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Over the past few decades we have improved our understanding of the health impacts of 

climate change.1 While many public health researchers have contributed to this knowledge, 

relatively few are aware of how their work may relate to the Social Cost of Carbon (SCC). The 

SCC is a core economic concept in climate policy and one that can – and should – benefit 

directly from research produced by the public health community. The SCC’s importance was 

recently highlighted by this year’s Nobel Prize in Economic Sciences, which was awarded to 

William Nordhaus in part for his pioneering work developing models to estimate the SCC. Below 

we describe the SCC, explain how it is calculated, and provide some brief guidance on how 

health research can improve its estimation.   

 

The Social Cost of Carbon 

The SCC is the net economic damage to society that results from one additional ton of CO2 

emissions. The SCC is widely used in regulatory cost-benefit analysis to value the impacts of CO2 

emissions, making it one of the most significant metrics in climate economics. In the United 

States for example, the use of the SCC in cost-benefit analysis is mandated by law, and it has 

been applied to dozens of federal regulations ranging from vehicle emission standards to power 

generation, including the Clean Power Plan.2 Because the SCC represents the climate cost of 

releasing an additional ton of CO2 emissions, from an economic perspective it also reflects the 

optimal carbon tax level to apply in a carbon tax regime, should governments choose to adopt 

one.  

Called “the most important number you’ve never heard of”3, the SCC that is officially 

recognized by the United States government for regulatory analysis is calculated by equally 
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weighting the outputs of three integrated assessment models (described below). Other 

governments (e.g. United Kingdom) have also used one or more of these models for the same 

purpose, or have based their SCCs on the US estimates (e.g. Canada, Mexico). 

A distinguishing feature of these models is that their backbone is comprised of ‘damage 

functions’ - sets of equations that compute the harm to society that results from an extra ton of 

CO2 emissions. These functions are based on empirical studies across multiple dimensions that 

estimate the potential impacts from climate change. These impacts are then monetized in an 

effort to place their relative harm to humans (economic and/or physical) onto a single scale.  

Until now, most of the studies underlying damage functions have been undertaken by 

economists, including the studies quantifying health impacts; public health researchers have 

not been made active participants. In acknowledgement of this shortcoming (and others), a key 

recommendation of a recent National Academy of Sciences report was to improve damage 

functions by engaging all relevant experts and incorporating up-to-date disciplinary science.4 

Therefore, conducting research applicable to damage functions is a unique opportunity for 

epidemiologists and other health professionals to directly inform climate policy.  

To that end, in the remaining sections we summarize the damage functions of the three 

leading models used to calculate the SCC, and argue that health experts should be fundamental 

to the process of updating these functions. We also briefly describe specific study design 

features that can help make research results applicable to future damage functions.  

 

Damage functions in leading SCC models 
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The three leading models used to estimate the SCC are the Dynamic Integrated Climate and 

Economy (DICE) model, the Policy Analysis of the Greenhouse Effect (PAGE) model, and the 

Climate Framework for Uncertainty, Negotiation, and Distribution (FUND) model. The former 

was developed in the USA and the latter two in Europe. These models each have an economic 

module and a climate module, which are linked (Figure 1). Changes in economic activity 

generate climate change by virtue of the emissions that are associated with that activity. At 

each time period, damages from climate change are monetized, aggregated, and then 

subtracted from GDP.  
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Figure 1. Simplified schematic of how an integrated assessment model estimates the Social Cost of Carbon (SCC). The left-hand 

box shows the basic features of the model and their linkages; namely, the economic component and climate component are linked 

through CO2 emissions, which produce climate change and corresponding damages. To calculate the SCC in a given time period, one 

additional ton of CO2 emissions is added to the model in that period. The cumulative discounted value of the resulting increase in 

future damages is the SCC at that time (relative to the baseline).  
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The three models differ in terms of which impacts are included in their damage functions and 

the degree of detail incorporated for each. Only FUND explicitly computes mortality and 

morbidity impacts, which are then transformed into economic damage. In contrast, the other 

two models (DICE and PAGE) do not directly estimate any specific type of impact but instead 

aggregate them in more generalized damage functions where a total amount of damage is 

computed, with human health implicitly assumed to comprise some percentage of that total. In 

this aggregated framework, the total damages are based on meta-analyses of individual studies 

which differ widely in terms of how health impacts are considered.5-8  

Importantly, a number of climate-sensitive diseases that have become established in 

new locations – or are expected to in the future – are not currently featured (explicitly or 

implicitly) in existing damage functions. Examples include West Nile Virus, Lyme Disease, Zika 

Virus and Chikungunya.9-13 Several other key health risks are also excluded (Table 1). However, 

even those health risks that are included are often based on incomplete or outdated estimates. 

For instance, one study used in DICE’s damage function relies on the 1996 edition of the Global 

Burden of Disease, while cardiorespiratory impacts in FUND are based on mortality rates in 

1990.14,15 These shortcomings may partly explain why the health costs are small compared to 

those from many other sectors,8 which does not correspond to more recent work.16,17 
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Table 1. Examples of health risks included and excluded by the leading models currently used 

to calculate the SCC. Note that there is some variability between models and that included risks 

may still be incomplete and/or based on outdated methods or data. See5,7,8,14,15,18,19 for detailed 

documentation of what is included/excluded in the damage functions.  

Examples of currently included health risks  Examples of currently excluded health risks  

 Dry-bulb1 temperature exposure in adults 

 Vector-borne diseases (e.g. dengue, 
malaria) 

 Diarrhea 

 Mortality/morbidity from extreme 
weather events 

 

 Wet-bulb1 temperature exposure in 
adults 

 Temperature exposure (dry / wet bulb) in 
children 

 Malnutrition 

 Emerging infectious diseases (e.g. Zika) 

 Aeroallergen (e.g. pollen) impacts 

 Mental health impacts 

 Impacts of civil conflict 
1 Dry-bulb temperature is the standard everyday measure of temperature whereas wet-bulb is a composite 

index that includes humidity. Wet bulb temperatures have been linked to adverse health outcomes, including 
infant mortality 20,21. 
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An additional consideration is that some SCC models also estimate optimal 

decarbonization trajectories, derived by balancing mitigation costs against climate benefits. In 

the standard modeling framework, this tradeoff has ignored the potential near-term health 

impacts of mitigation – sometimes referred to as ‘co-benefits’ or ‘co-harms’. Recent studies22,23 

have demonstrated that, at least in the case of air pollution, these are likely to be net-positive 

overall despite opposing influences; the health co-benefits from improved air quality seem to 

outweigh the warming co-harms that may occur when reducing emissions of air pollutants such 

as SO2 and NOx that act to cool the atmosphere. The implication is that SCC models may be 

recommending artificially low levels of mitigation if they omit health co-benefits. However, this 

result again depends in part on the damage functions calculating climate impacts; if warming is 

much more costly than currently assumed, the loss of the aerosol cooling effect could 

counterbalance more of the health benefit, a trade-off often neglected in the literature.24  

 

Improving future damage functions 

The omission of numerous important health endpoints, together with the use of 

outdated data or methods to calibrate existing damage functions, underscores recent 

arguments that the human health impacts of climate change – and consequently the SCC – may 

be underestimated.17,25 As a result, there is a clear need for health professionals to contribute 

to this research agenda if these damage functions are to be comprehensively upgraded.  

Fortunately, compared to ten or twenty years ago when the studies underlying most of 

the current damage functions were conducted, our knowledge of climate-health relationship is 

substantially improved. This new knowledge is reflected in the publication of numerous recent 
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studies projecting the health impacts of climate change, several of which report large potential 

disease burdens.16,17,26-31   

 How would a large correction to these damage functions affect the SCC? As a single 

example, the authors of one recent econometric study calculated a partial SCC – estimated 

from mortality impacts alone – and found that it may be comparable to the full SCC employed 

under the Obama administration which included impacts across all dimensions, both health and 

otherwise.17 Other studies are needed to confirm, expand, or revise this type of result and such 

research should be conducted in close collaboration with epidemiologists and other public 

health experts to ensure that the best possible science is applied.  

 New and improved damage functions that reflect our best scientific understanding 

require strong interdisciplinary collaboration as well as a clear procedure for non-economists to 

contribute to model development. Prototypes of modeling platforms that streamline this 

collaboration are underway (for example, see Resources for the Future’s Social Cost of Carbon 

initiative32 and the Mimi modular modeling framework33). In addition, there are a number of 

features particular to the damage functions that health experts should consider when designing 

research studies related to climate change impacts (also see4,8). We highlight four: 

1) Global and regional coverage: SCC models are global models comprised of individual 

regions, each with its own damage function. As a result, the ideal study to improve their 

estimation of climate impacts – for example from heat waves or extreme weather – 

would also be global in scope and would use uniform methods to assess all regions 

differentially. Although epidemiologists may not be entirely comfortable making 

inferences for areas with data limitations, excluding these areas would require other 
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(potentially non-specialist) researchers to extrapolate the results from one region to 

another.  

2) Scenarios and metrics: Climate damage functions are generally continuous with 

temperature, though some impacts may additionally result from changes in sea-level 

rise, CO2 concentrations, or ocean temperature. However, many health impact studies 

report results for only one or a few time-points or temperature/emission scenarios. 

These studies cannot be readily matched to SCC models. We recommend that 

researchers conduct their evaluations across as wide a range of scenarios and time 

horizons as possible. Additionally, because future paths are multi-dimensional 

(socioeconomic, climatic etc.),34 framing results solely as the number of additional 

deaths or life years lost from climate change can sometimes be difficult to contextualize; 

multiplicative effect estimates (e.g. incidence rates; fraction of attributable deaths) are 

preferable.  

3) Vulnerable groups: Experts generally agree that the poor and disadvantaged will suffer 

the most from climate change.35,36 Therefore, it is important that human health research 

attempts to characterize climate risks in vulnerable populations. Groupings to consider 

include gender, age, urban/rural populations, income quantiles, and other populations 

of concern. Building such evidence will make it possible to take advantage of a powerful 

and unique feature of SCC models – their ability to analyze policy while explicitly 

accounting for societal preferences about fairness and equity.37,38 Specifically, the 

models include a social welfare function, an equation which translates economic 

measures (dollars) into estimates of wellbeing, thus giving researchers and decision 
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makers the ability to compute the SCC with alternative choices about how much to 

prioritize specific populations. For example, previous work has shown that if climate 

change will in fact disproportionately harm the poor, then the SCC would be much 

higher – perhaps by an order of magnitude – than suggested by conventional estimates 

that ignore the distribution of burdens.38  

4) Social change and adaptation: Over the coming decades, societies will experience rapid 

changes that may affect their vulnerability to climate impacts. Some types of change, 

such as demographic transitions, can affect climate vulnerability without adaptation, 

but the adoption of explicit adaptation measures is also likely. Many studies have 

already documented sizeable reductions in climate vulnerability over time, at least for 

certain health outcomes.39-41 Nevertheless, these features are still routinely neglected in 

estimates of future health burdens, which limits their use in SCC models.  

 

The above criteria refer specifically to the quantification of health outcomes, but a change in 

health status across a population also produces a cascade of economic consequences, which is 

ultimately how climate damage functions value climate impacts. For instance, increased 

mortality or morbidity can affect labor supply and productivity, population growth, overall 

economic productivity and so on.6,16,39,42,43 A gold-standard study would include both the 

physical (e.g. deaths) and economic effects of climate-induced health burdens; the importance 

of these economic adjustments has been discussed elsewhere.4,8   

 

An example from the literature 
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For further illustration, we highlight some of these issues by way of a recent study by Gasparrini 

et al. (2017) that used a dataset of daily deaths from 451 locations in 23 countries to project 

future all-cause mortality from outdoor temperature. The authors first estimated location-

specific exposure-response relationships, and then projected deaths under different climate 

change scenarios.  Although this study uses state-of-the-art epidemiological methods, and is 

the largest of its kind, it does not meet all the criteria described above: 

 Despite the expansive dataset, the majority of the world’s countries and regions are 

excluded, including several populous regions that may be highly vulnerable to climate 

change (e.g. Africa, South Asia). Providing specific guidance on how to estimate 

temperature effects in data-sparse regions is beyond the scope of this paper, but 

promising avenues include advanced spatial smoothing techniques and extrapolation 

based on correlated indicator variables, such as macroeconomic measures or population 

characteristics. We also note that Demographic and Health Surveys are continually 

released and include ever more detail44; although not directly applicable to the study 

design of Gasparrini et al., DHS surveys allow for the estimation of temperature effects 

using other methods.20  

 The study did analyze multiple climate scenarios and time periods that would thus 

enable the estimation of burdens across a continuous range of temperatures.  

 The study does not consider subgroups and assumes no demographic changes. The 

latter has the advantage of isolating the impact of climate change, but disregards the 

influence of population growth and composition. These effects could be at least partially 

incorporated by applying age-sex stratified exposure-response relationships – 
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increasingly common in the literature45,46 – to long-term mortality projections, which 

are available (by age and sex) from the United Nations as well as the Shared 

Socioeconomic Pathway project.47,48 

 The study assumes no adaptation. As with extrapolation to data-sparse regions, future 

adaptation effects could potentially be explored using projections of macroeconomic or 

population variables.  

Much of this discussion centers on dealing with data limitations, whether in geographic regions, 

sub-populations or about the future. We are aware of several ongoing projects aiming to apply 

epidemiologically-based approaches to these problems. Another method is to employ simple 

sensitivity tests that span the range of possibilities. This approach has been used with SCC 

models in the past, for example to bound the possible implications of alternative pathways of 

future economic development and to analyze within-country inequalities.38,49  

 

Conclusion 

The SCC is one of the most influential metrics in climate policy. It depends critically on the 

potential human health impacts of climate change, but our best estimates of these impacts are 

not currently incorporated into the leading SCC models. Likely reasons include a lack of 

communication between disciplines and a lack of true interdisciplinary teams, as well as the 

time gap between the production of evidence and its use in policy applications. Therefore, as 

the SCC modeling community prepares to move towards a new generation of models, it is 

imperative that we avoid previous pitfalls by ensuring that the public health community 
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contribute its expertise, both through the inclusion of existing evidence and through the design 

of future studies.  
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