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Abstract

Background: Large and complex population-based cancer data are becoming broadly available, thanks to
purposeful linkage between cancer registry data and health electronic records. Aiming at understanding the
explanatory power of factors on cancer survival, the modelling and selection of variables need to be understood
and exploited properly for improving model-based estimates of cancer survival.

Method: We assess the performances of well-known model selection strategies developed by Royston and
Sauerbrei and Wynant and Abrahamowicz that we adapt to the relative survival data setting and to test for
interaction terms.

Results: We apply these to all male patients diagnosed with lung cancer in England in 2012 (N = 15,688), and
followed-up until 31/12/2015. We model the effects of age at diagnosis, tumour stage, deprivation, comorbidity and
emergency presentation, as well as interactions between age and all of the above. Given the size of the dataset, all
model selection strategies favoured virtually the same model, except for a non-linear effect of age at diagnosis
selected by the backward-based selection strategies (versus a linear effect selected otherwise).

Conclusion: The results from extensive simulations evaluating varying model complexity and sample sizes provide
guidelines on a model selection strategy in the context of excess hazard modelling.

Keywords: Excess hazard models, Interactions, Non-linearity, Non-proportionality, Variable selection

Background
Population-based cancer datasets have become richer in
recent years. Improved completeness of key variables
and additional information from linkages with other
datasets (secondary care management data, specialised
registry data, treatment data) have both contributed to
enhance the quality and utility of data. Furthermore,
longstanding datasets make possible the analysis of long-
term trends and survival probabilities can be estimated
further away from the date of diagnosis.
Analysis of population-based cancer survival has greatly

benefitted from this data enrichment. However, when
modelling the effect of covariates on survival, special care
should be taken when assuming or relaxing assumptions

of a linear effect or an effect constant in time (the propor-
tional hazards -PH- assumption). Thus, a modelling strat-
egy is required. Aside from the time-to-event setting,
many strategies are developed for variable selection and
tests for non-linearity of continuous variables, traditionally
based on backward, forward or stepwise algorithms. In the
time-to-event field in general, and in population-based
cancer survival analyses in particular, less attention has
been devoted on the selection of the functional form of
predictor variables [1, 2]. Indeed, the effects of variables
are commonly assumed linear and constant in time, as-
sumptions likely violated for many predictors of cancer
survival, especially with long-term follow-up.
Machine learning algorithms have focussed on vari-

ables selection in scenarios where tens or thousands of
variables are available [3]. These methods mainly focus
on factor analysis and random survival forests [4]. In the
context of population-based data, the number of
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variables remains low or moderate, but the functional
forms of their effects (non-linear and/or time-
dependent), as well as their possible interactions need to
be carefully examined. Model building fits within three
different purposes: descriptive, explanatory and predict-
ive [5]. Our aim here is to describe, measure and quan-
tify accurately the effects of relevant (active) variables
while excluding spurious effects.
Some authors [6–8] have shown the importance of

taking account as well as testing both non-linearity and
time-dependency of effects simultaneously, when model-
ling time-to-event data, in order to get accurate model-
based estimates of survival.
We identify two model-building strategies, developed

relatively recently, that offer a systematic and compre-
hensive approach to the selection of predictors’ effects
for survival data. One is devised by Sauerbrei and col-
leagues using fractional polynomials (MFPT) [9] and fur-
ther adapted for restricted cubic splines (MVRS) [10]
and for the inclusion of interactions (MFPI and MFPI-
gen) [11, 12]. The second one is proposed by Wynant
and Abrahamowicz [13], and will be referred to as
W&A. These strategies are formulated and tested in the
general time-to-event context, in which overall mortality
patterns are modelled. Aiming to identify predictors of
cancer survival, we focus here on modelling the excess
hazard, which is the main quantity of interest in
population-based cancer studies [14–16].
Our first aim is to compare and illustrate the use of

these model-building strategies (namely MVRS, W&A),
in the context of excess hazard regression models. We
also propose an extension of those two strategies
(called adapted MVRS, aMVRS and adapted W&A,
aW&A) for handling interactions between prognostic
factors, and compare them to MFPIgen, intended for
use with observational data. The performance of these
strategies is evaluated in a simulation study mimicking
the cancer survival experience of 2000 lung cancer pa-
tients diagnosed in 2012 and followed up to the 31/12/
2015. We model the effects of explanatory factors on
lung cancer survival for the whole cohort of patients di-
agnosed with lung cancer in 2012. We provide some
guidelines over variable and effect selection, based on
the simulations.

Methods

a. The study context: modelling excess mortality

Our focus is on the excess mortality hazard and the
corresponding net survival. The excess mortality hazard
is the hazard experienced by cancer patients over and
above their background (i.e. expected) mortality hazard
due to causes other than the cancer under study. Net

survival is derived from the excess hazard and represents
the survival experienced by cancer patients under the as-
sumption that they could only die from cancer [17]. Net
survival therefore does not depend on the other causes
of death, and it is of interest for comparison purposes
between countries or periods within a country [18]. In
the absence of reliable information on the cause of
death, the expected mortality is estimated by the mortal-
ity observed in the general population from which pa-
tients come from (aka relative survival setting). These
life tables are typically defined by age, sex, calendar
period, but can also include additional variables such as
socio-economic status and ethnicity. Net survival can be
estimated non-parametrically [17] or through semipara-
metric [19] or fully parametric [20–24] excess hazard
regression models. Parametric and nonparametric ap-
proaches have their own advantages and disadvantages.
For the latter, when net survival needs to be estimated
in sub-groups, it reduces precision and may lead to un-
stable estimates. Although there is no assumption rela-
tive to the functional forms of effects of variables, these
effects cannot be estimated directly. Furthermore, the
consistent estimator of net survival proposed by Pohar-
Perme and colleagues [17] is unconstrained and thus
may show a non-decreasing behaviour in the tails, violat-
ing the basic assumptions of survival models. For para-
metric approaches, the challenges include (a) proper
modelling of the baseline excess hazard function, (b) in-
clusion of potential time-dependent effect of categorical
factors, (c) potential non-linear and time-dependent ef-
fects of the continuous variables as well as (d) interac-
tions between prognosis factors.
Here, we will use flexible regression models with re-

stricted cubic splines functions for modelling non-linear
and time-dependent effects on the log excess hazard
scale [23, 25]. The effects of the variables that define the
life tables need to be included in the modelling of the
excess hazard to produce consistent net survival esti-
mates [17, 20]. Thus, at individual level, the excess mor-
tality hazard λE(t, x) is linked to the overall λ(t, x) and
expected (population) mortality hazards λP(a + t, y + t, z)
as follows:

λ t; xð Þ ¼ λE t; xð Þ þ λP aþ t; yþ t; zð Þ;

where z is a subset of the set of variables x, correspond-
ing to the variables defining the life tables, in addition to
age a + t and year y + t (a and y being the age at and year
of diagnosis, respectively). The population mortality haz-
ard is considered to be known, and we are interested in
estimating λE(t, x) at time t after diagnosis.
In a general form, the excess hazard regression models

considered in our work could be written as follows with
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two prognostic variables x1, continuous, and x2, categor-
ical (with J categories, j = 1, …, J):

λE t; xð Þ ¼ λ0 tð Þ exp β1 tð Þ� f x1ð Þ þ
XJ

j¼2

β2; j tð Þ�I x2¼ jf g

 !
;

where λ0(t) is the baseline excess hazard (defined by
using a spline function on the log scale), f(x1) = α1x1 if x1
is modelled with a linear (L) effect, and f a spline func-
tion of x1 if x1 is modelled with a non-linear (NL) ef-
fect; β1(t) and β2, j(t) are spline functions of t if x1 and x2
are modelled with time-dependent (TD) effects (the
more complicated case), or β1(t) = β1 and β2, j(t) = β2, j,
j = 1, …, J if not (i.e. PH, the simplest case). For the cat-
egorical variable x2, we considered a “joint” parameter-
isation of its effect: either all J − 1 dummy variables are
time-dependent, or none. To simplify notation later, we
define β2ðtÞ�gðx2Þ ¼

P J
j¼2 β2; jðtÞ�Ifx2¼ jg ; lastly Ifx2¼ jg

defines an indicator variable (equal to 1 when x2 = j, 0
otherwise).

b. Model selection strategies

The MVRS strategy
MVRS is based on an iterative forward selection of vari-
ables and increasingly complex functional forms of ef-
fects [10]. The model-building proceeds in three steps:
(a) the first step focusses on the presence of a variable’s
effect, and its possible non-linearity in the case of con-
tinuous predictors, while assuming proportionality of
hazards for all variables. The iterative process loops
through all variables from most to least significant, until
no effect is removed or added. (b) In the second step,
non-proportionality of hazards is explored by restricting
the follow-up time to the time until the median time of
observed events on which step (a) is performed and add-
itional effects may be retained. (c) The third step con-
sists of testing the non-proportionality of all effects
selected in (a) and (b) in a forward stepwise fashion. The
likelihood ratio test is used for evaluating significant ef-
fects, with a pre-fixed significance level (usually 5%).

The W&A strategy
W&A advocate for the use of an iterative backward
elimination of non-significant non-linear and time-
dependent effects [13]. From the most complex model,
including all possible non-linear and time-dependent ef-
fects, each non-linear and time-dependent effect is
tested in turn using likelihood ratio test, and the effect
corresponding to the highest p-value (above 5%) is re-
moved. From this new model, we test again each
remaining non-linear and time-dependent effect in turn,
and repeat those steps until all effects kept are

significant. The final model is found when all tests yield
p-values under 5%.
There are several structural differences in the ap-

proaches described above. Firstly, W&A advocates for
simultaneous tests of non-linear and time-dependent ef-
fects, and the effects are removed one by one, starting
from the smallest. By contrast, the MVRS strategy estab-
lishes a hierarchy and investigates possible non-linear ef-
fects prior to testing time-dependency of the selected
effects. The simultaneous tests of effects in W&A may
influence subsequent selections of non-linear and/or
time-dependent effects. In MVRS, the selection of non-
linear effects occurs in the first step, which may well in-
fluence the later selection of time-dependent effects, but
the selection of time-dependent effects will not affect re-
tention of non-linear effects. Secondly, the initial models
considered are different and lead to backward (in the
case of W&A) or forward (MVRS) selection of variables.

Strategies in the relative survival setting
In both strategies, the main life table variables (age, sex,
year and deprivation) are forced into the models, as recom-
mended for excess hazard regression modelling [14, 17, 20].
For the non-life table variables linearity and time-
dependency and overall effects are tested so the variables
could be completely removed from the set of predictors.

Extensions of the strategies for testing for interactions
The authors of MVRS also consider interactions be-
tween variables retained, once the main effects have
been selected [11]. MFPI and MFPIgen are defined to
consider categorical-by-continuous interactions and
continuous-by-continuous interactions respectively, even
though (from our understanding) they do not test for
non-proportionality of the interaction terms [9].
We propose to adapt the original W&A and MVRS

strategies to include tests for the form and presence of
interactions in the same fashion that they already test
for the functional form and inclusion of each variable.
There are three types of possible interactions: between

two continuous variables, between a continuous and a
categorical variable, and between two categorical vari-
ables. We focus on continuous–by-categorical inter-
action, and the strategies will need to test whether or
not the interaction is needed and if it is time-dependent.
The general form of the excess hazard model is as fol-

lows, with x1 continuous and x2 categorical (with J cat-
egories j = 1, …, J):

λE t; x1; x2ð Þ ¼ λ0 tð Þ exp�β1 tð Þ� f x1ð Þ þ β2 tð Þ�g x2ð Þ

þβ3 tð Þ� f x1ð Þ�g x2ð ÞÞ;

with all functions as defined above.
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The adapted version of MVRS, aMVRS, tests for each
interaction in the three steps presented earlier: (a) joint
test of the interaction factors, i.e. test for β3 = 0; (b) In
the restricted follow-up time (until the median time of
observed events) significance test for β3 = 0; (c) If β3 ≠ 0
in either (a) or (b), test time-dependence of the inter-
action, i.e. β3(t) = β3.
The adapted version of the W&A algorithm, aW&A,

tests for each interaction in the same way it tests for the
effects of main variables: it first tests for time-dependent
effect of the interaction, i.e. β3(t) = β3, and then, if a
time-fixed effect is favoured, it tests for the main effect
of the interaction β3 = 0.
The MFPIgen algorithm only considers interactions in

a final step, after selecting the main effects of variables
in the usual steps (a)-(c). It tests for β3 = 0. In all algo-
rithms the forms of the interactions, f and g are defined
by the form of the main variables x1 and x2 as they are
modelled when the interaction is considered.
In the case of interactions with categorical variables, the

presence of the interaction could be tested in two different
ways: overall (called joint test [26]), or each level of the
interaction separately. Here we only test the interactions
as one effect, such that all factors relating to one inter-
action would be removed/included when testing for their
inclusion. In the algorithms, the user specifies which inter-
action terms are worth investigating. Specific significance
levels for the tests related to interactions may be chosen
as in MVRS. Additional file 1 details how the algorithms
are adapted to testing for interactions.

c. Simulation of biologically plausible lung cancer
survival data

Data generation and simulations design
We use the observed survival time and vital status of the full
cohort of lung cancer patients (N = 17,597), evaluated on the
31st December 2015, to obtain the regression coefficients of
an excess hazard regression model. The large sample size en-
ables detection and precise estimation of small effects. These
coefficients are used for simulating cancer survival times, as
detailed in formulas (A)-(D) below. From this excess hazard
regression model, the cancer survival time Tc is generated
using the inverse transform method [27, 28].
For the data design, we randomly extract 2000 men diag-

nosed with lung cancer in England in 2012 from the Eng-
lish population-based cancer registry, among those with
valid information on stage at diagnosis. We kept the infor-
mation on their age at diagnosis (continuous variable), their
level of deprivation (categorical variable with 5 levels of in-
creasing deprivation measured by the income domain of
the Index of Multiple Deprivation [29]), and their stage of
cancer at diagnosis (categorical variable with 4 levels of

increasing severity based on the Tumour, Nodes, Metastasis
classification [30]). The relatively small sample size for
population-based data will enable us to test the practical
performances of the algorithm in a setting with low censor-
ing rate (15%) but small number of patients (relative to
standard population studies). We repeated this for a larger
sample of 5000 cancer patients to study the sensitivity of
the model selection strategies on the number of events. By
default, all results are presented for the samples of 2000 pa-
tients, except when clearly mentioned.
We devise four simulation scenarios, representing increas-

ingly complex excess hazard regression models (see Box 1):

(A)Model with linear and proportional effect of age,
and proportional effects of stage and deprivation,
without interaction

λE t; age; stage; depð Þ ¼ λ0 ln tð Þð Þ� exp

α�ageþ
X

i¼2:4
βi�Istage¼i þ

X
j¼2:5

γ j�Idep¼ j

� �
:

(B) Model with linear and proportional effect of age,
and proportional effect of stage, deprivation and an
interaction between age and stage

λE t; age; stage; depð Þ ¼ λ0 ln tð Þð Þ� exp

ðα�ageþ
X

i¼2:4
βi�Istage¼i þ

X
j¼2:5

γ j�Idep¼ j

þ
X

k¼2:4
αk�age�Istage¼kÞ:

(C)Model with non-linear and time-dependent effects
of age, time-dependent effects of stage, and propor-
tional effects of deprivation, without interaction

λE t; age; stage; depð Þ ¼ λ0 ln tð Þð Þ� exp�
αþ α�� ln tð Þð Þ� f ageð Þ þ

X
i¼2:4

βi þ β�i � ln tð Þ� ��Istage¼i

þ
X

j¼2:5
γ j�Idep¼ jÞ:

(D)Model with non-linear and time-dependent effects
of age, time-dependent effects of stage, proportional
effects of deprivation and a proportional interaction
between age and stage

λE t; age; stage; depð Þ ¼ λ0 ln tð Þð Þ
� exp

�
αþ α�� ln tð Þð Þ� f ageð Þ þ

X
i¼2:4

βi þ β�i � ln tð Þ� ��Istage¼i þ
X

j¼2:5
γ j�Idep¼ j

þ
X

k¼2:4
f ageð Þ�Istage¼kÞ:

In the formulas above, associated to scenarios A-D, f
denotes a restricted cubic splines function with 2 de-
grees of freedom, i.e. 1 internal knot placed at the
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median age of the patients’ cohort, λ0(ln(t)) is a re-
stricted cubic spline function of time, with up to 3 de-
grees of freedom, i.e. 2 internal knots placed at the
tertiles of the distribution of times to death.
Time to death from other causes Tp is generated as-

suming a piecewise exponential hazard obtained from
general population life tables detailed by month of age,
sex, calendar month and deprivation level [20]. The cen-
soring time C is evaluated on 31/12/2015. The final ob-
served follow-up time for each individual is defined as
T = min (Tc, Tp, C), with the corresponding vital status
indicator δ (i.e., δ = 0 for censored observations and δ =
1 for death).
For each scenario (A-D), we simulate 250 datasets, and

we utilise the survsim command in Stata [28] for
simulating cancer survival times in the scenarios de-
scribed above. Close to 90% of patients die in the first
four years after diagnosis, classifying lung cancer in the
poor-prognosis cancers with low censoring rate.

Analysis of simulated data
The classical algorithms, W&A and MVRS, are run on
scenarios A and C, while the algorithms extended to
testing for interactions, aW&A and aMVRS, are run on
scenarios B and D. MFPIgen is also tested on scenarios
B and D. All excess hazard regression models are fitted
using the strcs command in Stata [25], as described in
section 2.a.

d. Indicators used for comparing the model-building
strategies

One additional binary variable not contained in the life
tables and absent from the original simulation models is
added when testing the model-building strategies. For
each scenario, we compare the models selected by each
strategy to the original effects used in the simulation
with the following indicators.
Firstly, we summarise the proportions of models that

select each variable with their non-linear or time-
dependent effects for each algorithm. We also study the
confounding and self-confounding effects: the impact of
mis-specifying one of the components (TD, NL, interac-
tions) of the functional form of a covariable on its other

components or on the selection of such components for
other variables. We also calculate the proportion of se-
lected models that contain or are exactly the simulated
models for each strategy.
Furthermore we provide sensitivity (true positive) and

specificity (true negative) values, as defined below, look-
ing at the number of correctly selected effects and the
number of correctly unselected effects over the number
of active and inactive effects [31]. Both sensitivity and
specificity tend to reach 1 for a good estimator:

Se ¼ #correctly selected effects
#active effects

Sp ¼ #correctly unselected effects
#inactive effects

Then, for each model building strategy we plot the
average of the 250 stage-specific cohort net survival
curves and compare them to the true net survival curve.
We quantify this comparison by calculating the propor-
tion of the Area Between Curves through time, pABC-
time [32]. pABCtime represents the area between each
individual net survival curve (or the average of the 250
net survival curves) and the true generating net survival
curve (the reference function). It is expressed as a pro-
portion of the area under the true net survival curve
(area under the reference function). A pABCtime of 0 %
means that the cohort net survival estimates under in-
vestigation are in perfect agreement with the true initial
observed effect.
For any function f, let us assume that the true generat-

ing function f � and the estimated function f̂ cross at
time t∗, ABCtime is defined as

ABCtime ¼
Z t�

0
f � uð Þdu−

Z t�

0
f̂ uð Þdu

����
����þ

Z T

t�
f � uð Þdu−

Z T

t�
f̂ uð Þdu

����
����;

and pABCtime as

pABCtime ¼
R t�
0 f � uð Þdu− R t�0 f̂ uð Þdu

��� ���þ R T
t� f � uð Þdu− R Tt� f̂ uð Þdu

��� ���R T
0 f � uð Þdu

:

pABCtime is also calculated for the excess hazard
curves estimated for given patients’ factors and for the
effects of age, deprivation, and stage comparing the pos-
sibly time-dependent estimated HR curves to the origin-

ally simulated HR. In such instances, f̂ represent the

excess hazard, f̂ ðuÞ ¼ λEðu; age; stage; depÞ or excess

hazard ratio, f̂ ðuÞ ¼ expðβ̂ðuÞÞ.
We also provide bias of effects, at specific time points

tk, which are the average bias over all samples (M = 250)
between the estimated (possibly time-dependent) effects
of age, stage and deprivation and their simulated effects.

Box 1 Summary of the effects simulated

Age Stage Deprivation Age*Stage

A L-PH PH PH –

B L-PH PH PH PH

C NL-TD TD PH –

D NL-TD TD PH NL-PH

L Linear, NL Non-linear, TD Time dependent, PH Proportional hazards
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We specify monthly tk, from diagnosis through to the
end of follow-up (4 years):

bias dβ tkð Þ
� �

¼ 1
M

XM

k¼1
β tkð Þ−dβ tkð Þ
� �

:

e. Application

We apply the five model-selection strategies (MVRS,
W&A, MFPIgen, aMVRS, and aW&A) to our full cohort
of 15,688 men diagnosed with non-small cell lung cancer
in 2012 in England and followed-up until 31/12/2015.
All patients had a minimum potential follow-up of 3
years. Patient’s information on age, deprivation, survival
time and vital status is enhanced by information on
stage at diagnosis [33] coded using the TNM system (I-
IV), emergency route to diagnosis (binary variable) [34],
comorbidity status defined after ascertainment of hos-
pital episodes in the 6 months to 6 years prior to diagno-
sis (binary variable) [35]. The model building strategies
test the main effects as well as interactions between age
at diagnosis and all other covariates.
All model building strategies yield very similar models

(Table 1): no main effect is removed, time-dependent ef-
fects of stage, comorbidity and emergency presentation
are kept, and when tested, interactions between age and
comorbidity is removed by the MVRS algorithm and age
and comorbidity and age and emergency presentation by
the aW&A and MFPIgen algorithms. Non-linear time-
dependent effects of age are retained by the W&A and
aW&A algorithms in comparison to linear time
dependent effects of age retained in all other model se-
lection algorithms.
Figure 1 illustrates the impact the different selected in-

teractions and linearity/non-linearity of age have on the
estimated net survival probabilities for two patients, aged

60 and 80 respectively with the values of other variables
set (i.e. stage III, non-emergency presentation, no comor-
bidity, least deprived). The curves for W&A and MVRS
overlap. The selection of interactions in the model im-
pacts the estimated individual excess hazard and cancer
survival: there are smaller differences in excess hazard be-
tween patients aged 60 and 80 when no interactions are
modelled, compared to when interactions are considered.
We super-imposed the non-parametric estimator of net
survival (red curves) estimated for the 165 patients aged
]50–70[ years (mean age 64) and the 130 patients aged
]75–85[ years at diagnosis (mean age 79), with non-
emergency presentation, stage III disease and from the
least deprived group of the population. The non-
parametric net survival estimates are generally lower than
all model-based estimates from 1 year (age 80) and 2.5
years (age 60) after diagnosis. At the start of follow-up, the
non-parametric estimates tend to resemble the model-
based estimates without interaction terms.
These differences at individual level do not however

impact the overall cohort estimate of net survival as
shown by the hardly distinguishable curves in Fig. 2,
similar to the non-parametric estimator of net survival.

Results
The four simulated scenarios represent increasingly
complex but realistic excess hazard models, derived from
observed records of lung cancer patients. To assess how
realistic these scenarios are, we compare the model-
based cohort estimates of net survival (using the model
used for each simulated scenario) to the non-parametric
Pohar-Perme estimates (Additional file 2) on the ori-
ginal, observed data. All scenarios show reasonable
stage-specific cohort net survival estimates. Scenarios A
and B under-estimate net survival until 12–24months
for patients diagnosed at stages I-III because of the

Table 1 Statistically significant effects of selected prognostic factors identified with each of the five alternative model-building strategies

Variables aMVRS MVRSa aW&A W&Aa MFPIgenb

Age L-TD L-TD NL-TD NL-TD L-TD

Stage TD TD TD TD TD

Deprivation PH PH PH PH PH

Comorbidity TD TD TD TD TD

Emergency diagnosis TD TD TD TD TD

Age*Stage PH – PH – PH

Age*Deprivation PH – PH – PH

Age*Comorbidity – –

Age*Emergency diagnosis PH – –

L Linear, NL Non-linear, TD Time dependent, PH Proportional hazard
aInteractive effects not tested
bMain effects from MVRS strategy before testing for interaction
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simple effects modelled. Scenarios C and D include non-
proportional effects of the main factors and estimate
stage-specific cohort net survival very neatly. The char-
acteristics of the patients used in the simulations are
presented in Additional file 3. Patients in stage IV com-
prise half of the sample. There is a decreasing average
age with increasing stage at diagnosis. The distribution
of patients by deprivation group is skewed towards more
deprived groups, and a third of the patients have the
trait of the extra binary variable.

(a) Performances of the model-building strategies in
selecting variables and their effects

Original algorithms – scenarios A and C (no interaction)
In scenario (A), both algorithms led to almost identical
selection of effects (Fig. 3, Table 2). The only difference
is the higher proportion of time-dependent effects of
the extra variable, 5.6% vs. 0.8%, selected with W&A
compared to MVRS. In scenario (C), albeit small there
are more differences in the effects selected between

Fig. 1 Excess hazard and survival curves estimated for two patients1 aged 60 and 80 years at diagnosis: impact of model selection.
1patient with the following characteristics: stage III, non-emergency presentation, no comorbidity, least deprived. Plain red curves show the non-
parametric estimator of net survival for patient aged 50–70 (upper curve) or 75–85 (lower curve) years at diagnosis

Fig. 2 Net survival for the cohort of 15,688 men with lung cancer
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MVRS and W&A. W&A tends to (rightly) select more
models that include time-dependent effects of stage
(100% vs. 96.8%) and age (40.4% vs. 36.4%). Non-linear
effects of age are more often selected by MVRS (45.2%)
than by W&A (34.4%). Overall, the effect of stage is al-
ways rightly kept in the final selected models, by all al-
gorithms, and the extra binary variable appears
(wrongly) in only 7.2–8.8% of models (Fig. 3, Additional
file 4).

All selected models contain the true simulated model
for scenario A but the proportions drop to 69.6%
(MVRS) and 70.4% (W&A) of models that are the exact
simulated model. Similarly in the slightly more complex
scenario (C), 10.8% of models contain, and 8.8% of
models are, the true model using MVRS model selection,
vs. 6.0 and 5.2% of W&A models, respectively (Table 2).
This drop in proportions between scenarios A and C re-
flects the high proportion of models with a time

Fig. 3 Variables and effects (linear/non-linear, proportional/time-dependent) selected: scenarios A and C, samples of 2000 (plain line) and 5000
(dashed line) patients
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dependent effect of linear age, in other words the low
proportion of models with a time-dependent effect of
non-linear age. This is explained by the small sample
size and the relatively small magnitude of the non-linear
and time-dependent effects of age (Additional file 5).
Higher number of lung cancer patients leads to higher
proportions of selected models that contain or are
exactly the generated model (Table 2) due to higher pro-
portions of models capturing the non-linearity and time-
dependency of age (Fig. 3).

Sensitivity and specificity are high for scenario A, and
are not impacted by an increasing sample size. They are
relatively high for scenario C, with a slight increase in
sensitivity (0.74 to 0.78–0.80) with an increasing sample
size (Table 2).

Algorithms adapted to models with interactions –
scenarios B and D
The adapted (aMVRS, aW&A) and MFPIgen algorithms
correctly keep the main effects in the final models

Table 2 Summary of models and variables selected by each algorithm, on 250 samples of N = 2000 and N = 5000 patients: scenarios A-D

N = 2000

Overall model Sensitivity Specificity

Contained Correctly selected Almost correctly selected* mean min max mean min max

A p (%) 95% CI** p (%) 95% CI** p (%) 95% CI**

MVRS 100.0 100 100 69.6 64.0 75.2 0.97 0.67 1.00 0.89 0.75 0.92

W&A 100.0 100 100 70.4 64.8 76.0 0.98 0.67 1.00 0.89 0.67 0.92

C

MVRS 10.8 7.0 14.6 8.8 5.3 12.3 82.8 78.2 87.4 0.74 0.60 0.80 0.88 0.70 0.90

W&A 6.0 3.1 8.9 5.2 2.5 7.9 91.6 88.2 95.0 0.74 0.60 0.80 0.88 0.60 0.90

B

aMVRS 35.6 29.8 41.5 14.4 10.1 18.7 53.6 47.5 59.7 0.80 0.50 1.00 0.85 0.45 0.91

MFPIgen 29.6 24.0 35.2 14.4 10.1 18.7 66.8 61.1 72.6 0.81 0.50 1.00 0.88 0.64 0.91

aW&A 35.2 29.4 41.0 14.8 10.5 19.1 45.2 39.1 51.3 0.79 0.50 1.00 0.84 0.36 0.91

D

aMVRS 2.4 0.5 4.3 1.6 0.1 3.1 16.0 11.5 20.5 0.56 0.50 0.83 0.80 0.33 0.89

MFPIgen 3.2 1.1 5.4 2.8 0.8 4.8 36.8 30.9 42.7 0.59 0.50 0.83 0.85 0.56 0.89

aW&A 4.8 2.2 7.4 1.6 0.1 3.1 23.2 18.1 28.4 0.57 0.50 0.83 0.75 0.22 0.89

N = 5000

Overall model Sensitivity Specificity

Contained Correctly selected Almost correctly selected* mean min max mean min max

A p (%) 95% CI** p (%) 95% CI** p (%) 95% CI**

MVRS 100.0 100 100 56.4 50.4 62.5 0.97 0.67 1.00 0.88 0.67 0.92

W&A 100.0 100 100 68.0 62.3 73.7 0.97 0.67 1.00 0.89 0.67 0.92

C

MVRS 46.0 39.9 52.1 40.8 34.8 46.8 78.8 73.8 83.8 0.78 0.60 0.80 0.88 0.60 0.90

W&A 29.2 23.7 34.8 26.0 20.7 31.4 87.6 83.6 91.6 0.80 0.60 0.80 0.88 0.60 0.90

B

aMVRS 67.9 62.2 73.6 37.3 31.5 43.3 55.8 49.7 61.9 0.80 0.50 1.00 0.87 0.64 0.91

MFPIgen 28.0 22.5 33.5 14.4 10.1 18.7 65.6 59.8 71.4 0.87 0.50 1.00 0.85 0.36 0.91

aW&A 69.2 63.6 74.8 37.6 31.7 43.5 55.6 49.5 61.7 0.86 0.50 1.00 0.82 0.09 0.91

D

aMVRS 34.4 28.6 40.2 13.6 9.4 17.8 24.8 19.5 30.1 0.66 0.33 0.83 0.79 0.33 0.89

MFPIgen 28.0 22.5 33.5 18.4 13.7 23.1 35.6 29.8 41.5 0.69 0.50 0.83 0.84 0.56 0.89

aW&A 22.0 17.0 27.1 13.6 9.4 17.8 34.8 29.0 40.6 0.65 0.50 0.83 0.73 0.00 0.89

* model C: relaxed NL and TD of age; B: relaxed interaction age*stage; D: relaxed NL and TD of age

** formula for the 95% confidence intervals, with z = 1.96 and w = 250:
p̂þ z2

2w
1þz2

w

� z
1þz2

w

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂ð1−p̂Þ

w þ z2
4w2

q
, using the Wilson approximation [36]
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(Fig. 4). 28% of models selected using aW&A identify
the non-linearity of age in D, whereas 34–40% of the
aMVRS and MFPIgen algorithms retain the non-
linearity of age. The aW&A algorithm tends to keep
higher proportions of time-dependent effects of
deprivation, of the binary variable and of interactions
than the other two algorithms. aMVRS and aW&A also
lead to 10–21% of interactions wrongly selected. The
proportions of the interaction age-stage rightly kept are
at or just over 30% for scenario B and up to 71%
(aW&A) for scenario D. The MFPIgen algorithm is able
to keep in valid interaction in 29.6% (B) and 50.8% (D)
of the final models while spurious interactions are
rejected in over 94% of final models.
Non-linearity and time-dependency of age in scenario D

are retained in just over a quarter of models selected by
aW&A, 6–20% less than the proportions of models se-
lected by aMVRS and MFPIgen that contain these charac-
teristics of age. Increased sample size to N = 5000 is
beneficial for raising the detection of the age-stage inter-
action in B for aMVRS (68.3%) and aW&A (69.2%), and

raising detection of non-linearity and time-dependency of
age in D for all three algorithms (Fig. 4).
The proportions of models that contain the true gen-

erating model lie between 29.6% (MFPIgen) and just
over 35% (aMVRS and aW&A) for scenario B, and be-
tween 2.4% (aMVRS) and 4.8% (aW&A) for scenario D.
For scenario B, those proportions correspond to the
proportion of models with an age by stage interaction,
and therefore increase with increasing sample size for
aMVRS (74.5% for B and 43.5% for D when N = 5000)
and aW&A (72.3% for B and 17.4% for D when N =
5000). For scenario D, this is the proportion of models
with an interaction between a non-linear effect of age
and stage. Only 14.4–14.8% (scenario B) and 1.6–2.8%
(scenario D) are the exact simulated models. These
proportions increase to 16–36.8% (scenario D) when
small effects are not considered, due to the relatively
small sample size, or when the sample size is increased
to 5000.
Sensitivity and specificity are around and over 0.8 for

scenario B and are stable to increased sample size.

Fig. 4 Variables and effects (linear/non-linear, proportional/time-dependent) selected: scenarios B and D, samples of 2000 (plain line) and 5000
(dashed line) patients
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Sensitivity is just over 0.5, and specificity between 0.75
and 0.85 for scenario D, with slight improvement in sen-
sitivity with increased sample size (Table 2).

Impact of mis-selection of effects on other effects
In scenario (A) and (C), W&A seems to suffer more from
confounding and self-confounding (Additional file 4). For
example, when the extra binary variable is selected in (C),
the proportion of models with time-dependent effects of
deprivation and/or age are hardly changed with MVRS, but
they increase with W&A to 16.7% (+ 12.3%) and
55.6% (+ 15.2%) respectively. (Additional file 4).
There are hardly any confounding or self-confounding

effects in the MFPIgen algorithm. Mis-specification of
time-dependent effects only has minimal confounding
impact on the other effects selected using the aMVRS al-
gorithm. This is due to the two-step structure of the al-
gorithm (Additional file 4).
In the aW&A algorithm, selection of complex forms

(e.g. time-dependent effect of a variable) results on the se-
lection of more complex effects of some other factors or
additional selection of interaction terms (Additional file 4).

(b) Accuracy of the non-linear and time-dependent
effects estimated

Original algorithms – scenarios A and C (no interaction)
Figure 5 presents the effects estimated by the models se-
lected following the MVRS or W&A algorithms together
with their averaged effects (black line) compared to the
true generating effect (red line). All sample sizes are
N = 2000 patients.
Although there are varied sizes of effect estimated as

shown by the width of the boxes (effects estimated as
fixed in time) and the varied shapes of the individual ef-
fects, grey curves (time-dependent effects estimated), the
average effects generally agree with the generating effects
for all strategies, and lead to comparable estimated ef-
fects for MVRS and W&A. For both strategies, the ef-
fects of age are well captured for scenario (A) and (C):
pABCtime values are 0.3% (A), 0.3% (C, MVRS) and
0.2% (C, W&A), Table 3.
The mixture of time-fixed and time-dependent effects

of stage estimated in the selected models for scenario
(A) leads to a very good estimation of the average effect
compared to the generated effect for both strategies.
Note the graphs present log hazard ratios for better il-
lustrating the differences, but pABCtime values are cal-
culated on the areas between the hazard ratio curves.
pABCtime values for the hazard ratios are very similar
between algorithms, highest for stage IV (2.5%), inter-
mediate for stage II (2.2–2.4%) and lowest for stage III
(1.7%). In scenario (C) all estimated effects are time-
dependent, and most shapes agree with the original

effect. pABCtime values are slightly lower for the W&A
algorithm compared to MVRS: 2.3% vs. 2.4% at stage II
vs. I, 0.9% vs. 1.2% at stage III vs. I, and 1.8% vs. 2.1% at
stage IV vs. I.
The effects of deprivation are well estimated by all

models selected by all algorithms: pABCtime is below
1.2% for all deprivation categories, and in both scenarios
A and C.
More complex effects of the extra binary variables are

captured by W&A, in both (A) and (C) leading to
slightly higher pABCtime values: 0.6% vs. 0.3% (A) and
0.12% vs. 0.08% (C).

Algorithms adapted to models with interactions –
scenarios B and D
Figure 6 displays the effects estimated by the selected
models (250 grey curves) following the aMVRS, MFPI-
gen and aW&A algorithms together with their averaged
effects (black line) compared to the true generating ef-
fect (red line). The effects of age are now split by stage
at diagnosis, since an interaction age-stage is simulated.
For all selected models, the average HRs for age seem

to generally underestimate the simulated effects for
stages I-II, in scenario B and D. These are reflected by
larger stage-specific pABCtime values for age: 2.4–5.9%
(stages I-II) versus 0.01%-2.2 (stages III-IV, Table 3).
The time-dependency of age, simulated in scenario D, is
not very strong, hence the many models that selected a
time-fixed effect for age. Graphs of the non-linear effects
of age at given times after diagnosis are presented in
Additional file 5.
The effects of stage, deprivation (Fig. 6) and the add-

itional binary variable (Additional file 6) are well repro-
duced by the average effects obtained from the selected
models. The pABCtime values can hardly distinguish be-
tween the performance of the model-selection algo-
rithms (Table 3). The complexity of models selected by
the aW&A algorithm does not impact the overall mea-
sures of effects and their adequacy to describe the true
generating effects. Indeed, none of the modelled time-
dependent effects are strong, but the results presented
here shed some light in terms of the sensitivity of the
different model selection tools.

(c) Estimation of the cohort net survival

For all model-building strategies, the estimated stage-
specific cohort net survival curves lie around the original
estimated cohort net survival curves, for all subgroups
defined by stage at diagnosis for scenarios A-D (Fig. 1).
All pABCtime values are below 1.7% (Table 3).
The outcome of choice – net survival – is well repro-

duced by models selected by each strategy and provides
reassurance that the experience of cancer survival for
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the cohort is well captured by the models. pABCtime
values calculated using the non-parametric estimator of
net survival provides 0.3–8% higher values than for the
model-based survival curves (Additional file 7).
The bias reflects the varying amount of mis-

specification for each of the three algorithms. For

example, higher proportions of time-dependent effect of
the binary variables using W&A and aW&A lead to
higher standardised bias for that variable and that algo-
rithm (Additional file 8). The minimum in the time-
varying bias is reached at around 6months after diagno-
sis for all effects, when most time-dependent effects

Fig. 5 Generating (red line), estimated (grey lines - time varying, box-plot - time fixed) and averaged (black dashed line) hazard ratio for age,
stage, and deprivation: scenario A and C
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cross the true effect. At that point, the value reached re-
flects the amount of bias due to the estimated fixed
effects.

Discussion
Motivated by the growing access to data on explana-
tory factors of cancer survival, we compared the prac-
tical use of several model selection strategies. We
adapted well-recognised algorithms to the context of
excess hazard models, including extensions to deal
with 2-way interactions. Simulations, based on ob-
served realistic scenarios, showed the ability of all
strategies to yield proper estimation of the cohort net
survival curve despite varying forms of the retained
and estimated effects.

Several aspects of model selection deserve further dis-
cussion. Additionally, we aim to provide some guidelines
for variable selection in the context of cancer survival
epidemiology.

Subject matter knowledge
A breadth of modelling strategies exists, but very few
strategies have been compared as highlighted by STRA
TOS Topic Group 2 [37]. We aimed here to look at the
impact that model selection strategies may have on in-
ference based on the final selected model. Subject matter
knowledge is needed all through model building, such as
in decisions relative to the selection of the variables that
will be tested, and the allowed forms of these variables
[38], as well as how strict we are on keeping/dropping a
variable or functional form. In observational studies, we

Table 3 pABCtime between the mean of the individual effects or cohort net survival estimated using the selected models and the
true generating effects/cohort net survival, by scenario (A-D), and model selection strategy

Cohort net survival Stage A B C D HR age Stage A B C D

MVRS / aMVRS I 1.67% 1.62% 0.79% 1.09% MVRS / aMVRS I 0.34% 2.43% 0.35% 4.40%

II 0.94% 1.60% 0.99% 1.10% II 3.56% 5.86%

III 0.56% 0.53% 0.16% 1.37% III 0.01% 0.73%

IV 0.36% 0.36% 0.11% 0.31% IV 0.13% 2.15%

W&A / aW&A I 0.05% 1.63% 0.04% 0.89% W&A / aW&A I 0.33% 2.35% 0.23% 2.88%

II 0.20% 1.60% 0.01% 1.00% II 3.45% 4.13%

III 0.06% 0.54% 0.94% 1.18% III 0.02% 0.61%

IV 0.13% 0.37% 0.68% 0.08% IV 0.12% 1.26%

MFPIgen I 0.09% 0.08% MFPIgen I 2.55% 2.73%

II 0.13% 1.11% II 3.76% 3.92%

III 1.18% 0.99% III 0.01% 0.63%

IV 0.21% 0.71% IV 0.06% 1.86%

HR stage Stage A B C D HR deprivation Deprivation A B C D

MVRS / aMVRS I MVRS / aMVRS 2 1.20% 0.03% 0.34% 1.38%

II 2.25% 3.30% 2.44% 1.01% 3 0.23% 0.03% 0.39% 0.75%

III 1.71% 1.75% 1.20% 2.96% 4 0.93% 0.40% 0.21% 1.24%

IV 2.49% 1.93% 2.15% 5.49% 5 0.13% 0.26% 0.53% 1.36%

W&A / aW&A I W&A / aW&A 2 1.20% 0.02% 0.26% 1.20%

II 2.35% 3.36% 2.32% 1.71% 3 0.27% 0.01% 0.35% 0.57%

III 1.66% 1.86% 0.85% 3.42% 4 0.95% 0.23% 0.12% 0.84%

IV 2.52% 2.08% 1.80% 5.24% 5 0.13% 0.50% 0.28% 1.20%

MFPIgen I MFPIgen 2 0.03% 1.81%

II 3.25% 1.39% 3 0.02% 1.02%

III 1.67% 3.36% 4 0.44% 1.11%

IV 1.83% 5.37% 5 0.23% 1.38%

HR comorbidity A B C D

MVRS / aMVRS 0.31% 0.22% 0.08% 0.18%

W&A / aW&A 0.59% 0.34% 0.12% 0.12%

MFPIgen 0.36% 0.17%
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acknowledge it is almost impossible to state all aspects
of a model ahead of data exploration, and model selec-
tion remains necessary. In our comparison, we concen-
trate on the model-building algorithms per se and
assume both benefited from a similar amount of subject
matter knowledge.

Time-dependent effects
A time-dependent effect is modelled if the effect of a
variable, measured at diagnosis, varies with time since
diagnosis, i.e. that effect is not constant with follow-up
time. In the context of cancer survival, most factors such
as stage at diagnosis, deprivation, emergency presentation

Fig. 6 Generating (red line), estimated (grey lines if estimated as time varying, or in the box-plot if estimated as time fixed) and averaged (black
dashed line) hazard ratio for age, stage, and deprivation: scenario B and D
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[39] tend to have strong effects in the months that follow
the diagnosis, and these effects are likely to reduce or dis-
appear as time passes [39]. When testing time-
dependency of different factors, a long enough follow-up,
as well as enough information are required to detect time-
dependency.

Non-linear effects
Additionally, in order to properly assess non-linearity of
the effect of a specific variable, such as age, there needs
to be enough information on that variable about its own
effect on the time to event: e.g. patients’ age need to
cover a reasonable range of all possible ages, rather than
be grouped in a small part of the age distribution.

Censoring and lethality of cancer (number of events)
Lung cancer data contain relatively high proportions of
events (80% 4 years after diagnosis) compared to other
cancers that do not experience such high lethality. Model
building strategies and variable selections are highly sensi-
tive both to the number of events and levels of censoring.
This is due to the rapidly increasing complexity of the
models tested, especially when the backward-based W&A
and aW&A are run. For example, in the context of lung
cancer, there was non-convergence of the Stata algorithms
in around 10% of the samples. Changing the starting
values or running initial univariate selections did not help
in reaching convergence.
It has recently been shown that 40–50 events per vari-

able are necessary to ensure accurate estimation of coeffi-
cients [40] in the competing risk setting. In the most
complex models (fitted on lung cancer) which include all
interactions and time-dependent effects, i.e. 48 parame-
ters, there was an average of 36 events per parameters in a
sample of 2000 patients. When these model-building
strategies were run on cancers with lower lethality, such
as laryngeal cancer, with 60% censoring at 5 years, the al-
gorithms did not converge for a larger proportion of sam-
ples, up to 20% (results not shown). In addition, after
convergence, some estimated hazard ratios were unbeliev-
ably large: there was an average of only 16 events per pa-
rameters (N = 2000 patients) for the most complex
models fitted on laryngeal cancer data.
In the relative survival data setting, a competing risk

framework, competing deaths (i.e. from other causes, pro-
vided by general population life tables) are subtracted
from observed events (death from any cause). This re-
duces further the power for detecting and retaining effects.
This is not so problematic when studying lung cancer as
95% of deaths are due to lung cancer [39], i.e. 1675 lung
cancer deaths among the 1765 deaths in the 2000 data
samples, leading to 34 events per parameter. Less lethal
cancers will see the actual numbers of cancer-related

deaths be a smaller proportion of all deaths, leading to
smaller number of events per variable.
Prior to running any model building strategies, we rec-

ommend that the censoring rate and the number of events
are carefully examined in relation to the complexity of the
models fitted. Further clinical considerations and back-
ground knowledge are helpful prior to variable selection
to ensure significance tests are used with sparsity.

Sample size, model complexity
The W&A strategies tend to favour time-dependent ef-
fects and interactions, leading to complex models. This is
due to the backward selection of effects. Model misspecifi-
cation of some variables leads to self-confounding and
confounding, which would provide wrong inference on
the effects of some variables. On the other hand, the
MVRS strategy leads to simpler models with additional
variables wrongly selected in about 5% of models overall.
However, in three out of four scenarios (B, C and D), all
model selection strategies select models containing the
true models in a relatively poor proportion (always below
15%). This is largely due to the size of the effects that the
algorithms were trying to capture and the number of pa-
tients included in the analyses, 2000. Indeed, some effects
such as non-linearity or non-proportionality of age could
not be retrieved in the final selected models, due to lack of
power. Releasing one or several of these small effects
translates in larger proportions of models that nearly con-
tain the generating models. More importantly, increasing
the sample size to 5000 patients leads to improved detec-
tion power and higher selection proportions of the true
generating model.
The adapted MVRS and W&A algorithms testing for in-

teractions show similar properties as the original algo-
rithms for the selection of linear/non-linear and time-
dependent main effects. They show equivalent results to
the MFPIgen strategy for the selection of interaction terms.
Investigating the effect of many variables of known

prognostic value in a large population-based cohort of
lung cancer patients, all model-building strategies lead
to similar selection of effects. As expected W&A and
aW&A only differed from R&S and aR&S in the shape
of the effect of age, which has virtually no impact on
cohort-wide net survival estimates.
Although the model-building strategies may not tend

to select the same final models, and the proportion of
models that do select the true generating model vary
with the sample size, the number of events and the size
of the effects, there is no impact on the estimation of co-
hort net survival, by stage at diagnosis. Estimation of co-
hort net survival can best be done non-parametrically as
there is no assumption on the form of the association
between the exposure variables and survival time. We
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show that on average the model-based estimates are
equivalent to the non-parametric estimates of net sur-
vival. When non-parametric estimates of cohort survival
can be produced, it is good practice to use them to val-
idate model-based estimates.
The variables whose effects are tested in the models,

are only mildly correlated with a coefficient of correl-
ation below 0.2. Another challenge in modelling non-
linear effects of a variable is the potential collinearity of
some spline basis (such as cubic splines). A possible so-
lution for this, adopted here, consists of orthogonalizing
the splines basis. However, high correlation between two
variables may have a negative effect on the model selec-
tion strategies studied here as they are based on stepwise
methods and are thus dependent on the order of testing.

Epidemiological aim of models
The ultimate aim of building exploratory models in our
context is to describe variables effects on the survival ex-
perience of a cohort of cancer patients. In the simula-
tions, the large variety of models selected by the
different model-building strategies leads to varying esti-
mations of main effects and varying levels of individual
excess hazard and net survival estimates, which has im-
plications in terms of epidemiological interpretation.
Nonetheless all generated effects are well captured by
the variable selection strategies, whatever their complex-
ity. This is verified graphically and looking at the area
between each estimated effect and the generated effect.
Forward-based model building strategies tend to

favour simpler models, which may be a useful feature in
contexts with less information (e.g. low EVP, or high
censoring, or relatively small sample sizes) in order to
avoid inclusion of spurious effects. Conversely,
backward-based strategies tend favour more complex
models, which may be useful to detect small effects in
cases with larger samples and low censoring. Nonethe-
less, the comparison of the final models selected with
different strategies may be useful in order to assess any
differences on the corresponding net survival curves,
and to identify potential reasons for these differences (if
any) based on our previous discussion.
The strategies presented here are based on likelihood ra-

tio tests performed in a hierarchical order. Thus, they rely
on significance testing and, consequently, are prone to
multiple testing as well as Type I and Type II errors.
Nonetheless, all strategies let the user decide what signifi-
cance level should be used for the selection of effect. We
use here the conventional 5%, and test for the impact of
keeping the main effects in. One could consider choosing
more conservative thresholds [41] and evaluating the im-
pact of varying thresholds on the models selected.
Model building strategy is in line with the ‘data model-

ling culture’ and is based on the idea that a true model

generating the data does exist [42]. Although not all im-
portant variables may be available, or the true model is
likely to not be among the considered models, the aim is
to get as close as possible to this true model by including
the relevant variables and by flexibly modelling the effect
of the available ones. Shrinkage techniques (LASSO [43],
Ridge, Elastic Nets [44]) could be considered, but these
methods are not yet available in our relative survival con-
text. Still in the machine learning field, methodological de-
velopments are of great interest. For example, model
averaging [45] and more generally ensemble learning tech-
niques [46] are possible avenues though interpretability of
the results can be challenging, hence more appropriate
outside of the descriptive modelling field.
Model selection approaches based on Information

Criteria [45] (e.g. AIC and BIC) or cross-validation of the
selected models, instead of likelihood ratio testing, could
prove useful for selecting the proper functional forms of ef-
fects. In the context of prediction, one tends to select and
use a simple model in order not to over fit the training data
[47]. Following work on the topic of predictions would in-
volve additional statistical measures for assessing predictive
accuracy of the selected model for a given strategy. Mea-
sures such as discrimination and calibration would then be
useful [48, 49]. However, in this work, which was mainly
exploratory rather than predictive, all strategies lead to
similar model-based estimates of net survival.
Large datasets and information on many factors are

motivations for using complex excess hazard models.
Model selection methods are essential to make sure all
models are considered in a systematic fashion. Nonethe-
less, several aspects of the data (such as sample size, cen-
soring, NL and TD effects) and the models (such as
complexity, assumptions) deserve full consideration
ahead of model selection.
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