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Abstract

Burkholderia pseudomallei (Bp), the causative agent of the often-deadly infectious disease melioidosis, contains one of the
largest prokaryotic genomes sequenced to date, at 7.2 Mb with two large circular chromosomes (1 and 2). To
comprehensively delineate the Bp transcriptome, we integrated whole-genome tiling array expression data of Bp exposed
to .80 diverse physical, chemical, and biological conditions. Our results provide direct experimental support for the strand-
specific expression of 5,467 Sanger protein-coding genes, 1,041 operons, and 766 non-coding RNAs. A large proportion of
these transcripts displayed condition-dependent expression, consistent with them playing functional roles. The two Bp
chromosomes exhibited dramatically different transcriptional landscapes — Chr 1 genes were highly and constitutively
expressed, while Chr 2 genes exhibited mosaic expression where distinct subsets were expressed in a strongly condition-
dependent manner. We identified dozens of cis-regulatory motifs associated with specific condition-dependent expression
programs, and used the condition compendium to elucidate key biological processes associated with two complex
pathogen phenotypes — quorum sensing and in vivo infection. Our results demonstrate the utility of a Bp condition-
compendium as a community resource for biological discovery. Moreover, the observation that significant portions of the
Bp virulence machinery can be activated by specific in vitro cues provides insights into Bp’s capacity as an ‘‘accidental
pathogen’’, where genetic pathways used by the bacterium to survive in environmental niches may have also facilitated its
ability to colonize human hosts.
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Introduction

A central goal of pathogen genomics involves identifying the

complete repertoire of functional genetic elements within patho-

gen genomes, including protein-coding genes, cis-regulatory

elements, and non-coding RNAs, and understanding how these

elements operate to cause clinical disease. Analysis of .7,000

prokaryotic genomes in the PAThosystems Resource Integration

Center (PATRIC, www.patricbrc.org) has revealed striking

diversity in microbial genome sizes [1], the existence of

prokaryotes with either single or multiple chromosomes [2], and

evolutionary conservation of virulence pathways [3]. Besides

genome analysis, transcriptomic profiling of microbial pathogens

has also proved invaluable for validating computationally predicted

genes and highlighting novel genes missed by computational

algorithms based on DNA-sequence alone. Identifying genes

expressed under specific conditions can also often provide

important clues regarding gene function [4,5]. However, unlike

bacterial genomes that are mostly static, transcriptomes are

dynamic, context-specific and condition-dependent. As such, achie-

ving a comprehensive overview of expressed transcripts for any

bacterial species ideally requires a detailed collection of profiles

covering a broad spectrum of conditions and exposures – a so-called

‘‘condition compendium’’. While condition compendia for a few

bacteria (e.g. Mycoplasma pneumoniae, Bacillus subtilis) have been

reported [6,7], previous studies have been limited to microbes with
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small sized genomes and single chromosomes. There is thus a need

for similarly detailed transcriptomic studies of bacterial species with

large, multi-chromosomal genomes.

The Gram-negative bacterium Burkholderia pseudomallei (Bp) is the

causative agent of melioidosis, a tropical infectious disease of

humans and animals. Among sequenced microbial genomes, the

Bp genome is large (7.2 Mb), composed of two chromosomes (Chr

1 and 2) [8], and predicted by sequence analysis to contain ,5,900

protein coding genes [8]. Human melioidosis has a high mortality

rate, estimated at 20% in Northern Australia and up to 50% in

Northeast Thailand [9]. Underscoring its highly infective nature,

Bp has been categorized as a Tier 1 disease agent under the US

Federal Select Agent Program [10]. Bp has a striking ability to

survive and thrive in a multiplicity of environments. In endemic

areas, the bacterium can be cultured from various sources

including soil, water and air, and it can infect a wide range of

hosts such as amoebae, nematodes, plants, land and sea mammals,

and plants [11]. This versatility suggests that Bp could prove useful

as a model to study how pathogens adapt to extreme environments

and different hosts. Indeed, it has been proposed that Bp is an

example of ‘‘accidental virulence’’, where genetic pathways used

by the bacterium to survive in environmental niches may have

indirectly contributed to its ability to cause clinical disease [12].

In this study, we sought to obtain a global overview of how the

environment might influence the Bp transcriptional landscape, by

integrating expression data from whole-genome tiling microarrays

covering .80 diverse environmental and genetic conditions. Our

aims in this study were threefold: First, we generated a

comprehensive strand-specific catalog of condition-dependent

transcripts in Bp, including genes, operons, and non-coding

RNAs. Second, we explored if the two Bp chromosomes might be

associated with distinct patterns of transcription, related to their

overall functions. Third, we defined cis-regulatory motifs associ-

ated with condition-dependent expression programs, and applied

the compendium to elucidate candidate virulence pathways

associated with quorum-sensing and in vivo infection. Taken

collectively, the condition-dependent expression compendium

represents a valuable resource for understanding Bp physiology

and the pathogenesis of melioidosis. Moreover, our findings may

also prove applicable to other bacterial pathogens with multiple

chromosomes.

Results

Genomic Landscape of the Bp Condition-Dependent
Transcriptome

Whole-genome tiling microarrays containing strand-specific

probes overlapping at 35-base resolution were used to profile Bp

transcriptional responses under 82 different conditions (Figure

S1A–C). Conditions were selected to mimic natural exposures Bp

might encounter in the environment or in infected hosts. Many of

these conditions were selected based on prior scientific reports

where Bp responses were explored at the phenotypic level. Experi-

mental conditions and their scientific rationales are provided in

Table S1. The transcription profiles were found to be robust and

reproducible through technical and biological replicates [13]

(Figure S1D). We integrated the array data to generate a compre-

hensive catalog of condition-dependent transcripts in Bp. Using a

sliding window smoothing algorithm [14], we identified 5,616

transcriptionally active regions (TARs) across the 82 conditions

(Table S2), ranging in size from 215 bp to 52,724 bp (median

length 752 bp). We systematically annotated the TARs by com-

paring them to a variety of genomic features, including ‘‘gold

standard’’ Sanger genes [8], novel genes predicted by FGENESB,

a separate gene prediction software [13,15], operons, antisense trans-

cripts, and genomic islands (GIs) (Figure 1). We validated several of

these findings using RT-PCR (Figure S2, Table S3). An annotated

file describing these transcripts is presented in Table S2, and also in

the PATRIC online resource platform (www.patricbrc.org).

Genes. We confirmed detectible expression of 5,467 out of

5,935 Sanger genes (92.1%) (Figure 1A, Table S2). Interestingly,

468 Sanger genes did not exhibit detectible expression throughout

the Bp condition compendium. These included specific genes

residing in Type III and Type VI secretion clusters (T3SS1,

T3SS2, T6SS-1 and T6SS-5), genes regulating capsule formation

(CPS IV), and certain genes in genomic islands (GIs) (Table S4).

The lack of expression of these genes may either indicate the

absence of an appropriate condition required for triggering

expression of these genes – For example, some T3SS1 and

T3SS2 genes might only be expressed during plant infection [16],

or alternatively some of these ‘‘silent’’ genes may represent mis-

annotated or non-functional genes. Supporting this latter hypoth-

esis, a significant proportion of these ‘‘silent’’ genes encoded

hypothetical proteins (p~1:4|10{4, Text S1) or genes not

conserved in other Bp strains (p~2:0|10{7).

Besides Sanger genes, we also recently reported the existence of

.500 putative novel genes not annotated in the original reference

genome (see Discussion) [13]. Of these, 306 novel genes (59.1%)

were associated with expressed transcripts (Figure 1B, Table S2).

Notably, more than half of the novel genes were expressed in very

specific sets of conditions (Table S5) – for example, BPSL0061.1,

encoding a short 31 aa predicted protein, was only detectably

expressed in anaerobic conditions, during macrophage infection,

and in quorum sensing mutants (Table S2). These results suggest

that many novel genes are likely to demonstrate condition-specific

expression.

Operons. Of 1,249 computationally predicted polycistronic

operons in BpK96243 [13], we detected expression of 1,041

operons (Table S2). ,20% of the operons (201/1041) were

constitutively expressed ($70 conditions), and often associated

with core cellular functions, including DNA replication (BPSL0073

– BPSL0075), protein-folding (BPSL2697-BPSL2698) and global

Author Summary

Bacterial transcriptomes are dynamic, context-specific and
condition-dependent. Infection by the soil bacterium,
Burkholderia pseudomallei, causes melioidosis, an often
fatal infectious disease of humans and animals. Possessing
a large multi-chromosomal genome, B. pseudomallei is able
to persist and survive in a multitude of environments. To
obtain a comprehensive overview of B. pseudomallei
expressed transcripts, we initiated whole-genome tran-
scriptome profiling covering a broad spectrum of condi-
tions and exposures — a so-called ‘‘condition compendi-
um’’. Using the compendium, we confirmed many
previously-annotated genes and operons, and also iden-
tified hundreds of novel transcripts including anti-sense
transcripts and non-coding RNAs. By systematically exam-
ining genes exhibiting highly similar expression patterns,
we ascribed putative functions to previously uncharacter-
ized genes, and identified novel regulatory elements
controlling these expression patterns. We also used the
compendium to elucidate candidate virulence pathways
associated with quorum-sensing and infection in mice. Our
study showcases the power of a B. pseudomallei condition
compendium as a valuable resource for understanding
microbial physiology and the pathogenesis of melioidosis.

B. pseudomallei Transcriptional Landscape
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transcriptional regulation (BPSL1502 – BPSL1506; containing rpoS)

(Table S2, S5). In contrast, condition-specific operons were often

involved in accessory pathways such as phosphonate transport

(BPSL2851 – BPSL2857; expressed upon long-term heat stress),

two component sensing (BPSS1039 – BPSS1043, expressed upon

zinc exposure) and flagella motility (BPSL0026 – BPSL0032;

expressed upon cold stress and taurine exposure) (Figure 1C).

Antisense transcription. Prokaryotic antisense transcription

is emerging as an important mechanism regulating many processes

including stress response and virulence [17]. To explore antisense

transcription in Bp, we defined an antisense transcript as TAR

associated strictly with the opposite strand of a Sanger gene, either

partially or throughout the entire gene (Figure 1D). Using these

criteria, we observed antisense transcription events for 10% of

Sanger genes. The occurrence of an antisense transcript was not

necessarily associated with cognate expression on the sense strand.

Antisense transcription was also observed for whole operons

(Figure S3).

Genomic Islands. Genomic Islands (GIs) are regions in a

bacterial genome representing horizontal transfer events [8]. 16

GIs have been identified in the BpK96243 genome (Table S2).

Analyzing BpK96243-specific profiles, we found that genes in GIs

were expressed at significantly lower levels compared to other

expressed genes on the same chromosomes (Chr 1: p~3:4|

10{11; Chr 2: p~2:7|10{6, Wilcoxon signed rank test). Several

GIs exhibited signatures of condition-dependence (Figure S4). For

example, GI14 genes were expressed only under nutrient-deprived

conditions or in taurine/sulphur – GI14 contains BPSS0665, a

tauD gene homolog involved in taurine metabolism [13]. We also

observed condition-dependent expression of genes in GI1, GI3,

GI12 and GI15 upon antibiotic stress (ceftazidime and chloram-

phenicol) - largely comprising bacteriophage-related genes. The

observation that many GI genes are expressed in a condition-

dependent manner suggests that they may play a role in the

phenotypic diversity of Bp, contributing to survival in specific niches.

Abundance of Condition-Dependent Non-coding RNAs
in Bp

Non-coding RNAs (ncRNAs) are emerging as an important

class of regulatory molecules in several prokaryotes [18]. Using

stringent filtering criteria and manual curation (see Materials and

Methods), we identified a ‘‘high-confidence’’ set of 766 ncRNA

transcripts ranging in size from 111 to 750 bp exhibiting high

expression levels in the Bp compendium (Figure 2A, Table S2,

Text S1). All 81 ncRNAs computationally predicted by the

ncRNA database Rfam to in the BpK96243 genome were

detectibly expressed [18]. Of the 766 ncRNAs, 532 and 150

ncRNAs were conserved in B. mallei (Bm) and B. thailandensis (Bt)

respectively, at both the levels of sequence identity and chromo-

somal synteny (Figure S5A,B).

On average, 168 ncRNAs were expressed in any single condition

(Table S5). Many ncRNAs exhibited differential expression under

different conditions (Figure S5C,D). For example, BPNC10070F

was up-regulated 12-fold in nutrient-limiting conditions, and

BPNC10061R exhibited high expression in high osmolarity and

nutrient deprivation (Figure 2B, S2E). The Bp ncRNAs were

associated with a variety of secondary structures (Table S6),

consistent with them belonging to distinct functional classes.

Evolutionary conservation analysis of BPNC10061R revealed highly

homologous sequences in Bm, Bt and B. cenocepacia (Bc) but not P.

aeruginosa. Interestingly, the predicted secondary structure of

BPNC10061R is similar between Bp and Bm but distinct to Bt

(Figure 2C). It is possible that BPNC10061R, while evolutionarily

conserved within the Burkholderia genus, may play different

functional roles in different Burkholderia species.

Bp Chromosomes Exhibit Distinct Transcriptional
Landscapes

Previous analysis has revealed that Bp Chr 1 is enriched in

genes associated with core functions while Bp Chr 2 contains genes

associated with accessory and secondary functions [8]. We

investigated if there might exist systematic differences in the

transcriptional landscapes of both chromosomes. When computed

across all conditions, both Bp chromosomes exhibited a compa-

rable proportion of expressed genes (94% of Chr 1 and 89% for

Chr 2) (Figure 3A), suggesting that almost all Bp genes are

expressed at least once in the Bp condition compendium. In

contrast, dramatic differences in the transcriptional landscape of

the two Bp chromosomes were observed when our analysis was

confined to individual conditions. For any individual condition,

the majority of Chr 1 genes (,72%) were expressed, while only a

minority of Chr 2 genes (,28%) were expressed under any one

condition (Figure 3B, Table S7). Chr 1 genes were also expressed

at higher levels than Chr 2 genes (pv0:01, one-tailed paired t-test;

Figure 3C, Table S7). This result suggests that genes on Bp Chr 1

are expressed in most or even all conditions, but Bp Chr 2 genes

are highly regulated and only expressed under specific conditions,

presumably when their gene products are required. Our results

provide experimental support that despite .10 million years of

coevolution [19] the two chromosomes in Bp continue to exhibit

radically different transcriptional landscapes (Table S7).

Network Analysis Defines Condition-Dependent Gene
Expression Clusters

We sought to define groups of genes (‘‘clusters’’) commonly co-

expressed under different conditions, as co-expressed genes often

share similar cellular functions [20]. Using the 66 profiles

representing wild-type Bp exposed to well-defined experimental

conditions, we identified co-expression relationships between

genes in a hierarchical manner to assemble a Bp condition-

dependent gene co-expression network (Figure 4A). Profiles

corresponding to genetic mutants and in vitro/in vivo infection

were not included, as these were subsequently used to validate and

probe the network architecture (presented later). First, we used

Figure 1. Expressed transcripts in the Bp condition compendium. High-resolution views of different genomic features are depicted. All
transcripts depicted were expressed above the median cut-off threshold. (A) Transcriptional annotation of the Burkholderia pseudomallei K96243
reference genome. The transcriptome map is presented along the chromosomal coordinates in a strand-specific manner, with the outermost track
composed of Sanger annotated genes (orange), followed by novel genes (green), the Bp operons (purple) and finally the non-coding RNAs (ncRNAs;
red). In all tracks, predicted genomic features that do not have an associated transcript in this study are colored in grey. The genes, operons and
ncRNAs are arranged in a strand-specific manner by visualizing them in either the forward (+) or the reverse (2) tracks. The black vertical lines indicate
the start/stop sites of the circular chromosomes. (B) Sanger genes and novel genes. Expressed strand-specific transcripts are presented as blue bars
along the forward and reverse strands. Transcript boundaries correspond to predicted start and stop coordinates of Sanger annotated genes and
FGENESB novel genes. (C) Differential expression of a Bp operon. Expression of a predicted flagella operon (BPSL0026 – BPSL0032) in a specific
condition (taurine exposure). (D) Antisense transcription. BPSL0095, a gene coding for hypothetical protein exhibits antisense transcription upon
exposure to human serum.
doi:10.1371/journal.pgen.1003795.g001
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ARACNe, an information theoretic algorithm for biological

network construction, to identify significantly co-expressed pairs

of Bp genes [21]. ,91% of Sanger genes exhibited significant co-

expression relationships to at least one other gene (Figure 4A).

Second, we used Markov Clustering [22] to group these linked

genes into larger clusters, approximating a scale-free topology

commonly associated with transcriptional networks (Text S1) [23].

After permutation testing (see Materials and Methods), we identi-

fied 470 highly reproducible clusters, containing 3,754 Sanger

genes with a median of 4 genes per cluster. Third, to define higher-

order relationships between clusters, we performed MRCN (maxi-

mum relatedness of clusters network) analysis to identify highly

interlinked clusters [24]. We grouped 259 clusters into 98 MRCN

units (average MRCN size = 3 clusters) (Table S8). In total, 55% of

the Bp clusters mapped to predicted Bp operons, and one-third of

the clusters were significantly enriched in at least one functional

annotation (Figure 4A, Table S8). We also identified 363 ncRNAs

to be significantly correlated with the clusters (pv0:01), suggesting

potential involvement of ncRNAs in these functions (Table S9).

The Bp gene clusters exhibited dynamic regulation across the 66

in vitro conditions (Figure 4B, Text S1). For example, clusters C394

(arcDABC operon), C247 (narKGH operon), and C126 (paaABCDE

operon) were commonly overexpressed under conditions of

temperature, ultra-violet exposure, and oxidative stress. Almost

half (43/98) of the MRCNs comprised a mixture of functionally

annotated and non-annotated clusters. For example, one MRCN

highly expressed upon heat exposure comprised two clusters - C131,

containing genes related to heat-stress (C131, p~3:9|10{5), and

C265, containing the heat-shock sigma factor rpoH and several

hypothetical proteins (e.g. BPSL1086, BPSL1961, BPSL2828 and

BPSL2829) (Figure 4C). Interestingly, 5 MRCNs contained clusters

associated with pathogen virulence genes, including pathogenicity

islands (T3SS2 and T3SS3), chemotaxis and flagella, binding or

transport proteins (T6SS3), and surface polysaccharides (Type I

capsule) [25]. These virulence-related MRCNs, containing ,35%

of all putative virulence genes cataloged in the original Bp genome

annotation [8], were expressed under conditions of nutrient

deprivation and prolonged cold stress (4uC, 16 hours). These results

thus suggest that specific in vitro cues may exist that can activate a

substantial portion of the Bp virulence machinery.

Unsupervised clustering associating the different conditions to

one another defined 12 robust condition groups encompassing 54

Figure 2. Identification of Bp ncRNAs. (A) Condition-dependence of ncRNA expression. The heat-map depicts 766 identified ncRNAs and their
patterns of expression across the condition compendium. Red depicts high expression, and green depicts low expression. (B) BPNC10061R expression
is triggered by sorbitol. BPNC10061R is highly expressed under condition of osmotic stress (2M Sorbitol) compared to desiccation. (C) Secondary
structure and species conservation of BPNC10061R. Consensus sequences homologous to BPNC10061R are found in B. mallei, B. cenocepacia and B.
thailandensis strains. The sequences were aligned, and corresponding secondary structures were predicted.
doi:10.1371/journal.pgen.1003795.g002
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of the 66 condition-specific profiles (pƒ0:005supported by boot-

strap assessment, Figure 4D, Table S10). Conditions associated

with rich media (LB) grouped together and segregated indepen-

dently from conditions associated with minimal media (CDM),

highlighting the profound influence of external nutrient conditions

on the global Bp transcriptome. Interestingly, seemingly unrelated

profiles sometimes clustered – for example, antibiotic treatment,

osmotic stress, and prolonged heat-stress were all associated with a

common down-regulation of clusters related to capsule biosynthe-

sis (C042, C029), electron transport (C113), and small molecular

metabolism (C034) (Figure S6). Conversely, apparently similar

perturbations sometimes yielded distinctive transcriptional profiles.

For example, exposure of Bp to high salt (2M NaCl) or high

sorbitol (2M) yielded distinct condition profiles, despite both

conditions likely resulting in high osmotic stress. Bp may thus

respond differently to salt- and non-ionic induced osmotic stress,

similar to findings in Synechocystis sp. [26].

Bp Clusters Facilitate Regulatory Motif Discovery
To identify cis-regulatory motifs driving these condition-

dependent expression programs, we used motif discovery algo-

rithms to analyze upstream regions of co-expressed cluster genes

[27,28]. 194 clusters (41%) were commonly classified as over-

represented in motifs (Ev0:1) (Table S11). Supporting the

accuracy of our results, we identified many motifs previously

shown in other bacterial species to regulate similar programs.

These included motifs matching the consensus binding sequences

of E. coli FliA, for a Bp cluster associated with chemotaxis and

mobility (C015) [29]; the Fur binding sequence for a Bp cluster

related to cation biology (C080) [30]; the P. aeruginosa LasR

binding sequence for a cluster related to secondary metabolism

(C024); and the R. solanacearum HrpB binding sequence for clusters

related to T3SS2 (C055, C210, C322) [31] (Figure 5).

Our analysis also identified previously unknown regulatory

motifs. For example, we discovered a candidate cis-regulatory

motif in C030 (BPSS1512 – BPSS1533), which is associated with

T3SS3, a known mammalian virulence factor. Comparisons of

homologs of BPSS1512 – BPSS1533 in Bm and Bt revealed that

this motif is conserved in all three species, suggesting that it is

functionally important. Other cis-regulatory motifs significantly

conserved in Bt or Bm were found in clusters related to capsular

biosynthesis (C133, C174, C440) (motif similarity in Bm,

p~1:5|10{7, assessed by TOMTOM [32]), and antibiotic

resistance (C179) (Bt, p~1:2|10{34; Bm, p~1:9|10{9).

Regulatory motifs were not confined to genes, but were also

associated with ncRNAs. Of 147 ncRNAs positively correlated to

gene clusters with motifs, approximately 40% of the ncRNAs

exhibited a similar motif in their upstream regions. For example,

the ncRNAs BPNC20041F and BPNC20065R both exhibited

upstream motifs similar to C080 and M016 (C055, C210, C322)

respectively, which are regulated by Fur [30] and HrpB [31]

(Figure 5, Table S12). Taken collectively, these results demonstrate

the utility of the Bp condition compendium as a resource for

regulatory motif discovery.

Deconvolution of High-Complexity Transcriptome
Profiles Using Condition-Dependent Clusters

We reasoned that the condition-dependent clusters, being

associated to a diversity of in vitro experimental conditions, could

be exploited as ‘‘molecular fingerprints’’ to deconvolute indepen-

dent and high-complexity Bp transcriptomes of biological interest.

As a proof-of-concept, preliminary analysis of two independent

T3SS3 mutants (BsaN, and BprC) revealed that genes differen-

tially expressed in T3SS3 mutants, were mapped onto the

condition-dependent network, were associated with i) significantly

closer network distances to the mutated gene compared to

randomized gene sets (pv10{4), and ii) consistent down-

regulation of condition-dependent clusters involved in Type III

secretion (C030, C035) (Figure S7A,B, Text S1). To apply this

concept to a more complex genetic scenario, we then used the Bp

condition-dependent network to deconvolute the program of

quorum sensing (QS), a genetic program in bacteria where

changes in gene expression and cellular behaviour are linked to

population density [33].

In Bp, genetic disruption of the PmlI-PmlR QS system has been

shown to attenuate virulence in mouse infection models [34].

Figure 3. Bp chromosomes display distinct transcriptional landscapes. (A) Cumulative curves for expression of genes across the condition
compendium. The graph represents the percentage of new genes expressed on Chr 1 (red) and Chr 2 (green) (y-axis) upon the successive addition of
conditions (x-axis). This analysis was confined to Sanger genes to minimize annotation errors. (B) Chr 1 and Chr 2 exhibit constitutive and mosaic
expression respectively. The graph relates the proportion of genes expressed on each chromosome (y-axis) under any particular number of
conditions (x-axis). Chr 1 genes are expressed in most conditions (rightward upslope, red), while Chr 2 genes are expressed in specific conditions
(leftward upslope, green). (C) Chr 1 genes exhibit higher expression levels than Chr 2 genes. Each dot represents the median expression of all
detectably expressed genes on the respective chromosome, joined by the same condition. Chromosomal expression levels were compared using
one-tailed paired t-test (p~2:68|10{18).
doi:10.1371/journal.pgen.1003795.g003
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However, as hundreds of genes are regulated by QS systems, the

specific molecular determinants underlying this virulence attenu-

ation remain unclear. To deconvolute the PmlI/R profile, we first

defined a ‘‘QS signature’’ of 1,187 genes (562 up-regulated, 625

down-regulated, Table S13), comprising genes significantly differen-

tially expressed between quorum sensing mutants and wild-type Bp.

The signature contained several genes previously reported to be

associated with quorum sensing in Bp, including genes related to

stationary phase growth (BPSL1505 (rpoS)), other quorum sensing

pathways (BPSS1180 (bpsI2), BPSS1176 (bpsR2)) and oxidative stress

(BPSL2863 (dpsA)) [34–37] (Table S14). Genes in the quorum

sensing signature were then mapped onto the condition-dependent

Figure 4. Co-expression network of Bp condition-dependent transcription. (A) Co-expression network. Nodes are individual genes,
connected to one another by significant co-expression relationships (mutual information score §0:3168). The colours represent clusters over-
represented in different Riley annotations, and their respective annotations are provided at the bottom. (B) Condition dependent cluster expression.
The heat-map depicts representative clusters and patterns of expression across conditions. Gene expression levels were mean-normalized. (C) Inter-
cluster relationships. The MRCN unit M036 consists of two clusters: C131 and C265, which include genes encoding proteins for degrading misfolded
proteins and other genes with hypothetical functions. Thickness of edges represents the strength of the co-expression relationship between two
genes. (D) Condition groups. The different condition-specific transcriptional profiles were clustered to one another based on similarities in expression
of genes from the Bp core genome. Condition groups deemed to be stable by bootstrap assessment are marked in colors.
doi:10.1371/journal.pgen.1003795.g004

Figure 5. Discovery of cis-regulatory motifs. Motifs were identified by analysing upstream sequences of constituent genes or operons in each
cluster. The asterisk (*) indicates that the motif was detected using MEME and BioProspector. Tick symbols indicate that all cluster genes have a
cognate homolog in the specified species (i.e. 100%), otherwise the proportion of homologs in that species is reported. Filled circles indicate that the
discovered cis-motifs in Bp are significantly similar (pv10{5) to Bt or Bm. Motifs that match to known binding sites and corresponding binding
proteins in other species are reported in the last column. Bt, B. thailandensis; Bm, B. mallei.
doi:10.1371/journal.pgen.1003795.g005
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network. Of the 1,187 genes, 1,002 genes were successfully mapped

onto the network. The QS signature genes were highly connected to

one another (Figure 6A), exhibiting a level of modularity signifi-

cantly higher than a randomized network (pv10{4, comparing

weighted clustering coefficients; Figure S7C, Text S1). QS mutants

exhibited down-regulation of condition-dependent clusters C015

and C021 (Figure 6A, violet dotted line), functionally related to

chemotaxis (p~3:5|10{42) and flagella assembly (p~9:3|10{25),

and up-regulation of cluster C029 related to Type III capsule

biosynthesis (CPSIII; p~1:1|10{12). Notably, previous reports

have demonstrated that flagella expression is required for full

virulence in Bp [38]. CPSIII is non-essential for virulence [39], but

its expression is reciprocal to the expression of genes involved in

Type I capsule polysaccharides (CPSI), a major virulence determi-

nant [25]. Indeed, we observed down-regulation of the CPSI

biosynthesis gene wzt2, which encodes a component of the ABC

transporter required for the delivery of capsular polysaccharides to

the outer membrane [40].

We sought to validate these results at the phenotypic level. In

motility assays, consistent with the network results we observed

significant differences in mobility between wild type and mutant

strain when cultured on soft agar, with the mutant being less

motile (Figure 6B). To investigate if CPSI polysaccharides were

effectively delivered to the outer membrane, we performed

electron microscopy [41]. Unlike wild-type strains, CPSI polysac-

charides were not effectively secreted in the QS mutant

(Figure 6C), and when cultured on agar plates, the QS mutant

exhibited a distinctively wrinkled colony morphology distinct from

the smooth phenotypes of wild type strain (Figure 6D). These

findings suggest that the altered virulence observed in Bp QS

mutant is likely due to disruptions in two key virulence traits:

flagella and CPSI activity.

Finally, we applied the condition-dependent network to decon-

volute a Bp transcriptome profile associated with murine lung

infection. Genes differentially regulated in Bp isolated from infected

mouse lungs were significantly enriched in 9 condition-dependent

clusters (pv0:05, hypergeometric test). One upregulated cluster

C030, comprised T3SS3 genes, likely reflecting a strong functional

requirement for T3SS3 activity during lung colonization [42].

Among the upregulated genes, we identified five that might function

as potential effector proteins - BPSS1498 (tssD-5), BPSL3319 (fliC),

BPSS1525 (bopE), BPSS1529 (bipD) and BPSS1532 (bipB). These

effectors were identified using the program PSORTb 3.0 [43] – a

subcellular localization prediction tool. Notably, several of these

genes have been previously validated as secreted effector proteins

[44,45], and are thus likely to be secreted into lung cells to hijack

host cellular pathways. Other clusters upregulated during lung

infection (C080, C446, C087) contained genes involved in ferric ion

acquisition, including BPSL1775 (C446), an iron uptake receptor,

and the pyochelin genes (pch) and fptA in cluster C087. The murine

lung infection profile was also significantly similar to in vitro profiles

related to nutrient starvation (pv0:01, Text S1). The results

indicate that two of the most strongly regulated pathways during Bp

lung infection are T3SS3 and iron-acquisition (see Discussion).

Discussion

In this study, we integrated strand-specific whole-genome

transcriptional data over 80 environmental, chemical and genetic

perturbations to generate a transcriptional condition compendium

of Bp. Previous molecular studies on Bp have largely focused on

Figure 6. Condition-specific deconvolution of QS mutants. (A) pmlI transcriptional network. The diagram shows genes differentially expressed
in pmlI-disrupted mutants (.2-fold change), overlaid onto the condition-dependent network. Red and green spots represent up- and down-
regulated genes. Yellow star - location of the pmlI gene. Genes coding for chemotaxis/mobility (violet-dotted line) and surface polysaccharide
antigens (blue-dotted line) are shown. (B) Motility assays. The wild type parental strain Bp008 is motile, as shown by the more turbid medium. The QS
mutant is non-motile and only grows along the line of inoculation. (C) Electron microscope photographs of the Bp capsule. The exopolysaccharide
material typical of Bp capsule I (CPSI) is apparent in the parental strain Bp008 as shown by the black streaks surrounding the rod-shaped bacterium. In
contrast, neither exopolysaccharide material nor capsule architecture is observable in the mutant. (D) Disruption of QS system results in altered
bacterial phenotype. The wild type parental strain Bp008 exhibits a smooth colony phenotype when grown on agar plate whereas the QS mutant has
a wrinkled phenotype.
doi:10.1371/journal.pgen.1003795.g006
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protein-coding genes defined by the original genome annotation

study [8]. However, our data suggests that additional functional

elements are also likely to reside in the Bp genome. For example,

of ,500 putative novel genes identified by an alternative gene

prediction algorithm (FGENESB [15]), 59% of these novel genes

were associated with expressed transcripts indicating that they are

transcribed. Notably, previous analysis of these novel genes has

also shown that 46% are associated with other proteins in the

COG, KEGG, STRING and NR databases, and high-confidence

ribosome binding sites have also been identified in 60% of these

novel genes [13]. Moreover, while several of these novel genes

have short lengths (,500 bp), recent proteomic studies have

confirmed the bona-fide expression of many short-length Bp genes

[46], and in one study a newly identified short-length Burkholderia

gene of 74 amino acids was experimentally demonstrated to

regulate contact dependent growth inhibition [47]. Expression of

short-length genes has also been confirmed in other bacterial

species, such as MgtR in Salmonella (30 amino acids) [48], Sda in

Bacillus subtilis (46 a.a.) [49,50], YccB, YncL, YohP and IlvX in

Escherichia coli (,50 a.a.) [51].

Besides potential coding genes, we also identified in this work

.700 Bp condition-dependent ncRNAs. This is a conservative

estimate, since in our study potential ncRNAs shorter than 100 bp

were excluded from analysis due to challenges in resolving bona-fide

ncRNA signals from background noise. ncRNAs are emerging as a

major new class of regulatory molecules governing many aspects of

prokaryote biology, including protein synthesis (e.g. tRNAs),

cellular regulation (riboswitches) and cellular catalysis (ribozymes).

ncRNAs associated with virulence and host-pathogen interactions

have also been found in Yersinia spp and E. coli [52,53]. In Bp, we

identified several ncRNAs expressed under conditions plausibly

linked to mammalian infection, such as BPNC10134F, BPNC20132R,

BPNC10175R expressed in normal human serum and BPNC10090R,

BPNC20136F, BPNC20142R expressed upon insulin exposure.

Besides ncRNAs, we also discovered genome-wide expression of

antisense RNAs in Bp. In other prokaryotes, antisense RNAs have

been shown to modulate gene transcription by promoting RNA

degradation or transcriptional interference [54], and in pathogens

such as H. pylori and L. monocytogenes, antisense RNAs are involved in

regulating metabolic enzymes and virulence factors [5,55]. Taken

collectively, these results strongly suggest that several features of Bp

biology are likely to be modulated by other molecular entities beyond

protein-coding genes, specifically ncRNAs and antisense RNAs.

Our data demonstrates that the two Bp chromosomes exhibit

very different transcriptional landscapes. Specifically, Chr 1 genes

were often constitutively and highly expressed, while Chr 2 genes

exhibited ‘‘mosaic’’ expression, where distinct subsets of Chr 2

genes were expressed in a strongly condition-dependent manner.

Previous genome analysis has also suggested that the two Bp

chromosomes are distinct in composition and function, and Chr 1

has been proposed as a ‘‘housekeeping’’ chromosome. Interest-

ingly, when compared against other prokaryotic transcriptome

studies, the transcriptional landscape of Bp Chr 1 bears high

resemblance to other single chromosomal microbes E. coli, L.

monocytogenes and B. subtilis [4,5,56], while the consistently lower

expression levels of Bp Chr 2 and its condition response profiles

more closely resemble profiles previously observed in plasmid

pXO1 in B. anthracis and pSymB in S. meliloti, respectively [57,58].

Comparison of our gene expression data to previously published

proteomic studies also revealed that there is a positive but modest

correlation between transcript and protein data, as has been

reported for other prokaryotes [46,59–61] (Figure S8). However,

to our best knowledge, this is the first formal report demonstrating

the distinct transcriptional landscapes of multi-chromosomal bacteria,

and suggests very different evolutionary origins for the two Bp

chromosomes. Specifically, Bp Chr 1 is the ancestral chromosome

with a transcriptional profile similar to single-chromosome patho-

gens, while Chr 2 is likely derived originally from an exogenous

plasmid, which subsequently acquired sufficient numbers of

essential genes to become an obligate part of the Bp genome.

Interestingly, these findings may also explain the origins of other

prokaryotes with multi-partite genomes (e.g. Vibrio cholerae).

Using the compendium data, we constructed a co-expression

network of Bp genes. Co-expression networks are often useful for

two major applications – functional discovery, and cis-regulatory

motifs. For functional discovery, genes encoding proteins partic-

ipating in the same pathway, or forming part of the same protein

complex, often display patterns of co-regulation when surveyed

across a large number of diverse conditions [23]. In the Bp

network, examples of co-expressed genes included clusters related

to motility, aerobic respiration, detoxification, and ribosomal func-

tion (Figure 4A). Besides known genes, such ‘‘guilt-by-association’’

approaches can also often shed light on genes with poorly-under-

stood or unknown functions. Despite ongoing genome annotation

efforts, many hypothetical and putatively assigned genes still exist

in the BpK96243 genome, and less than 50% of Bp genes are

currently annotated in the KEGG (Kyoto Encyclopedia of Genes

and Genomes) PATHWAY database (www.genome.jp/kegg/

pathway.html). Linking these genes to other co-expressed genes

of known function may thus prove useful in inferring potential

functions. For example, we highlighted a set of ‘‘hypothetical’’

protein-coding genes (BPSL2828, BPSL2829) which strongly co-

expressed with genes associated with heat-shock and protein

unfolding. Once identified, these genes can then be further tested

through targeted experimentation. Indeed, ongoing in silico analyses

by the PATRIC team have revealed that BPSL2829 is a heatshock

protein GrpE. Besides protein-coding genes, we also discovered

numerous associations between ncRNAs and the co-expressed

genes. For example, the ncRNAs BPNC20122R and BPNC20135F

were positively correlated with the T3SS3-related expression

clusters C030 and C035 (Rw0:75, pv0:01), suggesting that these

two ncRNAs might also influence Type III secretion activity.

For cis-regulatory motifs, we analyzed the Bp network to

discover .190 candidate cis-regulatory motifs previously unde-

scribed in Bp, related to biologically important functions such as

iron uptake, motility and secondary metabolism. Several of these

motifs were conserved in other distantly-related species, such as E.

coli and P. aeruginosa, arguing that upstream regulatory pathways

controlling these functions are likely to be conserved. In general,

most of the newly detected motifs in our study remain

uncharacterized. Possible explanations include (i) similar motifs

in other species have not been studied, (ii) regulation of the same

cellular process in Bp has been changed due to evolutionary

pressures or (iii) the DNA-binding protein and the motif it

recognizes have mutated in a parallel manner [62].

Finally, our study presents a general approach to integrate

condition-dependent transcriptome data with genetic data, for the

purpose of dissecting transcriptional profiles of biological interest

but formidable complexity. Applying this concept to the process of

quorum sensing, we were able to highlight two processes, cell

motility and capsule formation, as likely contributors to the attenu-

ation of virulence previously observed in a mutant genetically

disrupted in PmlI, a master regulator of quorum sensing. We also

used this approach to highlight T3SS3 and iron acquisition as two

of the most highly regulated pathways during murine in vivo

infection. A recent Bp study showed that the disruption of ferric-

pyochelins and other iron acquisition mechanisms significantly

reduced bacterial loads in murine lungs, though a mba pch hmu hem
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quadruple mutant was still capable of iron acquisition and

inducing lethality in an acute murine melioidosis model [63]. In

pyochelin-negative B. cepacia strains, exogenously supplied pyo-

chelin increased bacterial virulence [64]. Collectively, these results

imply that pyochelin-mediated iron acquisition may represent the

preferred pathway amongst the numerous iron acquisition mecha-

nisms encoded in the Bp genome for efficient iron uptake during

host infection. The presence of many other iron acquisition genes

and perhaps even novel ferritin-iron acquisition pathways could

likely act as backup mechanisms in case Pch is ineffective, as

observed in the quadruple mutant experiment [63].

In conclusion, similar to recent tiling microarray studies of other

bacterial species [4,5,56], the Bp condition compendium presented

here represents an important contribution to the melioidosis field,

in its validation of previously described genes discovery and

characterization of a host of novel genomic features, including

ncRNAs, antisense transcripts, and co-expression clusters contain-

ing both known and hypothetical genes. Detailed experimental

interrogation will be necessary to characterize the functional

relevance of these genomic features to Bp regulation, physiology

and pathogenicity.

Materials and Methods

Bacterial Strains and Conditions
Bp strains used are listed in Table S15. Strains were exposed to

82 separate conditions broadly classified under 21 major categories

(Table S1). Manipulations of live bacteria were performed in a

BioSafety Level 3 facility in DSO National Laboratories. For all

conditions, a minimum of 2 biological replicates were used.

BpK96243 Tiling Microarrays and Expression Profiling
High-density tiling arrays were fabricated by Roche NimbleGen

(Roche NimbleGen, USA) based on the BpK96243 reference

genome [8]. Bacterial RNAs were extracted and processed for

microarray hybridization as described in [13]. In total, 166

samples were profiled; however one sample (K9BALBcLungs 1)

had overwhelmingly high background and was excluded. The final

Bp condition-specific compendium comprises 165 array profiles.

Microarray images were analyzed by Roche NimbleScan software

(Roche NimbleGen, USA), and LOWESS normalized (Locally

Weighted Scatter Plot Smoother) by GeneSpring GX software

(Agilent, USA). All arrays were median-normalized. Normalized

signals from biological replicates were averaged to obtain a single,

normalized, probe signal for each condition. Microarray data has

been deposited into the Gene Expression Omnibus (GEO) under

accession number GSE43205.

Identification and Annotation of Transcriptionally Active
Regions (TARs)

A moving window binomial approach was performed for de novo

TAR identification [14] (Text S1). TARs were visualized using

Artemis (Sanger, UK) or SignalMap (Roche NimbleGen, USA),

and annotated against Sanger coding genes [8], ncRNAs (Rfam,

[18]), FGENESB predicted genes [13,15], and predicted operons.

Genes passing a pv0:05 (Binomial test) cut-off were classified as

expressed. Polycistronic operons were classified as expressed only if

all gene members within the operon were classified as expressed in

the same condition. Antisense transcripts were defined as expressed

TARs mapping to the complementary strand of a Sanger or

FGENESB gene, either spanning the entire gene or partially.

Differential expression between conditions was determined by

comparing the log-transformed median probe expression levels of

probes corresponding to genic units (e.g. Sanger genes). Expression

levels were visualized using GeneSpring GX 11.0 software (Agilent,

USA), using a .2-fold change cutoff (Text S1).

Identification of ncRNAs
We applied the following criteria to identify new candidate

ncRNAs: i) the ncRNAs should be a subset of the identified TARs,

ii) ncRNAs should be distinct from other genic features (e.g.

protein-coding genes) by a minimum of 3 consecutive probes

(105 bp), iii) ncRNAs are strictly located in intergenic regions, iv)

ncRNAs should not be antisense to any genic feature, v) expression

levels of probes corresponding to the ncRNA must be the top 90th

percentile and above of expressed probes, and vi) the minimum

length of an ncRNA is 100 bp. Secondary structure predictions

were performed using RNAfold [65].

Gene Co-expression Networks and Co-expression
Clusters

Co-expression associations between genes were defined by the

ARACNe algorithm [21]. Each gene pair was assigned to a mutual

information score (MIS) greater than zero, and we retained the top

2% of gene pairs (MIS§0:3168). The MISs were also used to form

a weighted adjacency matrix, and indirect interactions between

gene pairs were identified and removed by ARACNe using a Data

Processing Inequality strategy. The final network covers 5,387

genes connected by 60,024 direct interactions. Distances between

adjacent genes were computed by subtracting the power

transformed weight by its maximum, forming a distance matrix.

The iGraph R package was used to compute the shortest distance

between any two genes based on the distance matrix.

To define co-expression clusters, we identified groups of highly

co-expressed genes using Markov Clustering (MCL) [22]. To

identify the optimal level of cluster granularity, the clustering

analysis was performed using different inflation parameters (1.0 -

3.5) and at each value the clustering results were evaluated for

structural efficiency and functional coherence, measured by the

fraction of gene pairs within the cluster sharing identical or similar

Riley functional categories. We also confirmed the robustness of

the cluster compositions by a leave-one-out validation approach

where the network construction and clustering was repeated on a

reduced data set with one sample removed in an iterative fashion.

An observed cluster was deemed robust if at least 75% of the

cluster composition was also observed in at least 95% of the

reduced data sets. Stable clusters were compared to Riley’s

classifications, and functional annotations were assigned to clusters

exhibiting a statistical over-representation of the same or similar

annotations (pv0:05, after Benjamini & Hochberg multiple

testing correction). We also constructed maximum related cluster

networks (MRCN), composed of highly weighted edges connecting

different co-expression clusters [24]. To compute associations

between any cluster pair c1 and c2, we quantified the number of

highly connected links (Lc1,c2) bridging c1 and c2and calculated

the Z-score of Lc1,c2:
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where kin
c is the number of highly weighted links of cluster c

incoming from other clusters or genes; kout
c is the number of links

outgoing to other clusters or genes; and m is the total number of

highly weighted links bridging different clusters. Clusters connect-

ed by Z§17were deemed significant. The condition-dependent

co-expression network was visualized using Cytoscape 2.8.1.
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Motif Identification
Candidate regulatory motifs were identified using the MEME

algorithm [27], applied to sequence regions upstream of genes or

the first operon gene (translational start site to 500 bp upstream).

The background was set to a first order Markov model. Other

MEME parameters were: (i) zero or one occurrence per gene, (ii)

minimum width of 8 bp, and (iii) maximum width of 35 bp, (iv)

motifs were not searched for on the reverse complement strand.

Motifs were deemed to be significant if Ev0:1. See Text S1 for

the parameters used in BioProspector. Similarities between motifs

in different Burkholderia species were measured using TOMTOM

[32]. We also compared the discovered motifs against the Prodoric

8.9 database [66].

Mouse Infection Assays
For mouse infections, female BALB/c mice (6–8 week-old;

Harlan Laboratories, Bicester, Oxon, UK) were maintained under

Animal Biohazard Containment Level 3 conditions. All animal

experiments were performed in accordance with the guidelines of

the Animals (Scientific Procedures) Act of 1986 and were

approved by the local ethical review committee at the London

School of Hygiene and Tropical Medicine. Prior to intranasal (i.n.)

infection, mice were anesthetized intraperitoneally with ketamine

(50 mg/kg; Ketaset; Fort Dodge Animal, Iowa, USA) and xylazine

(10 mg/kg; Rompur; Bayer, Leverkusen, Germany) diluted in

PFS. Challenge was performed by administering a total volume of

50 ml i.n. containing 2500 colony forming units (CFU) BpK96243.

At day 3 post-infection (p.i.), mice were killed and lungs aseptically

removed into 3 ml of cold Trizol Reagent (Invitrogen, CA, USA).

Organs were homogenized using a Polytron homogenizer and

samples stored at 280uC until further processing.

Supporting Information

Figure S1 BpK96243 tiling microarray design and quantifica-

tion. (A) Probes were tiled across both forward (+) and reverse (2)

strands of the 2 Bp chromosomes. Red bars show the locations of

annotated Sanger genes in the genome on the respective strands of

the chromosomes. Blue bars represent the probes. (B) Schematic

representative example of probes on the tiling array. Precise

50 mer reverse complement probes were designed for both top

(forward) and bottom (reverse) strands of both chromosomes of

BpK96243. Sense probes are located within predicted genes and

on the coding chromosomal strand. Reverse complements of sense

probes constitute the antisense probes. (C) Genes with high probe

redundancy (probe counts). Two representative examples are

shown. BPSS1434 and BPSS1439 are membrane anchored cell

surface proteins found on Chr 2 with probe counts of 2 to 10. Each

shares significant similarity with streptococal hemagglutinin.

There are 16 adhesin genes encoding for proteins with conserved

domains associated with the Hep-Hag family hemagglutinin-like

proteins in the BpK96243 genome, out of which, 9 of them

correspond to high probe redundancy in our array design. (D)

Quantitation of array reproducibility and robustness. (i) Technical

replicates. Scatter plot comparing signal intensities of all probes

from 2 technical replicates of LBS were plotted and the Pearson

coefficient of determination computed and shown at the bottom

right. The dynamic range of signal intensities is limited by the

scanner. (ii) Biological replicates. Scatter plot comparing the probe

expression ratios of all probes from 2 biological replicates of LBS.

The corresponding Pearson correlation coefficient is shown at the

bottom right. For ii), note that expression ratios are being

compared rather than absolute intensities. Thus, two replicate

profiles are deemed reproducible if their probe ratios cluster

around 0. More than 98% of probes lie within the acceptable range

(grey dots). Blue dots (,2%) represent outliers that are random.

(TIF)

Figure S2 Experimental RT-PCR validation of detected

transcripts and novel genomic features. (A) Sanger gene expres-

sion. SignalMap snapshots of expressed Sanger genes belonging to

different functional classifications and their respective RT-PCR

validations (100 bp molecular ladder): i. DNA replication genes –

BPSL0074 (dnaN) and BPSL0075 (dnaA) from K9LBS; ii. Motility

gene – BPSL3319 (fliC) from K942C16hrs; iii. Virulence genes

(T3SS3) –BPSS1546 (bsaN), BPSS1525 (bopE), from K9UV1hr; iv.

Capsule gene – BPSL2800 (wcbH) from K930NHS. (B) FGENESB

novel genes. PCR products using primers from Left to Right, 1.

BPSL0393.1-F&R, 2. BPSL0706.1-F&R, 3. BPSL1304.1-F&R, 4.

BPSL2880.1-F&R, 5. BPSL2882.1-F&R, 6. BPSS0035.1-F&R, 7.

BPSS0279.1-F&R, 8. BPSS0818.1-F&R, 9. BPSS1773.1-F&R, 10.

BPSS1927.1-F&R and Lane M: 100 bp molecular ladder. (C)

Operons. Bp operon BpOpr0007 (BPSL0026 – BPSL0032).

Operon expression from condition K9TaurineES was validated

by RT-PCR. Regions between the gene members were amplified

by primers as shown by black arrows above. (D) Antisense

transcription. Experimental validation of antisense transcription of

Sanger genes using strand-specific real-time PCR. Fourteen

Sanger genes were experimentally validated; 7 of them exhibited

normal gene expression (sense expression, Forward Primer, left)

and 7 of them with associated antisense transcripts on the

microarray (antisense expression, Reverse Primer, right). The

figure shows concordance of results for most of the genes (except

BPSL0502 and BPSL2540) using strand-specific real-time PCR. (E)

Non-coding RNA (ncRNAs). (i) Experimental validation of five

novel ncRNA transcripts using RT-PCR; (ii) Experimental

validation of ncRNA BPNC10061R transcripts under different

conditions.

(TIF)

Figure S3 Antisense transcription of Bp operons. During in vivo

infection (K9BalbcLungs), two operons belonging to T3SS3

exhibited antisense transcription: BpOpr1082 (BPSS1529 and

BPSS1530) and BpOpr1083 (BPSS1531 – BPSS1533).

(TIFF)

Figure S4 Expression heat-map of 16 genomic islands. Gene

expression of 16 genomic islands (GIs) in the BpK96243 genome

were normalized to mean zero across non-genetic perturbations.

The over- and underexpression of genes are indicated in red and

green, respectively. Overexpression of GIs in specific perturbations

are marked by yellow boxes and the involved conditions are

indicated on the right.

(TIF)

Figure S5 Sequence, chromosomal synteny conservation and

differential expression of ncRNAs. (A) Total number of ncRNAs in

B.pseudomallei K96243 being conserved in B.cenocepacia AU1054,

HI2424, B.mallei ATCC23344 and B.thailandensis E264. The

number of conserved ncRNAs in one species is indicated in

brackets. (B) Shared synteny statistics. Conserved ncRNAs are

flanked by (i) two homologs with conserved genes’ order; (ii) two

homologs with reversed genes’ order; (iii) one homolog, the gene’s

order is either conserved or reversed. We determined the order of

genes/homologs by using K96243 as reference. (C–D) The

distributions of up-regulated and down-regulated ncRNAs across

the conditions are shown respectively.

(TIF)

Figure S6 Common down-regulated genes in Bp during

exposure to antibiotic treatment, osmotic stress and prolonged
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heat stress. 158 genes were commonly down-regulated by at least

2-fold in the presence of chloramphenicol (K9Chlamp), ceftazi-

dime (K9Ceft), 2M of sorbitol (K9Sorb) or under 42uC for

16 hours (K942C16hrs). Genes that are significantly enriched

(pv0:05, hypergeometric test) by clusters or Riley’s functional

annotations are indicated at the right column.

(TIF)

Figure S7 Visualization of condition-dependent networks of

bprC, bsaN and weighted clustering coefficient properties of the pmlI

network. (A) bprC transcriptional network. The distances between

bprC and other differentially expressed genes are significantly

shorter (pv10{4). (B) bsaN transcriptional network. The distances

between bsaN and other differentially expressed genes are signifi-

cantly shorter (pv3:6|10{8). (C) The comparison between the

observed weighted clustering coefficient (WCC) from the pmlI

transcriptional network (blue line) and the distribution of WCC

obtained from a set of randomized networks (red line).

(TIF)

Figure S8 Comparison between transcript levels from our study

to protein levels from published literature. (A) The scatter plot

shows the ratio of 28 transcripts to corresponding proteins in rpoE

mutants compared to wild type [61]. Significance of the Pearson

correlation coefficient (R) was tested using a two-tailed t-test. (B)

Approximately 80% of Bp proteins detectibly expressed at early

stationary phase [46] were also associated with detectible

transcripts (pv0:004, Text S1). These latter transcripts also

exhibited higher expression signals compared to transcripts not

associated with detectible proteins (p~1:6|10{14, one-tailed

Wilcoxon rank sum test). Taken together, transcript and protein

abundance in Bp are positively but not perfectly correlated.

(TIF)

Table S1 Details of conditions used for Burkholderia pseudomallei

transcriptome.

(XLS)

Table S2 Overview of transcriptional landscape in Burkholderia

pseudomallei.

(XLS)

Table S3 Primers for RT-PCR validation of transcripts and

novel genomic features.

(DOC)

Table S4 Details of genes without detectible expression.

(XLS)

Table S5 The total number of expressed genomic features in

each condition.

(XLS)

Table S6 Predicted secondary structures of novel Bp ncRNAs

using RNAFold.

(DOC)

Table S7 Details of transcriptional landscape comparison between

chromosome 1 (Chr1) and chromosome 2 (Chr2) in each condition.

(XLS)

Table S8 Coexpression network analysis revealed a collection of

gene clusters, functional enrichments in the clusters and

associations between clusters - maximum relatedness cluster

network (MRCN).

(XLS)

Table S9 Correlation between ncRNAs and clusters.

(DOC)

Table S10 Condition subgroups identified by condition clustering.

(DOC)

Table S11 cis-regulatory motifs detected using genic upstream

sequences from clusters and MRCNs.

(DOC)

Table S12 ncRNAs with identified cis-regulatory motifs.

(DOC)

Table S13 Differential expression of quorum sensing signature

genes.

(DOC)

Table S14 Quorum-sensing (QS) associated genes found in
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