collection was
approved by the Research Ethics Board of each participating institution, as referenced >

We compared the distribution of BMI observed in the three APL case cohorts to the distribution of BMI expected in the general population of



the same countries. Specifically, to calculate the expected distribution of BMI in Italy we used data from the Italian National Institute of
Statistics * and we selected the area of Lazio, where the APL cases were diagnosed, in the years 2000-2010. For Spain, we used data from the
Eurostat '’ and we selected the general population of Spain in the year 2008, the only year available. For both Italy and Spain, the expected BMI
distribution was calculated using the available age- and sex- specific BMI distribution of the general population classified in 3 categories (<25;
25-29.9; >30). For USA we used the 2009-2010 data from the American National Health and Nutrition Examination Survey ''. The expected
BMI distribution was calculated using the available race-, age- and sex- specific BMI distribution of the general population classified in 4
categories (<25; 25-29.9; 30.0-34.9; >35).

The global null hypothesis that the observed counts did not differ from the expected ones across the BMI categories was tested in a null Poisson
regression model, where the observed counts were considered as dependent variable and the expected counts as the offset. We included in the
model BMI as an ordinal variable to test the log-linear relationship between BMI and the observed to expected ratio (i.e. to test for linear trend).

The Pearson's chi-square goodness of fit test p-value was reported.

Expression data analysis
Expression data (RPKM matrix) were downloaded from the AML TCGA data portal. Cases with available RNAseq, BMI and FAB classification
data (177/200) were used in the present study. Cases were classified by FAB in "APL" (FAB="M3") and "non-APL" (FAB # "M3") and by BMI

in "obese" (BMI > 30) and "non-obese" (BMI < 30). Genes with < 0.2 RPKM in at least 75% of patients were removed °. The Quantitative Set



Analysis for Gene Expression method as implemented in the quSAGE package '* in the R programming language (v 3.2.3) was used to conduct
supervised gene set enrichment analysis. For each expressed gene, the quSAGE algorithm calculates a probability density function (PDF) of
differential expression between two groups of samples. For each gene set, it then calculates "activity", ie the mean difference in log-
expression of individual genes included in a gene set. Gene sets with False Discovery Rate (FDR) < 0.05 were considered significant. We

focused on the KEGG and CGP gene set collections, downladed from MSigDB (http://software.broadinstitute.org/gsea/msigdb/). The CGP

collection was used to confirm enrichment of previously identified APL-specific gene signatures * (supplementary table S2). We focused on the
KEGG collection as it is enriched for metabolism-associated gene annotations'®. The script to generate the present results is available upon

request.

Mutational data analysis

For the analysis in the TCGA data, mutational data were retrieved from the TCGA AML paper’ and AML driver genes were downloaded from
IntOgen . For each gene, different mutations were conflated so that gene status in each patient was either "mutated" or "wild type". For each
gene we then calculated the number of mutated or wild-type patients in the obese or non-obese groups, and calculated Odds Ratios (OR), 95%
confidence intervals (CI) and p-values by Fisher's test with Benjamini-Hochberg correction. Only genes with >1 mutation in the dataset were

considered, using the fdsm package in R.



For the analysis of the retrospective cohort, FLT3 Internal Tandem Duplication (ITD) mutational data were provided by the referring centers.

Logistic regression was employed to calculate ORs with 95% CI.
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Table S1. quSage activity scores of KEGG gene sets. Only gene sets with FDR < 0.05 in at least one comparison are shown

M3vsNonM3.KEGG

ObVSNorm_All.KEGG

ObVSNorm_M3.KEGG

ObVSNorm_nonM3.K EGG

log.fold.c log.fold.c log.fold.c
pathway.name log.fold.c p.vV FDR hange p.vV FDR | hange p.vV FDR | hange p.vV FDR
hange alue alue alue alue
0.0 0.0 0.8 0.9 0.5 0.6 0.8 0.9
KEGG_RENIN_ANGIOTENSIN_SYSTEM 0.6503 023 | 093 -0.0187 880 859 -0.2661 992 943 -0.0294 297 90 1
KEGG_LINOLEIC_ACID_METABOLISM 0.6381 0.0 0.0 0.0537 0.6 0.9 0.1104 0.6 0.7 0.0136 0.9 0.9
' 002 | 010 317 859 912 607 083 901
KEGG_GLYCOSAMINOGLYCAN_BIOSYN 0.0 0.0 0.4 0.1 0.2 0.0 0.9
THESIS_HEPARAN_SULFATE 0.4217 000 8(?0 0.1973 022 098 0.2753 104 233 0.1680 122 901
KEGG_GLYCOSPHINGOLIPID_BIOSYNT 0.0 0.0 0.4 0.9 0.5 0.6 0.7 0.9
HESIS_LACTO_AND_NEOLACTO_SERIES 0.3391 003 | 017 0.0490 612 859 0.0944 590 641 0.0264 106 901
KEGG_ALANINE_ASPARTATE_AND_GL 0.0 0.0 0.5 0.9 0.1 0.2 0.9 0.9
UTAMATE_METABOLISM 0.3258 009 | 039 0.0366 529 859 0.2905 212 372 -0.0065 168 901
KEGG_ARACHIDONIC_ACID_METABOLI SM 03221 0.0 0.0 0.0907 0.2 0.9 0.0785 0.6 0.7 0.0751 0.3 0.9
' 037 | 130 234 859 402 264 437 901
0.0 0.0 0.0 0.9 0.9 0.9 0.0 0.9
KEGG_GLYCOSAMINOGLYCAN_DEGRA DATION 0.3208 000 | 00 0.1114 519 85 “0.0164 407 50 0.1077 707 90
1 9 9 1
0.0 0.0 0.3 0.9 0.4 0.5 0.5 0.9
KEGG_HISTIDINE_METABOLISM 0.2996 044 | 148 0.0633 112 859 0.1274 197 475 0.0410 403 90 1
0.2582 0.0 0.0 0.7 0.9 0.2 0.3 0.4 0.9
KEGG_ARGININE_AND_PROLINE_META BOLISM ' 001 0'0 8 -0.0136 768 859 | 0.1283 240 655 | -0.0421 087 901
0.0 0.0 0.8 0.9 0.7 0.8 0.9 0.9
KEGG_LIMONENE_AND_PINENE_DEGR ADATION 0.1662 087 | 250 0.0088 790 859 0.0364 788 138 -0.0030 g1 90 1
KEGG_CARDIAC_MUSCLE_CONTRACTIO N 0.1475 0.0 0.0 0.0321 0.4 0.9 0.1541 0.0 01 0.0120 0.7 0.9




084 | 245 163 859 864 985 777 901
0.0 0.2 0.9 0.0 0.2 0.0 0.9
KEGG_PROTEIN_EXPORT 0.1439 066 (2)(5)4 -0.0374 974 85 9 0.1933 958 03 1 -0.0688 632 90 1
KEGG_PATHWAYS_IN_CANCER 01346 0.0 0.0 0.0002 0.9 0.9 0.2432 0.0 0.0 -0.0316 0.4 0.9
' 169 | 428 991 991 112 922 585 901
0.0 0.0 0.6 0.9 0.0 0.0 0.2 0.9
KEGG_UBIQUITIN_MEDIATED_PROTEO LYSIS -0.0801 163 | 425 -0.0111 109 85 9 0.1777 128 92 2 -0.0258 492 90 1
KEGG_PANCREATIC_CANCER -0.0866 0.0 0.0 -0.0124 0.6 0.9 0.1224 0.0 0.2 -0.0213 0.4 0.9
) 187 | 463 339 859 993 07 4 381 901
0.0 0.0 0.7 0.9 0.0 0.0 0.9 0.9
KEGG_INSULIN_SIGNALING_PATHWAY -0.0874 170 | 428 0.0096 116 85 9 0.1847 012 402 -0.0031 115 90 1
0.0 0.8 0.9 0.3 0.4 0.8 0.9
KEGG_PYRIMIDINE_METABOLISM -0.0975 165 2205 0.0062 245 85 9 0.0774 112 63 1 0.0043 807 90 1
KEGG_RNA_DEGRADATION -0.1018 0.0 0.0 -0.0229 0.4 0.9 0.1292 0.1 0.2 -0.0329 0.2 0.9
) 146 | 395 004 859 580 801 515 901
KEGG_AMYOTROPHIC_LATERAL_SCLE ROSIS_ALS 01077 0.0 0.0 0.0147 0.5 0.9 0.0734 0.2 0.3 0.0147 0.5 0.9
) 002 | 013 221 859 217 655 431 901
KEGG_NON_SMALL_CELL_LUNG_CANCE R 01128 0.0 0.0 0.0152 0.5 0.9 0.1381 0.0 0.1 0.0090 0.7 0.9
) 010 | 042 572 859 261 034 385 901
KEGG_CHRONIC_MYELOID_LEUKEMIA -0.1140 0.0 0.0 0.0155 0.4 0.9 0.2026 0.0 0.0 0.0030 0.8 0.9
) 001 | 009 669 859 126 922 915 901
KEGG_COLORECTAL_CANCER 01163 0.0 0.0 0.0126 0.5 0.9 0.2530 0.0 0.0 -0.0052 0.8 0.9
) 002 [ 010 758 859 000 010 215 901
0.0 0.0 0.4 0.9 0.1 0.2 0.5 0.9
KEGG_PEROXISOME -0.1242 125 | 342 0.0283 070 85 9 0.1403 243 408 0.0241 087 90 1
0.0 0.0 0.1 0.9 0.0 0.1 0.3 0.9
KEGG_APOPTOSIS -0.1347 008 | 038 0.0364 948 85 9 0.1970 187 03 4 0.0279 305 90 1
KEGG_PROTEASOME 01371 0.0 0.0 -0.0334 02 09 0.1156 02 03 -0.0412 02 09




013 | 053 960 | 859 150 | 635 221 | 901
0.0 | 0.0 0.4 0.9 0.0 0.1 0.3 0.9
KEGG_REGULATION_OF_ACTIN_CYTOS KELETON -0.1426 154 | 40 -0.0296 es | 85 0.1678 550 53 -0.0419 333 | 90
9 9 3 1
0.0 |00 0.4 0.9 0.0 0.0 0.6 0.9
KEGG_PHOSPHATIDYLINOSITOL_SIGN ALING_SYSTEM | -0.1478 024 | 094 | 00232 047 |gsg | 01730 077 | 920 | 00164 496 | 901
01525 0.0 |4, 0.6 0.9 0.0 0.0 0.4 0.9
KEGG_LONG_TERM_POTENTIATION : 053 | |,, |-00171 000 | 859 | 0.1396 108 | 922 | -0.0247 774 | 901
KEGG_VALINE_LEUCINE_AND_ISOLEUC 0.0 |00 0.8 0.9 0.3 0.4 0.7 0.9
INE_DEGRADATION -0.1664 021 | 085 -0.0054 847 859 0.1395 371 geo | 00109 775 901
KEGG_PENTOSE_PHOSPHATE_PATHW AY 01698 0.0 |0.0 |-0.0559 0.1 0.9 -0.0887 0.2 0.3 -0.0438 0.2 0.9
: 029 | 105 519 | 859 304 | 726 926 | 901
0.0 0.9 0.9 0.0 0.1 0.7 0.9
KEGG_PATHOGENIC_ESCHERICHIA_CO LI_INFECTION -0.1747 028 2.5)5 0.0001 983 | 9971 | 02391 248 | 034 | 00145 e20 | 901
KEGG_WNT_SIGNALING_PATHWAY 01798 0.0 |0.0 |-0.0202 0.5 0.9 0.2704 0.0 0.0 -0.0399 0.2 0.9
: 003 | 018 735 | 859 049 798 867 | 901
0.0 |00 0.9 0.9 0.0 0.1 0.8 0.9
KEGG_MELANOGENESIS -0.1822 101 | 285 | 00017 737 | 991 | 02365 708 75g | 00120 199 | 901
KEGG_ENDOMETRIAL_CANCER 01884 0.0 |00 |00121 0.7 0.9 0.1965 0.0 0.0 0.0039 0.9 0.9
: 002 | 011 239 | 859 107 | 922 124 | 901
0.0 |00 0.7 0.9 0.0 0.1 0.3 0.9
KEGG_MISMATCH_REPAIR -0.1993 191 | agg | 00195 019 |gsg | 03508 325 0go | 0-0461 817 | 901
0.0 0.9 0.9 0.6 0.7 0.9 0.9
KEGG_RIBOFLAVIN_METABOLISM -0.2067 027 2.5)2 -0.0038 237 | g74 | 00432 998 | g57 | 0:0027 527 | 901
KEGG_DNA_REPLICATION 02114 0.0 |0.0 |-0.0159 0.7 0.9 0.2973 0.0 0.2 -0.0361 0.5 0.9
: 206 | 496 776 | 859 941 031 441 | 901
KEGG_JAK_STAT_SIGNALING_PATHWA Y 0.0150 0.2723 0.0008




-0.2119 0.0 0.0 0.7 0.9 0.0 0.1 0.9 0.9
084 245 826 859 166 015 909 918
KEGG_DORSO_VENTRAL_AXIS_FORMA TION 02122 0.0 0.0 0.0181 0.7 0.9 0.2959 0.0 0.1 0.0018 0.9 0.9
) 045 149 070 859 227 034 728 918
KEGG_INOSITOL_PHOSPHATE_METAB OLISM 02128 0.0 0.0 -0.0010 0.9 0.9 0.1404 0.0 0.0 -0.0037 0.9 0.9
) 000 002 730 991 113 922 133 901
ST L s o |00 00 ooms [z oo forms  Joo a1 foows oz |os
- - - ) 000 001 478 859 797 853 762 901
0.0 0.0 0.3 0.9 0.1 0.2 0.3 0.9
KEGG_RIG_I_LIKE_RECEPTOR_SIGNALI NG_PATHWAY -0.2148 006 027 0.0316 340 85 9 0.1770 163 325 0.0289 786 90 1
0.0 0.0 0.6 0.9 0.0 0.2 0.6 0.9
KEGG_LONG_TERM_DEPRESSION -0.2202 068 207 -0.0218 805 85 9 0.1495 884 005 -0.0272 329 90 1
KEGG_BETA_ALANINE_METABOLISM -0.2380 0.0 0.0 -0.0296 0.5 0.9 0.1582 0.4 0.5 -0.0358 0.4 0.9
) 059 190 572 859 291 50 4 898 901
0.0 0.0 0.7 0.9 0.0 0.1 0.7 0.9
KEGG_FRUCTOSE_AND_MANNOSE_ME TABOLISM -0.2433 000 00 -0.0113 895 85 0.1312 715 72 -0.0124 805 90
1 9 8 1
0.0 0.0 0.6 0.9 0.5 0.6 0.3 0.9
KEGG_DRUG_METABOLISM_OTHER_EN ZYMES -0.2535 082 245 0.0270 671 85 9 -0.1247 606 64 1 0.0563 928 90 1
0.2725 0.0 0.0 0.6 0.9 0.0 0.1 0.9 0.9
KEGG_O_GLYCAN_BIOSYNTHESIS ’ 103 2.8 6 0.0280 628 859 0.4616 169 015 -0.0006 918 918
0.0 0.0 0.9 0.9 0.0 0.1 0.7 0.9
KEGG_CALCIUM_SIGNALING_PATHWA'Y -0.2771 001 00 4 -0.0054 034 85 9 0.2483 677 70 2 -0.0159 335 90 1
F&S%}%ﬁtﬁfﬁéﬁ%ﬂNE‘AND‘ISOLEUC -0.2834 0.0 0.0 0.0075 0.8 0.9 0.2955 0.1 0.2 -0.0060 0.9 0.9
- ) 044 148 942 859 340 518 138 901
0.0 0.1 0.9 0.0 0.1 0.2 0.9
KEGG_NOD_LIKE_RECEPTOR_SIGNALIN G_PATHWAY -0.2899 002 0.0 0.0682 386 85 9 0.2244 358 128 0.0688 078 90 1

010




KEGG_CYTOSOLIC_DNA_SENSING_PAT HWAY -0.3003 0.0 0.0 0.0227 0.5 0.9 0.1045 0.3 0.4 0.0310 0.3 0.9
) 000 | 001 065 859 320 860 465 901
0.0 0.0 0.7 0.9 0.0 0.0 0.7 0.9
KEGG_B_CELL_RECEPTOR_SIGNALING_ PATHWAY -0.3036 000 | 000 0.0131 092 85 9 0.2192 125 92 2 0.0090 968 90 1
KEGG_ERBB_SIGNALING_PATHWAY -0.3255 0.0 0.0 0.0105 0.7 0.9 0.2496 0.0 0.0 0.0043 0.8 0.9
) 000 | 000 342 859 011 402 823 901
0.0 0.0 0.4 0.9 0.0 0.1 0.3 0.9
KEGG_GLYCEROLIPID_METABOLISM -0.3303 001 | 004 -0.0405 091 85 9 0.2382 564 533 -0.0509 134 90 1
0.0 0.7 0.9 0.0 0.1 0.7 0.9
KEGG_FC_GAMMA_R_MEDIATED_PHAG OCYTOSIS -0.3306 000 85)0 -0.0166 137 85 9 0.1495 525 50 3 -0.0154 414 90 1
KEGG_SPHINGOLIPID_METABOLISM -0.3680 0.0 0.0 0.0174 0.6 0.9 0.3152 0.0 0.1 0.0076 0.8 0.9
) 000 [ 000 685 859 416 248 462 901
KEGG_RETINOL_METABOLISM -0.3804 0.0 0.0 0.0302 0.7 0.9 0.0697 0.7 0.7 0.0472 0.5 0.9
) 029 | 105 095 859 325 921 811 901
KEGG_GAP_JUNCTION -0.4063 0.0 0.0 -0.0223 0.6 0.9 0.3313 0.0 0.1 -0.0360 0.5 0.9
) 000 | 001 911 859 358 128 254 901
KEGG_CELL_ADHESION_MOLECULES_C AMS -0.4328 0.0 0.0 0.0313 0.7 0.9 0.5266 0.0 0.1 0.0053 0.9 0.9
) 008 | 035 135 859 280 034 546 901
KEGG_NON_HOMOLOGOUS_END_]JOINI NG -0.4837 0.0 0.0 0.0143 0.8 0.9 0.4767 0.0 0.1 -0.0058 0.9 0.9
) 005 | 026 625 859 342 115 434 901
0.0 0.0 0.4 0.9 0.0 0.1 0.4 0.9
KEGG_TOLL_LIKE_RECEPTOR_SIGNALI NG_PATHWAY -0.4982 000 | 000 0.0443 457 85 9 0.3124 205 03 4 0.0448 386 90 1
0.0 0.0 0.4 0.9 0.7 0.8 0.3 0.9
KEGG_OLFACTORY_TRANSDUCTION -0.5325 062 | 197 0.1045 100 85 9 0.1150 770 138 0.1333 200 90 1
KEGG_CHEMOKINE_SIGNALING_PATH WAY -0.5333 0.0 0.0 -0.0104 0.8 0.9 0.1242 0.4 0.5 0.0050 0.9 0.9
) 000 [ 000 722 859 531 69 4 422 901
0.0 0.0 0.8 0.9 0.5 0.6 0.5 0.9
KEGG_PENTOSE_AND_GLUCURONATE_ -0.6093 010 | 04 0.0156 942 85 -0.1942 218 32 0.0700 586 90

INTERCONVERSIONS




5 9 0 1
KEGG_BIOSYNTHESIS_OF_UNSATURAT 0.0 |00 0.5 0.9 0.0 0.1 0.4 0.9
ED_FATTY_ACIDS -0.6717 000 | 000 | 0-0434 171 859 0.4095 304 06 2 -0.0528 121 901
06738 0.0 |4, 0.8 0.9 0.0 0.1 0.8 0.9
KEGG_VIRAL_MYOCARDITIS : 000 | Jo'y | -0.0105 928 | 859 | 0.3705 201 034 | -0.0122 761 | 901
0.0 |00 0.5 0.9 0.0 0.0 0.5 0.9
KEGG_ANTIGEN_PROCESSING_AND_PR ESENTATION -0.6982 000 | 000 | 0-0580 438 | gso | 04852 123 927 | 00535 820 | 901
KEGG_SYSTEMIC_LUPUS_ERYTHEMAT OSUS 07637 0.0 | 0.0 | 00663 0.5 0.9 0.1498 0.6 0.7 0.1000 0.3 0.9
: 000 | 001 374 | 859 639 | 484 574 | 901
0.0 0.7 0.9 0.1 0.2 0.6 0.9
KEGG_LEISHMANIA_INFECTION -0.7943 000 8.5)0 0.0247 869 | gso | 02493 156 | ee7 | 00455 214 | 901
KEGG_PRIMARY_BILE_ACID_BIOSYNTH ESIS 0.8093 0.0 |0.0 |-0.0140 0.8 0.9 0.0694 0.8 0.8 0.0216 0.8 0.9
: 000 | 000 994 | 859 325 508 437 | 901
0.0 |00 0.3 0.9 0.0 0.1 0.4 0.9
KEGG_GRAFT_VERSUS_HOST_DISEASE -0.9436 000 | 001 | 01202 917 |gsq | 07427 218 | 034 | 01099 481 | 901
KEGG_TYPE_I_DIABETES_MELLITUS 09923 0.0 | 0.0 |0.0923 0.4 0.9 0.5909 0.0 0.1 0.0968 0.4 0.9
: 000 | 000 402 | 859 210 | 034 174 | 901
0.0 |00 0.9 0.9 0.2 0.3 0.9 0.9
KEGG_ASTHMA -0.9993 000 | 000 | 0-0057 727 | 991 | 04580 233 coc | 00146 282 | 901
0.0 0.4 0.9 0.0 0.1 0.3 0.9
KEGG_ALLOGRAFT_REJECTION -1.0462 000 8.5)0 0.1173 038 | gsg | 06057 560 33 | 01261 788 | 901
KEGG_AUTOIMMUNE_THYROID_DISEA SE 10623 0.0 |0.0 |0.0830 0.5 0.9 0.6382 0.0 0.1 0.0856 0.5 0.9
: 000 | 000 357 | 859 408 | 243 274 | 901
ET&T&?QQS{%%?S NE_NETWOR 12645 0.0 |0.0 |-0.0217 0.8 0.9 0.4684 0.1 0.2 -0.0023 0.9 0.9
- TR : 000 | 000 626 | 859 186 346 859 | 918
KEGG_PANTOTHENATE_AND_COA_BIO SYNTHESIS -0.0035 0.4184 0.0268




-1.3380

0.0
000

0.0
000

0.9
670

0.9
991

0.0
275

0.1
034

0.7
322

0.9
901

Table S2. quSage activity scores of previously idntified APL-associated signature and PPARG transcriptional targets

M3vsNonM3.KEGG ObVSNorm_All.KEGG ObVSNorm_M3.KEGG 0bVSNorm_nonM3.KEG G
pathway.name logfold.ch p-Va FDR logfold.ch p-Va FDR log.fold.ch p-Va FDR log.fold.ch ange p-Va FDR
ange lue ange lue ange lue lue
CASORELLI_ACUTE_PROMYEL 0.00 | 0.0 029 |09 0.01 0.0
OCYTIC LEUKEMIA DN -0.4517 0o | ooo | 700506 1s 995 0.3199 53 972 -0.0637 0.1690 | 0.8948
CASORELLI_ACUTE_PROMYEL 0.00 | 0.0 0.01 |09 0.10 0.2
OCYTIC_LEUKEMIA_UP 0.7557 00 |ooo | 01166 92 995 0.1573 24 172 0.0723 0.0755 | 08948
0.00 | 0.0 047 |09 0.68 0.7
LI_ADIPOGENESIS_BY_ACTIVA TED_PPARG 1.0578 0o | ooo | 00871 97 995 -0.1286 90 617 -0.1412 0.2497 | 0.8968
WANG_CLASSIC_ADIPOGENIC_ 0.28
TARGETS_OF_PPARG 0.6578 0.00 | 0.0 0.0057 094 |09 -0.1266 o1 0.4 -0.0167 0.8442 | (5797
' 00 | 000 87 995 158 '
Table S3. Mutation prevalences in obese ("OB") and non-obese ("NW") patients in the TCGA dataset
ID OB_MUT NW_MU T OB_WT NW_WT OR CLinf CI_sup fisher mLogPva l FDR Sum_Mut
FLT3 33 22 55 88 54000 1.2706 45335 0.0070 4.9636 0.1607 55
NPM1 23 30 65 80 0.9436 0.5005 1.7791 0.8732 0.1355 1 53
DNMT3A 20 29 68 81 0.8215 0.4269 1.5808 0.6206 0.4771 1 49
IDH2 9 11 79 99 10253 0.4049 2.5967 1.0000 0.0000 1 20
IDH1 10 9 78 101 1.4387 0.5577 3.7119 0.4757 0.7430 1 19
RUNX1 7 12 81 98 0.7058 0.2655 1.8758 0.6287 0.4642 1 19
7 10
TET2 81 100 0.8642 0.3150 2.3712 0.8052 0.2167 1 17
TP53 6 10 82 100 0.7317 0.2552 2.0981 0.6100 0.4943 1 16




NRAS

81

1.1019

102 0.3835 3.1660 1.0000 0.0000 15
CEBPA 82 104 1.2683 0.3944 4.0783 0.7689 0.2628 12
WT1 82 104 1.2683 0.3944 4.0783 0.7689 0.2628 12
PTPN11 84 105 1.0000 0.2604 3.8410 1.0000 0.0000 9
KIT 83 107 2.1486 0.4991 9.2497 0.4703 0.7544 8
KRAS 85 105 07412 0.1722 3.1903 0.7348 0.3081 8
U2AF1 86 104 0.4031 0.0793 2.0483 0.3037 1.1916 8
STAG2 86 105 0.4884 0.0924 2.5799 0.4654 0.7649 7
PHF6 87 105 0.2414 0.0277 2.1051 0.2291 1.4735 6
ASXL1 86 107 0.8295 0.1355 5.0763 1.0000 0.0000 5
RAD21 87 106 0.3046 0.0334 2.7754 0.3843 0.9564 5
KDM6A 86 108 1.2558 0.1733 9.0985 1.0000 0.0000 4
DIS3 87 108 0.6207 0.0554 6.9593 1.0000 0.0000 3
EZH2 88 107 0.0000 0.0000 NA 0.2555 1.3645 3

0.0000

SUZ12 88 107 0.0000 NA 0.2555 1.3645 3




