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Abstract

Introduction—Improved biomass and advanced fuel cookstoves can lower household air 

pollution (HAP), but levels of fine particulate matter (PM2.5) often remain above the World Health 

Organization (WHO) recommended interim target of 35 ug/m3.

Methods—Based on existing literature, we first estimate a range of likely levels of personal 

PM2.5 before and after a liquefied petroleum gas (LPG) intervention. Using simulations reflecting 

uncertainty in both the exposure estimates and exposure-response coefficients, we estimate 

corresponding expected health benefits for systolic blood pressure (SBP) in adults, birthweight, 

and pneumonia incidence among children <2 years old. We also estimate potential avoided 

premature mortality among those exposed.

Results—Our best estimate is that an LPG stove intervention would decrease personal PM2.5 

exposure from approximately 270 ug/m3 to approximately 70 ug/m3, due to likely continued use 

of traditional open-fire stoves. We estimate that this decrease would lead to a 5.5 mmHg lower 

SBP among women over age 50, a 338 gram higher birthweight, and a 37% lower incidence of 

severe childhood pneumonia. We estimate that decreased SBP, if sustained, would result in a 5%–

10% decrease in mortality for women over age 50. We estimate that higher birthweight would 

reduce infant mortality by 4 to 11 deaths per 1000 births; for comparison, the current global infant 

mortality rate is 32/1000 live births. Reduced exposure is estimated to prevent approximately 29 

cases of severe pneumonia per year per 1000 children under 2, avoiding approximately 2–3 deaths/ 

1000 per year. However, there are large uncertainties around all these estimates due to uncertainty 

in both exposure estimates and in exposure-response coefficients; all health effect estimates 

include the null value of no benefit.
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Conclusions—An LPG stove intervention, while not likely to lower exposure to the WHO 

interim target level, is still likely to offer important health benefits.
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Introduction

Observational studies suggest potential health benefits from lower levels of household air 

pollution (HAP) associated with clean cookstoves; the strongest evidence is for lung cancer, 

chronic obstructive pulmonary disease (COPD), and childhood pneumonia (Bruce et al. 

2015). However, the reduction in exposure with improved biomass stoves has not been in 

general sufficient to reduce levels to the WHO annual interim fine particulate matter (PM2.5) 

target (IT-1) level of 35 ug/m3(Bruce et al. 2015, Clark et al. 2013a, Balakrishnan et al. 

2014, Pope et al. 2017). In a 2014 literature review, Rehfuess et al. (2014) estimated that the 

impact of an intervention with improved biomass cookstoves with chimneys vs. traditional 

(open-fire) stoves reduces personal PM2.5 exposure among women from 270 ug/m3 to 120 

ug/m3, based on five studies with data on personal exposure. Possible reasons for less-than-

desired reductions in exposure include poor stove performance (design and maintenance), 

stove stacking (use of traditional stoves along with new stoves), and possible other sources 

of PM2.5 beyond cooking (Clark et al. 2013a). Increasing evidence from combustion studies 

have raised questions about whether any stoves that rely on biomass (wood, dung, 

agricultural waste, coal, charcoal) can achieve targeted reductions in PM2.5 without other 

interventions such as improved ventilation (Yip et al. 2017). This less-than-desired 

performance of improved biomass cookstoves has motivated recent trials of stoves using 

non-biomass fuels, such as liquid petroleum gas (LPG).

There have been relatively few randomized intervention trials of cookstoves that have 

measured health effects. Smith et al. 2011 focused on childhood pneumonia in Guatemala, 

Thompson et al. (2011) focused on birth outcomes in Guatemala, Smith-Sivertsen et al. 

(2009) focused on respiratory function in Guatemala, McCracken et al. (2007) focused on 

blood pressure in Guatemala, Mortimer et al. (2016) focused on childhood pneumonia in 

Malawi, and Romieu et al. (2009) focused on adult lung function in Mexico. There is also a 

recently completed trial in Nigeria (Alexander et al. 2017). While the Mortimer et al. trial 

did not observe a protective effect for pneumonia, the other trials have shown some health 

benefits of improved stoves. Perhaps the best known evidence of protective effects is for 

childhood pneumonia in the RESPIRE trial (Smith et al. 2011). There have also been 

beneficial effects on blood pressure in older women (McCracken et al. 2007) and in pregnant 

women (Alexander et al. 2017), beneficial effects on birthweight (Thompson et al. 2011), 

and mixed results on lung function (Romieu et al. 2009, Smith-Silvertsen et al. 2009).

The WHO target level for an annual average PM2.5 exposure is 10 ug/m3, but given the 

difficulties in achieving this target level, WHO has set an annual interim target (IT-1) level 

of 35 ug/m3 (WHO 2014). Because of the steep slopes of estimated exposure-response 

curves at low levels of PM2.5 for many health outcomes, combined with a plateau of the 
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curve at higher levels (Burnett et al. 2014), Bruce et al. (2015) have argued that substantial 

health gains are likely to be observed only if personal exposure levels fall below the WHO 

interim target level of 35 ug/m3, particularly for childhood pneumonia, ischemic heart 

disease (IHD), and stroke. However, Bruce et al. (2015) also noted that interventions 

resulting in lower levels of exposure (from 200–300 ug/m3 to 35–80 ug/m3, without 

necessarily attaining the 35 ug/m3 target level), nonetheless can be expected to result in 20% 

to 50% decreases in risk of several outcomes (COPD, lung cancer, infant pneumonia, birth 

outcomes). This conclusion is consistent with the WHO Guidelines for Indoor Air Quality 
(WHO 2014), which also notes that lowering personal exposures from 200–300 ug/m3 to 

35–80 ug/m3 is likely to result in reductions in risk of 20–50% for several outcomes (WHO 

2014).

Liquified petroleum gas (LPG) interventions are likely to result in lower exposures than have 

been observed with interventions with improved biomass cookstoves (Balakrishnan et al. 

2014, Rehfeuss et al. 2014). Absent any additional exposure from traditional stoves (stove 

stacking) for cooking or heating, and absent any important ambient air contribution (eg, 

trash burning, traffic), it’s likely that LPG stove would lead to indoor levels of PM2.5 at or 

near the WHO target of 10 ug/m3. Even with stove stacking and elevated ambient levels, we 

believe that use of LPG stoves will result in substantially reduced concentrations compared 

to traditional or improved biomass stoves. Consequently, it is likely that LPG stove 

interventions can show appreciable health benefits for several outcomes, with more expected 

improvement than from improved biomass stoves. Interventions with LPG are becoming 

more feasible as the price of LPG has dropped considerably worldwide in the past 5 years 

(BP Global 2017). Two trials using LPG as an intervention have recently been completed, 

although results have not been published (Tielsch et al. 2014, Jack et al. 2015), and there is 

an ongoing trial using an ethanol-burning stove (HAP 2017). The large, multi-centric trial 

focused exclusively on cooking with LPG stoves – the four-country HAPIN (Household Air 

Pollution Intervention) study – has just begun (HAPIN 2017). The present authors are part 

of the team conducting that study.

Randomized trials are typically short-term and cannot easily evaluate long-term effects on 

chronic disease like lung cancer, stroke, and heart disease. However, such trials can show 

benefits for outcomes that can be measured in the short term, such as childhood pneumonia, 

birth outcomes, and adult blood pressure. These short-term outcomes can either show 

immediate direct benefits, such as pneumonia and low birth weight (both of which can affect 

infant mortality risk), or potential longer term benefits (blood pressure, which if lowered 

consistently results in lower rates of chronic disease).

There are relatively few studies of HAP and health effects that provide exposure-response 

data based on measured personal exposures (Quansah 2017). However, there are exposure-

response data for the short-term outcomes mentioned above – childhood pneumonia, low 

birth weight, and blood pressure – based on personal exposure. In addition, Burnett et al. 

(2014) have developed integrated exposure-response curves (IERs) for PM2.5 in relation to 

chronic diseases (lung cancer, stroke, COPD, heart disease) as well as infant pneumonia, by 

using PM2.5 data from studies of HAP, mainstream tobacco smoke, second-hand smoke, and 

ambient air pollution.
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Using published exposure-response data, we estimate the health benefits gained with 

exposure reductions anticipated to result from LPG interventions, for three outcomes that 

can be measured in a short-term trial: blood pressure in adult women (>age 50), birth 

weight, and pneumonia incidence among young children.

Methods

1. Review of the literature

Our estimates of the effects of HAP on health are drawn from published literature. First, we 

examined the studies included in several recent systematic reviews, including Balakrishnan 

et al. (2014), Rehfuess et al. (2014), Pope et al. (2017), Quansah et al. (2017), Bruce et al. 

(2013), and Bruce et al. (2015). We updated the results of these reviews via a PubMed 

search using keywords ‘PM2.5’, ‘biomass’ ‘air pollution’, ‘cookstoves’, ‘ household air 

pollution’, ‘blood pressure’, ‘birthweight’, ‘premature birth’, ‘pre-term birth’, ‘gas stove’ 

and ‘LPG’ and ‘respiratory infection’ and ‘pneumonia’. Finally, we queried investigators in 

the field regarding their knowledge of studies relevant to this investigation.

2. Personal PM2.5 data

We focus on PM2.5 rather than carbon monoxide (CO), or other exposure metrics, because 

the bulk of the literature on health effects in relation to measured air pollution (ambient and 

household) refers to PM2.5. We also focus on personal rather than area (kitchen) exposures, 

as personal exposures are most relevant when considering health effects.

Rehfuess et al. (2014) reviewed the literature for cookstove intervention studies as part of a 

WHO document. Data based on five studies with either 24 or 48 hours sampling indicates 

that an intervention with improved biomass cookstoves with chimneys would lower personal 

PM2.5 exposure among women from 270 ug/m3 to about 120 ug/m3, a 56% reduction 

(Figure 6, Rehfeuss et al. 2014). The reduction in personal exposure due to the interventions 

in Rehfeuss et al. (2014) of 60%–64% corresponded well with the reduction observed in 

kitchen concentration.

Balakrishnan et al. (2014) conducted an analogous WHO review of the cookstove literature 

based on studies which were not interventions. These authors estimated personal exposure 

levels from traditional stoves of 267 ug/m3 of PM2.5 based on 8 studies, very similar to the 

estimate of 270 ug/m3 for traditional stoves in the intervention studies reviewed by Rehfeuss 

et. al. (2014).

The potential effect of an intervention with LPG stoves on personal PM2.5 exposure is not 

known. The only LPG intervention study cited by Rehfuess et al. (2014) was conducted in 

Sudan, and measured 24-hour kitchen, rather than personal, concentrations (Bates et al. 

2005, see Annex 18). Furthermore, the data presented are for all respirable PM, and are not 

directly translatable to PM2.5. There is also one non-intervention study with data on 

exposure from LPG stoves cited by Balakrishnan et al. (2014)(Figure 9), where the personal 

exposure of women to PM2.5 was approximately 70 ug/m3.

Steenland et al. Page 4

Environ Int. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



For our best estimate of personal exposure from LPG stoves, we take the estimate of 70 

ug/m3 from Balakrishnan et al. (2014).

The recent articles by Pope et al. (2017) and Quansah et al. (2017) reviewed much of the 

same literature as Balakrishnan et al. (2014) and Rehfuess et al. (2014), but revealed only 

one additional study (Hartinger et al. 2013) with personal PM2.5 exposure over a 48-hour 

period. This study found somewhat lower personal PM2.5 levels from traditional stoves 

(mean 145 ug/m3, n=28). We also found one more recent report from China (Hu et al. 2014), 

not included in the reviews cited here, which had higher levels of personal PM2.5 exposures 

for unvented stoves/firepits using wood or plant-based biomass (mean 406 ug/m3, geometric 

mean 335 ug/m3), based on 17 households. On the other hand, kitchen exposures were lower 

compared to personal exposures (30%–40%), unlike virtually all of the other literature. 

These differences from the other literature may reflect that in China there were significant 

sources outside the home.

Given the relatively small numbers of samples in the studies by Hartinger et al. (2013) and 

Hu et al. (2014), and the unusual findings in the study by Hu et al. (2014), we have chosen to 

rely on Rehfuess et al.’s estimate of 270 ug/m3 as our best estimate of personal PM2.5 

exposure from traditional stoves.

We focus on arithmetic rather than geometric means, because these are generally what are 

reported in the literature. Many papers do not provide the geometric mean, and hence we 

don’t have a good estimate of what the literature overall indicates for the geometric mean for 

different types of stoves (eg, Balakrishnan et al. 2014, Table 3). The arithmetic mean, while 

influenced more by outliers, is comprehensible to policy makers and others who may not be 

familiar with geometric means, and some standards and guidelines are set in terms of annual 

arithmetic averages.

3. Blood pressure

Exposure-response data for blood pressure (BP) are taken from a panel study by 

Baumgartner et al. (2011). There were 280 women enrolled in this study (mean age 52), with 

multiple personal PM2.5 measurements and BP measurements. Ever-smokers and pregnant 

women were excluded. The geometric mean of 24-hour personal PM2.5 was 55 ug/m3 in the 

summer and 117 ug/m3 in the winter. Using mixed models the authors found an increase in 

systolic blood pressure (SBP) of 2.2 (95% CI 0.8–3.7) mmHg for each unit of log PM2.5 

among all women, and an increase of 4.1 mmHg (95% CI 1.5–6.6) for each unit of log 

PM2.5 for women over 50. There was little effect on SBP in women aged 25–50.

There are no other comparable published studies of non-pregnant women with personal 

exposure to PM2.5 from HAP and with exposure-response data for BP. However, there are 

several supporting studies. McCracken et al. (2007) studied 120 women of age>38 years, 

comparing SBP among those exposed after an intervention, with controls. Personal PM2.5 

averaged 264 ug/m3 in the control group, and 102 ug/m3 in the intervention group. SBP was 

3.7 mmHg lower (95% CI −0.6–8.1) in the intervention arm, and diastolic BP was 3.0 

mmHg lower (95% CI 0.4–5.7). The results from Baumgartner et al. (2011) are also 

consistent with results for women over the age of 40 years in Clark et al. (2013b), which 
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compared SBP before and after an intervention with an improved cookstove (without a 

control group) among 74 Nicaraguan non-pregnant women (27 over the age of 40 years). 

Area PM2.5 (48-hour) was reduced from a geometric mean of 1172 ug/m3 to 208 ug/m3 in a 

subset of women (n=25) with HAP data (personal PM2.5 not measured). SBP dropped an 

average of 5.9 mmHg (95% confidence interval 0.411.3) in women age 40 years and older, 

after the intervention, with little effect on women under that age. Finally, similar 

observations were reported in a 2016 abstract regarding (non-pregnant) women and SBP in 

relation to HAP by Young et al. (https://epiresearch.org/wp-content/uploads/2016/07/

Abstract-Book-Final-070416.pdf). These authors studied 104 women cross-sectionally, of 

whom 35 were older than 40 years. Among the women 40 years and older, SBP was 4.6 

(−0.7, 9.9) mmHg higher per increased unit of log PM2.5, a finding remarkably similar to 

Baumgartner et al. (2011)(personal communication Jennifer Peel, March 12, 2017).

It should be noted that there are two studies of HAP exposure and pregnant women (Quinn 

et al. 2016), Alexander et al. 2017). Both studies found associations between higher 

exposure and higher blood pressure. These studies are not directly relevant for non-pregnant 

women, as blood pressure is known to vary during pregnancy, falling initially and rising in 

the third trimester (Hermida et al. 2000).

Other supporting data come from studies of ambient air pollution and blood pressure. Liang 

et al. (2014) conducted a meta-analysis of 25 cross-sectional and panel studies and found an 

increase of 1.39 (0.87–1.91) mmHg per 10 ug/m3 increase in PM2.5. Most of these studies 

used PM2.5 levels measured at the time of or slightly before BP measurements. A more 

recent large study from China (Lin et al. 2017) found a similar increase of 1.33 (0.04–3.56) 

mmHg for SBP, using an estimated prior 3-year average of PM2.5 levels. These studies show 

a similar effect as Baumgartner et al. (2011) in the low-dose region. For example, 

Baumgartner et al. (2014) would estimate a 4.6 mmHg increase in SBP going from 10 to 40 

ug/m3, while using an average of the results from Liang et al. (2014) and Lin et al. (2017), 

would result in an estimated 4 mm/Hg increase in SBP.

Here we focus on the effects of HAP on SBP among older women. Outside of pregnancy, 

older women are in general those most likely to experience environmental effects on BP, 

given that BP changes little with age until age 30, when it increases steadily (Pinto 2007). 

We therefore use the data from older women (over age 50) in Baumgartner et al. (2011) for 

our calculations. Given the similarity of the data from ambient air pollution studies in the 

low dose region, and the lack of relevant data from ambient air pollution studies at higher 

levels, we have not combined Baumgartner et al. (2014) with those results. From 

Baumgartner et al. (2011), we used as the estimated non-exposed blood pressure, the lowest 

SBP of approximately 118 mmHg, as per Figure 1 in that publication. We calculated 

expected SBP assuming a 4.1 mmHg increase (1.5–6.6) for each increase in one unit of log 

PM2.5.

4. Birthweight

Wylie et al. (2017) measured personal PM2.5 and birthweight among 239 pregnant women in 

Tanzania, of whom 118 had personal PM2.5 measurements. The geometric mean PM2.5 level 

was 41 ug/m3 (geo. std. dev. 21 ug/m3), and 87% of measurements exceeded 25 ug/m3. In 
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linear regression using the log of PM2.5, there was a decrease in birth weight of 270 grams 

(95% CI 0–540) for each increase in 1 unit log PM2.5. Results were similar when the data 

were restricted to full term births.

Supportive evidence comes from a meta-analysis of ambient air and birthweight studies. Sun 

et al. (2016) found a decrease of 15.9 grams (95% CI 5.0, 26.8) birthweight for each 

increase of 10 ug/m3 PM2.5, across 17 studies, with PM2.5 levels averaged over the entire 

gestation.

Further supportive evidence comes from a study in Poland of indoor air PM2.5 in relation to 

birthweight (Jedrychowski et al. 2004). These authors studied 362 pregnant non-smoking 

women in Poland, with 48-hour personal measurements of PM2.5. PM2.5 concentrations 

averaged 42 ug/m3, with a range of 10 to 147, and for every increase in log PM2.5 there was 

a decrease of 200 grams (95% CI 15–385) in birthweight, a finding similar to Wylie et al. 

(2016).

Thompson et al. (2011) also provide some data on personal PM2.5 exposure and birthweight, 

in a study using a biomass-burning chimney stove; however, there are no exposure-response 

data beyond the estimated effect of two different exposures. The intervention group had ppm 

CO levels about 1.5 ppm lower than controls, which would be about 1.69 lower CO 

measured as mg/m3. Using the conversion from Northcross et al. 2010, this is equivalent to 

an increase of 213 ug/m3 PM2.5. The intervention group had children who weighed 89 grams 

more than the control group, or 328 grams more in those women who had the intervention 

stove in the 1st or 2nd trimester. This would mean an increase in weight of about 15 gms per 

10 ug/m3 decrease in PM2.5 for women exposed in the 1st or 2nd trimester, comparable to 

the effect found in Sun et al. (2016), assuming a linear exposure-response (as did Sun et al.).

Other information comes from a meta-analysis of 10 HAP studies from Amegah et al. 

(2014), who estimated that burning biomass fuel in unimproved stoves, compared to 

improved stoves or using other cleaner fuel, led to a decrease in birth weight on the average 

of 86 grams (95% CI 55–117 grams). However, no exposure levels are provided in this meta-

analysis.

We have chosen to use a weighted average of the estimates of effects from Wylie et al. 

(2016), Sun et al. (2016), and Jedrychowski et al. (2014), to estimate the effect of PM2.5 on 

birthweight. All of these studies provide exposure-response results based on personal 

exposure. Two studies used log PM2.5, while one used untransformed PM2.5. For birthweight 

estimation considering a fixed exposure, we used the inverse of the coefficient of variation 

(standard deviation/mean) as our weight. We then derived the standard deviation of the 

weighted average, assuming independence of the three studies, and used that to construct 

95% confidence intervals. We used the same weights in simulations considering exposure as 

a random variable (see below).

5. Childhood pneumonia

The exposure-response curve for acute lower respiratory infection (ALRI)(childhood 

pneumonia, <18 months) is available from Burnett et al. (2014), based on data from the 
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RESPIRE trial as well as studies of second-hand smoke and ambient air (although the 

RESPIRE data provide the bulk of the data). Results are from an excess relative risk model. 

Supplemental detailed relative risk (RR) data from Burnett et al. (2014), for each unit of 

exposure from 1 to 300 ug/m3, are available (Global Health Data Exchange 2017). The 

exposure data in RESPIRE were based on personal measurement of the child’s carbon 

monoxide exposure, which was highly correlated with PM2.5 data. PM2.5 data were 

estimated from the CO data via a conversion equation; PM2.5 had a 0.87 correlation with CO 

(R-square 0.76) in these data (Northcross et al. 2010).

It should be noted that the recent randomized trial in Malawi (Mortimer et al. 2016) did not 

observe a reduction in childhood pneumonia with improved cookstoves, and in fact found 

borderline-significant higher severe pneumonia in the intervention arm; however, to date 

these authors have not presented exposure data, so that the impact of the intervention on 

exposure levels is not known. Other HAP observational study data do support the 

relationship observed in the RESPIRE study (eg, Ezzati and Kammen 2001), but do not 

provide personal PM2.5 data.

6. Simulations

To incorporate uncertainty in both the exposure-response function and the exposure 

estimates at specific levels of interest, we used Monte Carlo simulations by drawing 

realizations for the exposure-response parameters and the exposures of interest from normal 

distributions. For the exposure-response parameters for birthweight and blood pressure, we 

assumed they were normally distributed with mean and standard deviation as reported in the 

literature. For the personal exposure level, the data in both Balakrishnan et al. (2014) and 

Rehfeuss et al. (2014) indicate that in most exposure studies the standard deviation is 

approximately equal to the mean, and hence we drew from normal distributions under these 

assumptions. We focused on personal exposures at 270 ug/m3, 120 ug/m3, 70 ug/m3, and 35 

ug/m3, and 10 ug/m3 corresponding to plausible levels for unimproved stoves, improved 

stoves, gas stoves, the WHO interim target level, and the WHO recommended level (the 

referent).. About 15% of simulated exposure levels were below zero and discarded; hence in 

effect the exposures were drawn from a left-truncated normal distribution at zero. We 

conducted 10,000 simulations for blood pressure and birthweight. Simulations for 

pneumonia, in contrast, were based on the publicly available data from Burnett et al. (2014)

(Global Health Exchange 2017), where 1000 Monte Carlo simulations of the three 

parameters in the IER model are provided. For each of these 1000 sets of parameter values, 

we drew an exposure as noted above, and then calculated the corresponding relative risk. We 

report the median, the 5th percentile, and the 95% percentile from our simulations for all 

three outcomes.

Results

1. Exposure-response estimates

Figures 1–3 show the estimated exposure-response curves for our three outcomes, based on 

data in the published literature.
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Table 1 provides simulation results for different exposure using the exposure-response 

coefficients from the literature, for selected exposure levels for all three outcomes, including 

our best estimates of traditional stove exposure (270 ug/m3), of an LPG intervention (70 

ug/m3), as well as 120 ug/m3 (improved biomass cookstove). In Supplemental Table 1 we 

also provide results assuming a fixed exposure level for every 10 unit increment from 10 to 

300 ug/m3.

As a sensitivity analysis for the birthweight data, we excluded the data from the meta-

analysis of Sun et al. (2016), on the grounds that the data come from a meta-analysis of 

ambient air studies rather than indoor air studies, and were based on a model using 

untransformed PM2.5, rather than log PM2.5, used in the other two studies. The simulation 

results indicated somewhat lower median birthweights at each exposure level than when Sun 

et al. (2016) was included (Table 1). For example, results for 270 ug/m3 were a median 

birthweight of 2448 (5th% 1832, 95th% 2993), and for 70 ug/m3 were 2756 (5th% 2304, 95th

% 3186). But the estimated benefit of a decrease of exposure from 270 ugm3 to 70 ug/m3 

did not differ greatly. With Sun et al. in the analysis, the benefit was an increase of 338 

grams, while without Sun et al. the increase was 308 grams.

2. Potential impacts on health

a) Blood pressure—Current evidence supports a causal link between PM2.5 and 

cardiovascular disease and stroke (Hoek et al. 2013), which in turn are also known to be 

related to higher blood pressure (James et al. 2014). PM2.5 effects on cardiovascular and 

cerebrovascular disease might be mediated by changes in blood pressure. To date, however, 

there is limited evidence of an effect of HAP on cardiovascular disease (Fatmi and Coggon 

2016, Mitter et al. 2016, Weichenthal et al. 2017).

Based on our simulations, estimated PM2.5 exposures from biomass stoves (270 ug/m3) and 

LPG stoves (70 ug/m3) would result in estimated SBP among women >50 years of age of 

131.4 and 126.0 mmHg, respectively (median difference 5.5, 2.5th% −8.6, 97.5th% 20.8). 

While the estimated decrease in SBP associated with lower levels of PM2.5 may appear 

modest, on a population level (assuming such reductions were sustainable) it would be 

expected to result in important estimated reductions in risks for ischemic heart disease and 

stroke. However, the 95% simulation interval is wide and includes the null value.

A recent randomized trial of blood pressure medication among older US adults at 102 clinics 

across the US and Puerto Rico resulted in a decrease in all-cause mortality of about 1.82% 

per mmHg reduction in SBP, so that gas stoves compared to traditional stoves might – in the 

long term and assuming the point estimate of a reduction of 5.5 is accurate – result in a 10% 

reduction in mortality (SPRINT group, 2015). Longitudinal analyses of NHANES data 

suggest an approximate 10% increase in overall mortality risk for every 10 mmHg increase 

in SBP for those over age 50, which would suggest about a 5.5% reduction in mortality for 

users of LPG stoves vs. traditional stoves over age 50 years (Taylor et al. 2011). In 

comparison, the IER curve for ischemic heart disease death from Burnett et al. (2014), 

indicates that for 70 year olds the RR for heart disease death would drop approximately 9% 

with a change in exposure from 270 ug/m3 to 70 ug/m3, a finding not dissimilar from the 
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above estimates which were based on extrapolating from blood pressure to heart disease 

mortality.

It should be noted that the benefits of lowered SBP are likely to be seen even in populations 

with relative low SBP at baseline. In the SPRINT study referenced above, the protective 

effect of treatment was strongest in the treatment group which had the lowest BP at baseline 

(<132 mmHg, RR=0.70).

Increased heart disease is likely to due to PM2.5 from HAP in men as well as women. 

However, we lack personal PM2.5 measurements from HAP among men, as they generally 

do not cook and most data comes from women. Men would be expected to be exposed to 

less PM2.5 due to biomass burning than women, but still have appreciable exposures well 

above WHO recommended levels.

b) Birthweight—The combined data from Wylie et al. (2016), Sun et al. (2016), and 

Jedrychowski et al. (2004), indicate a median decrease in birth weight of those exposed to 

70 ug/m3 (typical of LPG stoves), vs. 270 ug/m3 (typical of unimproved stoves), of 343 

grams (2.5th% −344, 97.5th% 1114). Again, however the simulation interval includes the 

null value of 0.

Reduced birthweight is very strongly associated with high infant mortality, although the 

mechanisms are not well understood, and the association might not be causal (Wilcox 2001, 

Hernandez-Diaz et al. 2008). Reduced birthweight has also been associated with disease 

later in life (Gluckman et al. 2008). There is also some evidence of a direct effect of air 

pollution on infant mortality (Romieu et al. 2012, Bruce et al. 2013), although the data are 

sparse and it is not clear if that effect might be mediated by maternal factors and reduced 

birth weight. A direct causal effect of birthweight on infant mortality is made more plausible 

assuming some of those with reduced birthweight are presumably pre-term birth, given that 

there is evidence that both ambient PM2.5 (Malley et al. 2017) and HAP (Amegah et al. 

2014), are associated with pre-term birth, and pre-term birth is strongly related to infant 

mortality. WHO estimates that about 12% of births in developing countries are pre-term and 

estimates that about 50% of infant mortality worldwide is due to pre-term birth (WHO 

2012).

If we assume a causal effect of low birth weight on infant mortality, given that there is a drop 

of one unit (per 1000) in infant mortality for each 30 grams of birthweight (Wilcox, 2001), 

an improvement of 343 grams (LPG stoves vs traditional stoves, assuming the point estimate 

is accurate) would translate into an approximate drop in infant mortality of 11/1000 live 

births. To put this in perspective, the worldwide infant mortality rate in 2015 was 32/1000 

(World Bank 2017).

A more conservative estimate of effect on infant mortality might consider that among low 

birthweight babies, only pre-term births affect infant mortality. Sun et al. (2015) have 

estimated the exposureresponse curve for PM2.5 and pre-term birth in a meta-analysis of 13 

ambient air studies. They found a 1.13 increased odds of a pre-term birth for every 10 ug/m3 

increment of PM2.5. While this assumption of a linear increase in log odds may hold true for 
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the relatively low levels of PM2.5 in ambient air, it may not hold for higher levels of PM2.5, 

as noted by Malley et al. (2017), given the high exposure-response slopes at low levels 

followed by a plateau seen for the odds ratio for a variety of outcomes in relation to PM2.5. 

We have estimated a modified exposure-response curve from Sun et al. (2015) using log-

transformed PM2.5, such that it crosses the original curve from Sun et al. at the 50 ug/m3 

point, and then starts to trail off (an odds ratio of 2.00 for each log 10 units of PM2.5.)(see 

Supplemental Figure 1).

Using this modified exposure-response curve, and assuming a baseline rate of 7% pre-term 

birth at 10 ug/m3 based on European countries with low pre-term birth rates (WHO 2017), 

we find that an exposure of 270 ug/m3 (from traditional stoves) would be estimated to have a 

pre-term birth rate of 18.8%, compared to an estimated rate of 12.6% at 70 ug/m3 (a change 

of 6.2%). Assuming that 7.3% of preterm births die as infants (WHO 2012), out of 1000 live 

births, we would expect 13.7 (188*.073) deaths among those exposed at 270 ug/m3, versus 

9.2 deaths among those exposed at 70 ug/m3, an estimated decrease in 4.5 deaths per 1000 

live births.

c) Pneumonia—From the point of view of subsequent mortality, severe infant pneumonia 

cases are of primary interest, compared to all pneumonia. Severe infant cases are the most 

likely to die, with an estimated 9% mortality rate (Walker et al. 2013). The baseline severe 

infant pneumonia rate (physician diagnosed) was 260 cases per 1000 child years among the 

control group in the 2002–2004 RESPIRE study in Guatemala. However, in recent years the 

pneumococcal polysaccharide vaccine (PPV) has been introduced, lowering pneumonia rates 

(Berical et al. 2016). More recent data in rural areas of other low/middle income countries 

suggest that a current baseline rate of severe pneumonia in the first 2 years of life is likely to 

be closer to 50 to 60 cases per 1000 children (Farooqi et al. 2015, Mackenzie et al. 2014).

We have roughly assumed that those with the highest personal exposure (300 ug/m3) have a 

rate of 80 cases per 1000, and then used the relative risks from Burnett et al. (2014) to 

estimate the rate for lower levels of exposure. Table 2 shows the number of excess cases per 

1000 child years with exposures above 10 ug/m3, using the rate ratios from Table 1.

From Table 2 we see that the estimated decrease in cases from an exposure of 270 ug/m3 

(estimated exposure for traditional stove users) to an exposure of 70 ug/m3 (estimated 

exposure for LPG users) is 29 cases of severe pneumonia. Given the estimated 9% mortality 

rate (Walker et al. 2013), an LPG intervention would be expected to avoid about 2–3 deaths 

from infant pneumonia among per year among 1000 children.

Discussion

This study demonstrates the hypothetical impacts of LPG use on exposure and health. LPG 

use is increasing worldwide as households move up the energy ladder. The feasibility of 

LPG being adopted, in rural areas now using biomass, is increasing as gas prices are 

lowered. However, LPG still is more expensive than biomass in much of the world, making 

price an issue in adaptation. Countries like India and Peru have begun nationwide 

subsidization of LPG, which should have substantial impact.

Steenland et al. Page 11

Environ Int. Author manuscript; available in PMC 2019 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



We argue that use of LPG would have important health benefits compared to biomass stoves 

even if PM2.5 levels are not lowered to WHO standards, due to stove stacking and other 

exposure via ambient air.

Despite the uncertainty around the relationship between HAP exposure and health, and in 

accordance with others (Bruce et al. 2015, Johnson et al. 2015), our results provide 

supportive evidence that appreciable health gains can be achieved at reduced PM2.5 

concentrations that are still higher than WHO recommend interim levels of exposure (35 

ug/m3). At 70 ug/m3, using our best estimate of the expected personal PM2.5 exposure in 

homes with LPG stoves (based only a single study), our simulations indicate that there is an 

expected reduction of approximately 37% of infant pneumonia cases (avoiding 2–3 deaths 

annually per 1000 infants), an expected 5.5 mmHg reduction in SBP among older women, 

and an expected 338 gram increase in birthweight, compared to traditional unimproved 

stoves (270 ug/m3). Improvements in these three outcomes can be measured in the short-

term in an intervention study. The reductions in SBP and the increases in birthweight would 

be expected to lead to later decreases in morbidity and mortality.

We have noted that the evidence suggests that age is a potential modifier of the expected 

blood pressure benefits to be achieved following a clean fuel cookstove intervention, with 

benefits accruing primarily to older women. Evidence from the ambient air pollution field 

suggests that other factors may also confer increased susceptibility to the adverse health 

effects of higher air pollution exposures (Clark and Peel 2014). Large robust interventions, 

which permit sub-group analyses, are needed to understand if these same susceptibility 

factors may also lead to larger health benefits following reductions in household air 

pollution. Potential modifying factors include poor nutrition, psychosocial stressors, other 

environmental pollutants, and comorbid conditions, all of which have been implicated in the 

adverse outcomes typically associated with HAP (Clark and Peel 2014).

There are two important sources of uncertainty in our estimates, which led us to use 

simulations to estimate health effects in order to incorporate both of them. One is the 

estimate of the exposure level resulting in our estimates of personal exposure levels from 

traditional biomass stoves and from LPG stoves, the latter based on only one study. We 

reflect this uncertainty by assuming that our estimates are drawn from normal distributions 

in which the standard deviation equals the mean, which reflects high uncertainty, and also 

reflects what has been observed in exposure studies. The high observed standard deviations 

of personal PM2.5 measurements in any given study stem from a number of factors, one of 

the most important being that only one or a small number of measurements are collected per 

person, so that between-person variability in a given study may reflect a lot of within-

person-variability. For example, if measurements are collected over a period of time in 

different seasons, we know there will be marked variability due to season, with higher PM2.5 

being present in the winter (Ni et al. 2016, Huang et al. 2017, Carter et al. 2016), and many 

subjects may have measurement from only one season. Similarly, cooking practices may 

differ one day to the next, and sparse measurements will reflect such variability. Compliance 

may also vary person-to-person. Besides such within-person variation within a given study, 

there is a very wide range of results across studies (Balakrishnan et al. 2014, Rehfeuss et al. 
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2014). This is also likely to reflect these same sources of variation – eg, if one study was 

conducted only in winter and another was conducted in summer.

The other important source of uncertainty in our results is that our exposure-response data 

are based on a small number of studies. Sample sizes for these studies were reasonable and 

confidence intervals relatively tight, but nonetheless confidence in results is limited by the 

small number of studies. For SBP, we used an exposure-response curve based on only a 

single study, albeit with good supporting evidence from other studies. For childhood 

pneumonia, the exposure-response data are largely from a single HAP study, supplemented 

by other studies of infant pneumonia in relation to ambient air and second-hand tobacco 

smoke. For birthweight, the exposure-response data are based on three studies. This reliance 

on only a few studies is due to the paucity of studies with PM2.5 personal exposure data used 

in exposure-response analyses. Consistency of effect needs to be demonstrated in other 

studies of HAP and additional settings, before strong inferences can be made that the 

associations observed are causal.

Of the two sources of uncertainty in our simulations, the uncertainty in exposure is much 

greater than the uncertainty due to exposure-response coefficients. While we have focused 

on the point estimates in the expected amount of improvement in health outcomes, our 

expected improvements include the null value of 0 for all outcomes. For example, the 

expected improvement in SBP due to lowering PM2.5 levels from 270 ug/m3 to 70 ug/m3 is 

5.5 mmHg, with a 90% simulation interval of −6.2 to 18.0 mmHg. Without the uncertainty 

in exposure, the corresponding expected improvement is again 5.5 mgHg, but the 90% 

simulation is 2.5 to 8.4 mgHg, excluding the null. The width of this interval increases 4-fold 

after incorporating uncertainty regarding exposure.

Of note is that our estimate of the improvement of birth weight (338 gram increase) due to 

reduced exposure to PM2.5 is greater than the increase in birthweight estimated due to 

mothers stopping smoking (200 grams, US Surgeon General 1990), and 4–5 times greater 

than the effect due to exposure to second-hand smoke (60 grams, Salmasi et al. 2010). The 

increase in weight due to decreasing biomass PM2.5 exposure seems disproportionate as 

compared to the decrease due to stopping maternal smoking, given the presumed likely 

amounts of exposure to the fetus. However, the components of tobacco smoke vs. biomass 

burning may affect the fetus differently. There is some evidence from animal studies, for 

example, that biomass causes a stronger inflammatory response in the lung than cigarette 

smoke (Mehra et al. 2012); similar seemingly disproportionate effects might be seen for the 

fetus.

We have noted the high variability in estimates of personal exposure in any given study. In 

attempting to assess a long term average, which may be the exposure of interest for many 

outccomes, measurement error is inevitable in due to the few samples obtained from 

individuals. For some outcomes (eg., birth outcomes) we do not know the proper time 

window for the most relevant exposure. Such error in the measurement of personal exposure 

is likely to be of the classical type, would be expected to be non-differential, and would 

therefore be expected to bias exposure-response coefficients to the null. Beside measurement 
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error for exposure, there may be error in measuring outcome; for example ascertainment of 

severe infant pneumonia is not straightforward.

Furthermore, PM2.5 may in fact not be the most appropriate summary measure of HAP’s 

impact on health. We need further exposure-response data in HAP settings which include 

assessment of other contaminants (eg, PAHs, NO2, black carbon, CO)(Naeher et al. 2007). 

Even if PM2.5 is the best measure of HAP exposure (most predictive in relation to health), it 

would be useful to have PM2.5 analyses that include data on composition and source 

apportionment; composition and sources of PM2.5 vary by setting, and thus toxicity, 

mutagenicity, and oxidative potential may also vary.

Other sources of uncertainty include possible biases in observational studies due to 

confounding or selection bias. One cause of concern in relation to observational studies is 

possible bias due to socioeconomic status, which may be associated with clean fuel use and 

lower PM2.5 exposure. Regarding the studies used here, however, confounding by SES 

seems relatively unlikely. The studies used here adjusted for SES in their analyses, often via 

education, although residual confounding is still possible. The studies used here for the most 

part included populations which were quite homogenous, e.g., all with biomass stoves (i.e., 

comparing effects across a range of biomass-related PM2.5 concentrations), or intervention 

studies where the improved or clean fuel stove was disseminated among biomass stove 

users; this homogeneity is another factor likely to limit the type of confounding often present 

in studies observationally comparing users of different stove types or fuels.

In conclusion, despite all the uncertainties noted above that are inherent in the data, existing 

evidence indicates that substantial exposure reductions and health gains can be expected 

from an LPG intervention.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Improved biomass and advanced fuel cookstoves can lower household air 

pollution

• Yet levels of fine particulate matter (PM2.5) often remain above the WHO 

targets

• We conducted simulations estimating health benefits from a gas stove 

intervention

• We estimate marked health benefits for birthweight, blood pressure, and 

pneumonia

• There are large uncertainties in our estimates, driven by uncertainty over 

exposure
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Figure 1. 
Exposure-response for systolic blood pressure (SBP) in women>50 from Baumgartner et al. 

(2011)
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Figure 2. 
Exposure-response for birthweight, weighted average of Wylie et al (2017), Sun et al. 

(2016), and Jedrychowski et al. (2004)
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Figure 3. 
Exposure-response for childhood pneumonia from Burnett et al. (2014)
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Table 1

Simulation results: expected outcomes at different levels of exposure for physician-diagnosed childhood 

pneumonia, systolic blood pressure, and birthweight

PM2.5 ug/m3 log PM2.5 RR childhood
pneumonia*,
median, 2.5th and
97.5th percentile

SBP (mm)
women>50**,
median, 2.5th and
97.5th percentile

birthweight
(grams)***,
median, 2.5th and
97.5th percentile

270 5.6 2.81 (1.23 –3.91) 131.4 (120.4–142.6) 2543 (1874, 3102

120 4.8 2.24 (1.06 – 3.51) 128.1 (117.9–137.9) 2770 (2306,3206)

70 4.2 1.78 (1.05– 3.14) 125.8 (115.9–134.7) 2880 (2507, 3264)

35 3.6 1.41 (1.01 –2.24) 123.3 (113.2–130.4) 3003 (2722, 3367)

10 2.3 1.02 (1 – 1.07) 118 3200

*
Burnett et al. 2014; reference group was exposed at 6 ug/m3

**
from Baumgartner et al. 2011, reference level of 118 mmHg taken from lower confidence level of mean SBP

***
from Wylie et al. 2016, Sun et al. 2016, Jedrychowski et al. 2004,, reference weight of 3200 grams taken from mean birthweight in Wylie et al.

2017
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Table 2

Pneumonia cases expected per year among 1000 children, and excess cases compared to a level of 10 ug/m3 

PM2.5
*

PM2.5 RR** Severe
cases/yr

300 2.88 80

270 2.81 (1.23 –3.91) 78 (34–109)

120 2.24 (1.06 – 3.51) 62 (29–98)

70 1.78 (1.05– 3.14) 49 (29–87)

35 1.41 (1.01 –2.24) 39 (28–62)

10* 1.02 (1 – 1.07) 28 (28–30)

*
10 ug/m3 is the WHO recommended level

**
RRs from simulations, as per Table 1
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