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One sentence Summary: Naturally acquired immune responses target infected red blood cell surface 31 

antigens of immature malaria transmission stages. 32 

33 



Abstract 34 

The recent decline in global malaria burden has stimulated efforts towards Plasmodium falciparum 35 

elimination. Understanding the biology of malaria transmission stages may provide opportunities to 36 

reduce or prevent onward transmission to mosquitoes. Immature P. falciparum transmission stages, 37 

termed stage I-IV gametocytes, sequester in human bone marrow before release into the circulation as 38 

mature stage V gametocytes. This process likely involves interactions between  host receptors and 39 

potentially immunogenic adhesins on the infected red blood cell (iRBC) surface. Here we developed a 40 

flow cytometry assay to examine immune recognition of live gametocytes of different developmental 41 

stages by naturally exposed Malawians. We identified strong antibody recognition of the earliest 42 

immature gametocyte-iRBCs (giRBCs) but not mature, stage V giRBCs. Candidate surface antigens 43 

(n=30), most of them shared between asexual- and gametocyte-iRBCs and others enriched in giRBCs, 44 

were identified by mass spectrometry and mouse immunizations, as well as correlations between 45 

responses by proteome microarray and flow cytometry. Naturally acquired responses to a subset of 46 

candidate antigens were associated with reduced asexual and gametocyte density, and plasma samples 47 

from malaria-infected individuals were able to induce immune clearance of giRBC in vitro. Infected RBC 48 

surface expression of 6 select candidate antigens was validated using specific antibodies in fluorescent 49 

microscopy and flow cytometry experiments, and genetic analysis revealed a subset with minimal 50 

variation across strains. Our data demonstrate that humoral immune responses to immature giRBCs and 51 

shared iRBC antigens are naturally acquired following malaria exposure. These humoral immune 52 

responses may have consequences for malaria transmission potential by clearing developing gametocytes, 53 

which could be leveraged for malaria intervention. 54 

 55 

 56 

 57 

 58 

  59 



Introduction 60 

Plasmodium falciparum malaria morbidity and mortality has decreased substantially in the last 61 

decade (1). These recent gains are threatened by the spread of artemisinin-resistant parasites (2) and 62 

insecticide-resistant mosquitoes (3). The recent achievements in malaria control and necessity to contain 63 

artemisinin resistance have stimulated malaria elimination initiatives that require a thorough 64 

understanding of the biology and epidemiology of malaria transmission and alternative transmission-65 

reducing interventions (4). 66 

P. falciparum transmission to mosquitoes is initiated when a small subset of asexually replicating 67 

blood stage parasites produce sexual progeny, or gametocytes. Gametocytes develop in human red blood 68 

cells (RBC) along 5 morphological transitions (Stage I-V); stage I-IV development takes place 69 

predominantly in the extravascular niche of the bone marrow and spleen (5-7). Mature Stage V 70 

gametocytes are released into the peripheral blood circulation where they may be ingested by a blood-71 

feeding mosquito upon which they egress from RBCs as activated gametes and fuse and form motile 72 

zygotes. Further sporogonic development renders the mosquito infectious to humans. Several sexual stage 73 

proteins have been identified that have no function in gametocyte development but are essential for 74 

gamete fertilization (e.g. Pfs48/45 and Pfs230) or post-fertilization development in the mosquito (e.g. 75 

Pfs25, Pfs28) (8).  76 

There is currently incomplete evidence for immune responses that affect gametocyte formation, 77 

maturation or circulation time (9). Several field studies suggested mature gametocyte clearance after 78 

repeated malaria exposure (10-13) and antibody responses against uncharacterized targets on mature 79 

gametocyte-infected red blood cells (giRBCs) have been associated with lower gametocyte densities (12, 80 

14). Another field study identified antibodies that bound the surface of stage II-V giRBCs and distorted 81 

early gametocyte morphology and maturation (15). Depending on which stage(s) they target, anti-82 

gametocyte immune responses could be involved in blocking extravascular adhesion of immature giRBCs 83 

and/or clearance of circulating mature giRBCs, in a manner similar to antibodies against the asexual 84 

antigen PfEMP1. PfEMP1 is an immunodominant antigen on the surface of RBCs infected with asexual 85 



parasites (aiRBC); anti-PfEMP1 antibodies have an established role in immune clearance by inhibiting 86 

vascular adhesion and by opsonizing aiRBCs for phagocytic clearance	(16, 17). aiRBC surface antigens 87 

other than PfEMP1 exist (18), and are associated with phagocytosis and cytotoxicity (19). The ligands 88 

involved in giRBC adherence may be different from those involved in endothelial binding of aiRBCs; 89 

giRBCs are localized to an extravascular compartment (5, 7), show limited binding to human endothelial 90 

cell lines and harbor minimal PfEMP1 on their surface (20). Whilst no specific giRBC ligand has been 91 

identified, one tenth of the early gametocyte proteome consists of putatively exported antigens called P. 92 

falciparum gametocyte-exported proteins (PfGEXPs) (21).  93 

Hypothesizing that developing gametocytes could be targets of antibody responses in the human host, 94 

we performed a systematic characterization of gametocyte stage-specific immune recognition and 95 

clearance. We demonstrate naturally acquired human immune responses targeting immature (stage I-III) 96 

but not more mature stage V giRBCs. Experiments using whole cells and surface-intact and surface-97 

depleted membrane fractions of diverse parasite strains provide evidence for giRBC surface antigens, 98 

most of them shared with aiRBCs. We further demonstrate that natural immunity to shared iRBCs 99 

correlates with reduced asexual and gametocyte burden and that a subset of the target antigens shows 100 

minimal sequence diversity.  101 

 102 

Results 103 

Human immune responses recognize secreted gametocyte proteins 104 

We first probed a Plasmodium falciparum peptide array enriched for proteins expressed in the gametocyte 105 

and gamete stages (22) with human plasma samples from 579 asymptomatically infected individuals from 106 

Cameroon, Burkina Faso, and the Gambia (22)(table S1) to examine natural immunity. Proteins were 107 

clustered based on their stage-specific abundance in blood and mosquito stages in proteomics studies (21, 108 

23, 24) and by cellular localization; localization was divided into those proteins that are parasite internal 109 

(internal/unknown localization) or secreted onto the merozoite or gamete surface or into the host cell in 110 

intra-erythrocytic stages (secreted)(fig. 1A-B, see also table S2). Five stage-specific clusters (gametocyte 111 



specific or shared with asexual stages) were enriched in secreted antigens (Figure 1A), and secreted 112 

antigens showed higher antibody responses compared to internal antigens for shared, gametocyte-specific 113 

(p-value = 8.86 x 10-288) and gametocyte/mosquito stage proteins (p-value = 4.31 x 10-119)(fig. 1C). 114 

Responses to shared secreted proteins increased with age while responses to secreted gametocyte or 115 

mosquito stage proteins or to parasite internal proteins did not. Correlations were highly significant for a 116 

total of 121 individual peptides (adjusted p-value < 0.05, table S3). Although responses to numerous 117 

protein fragments showed progressive increases with age (fig. S1A), responses to other antigens, 118 

including PTP6 (25) and GEXP08, reached a plateau in the 12-30 year old group (fig. S1B). These results 119 

indicate that humoral responses to secreted parasite antigens (shared and gametocyte-specific) are 120 

correlated with cumulative exposure to malaria.  121 

 122 

Immune responses target the immature but not the mature giRBC surface  123 

Detection of immune responses against secreted gametocyte proteins prompted us to directly examine 124 

immune recognition of giRBC surface antigens among an independent population. In a cross-sectional 125 

study, we collected plasma samples from 244 individuals with suspected malaria from southern Malawi 126 

(see Materials and Methods and table 1). A subset of rapid diagnostic test (RDT)+ samples and an RDT- 127 

control (representative of the entire Malawian study population in terms of age and sex distribution) was 128 

incubated with P. falciparum NF54 stage II/III giRBC, stage V giRBCs, or activated gametes. Surface 129 

reactivity was measured by comparing the percentage of IgG-positive cells between incubations with 130 

Malawian and naïve control sera (see fig. S2 and S3). To differentiate non-activated gametocytes (i.e., 131 

intact giRBCs) from activated ones (i.e., free gametes), stage V incubations were co-stained with 132 

antibodies recognizing the gametocyte/gamete surface antigen Pfs48/45 (which becomes accessible upon 133 

RBC rupture and giRBC activation) and the RBC surface antigen Glycophorin C. Highest surface 134 

reactivity was found for gametes (mean 25.80% recognized cells), with substantial reactivity also 135 

observed for stage II/III (mean 6.22%) but not for stage V giRBCs (fig. 2A). The relatively low 136 

percentage of giRBCs recognized suggests low abundance, accessibility and/or immunogenicity of 137 



putative antigen targets. Of the Malawian plasma samples tested, 75.00% (n/N=18/24) and 95.83% 138 

(n/N=23/24) recognized stage II/III giRBCs or gametes respectively, whereas no samples were positive 139 

for stage V recognition (fig. 2B).  140 

 We further investigated antibody specificity to immature giRBC surface antigens as compared to 141 

aiRBCs using a transgenic version of the Ghanaian P. falciparum parasite Pf2004 (26, 27), 142 

Pf2004_164/TdTom. This parasite expresses the TdTomato reporter under the control of the PF10_0164 143 

promoter (28) that allows detection by fluorescence microscopy and flow cytometry of gametocytes of all 144 

stages except the first 30 hours of development (fig. 2C). Among 244 Malawian plasma samples, the 145 

strongest responses to aiRBCs correlated with the strongest responses to giRBCs, whereas 14 samples 146 

were uniquely positive for giRBCs (fig. 2D-E). No differences between RDT+ and RDT- individuals in 147 

antibody responses for any antigen class was observed (fig. S4A). When we repeated our surface 148 

recognition experiments with the 3D7 reference strain (a clone of NF54 used in fig. 2A, potentially 149 

expressing different surface proteins than Pf2004), we observed lower surface antigen expression and 150 

lower non-specific IgG labeling from naïve serum compared to Pf2004 (fig. S4B-C). These strain 151 

disparities are consistent with previous work observing differential reactivity of Kenyan plasma samples 152 

to parasite strains of different genetic origins (18). Surface protein removal with trypsin/chymotrypsin 153 

revealed that both specific and non-specific binding of IgG involved antigens on the surface of aiRBCs 154 

and giRBCs (fig. S4D-E). Further experiments using the same patient sera and naïve controls revealed no 155 

IgM binding above background and therefore excluded IgM binding as an explanation for the observed 156 

non-specific surface recognition (fig. S5). These data provide strong evidence for IgG-targeted antigens 157 

that are shared between asexual and gametocyte stages. 158 

 The prevalence (number of samples with substantial aiRBC and/or giRBC recognition) and 159 

magnitude (median fluorescence intensity) of iRBC reactivity was significantly higher for adults 160 

compared to children (fig. 2F). The increased aiRBC reactivity with age (top panel) corroborates the well-161 

characterized pattern of increasing breadth of antibody response to asexual parasites with cumulative 162 

exposure (29-31). The slower age-dependent increase for giRBC responses (bottom panel) may reflect the 163 



lower abundance of immature gametocytes and suggests that giRBC responses differ from those against 164 

gametocyte/gamete antigens Pfs48/45 and Pfs230 that appear short-lived	(22, 32, 33). We then probed a 165 

subset of the Malawian plasma samples (representing a range of reactivity by flow cytometry) on the 166 

peptide array to identify recognized targets. Recognition of the giRBC surface by flow cytometry was 167 

correlated with mean array responses for shared asexual-gametocyte and gametocyte-specific secreted 168 

antigens (fig. 2G) but not internal proteins. Individuals recognizing giRBCs by flow cytometry had 169 

significantly higher reactivity (p-value <0.05) to a subset of 22 protein fragments (including 4 shared and 170 

13 gametocyte-specific) compared to individuals with minimal reactivity to giRBCs (table S4 and fig. 171 

S1C). Altogether these data demonstrate that plasma samples recognizing both aiRBCs and giRBCs show 172 

the highest magnitude in reactivity, and this signal is driven by antibody responses against secreted 173 

antigens across all age groups. 174 

 175 

Antigens on the giRBC surface are predominantly shared with aiRBC  176 

TdTomato fluorescence increases with later stage gametocytes (Figure 3A) and microscopy and flow 177 

experiments indicated that “weak TdTomato+” corresponded to stage I/II gametocytes and “strong 178 

TdTomato+” to stage II/III gametocytes. Three lines of evidence suggest that giRBC surface reactivity is 179 

specific for stage I/II gametocytes: i) a higher percentage of stage I/II, weak TdTomato signal consistently 180 

corresponded to a higher percentage of cells staining positive for the surface (Figure 3B); ii) the intensity 181 

of IgG staining correlated with the percentage of weak TdTomato positive cells (Figure 3C); iii) 182 

microscopy confirmed significantly higher percentages of surface labeling of aiRBCs and stage I/II 183 

giRBCs compared to stage II/III giRBCs (Figure 3D). These results demonstrate that giRBC reactivity is 184 

highest in early stage gametocytes (stage I/II) and decreases during gametocyte development. 185 

To identify the target giRBC surface antigens, we probed aiRBC and stage I-III giRBC membranes 186 

+/- treatment with trypsin/chymotrypsin (hereafter referred to as +trypsin and –trypsin samples) with 187 

Malawian plasma samples by Western blot. By comparing differential bands between surface-intact (-188 

trypsin) and surface-depleted (+trypsin) samples, we identified both shared (aiRBC-giRBC) and giRBC-189 



specific trypsin-sensitive protein bands (Figure 4A), demonstrating the presence of immunogenic 190 

antigens on the giRBC surface. Next, we performed mass spectrometry-based proteomics of stage I-III 191 

giRBC membrane samples and assessed reactivity of sera from mice immunized with the same giRBC 192 

membrane samples. These results were combined with the proteins recognized by individuals with giRBC 193 

reactivity by flow cytometry in experiments described above to form an initial list of potential giRBC 194 

surface antigens.  195 

In the first approach, we performed whole lane in-gel digestion with 3 biological replicates of 196 

+trypsin vs. –trypsin giRBC membranes and identified differentially enriched protein bands between the 197 

two conditions by mass spectrometry (fig 4B; table S5). Overall, 72.20% of proteins identified in –198 

trypsin samples were shared between all 3 replicates and 92.21% of proteins were identified 199 

unequivocally in at least 2 of the 3 replicates. Out of all 235 proteins that were >1.25x enriched in the –200 

trypsin sample (table S5), a subset of 30 (12.77%) secreted proteins were considered putative surface 201 

antigen candidates. Secreted proteins were defined by the presence of at least one transmembrane domain 202 

(TM, including the N-terminal signal sequence) and either known localization to membrane/surface or 203 

host cell or unknown localization. Within this set of 30 candidates, 28 (93.33%; 11.91% of total candidate 204 

list) showed evidence for export into the host cell based on predicted PEXEL motif (21 proteins) or 205 

PEXEL/HT negative exported protein (PNEP) annotation (7 proteins) and 23 were expressed in both 206 

asexual and gametocyte stages. Importantly, this candidate list includes several previously identified 207 

secreted antigens such as multiple Plasmodium helical interspersed subtelomeric (PHIST) family proteins 208 

(21, 34, 35), PIESP2 (35-37), and GEXP02 (21, 38).   209 

In a complementary antigen-discovery approach, we immunized mice with the same surface-intact (-210 

trypsin) or surface-depleted (+trypsin) giRBC membranes used for proteomics and probed sera on our 211 

gametocyte-enriched protein array. Several bands on Western blot were present only in experiments using 212 

sera from mice immunized with surface-intact giRBC membranes, and were reduced in intensity when 213 

surface-depleted membranes were probed with these sera compared to surface-intact membranes (fig. 214 

4C). Sera from all mice showed similar responses to parasite-internal peptides on the array, but sera from 215 



mice immunized with –trypsin preparations showed significantly higher responses to secreted proteins 216 

compared to mice immunized with +trypsin preparations (p-value=0.04315)(fig. 4D). Due to lower 217 

background using mouse sera compared to human sera, many normalized mean response values were 218 

negative; however, the significant differential responses were consistent with observed reduced band 219 

intensity after trypsin treatment by Western blot (fig. 4C) and with the same array probed with human 220 

plasma samples described earlier. Consistent with our previous results using the peptide array, 16 221 

individual protein fragments elicited significantly higher differential responses with sera from mice 222 

immunized with surface-intact membranes (fig. 4E, table S6). Notably, GEXP07 and GEXP10, two 223 

proteins on the iRBC surface that can bind to the chemokine CX3CL1 (37) were recognized both by sera 224 

from mice immunized with intact and surface-depleted membranes (fig. 4F), suggesting that their 225 

ectodomain is trypsin insensitive.  226 

In total, we identified an overlapping set of 68 initial candidate giRBC surface antigens: 22 proteins 227 

with significantly correlated array vs. flow cytometry responses (table S4), 30 proteins from mass 228 

spectrometry-based proteomics (table S5), and 16 proteins eliciting significantly higher responses from 229 

sera from mice immunized with surface-intact (compared to surface-depleted) giRBC membranes (table 230 

S6). This list was then filtered based on detection by gametocyte surface proteomics and presence of at 231 

least one TM; subsequently any proteins with confirmed localization within the parasite or 232 

parasitophorous vacuole or Maurer’s clefts were removed. The remaining 30 proteins were therefore 233 

deemed potential giRBC surface antigens (table S7): 26 were identified by surface proteomics, 3 by the 234 

parallel mouse immune profiling experiment and 1 hit was identified only by correlating protein array 235 

responses and surface reactivity of patient plasma samples. Of the 30 candidate antigens, 26 (86.7%) 236 

showed evidence of export into the host cell based on the presence of a PEXEL (23 proteins) or PNEP (3 237 

proteins) motif, and the majority of the identified proteins (23: 76.7%) were expressed both in asexual and 238 

gametocyte stages (i.e., shared expression profile). Importantly, there is independent evidence for 239 

localization at the iRBC periphery and/or surface for 12 out of these 30 candidates from previous studies 240 

(Supplementary table S7), further supporting our data. 241 



 242 

Validation of giRBC antigen surface localization 243 

From the 30 proteins, we selected 9 for experimental validation of surface expression using antibodies 244 

against peptides (PF3D7_0402000, PF3D7_0702500, PF3D7_0936800, PTP5, PTP6, GEXP02 and 245 

GEXP10; GEXP07 and GEXP10 (37)), or recombinant protein (PF3D7_0532400 (39)) (table S8) in 246 

Western blots (fig. 5A), flow cytometry (fig. 5B), and live immunofluorescence assays (fig. 5B-C). In 247 

addition, we performed IFAs using fixed, permeabilized cells to determine the cellular distribution of the 248 

candidate proteins (fig. 5D). We obtained a band of the expected size by Western blot, and candidate 249 

antigens showed variable degrees of trypsin sensitivity (fig. 5A and fig. S6). All antibodies except PTP6, 250 

which did not detect giRBCs, were then tested by flow cytometry (fig. 5B) and immunofluorescence 251 

microscopy (fig. 5B-C) using live Pf2004/164TdTomato parasites. By flow cytometry, all antibodies, 252 

except those against GEXP10 and GEXP07, showed significantly reduced recognition of surface-depleted 253 

asexual stages and early gametocytes although cell binding was low for some antibodies (fig. 5B, right 254 

panel). The overall percentage of cells labeled, as well as the magnitude of decreased labeling after 255 

trypsin treatment, were higher by live IFA fig. 5B, left panel; fig. 5C) compared to flow cytometry. 256 

Again, GEXP10 and GEXP07 appeared insensitive to trypsin treatment in these assays. Apart from 257 

trypsin sensitivity we quantified the proportion of surface-labeled aiRBCs and giRBCs, the fluorescence 258 

intensity of surface labeling, and the average percentage of surface coverage among labeled cells by live 259 

microscopy (fig. 5C, left panel). Whereas GEXP10 and GEXP07 showed high levels for all 3 260 

measurements, other antibodies had high values for one or two parameters (fig. 5C). Automatic 261 

independent clustering by all 3 measurements simultaneously confirmed 6 candidates - PTP5, GEXP02, 262 

PF3D7_0936800, GEXP07, GEXP10 and PF3D7_0702500. In contrast, the two candidates with major 263 

expression in asexual stages and minimal expression in gametocytes based on our proteomic clustering 264 

(PF3D7_0402000, PF3D7_0532400) showed the lowest levels of giRBC surface staining by live 265 

microscopy. Finally, immunofluorescence microscopy using fixed and permeabilized cells confirmed 266 

significant labeling at the iRBC periphery, and in addition, co-labeling with the Maurer’s Cleft marker 267 



SBP1, for 3 of these candidates across asexual and immature gametocyte stages (fig. 5D). Antibodies 268 

against all three candidates showed markedly weaker labeling in gametocytes compared to asexual 269 

parasites. Altogether, analysis of a subset of candidates using peptide antibodies validated our analysis 270 

pipeline and confirmed six proteins as giRBC surface antigens.  271 

 272 

A subset of secreted parasite antigens shows minimal sequence diversity and elicits responses that are 273 

correlated with reduced gametocyte burden 274 

To determine the extent of sequence polymorphisms amongst the antigens analyzed in this study, we 275 

measured signatures of selection in the encoding genes from clinical isolates collected from two patient 276 

populations in Senegal and Malawi (table S9). Analysis of nonsynonymous pairwise nucleotide diversity 277 

(πNS) demonstrated significantly elevated levels of genetic diversity in genes encoding secreted compared 278 

to internal antigens across all stages (fig. 6A and S7A; Mann-Whitney U test, p = 8x10-13 (Senegal), p = 279 

3.7x10-11 (Malawi)). Genes with Tajima’s D values above the genome-wide 95th percentile (D>-0.343), 280 

indicating balancing selection, were also enriched in secreted relative to internal antigens (fig. S7B; 281 

Fisher’s Exact Test, p=0.0153 (Senegal), p=0.00660 (Malawi)). These data support the hypothesis that 282 

acquired immunity drives genetic diversity in genes encoding secreted P. falciparum blood stage antigens 283 

(both shared and gametocyte-specific). Indeed, we measured a positive correlation between immune 284 

responses against secreted antigens and the levels of πNS of the encoding genes (Pearson’s correlation; 285 

r=0.221, p=0.000141 (Senegal); r=0.199, p=0.000623 (Malawi)). Levels of πNS were significantly 286 

increased at mean responses greater than 0.5 across secreted antigens, suggesting a threshold effect 287 

inducing positive selection through antibody-mediated immunity (fig. 6A; Mann-Whitney U test, 288 

p=0.0265 (Senegal), p=0.0441 (Malawi)). We also quantified genetic differentiation between the two 289 

geographically separated parasite populations in Malawi and Senegal using the fixation index (FST). This 290 

analysis demonstrated that genes encoding secreted antigens show significantly higher FST indices (Mann-291 

Whitney U test, p=2.3x10-5), and that the majority of genes had high corresponding indices (FST > 292 

0.1)(fig. 6B; Mann-Whitney U test, p=2.3x10-5). Amongst our 30 candidate antigens, 9 showed minimal 293 



levels of nucleotide diversity across parasite populations in Malawi and Senegal (fig. S7C, and table S9). 294 

Seven antigens, including the validated surface antigens GEXP07 and PTP5, show both minimal levels of 295 

nucleotide diversity across parasite populations and low levels of population divergence between 296 

populations (fig. S7C, and table S9). Altogether, genetic analysis demonstrates that genes encoding 297 

secreted antigens show significantly higher signatures of selection compared to internal antigens whilst a 298 

subset of eight antigens show minimal levels of genetic diversity and may thus elicit strain-transcending 299 

immunity (table 2).  300 

 It is currently unknown whether antibodies recognizing shared or gametocyte-specific surface 301 

antigens may inhibit giRBC binding/sequestration and/or increase phagocytosis efficiency by 302 

opsonization - as implicated in responses to PfEMP1 (18, 40, 41) and merozoite antigens (42, 43). To 303 

directly test this hypothesis, we opsonized iRBCs with the same Malawian plasma samples used for iRBC 304 

surface labeling and determined the level of iRBC phagocytosis by THP-1 cells	(18). Significant levels of 305 

iRBC phagocytosis were detected (fig. 6C), and the magnitude of surface reactivity was significantly 306 

correlated with induction of phagocytosis both for aiRBCs and giRBCs (fig. 6D). Altogether these data 307 

demonstrate existence of functional antibodies targeting both aiRBCs and giRBCs, and provide evidence 308 

for antibody-mediated clearance of giRBCs. In support of these functional assays, the intensity of 309 

recognition of shared secreted antigens by plasma samples from individuals in Cameroon, Burkina Faso, 310 

or the Gambia was overall negatively associated with the gametocyte fraction in these individuals 311 

(quantified by coefficients of regressing antigen response on logit-transformed gametocyte fraction). In 312 

contrast, normalized recognition of asexual antigens was overall negatively associated with asexual stage 313 

and gametocyte load (also quantified by regression coefficients, antigen response on log-transformed 314 

asexual/gametocyte load), whereas normalized recognition of gametocyte-specific antigens did not show 315 

any negative association (fig. 6E). Furthermore, the proportion of total parasites that were gametocytes 316 

was negatively associated with breadth of response to the 76 fragments representing the 31 candidate 317 

surface antigens on the peptide array (coefficient, -0.002 (95% CI -0.004/-0.0004), p=0.019). Importantly, 318 

responses to a total of 12 candidate surface antigens, including three of our final candidates (Table 2) 319 



showed significant (p<0.05) negative correlation between immune response and both peripheral 320 

gametocyte and asexual stage load (fig. 6F and S8, and table S10). These data support the phagocytosis 321 

data and suggest that iRBC immunity may be able to simultaneously reduce total parasite burden and 322 

gametocyte burden.  323 

 324 

Discussion 325 

In this study, we systematically addressed immune recognition of antigens on the surface of giRBCs and 326 

provide evidence for the identity of these proteins. Our combination of a flow cytometry assay using 327 

distinct gametocyte stages, immune profiling by protein microarray, 3 parallel methods of antigen 328 

discovery, and a functional assay to quantify antibody-mediated iRBC phagocytosis, provides evidence 329 

for naturally acquired antibodies recognizing shared asexual/gametocyte and gametocyte-specific 330 

antigens on the surface of immature giRBCs.  331 

Two previous studies reported immune recognition of mature giRBCs (12, 14) but did not  332 

specifically control for gametocyte activation. We regularly observed glycophorin-negative gametocyte 333 

populations where the giRBC membrane was lost due to activation or permeabilization. It is conceivable 334 

that earlier studies have similarly experienced a loss in RBC integrity and may thus have detected 335 

antibodies against gamete proteins, that are common in endemic populations (22), instead of mature 336 

giRBC responses. Less stringent methods of giRBC purification also could have hindered detection of 337 

responses targeting the most immature stages. When we carefully prevented activation by using a 338 

compound that prevents gamete egress (44), and confirmed the intact RBC membrane by counterstains 339 

(the gamete surface antigen Pfs48/45 and the RBC surface antigen Glycophorin C), we did not detect 340 

significant recognition of stage V giRBC. In addition, we observed strong reactivity to stage I/II 341 

gametocytes but negligible reactivity to stage V gametocytes in our highly synchronous TdTomato 342 

transgenic parasite line (45). Our data demonstrate that plasma from naturally exposed individuals 343 

strongly recognizes early stage I/II giRBCs and aiRBCs; the majority of immunogenic giRBC antigens in 344 

our study are also expressed in asexual stage parasites. These observations have potential implications for 345 



our understanding of parasite biology. Asexual and early gametocyte stages of P. falciparum, P. vivax, 346 

and P. berghei are abundantly present in the bone marrow parenchyma	(5, 7, 46, 47), suggesting 347 

environmental characteristics supporting both gametocyte development and a genuine asexual replication 348 

cycle. An independent study recently confirmed that both bone marrow and spleen represent major 349 

reservoirs for parasite development in rodent malaria	(48). We hypothesize that shared antigens present 350 

on aiRBC and giRBC surfaces are involved in cellular interactions in the bone marrow parenchyma and 351 

critical for the maturation of both asexual and gametocyte stages. In such a model, the aiRBC surface 352 

serves the dual purpose of vascular adherence and extravascular binding, while the giRBC surface is 353 

optimized for extravascular binding only. Indeed, recent work demonstrated trypsin-sensitive binding of 354 

aiRBCs and immature but not mature giRBCs to human bone marrow mesenchymal stromal cells (49). 355 

Interestingly, two antigens we identified on the giRBC and aiRBC surface, GEXP07 and GEXP10, were 356 

recently described as aiRBC surface proteins that bind the chemokine CX3CL1 (37). As expression of 357 

this chemokine on bone marrow stromal cells is involved in homing and retention of monocytes (50), it is 358 

tempting to speculate that GEXP07 and GEXP10 are involved in such interactions between iRBCs and 359 

other cell types. It remains to be determined why human IgG levels recognizing giRBC antigens are 360 

generally lower compared to aiRBCs and why recognition is restricted to young gametocyte stages, 361 

despite their continued presence in the extravascular niche until maturity. Although we only examined 362 

stage I/II, III and V gametocytes, and not the intermediate stage IV, our data suggest reduced antigen 363 

expression on the giRBC surface over the course of gametocyte development, the mechanism of which 364 

could include a combination of membrane remodeling, protease activity, or release via extracellular 365 

vesicles. As the molecular mechanisms of the bone marrow sequestration process become further 366 

elucidated, the ability and function of natural antibodies to access this compartment in meaningful 367 

concentrations and effectively target parasites in this niche is likely to also be revealed.  368 

Our data reveal a positive correlation between antibody-mediated immunity and genetic diversity in 369 

secreted parasite antigens. Nevertheless, we identified a small set of immunogenic candidate antigens 370 

with minimal genetic diversity within and between populations, suggesting that they may induce strain-371 



transcendent immunity. Our plasma samples were from cross-sectional surveys in asymptomatic 372 

populations. Whilst this makes it unlikely that inflammation or acute disease have influenced the results, 373 

our sampling approach means we were lacking details on gametocyte commitment and maturation, and 374 

were thus unable to test causality between antibody responses and parasite and gametocyte dynamics. We 375 

observed that the proportion of the total parasite biomass that is gametocyte (indicating what fraction of 376 

parasites successfully develops into circulating mature gametocytes	(51)) was reduced in infections of 377 

individuals who responded to peptides mapping to shared asexual/gametocyte antigens. The negative 378 

associations between responses to asexual secreted antigens and asexual parasite load suggest a specific 379 

role for these proteins in reducing asexual parasite burden, in addition to the established contribution of 380 

anti-PfEMP1 antibodies (18, 19). Importantly a total of 12 candidate antigens, including 3 of our 8 top 381 

candidates with low sequence diversity, showed negative correlations between antibody titer and both 382 

asexual and gametocyte load, suggesting an association with reduced parasite growth and gametocyte 383 

maturation or clearance. This possible phenotype of the detected antibody responses is supported by our 384 

finding that plasma samples with increased aiRBC and giRBC surface recognition demonstrate increased 385 

phagocytosis of aiRBC and giRBC by THP-1 cells. This phenotype and the identification of a small set of 386 

target immunogenic antigens present on the giRBC surface with low sequence diversity, provides a 387 

rationale for a novel transmission blocking vaccine strategy that may interfere with gametocyte 388 

maturation. Such a vaccine approach would reduce the number of gametocytes in the circulation and 389 

hence transmission potential.   390 

Altogether, we provide compelling evidence for natural immune responses targeting young 391 

gametocytes and their antibody-mediated immune clearance. We identify a small set of 8 candidate 392 

antigens that are i) expressed in gametocytes (7 of them are also expressed in asexual stages), ii) elicit 393 

natural antibody responses and iii) display low sequence diversity.  394 

 395 

Materials and Methods 396 

Study design 397 



For the Malawi study, samples were collected over 4 weeks in July/August 2013. Two weeks were spent 398 

in Chikhwawa, as this region had higher malaria transmission during this time of year and one week each 399 

in Ndirande and Thyolo. All individuals receiving an RDT at the clinic were referred to our study and 400 

samples were taken from all of those individuals who consented to the study. The end of data collection 401 

was not determined by any factor other than the end of the defined sample collection period. Samples 402 

from two individuals who withdrew their consent after participation were discarded; all other samples 403 

were shipped to the US for further experiments. We aimed to detect natural antibody responses among the 404 

study participants that recognize giRBCs and then to determine the targets of these antibody responses. 405 

To examine antibody binding to the giRBC surface, we used a surface reactivity flow cytometry assay, 406 

immunofluorescence microscopy and a protein array enriched for proteins expressed during gametocyte 407 

stages. In these experiments, samples were identified only by number and patient age and corresponding 408 

clinical data was unblinded only after experiments finished. Three technical replicates were used for all 409 

samples and two biological replicates were performed for a subset of samples. In cases where the result 410 

from one technical replicate was of a different magnitude than the other 2 replicates, this value was 411 

removed. To determine the identity of antigens targeted by the identified antibodies, we used mass 412 

spectrometry and immunization of mice with giRBC membranes, each using 3 biological replicates for 413 

preparation of giRBC membranes. Surface expression of candidate antigens was validated by Western 414 

blot, flow cytometry, and immunofluorescence microscopy. Functional activity was assessed using a 415 

THP-1 cell phagocytosis assay. Sequence diversity was assessed using standard methods 416 

(nonsynonymous pairwise nucleotide diversity, balancing selection measured by Tajima’s D, genetic 417 

differentiation measured by the fixation index).  418 

 419 

Statistical analysis 420 

The appropriate statistical test for each experiment was determined based on the type of data being 421 

compared. FDR corrections were performed for all analyses involving multiple comparisons and p-values 422 

<0.05 were considered significant. Simple univariate linear regressions were performed for examining the 423 



correlation between levels of IgG responses against individual fragments on the protein array and 424 

covariates including (ordinally categorized) age, burden, and iRBC recognition by flow cytometry. P-425 

values across fragments were corrected with Bonferroni method. Pairwise, two-sided student t-tests were 426 

used to test for difference in mean IgG response against proteins across stages. Linear regressions were 427 

used to test for associations between IgG response against fragments and parasite load, gametocyte load 428 

and gametocyte fraction, with adjustment for age by including age groups as covariates. The regression t-429 

statistics (estimated coefficients / standard error) of internal and secreted protein fragments are compared 430 

by two-sided Mann-Whitney U test. The association of gametocyte fraction and breadth of response 431 

(number of proteins seropositive) was conducted on gametocyte positive individuals for whom asexual 432 

and gametocyte stages had been quantified. Analysis on breadth and fraction on continuous scales was 433 

performed with linear regression, adjusting for gametocyte density. Analysis with breadth as a binary 434 

variable was performed with logistic regression, adjusting for gametocyte density. Throughout the 435 

manuscript significant p-values are reported either as is or with the corresponding alpha-level (all < 0.05). 436 

 437 
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Figures legends 783 

 784 

Figure 1: Human plasma samples recognize secreted asexual (aiRBC) and gametocyte (giRBC) 785 

surface antigens. 786 

A. Heat map of 344 P. falciparum antigens from 3D7 genome (PlasmoDB Release 31) clustering proteins 787 

on the array by timing of protein expression (log read counts of number of peptides sequences). 788 

Additional annotations are indicated by color bars at the top of the heat map: first row indicates cluster 789 

stage annotation from (52) (orange: gametocyte rings, red: immature gametocytes, blue: mature 790 

gametocytes, grey: others), and second row indicates cellular localization (black: secreted, white: 791 

internal/unknown). Vertical red lines separate stage-specific clusters. Black boxes highlight 5 clusters of 792 

shared or gametocyte-specific secreted antigens. B. Distribution of 528 P. falciparum protein fragments 793 

on the peptide array (developed in (22)) by stage and location. The proteins were selected based on 794 



expression during gametocyte stages and predicted export (details in table S2). C. Mean responses across 795 

3 malaria-exposed populations are quantified by peptide array (after normalization to controls and 796 

quantile normalization), stage of protein expression, and whether they are secreted or not (see table S1). 797 

GAM=Gametocyte, GAM/MO=Gametocyte/Mosquito stages, MO=Mosquito stages, A=Asexual stages, 798 

SA=Shared antigens. 799 

  800 



 801 



Figure 2: Immune responses target the immature but not the mature giRBC surface.  802 

A-B. Results from a pilot flow cytometry study testing reactivity of 24 Malawian plasma samples (22 803 

from Chikhwawa, a high transmission region, and 2 from Ndirande, a low transmission region) and 5 804 

naïve controls against stage II/III and stage V gametocytes and gametes. Positive surface reactivity (> 3 805 

standard deviations above mean of naive controls) is shown both as percentage of significantly positive 806 

samples of all those tested (A) and percentage of positive cells among those incubated with an individual 807 

plasma sample (B). C. Schematic for gating strategy of giRBC surface detection in 244 Malawian plasma 808 

samples by flow cytometry. IgG positivity is determined using the Pf2004_164/TdTom line that allows 809 

selection of the parasite population (positive for DNA dye) and TdTomato (positive for gametocytes). 810 

Top panel: Cells are first gated for live cells and single cells by forward and side scatter (left). After 811 

debris is gated out, quadrant gates separate gametocytes (Violet+/TdTomato+), asexual/lysed cells/debris 812 

(Violet+/TdTomato-), and uninfected cells (right). Bottom panel: AlexaFluor488 surface fluorescence 813 

(human IgG-secondary antibody conjugates) is compared between uninfected cells and gametocytes (left), 814 

and between infected cells incubated with naïve controls and Malawian plasma samples (right). Technical 815 

replicates are shown as individual lines. D-E. Positive recognition of aiRBCs and stage II/III giRBCs 816 

(determined by t-tests comparing Malawi samples to naïve US controls using the Holm-Sidak method 817 

with alpha=0.05) by 244 Malawian plasma samples is shown as prevalence (D) and as significant fold 818 

change in AlexaFluor488 median fluorescence compared to naïve controls (E). The threshold for specific 819 

positive reactivity was set to 1.1 based on the highest level of non-specific reactivity (i.e. reactivity to 820 

aiRBCs of human plasma significantly positive for stage II/III giRBC but negative for aiRBC). F. 821 

Correlation of human plasma recognizing aiRBCs (top panel) and giRBCs (bottom panel) by flow 822 

cytometry with age. G. Correlation of antigen responses by peptide array vs. surface recognition by flow 823 

cytometry. For the same set of Malawi plasma samples, normalized peptide array signal intensities were 824 

averaged across all shared stage antigens (top panel) or gametocyte-specific antigens (bottom panel). 825 

These mean responses were correlated with giRBC recognition by flow cytometry as measured by median 826 

fluorescence (AlexaFluor488) fold change compared to naïve controls. Overall, mean responses of shared 827 



secreted antigens are significantly correlated with giRBC recognition (p=0.004), whereas the other 828 

correlations are non-significant. Significance values: *, p < 0.05; **, p < 0.01; ***, p < 0.001; ****, p < 829 

0.0001. 830 
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 832 

Figure 3: Human IgG selectively recognizes the early (stage I/II) giRBC surface.  833 

A. Stage-specific expression of the TdTomato reporter in transgenic Pf2004/164TdTom parasites by flow 834 

cytometry. Reporter expression is shown by fluorescence intensity in a time course across stage I-III 835 

gametocytes. B. The Violet+TdTomato+ gametocyte population detected by flow cytometry can be 836 

separated into weak TdTomato+ (stage I/II gametocytes) and strong TdTomato+ (stage II/III) subgroups. 837 

C. Correlation between TdTom signal and human IgG based on flow cytometry data (Pearson’s 838 

correlation, p<0.0001). D. Fluorescence microscopy analysis using the same antibody and reporter 839 

combination as above. Left panel: Surface labeling is present on both asexual parasites (arrows) and early 840 



gametocytes (arrowheads). Right panels: High content image quantification of fluorescence microscopy 841 

data, based on proportion of the cell surface that is labeled (top panel) and stratified by intensity (bottom 842 

panel).  843 
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 845 

Figure 4: Immunogenic gametocyte antigens identified by 3 complementary approaches. A. Surface-846 

depleted vs. surface-intact uninfected and infected RBC membranes were probed with Malawian plasma 847 



samples and naïve US sera by Western blot. Each lane represents protein extract from 2.5×106 uRBC or 848 

iRBC. Differential band patterns between the trypsin(+) and trypsin(-) samples are marked with red 849 

arrows. B. Volcano plot showing human and Plasmodium proteins identified by comparing surface-intact 850 

vs. surface-depleted giRBC membranes. X-axis represents log2 fold change of -trypsin/+trypsin and Y-851 

axis shows the T-test p-value (p<0.05 corresponds to p-value 0.0004 after Benjamin-Hochberg 852 

correction) of -trypsin/+ trypsin biological replicates (n=3). Plasmodium proteins with a log2 fold change 853 

>1.25 are marked in red and significant Plasmodium proteins across 3 replicates are marked in blue. C. 854 

Surface-depleted (+trypsin/chymotrypsin) vs. surface intact (-trypsin/chymotrypsin) uRBC and giRBC 855 

membranes were probed with sera from mice (6 per group) immunized with surface-intact or surface-856 

depleted giRBCs by Western blot. Each lane represents protein extract from 2.5×106 uRBC or iRBC. 857 

Differential band patterns between the trypsin(+) and trypsin(-) giRBC samples are shown in red. D. The 858 

array described in Figure 1 was probed with sera from mice immunized with either surface-depleted or 859 

surface-intact giRBC membranes. Responses were normalized to controls and then quantile normalized. 860 

E. PTP6 and GEXP21 differential responses between sera from mice immunized with surface-intact (-861 

trypsin) giRBC membranes and surface-depleted (+trypsin) giRBC membranes. F. GEXP07 and GEXP10 862 

differential responses from sera from mice immunized with intact and surface-depleted membranes. See 863 

table S7 for complete data set.  864 
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 866 

Figure 5: Six candidate antigens expressed during gametocyte stages are validated on the giRBC 867 

surface.  868 



Previously published GEXP07 and GEXP10 antibodies (37) target the putative extracellular loops of 869 

these proteins and will be referred to as “GEXP07 EL” and “GEXP10 EL” to distinguish from our newly 870 

produced peptide antibodies targeting the same proteins. A. MACS purified aiRBC or giRBC membranes 871 

(+/- pre-treatment with trypsin/chymotrypsin: hereafter referred to as +/- trypsin) are probed with 872 

polyclonal antibodies targeting candidate antigens by Western blot (see full blots in Supplemental 873 

Figure S6). Antibodies against Glycophorin C (trypsin-sensitive, surface expressed) and β-spectrin 874 

(trypsin resistant, internally localized) are included as controls. Each lane represents protein extract from 875 

2.5×106 iRBC. B. Reactivity of candidate antibodies to surface of MACS-purified Pf2004/164TdTomato 876 

iRBCs (+/- trypsin/chymotrypsin) was detected by live microscopy (left panel) and flow cytometry (right 877 

panel), using the same sample preparations in parallel. For live microscopy, the percentage of surface 878 

labeled aiRBCs or stage I giRBCs (weak TdTomato+) are shown for all antibodies tested. No asexual 879 

samples were tested for GEXP02 and PF3D7_0402000. For flow cytometry, cells were gated for live 880 

cells, single cells, and then uRBCs and giRBCs were gated based on Vybrant Violet and TdTomato 881 

fluorescence and surface reactivity measured using AlexaFluor488-conjugated secondary antibody . The 882 

TdTomato positive population was further split into “weak TdTomato+” (corresponding to earlier 883 

gametocytes) and “strong TdTomato+” (corresponding to later gametocytes) populations. C. Antibodies 884 

were clustered (automatic independent clustering) based on the imaging parameters shown in the 885 

heatmap: percentage of labeled giRBCs, average MFI at the giRBC cell surface, % giRBC surface 886 

covered, and ratio of MFI at the surface of –trypsin samples compared to +trypsin. Glycophorin C is 887 

included as a control. Live representative images of early giRBCs +/-trypsin treatment are shown for 888 

GEXP07 and GEXP10. D. Immunofluorescence analysis of the localization of GEXP02, GEXP10, and 889 

PF3D7_0936800 (detected with anti-peptide antibodies) in fixed, permeabilized aiRBCs and giRBCs 890 

(days 2 and 4 of the induction, corresponding to stages I-IIA and IIA-IIB, respectively). Candidate protein 891 

is shown in green, SBP1 in magenta, TdTomato in red, and nuclear staining in blue. 892 

 893 

 894 
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 896 



Figure 6: Candidate gametocyte surface antigens elicit responses correlated with reduced 897 

gametocyte burden and a subset show minimal genetic diversity.  898 

A. Nonsynonymous nucleotide diversity for all antigens present on the protein array, stratified by stage, 899 

localization and level of immune response (Mann-Whitney U Test, p < 0.05). Genome data are from a set 900 

of parasite samples in Senegal. B. Population differentiation between Senegal and Malawi parasite 901 

samples for secreted and internal proteins (FST at nonsynonymous sites; Mann-Whitney U Test, p = 2.0 902 

x10-5). The dotted and dashed lines mark the 99th and 95th percentile of genome-wide nonsynonymous FST 903 

values. C. Left panel: internalized aiRBCs and giRBCs upon phagocytosis by THP-1 cells. aiRBCs are 904 

stained with the nuclear dye dihydroethidium (DHE) and giRBCs show TdTomato (TdTom) reporter 905 

fluorescence. Right panel: phagocytosis index of Malawi plasma samples relative to positive control 906 

(rabbit anti-human RBC) and naive US serum. D. iRBC phagocytosis vs. surface recognition. E. 907 

Associations were estimated between gametocyte fraction (gametocytes/total parasites), gametocyte and 908 

asexual parasite load, and secreted antigen fragment responses by peptide array (after normalization to 909 

IVTT controls and quantile normalization as in Figure 1) across 3 malaria-exposed populations. Median 910 

standardized regression coefficient -0.86, Wilcoxon test p=0.087. F. Regression coefficients (and 95% 911 

confidence intervals) between individual protein fragments of the prioritized candidate antigens and 912 

parasite parameters (either gametocyte fraction, gametocyte load or asexual parasite load). Fragments are 913 

stratified by their correlation with parasite parameters.  Significance values: *, p < 0.05; **, p < 0.01; ***, 914 

p < 0.001; ****, p < 0.0001. 915 

 916 
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Tables: 918 

Age (years) Gender Location RDT status 
≤5 106 

(43.44%) 
Male 102 (41.8%) Chikhwawa 171 (70.1%) + 169 (69.3%) 

>5,≤12 28 (11.48%) Female 142 (58.2%) Ndirande 35 (14.3%) - 75 (30.7%) 
>12,<30  47 (19.26%)   Thyolo 38 (15.6%)   
≥30 63 (25.82%)       

Total       244 

	919 
Table 1. Characteristics of Malawian study population. Chikhwawa has year-round malaria 920 

transmission whereas Ndirande and Thyolo have more seasonal transmission peaking during the rainy 921 

season each year. RDT=rapid diagnostic test. 922 

 923 
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 925 

Accession ID Export 
motif 

Protein 
description 

Stage 
annotation  

Previously 
described 

localizations 

Detection 
method 

Host 
phenotypes Conservation 

Validated 
surface 

expression 

PF3D7_0601900 PNEP 

Conserved 
Plasmodium 

protein, 
unknown 
function 

 

Shared Maurer’s clefts Proteomics  Pf  

PF3D7_0713700 NO 

Conserved 
Plasmodium 

protein, 
unknown 
function 

 

Gam/Mo Unknown Proteomics 
Neg correlation 
with asex./gam. 

load 
Pf, Pv, Pb  

PF3D7_0721100 PEXEL 

Conserved 
Plasmodium 

protein, 
unknown 
function 

 

Shared RBC surface  
Proteomics
Array/flow 
correlation 

pos. correlation 
with age/neg. 

correlation with 
asex./gam. load 

Pf, Pv, Pb  

PF3D7_0812100 NO 

Conserved 
Plasmodium 

protein, 
unknown 
function 

 

Shared Unknown Proteomics 

pos. correlation 
with age/neg 

correlation with 
asex./gam. load 

Pf, Pv, Pb  

PF3D7_0831400 PEXEL 

Plasmodium 
exported 
protein, 

unknown 
function 
(Hyp12) 

 

Shared Unknown Proteomics  Pf   

PF3D7_1002100 PEXEL 

EMP1-
trafficking 

protein 
(PTP5) 

 

Shared Maurer’s clefts Proteomics  Pf X 

PF3D7_1038000 NO 
Antigen 
UB05 

 
Shared Unknown Proteomics  Pf, Pv, Pb  

PF3D7_1301700 PEXEL 

Plasmodium 
exported 
protein 
(hyp8), 

unknown 
function 

(GEXP07) 
 

Shared RBC surface 

Proteomics/ 
Mouse sera 

array 
(+trypsin 
enriched) 

 Pf X 

	926 

Table 2: Prioritized candidate gametocyte antigens. 8 candidate gametocyte antigens were identified by: 927 

1) predicted or known host secretion, 2) proteomics of trypsin-treated and –untreated giRBC membranes, 3) 928 

correlations between plasma reactivity by protein array and flow cytometry, 4) array reactivity of serum from 929 

mice immunized with trypsin-treated and –untreated giRBC membranes, 5) exposure-dependent increase of 930 



IgG in malaria-positive individuals, 6), negative correlation with asexual and gametocyte load, and 7) low 931 

genetic diversity and divergence. 3 candidates (marked in bold) fulfill all criteria (1-6). Previously described 932 

stage annotation and localization was retrieved from plasmodb.org (21, 23, 24, 53). Further details on 933 

candidates are provided in table S7 and for 3 top candidates in fig. S8. Pf=P. falciparum; Pv=P. vivax, 934 

Pb=P. berghei.	935 

 936 

	937 
 938 


