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A B S T R A C T

Background: In low- and middle-income countries, multisite costing studies are increasingly used to estimate healthcare
program costs. These studies have employed a variety of estimators to summarize sample data and make inferences about
overall program costs.

Objective: We conducted a systematic review and simulation study to describe these estimation methods and quantify their
performance in terms of expected bias and variance.

Methods: We reviewed the published literature through January 2017 to identify multisite costing studies conducted in low-
and middle-income countries and extracted data on analytic approaches. To assess estimator performance under realistic
conditions, we conducted a simulation study based on 20 empirical cost data sets.

Results: The most commonly used estimators were the volume-weighted mean and the simple mean, despite theoretical
reasons to expect bias in the simple mean. When we tested various estimators in realistic study scenarios, the simple
mean exhibited an upward bias ranging from 12% to 113% of the true cost across a range of study sample sizes and data
sets. The volume-weighted mean exhibited minimal bias and substantially lower root mean squared error. Further gains
were possible using estimators that incorporated auxiliary information on delivery volumes.

Conclusions: The choice of summary estimator in multisite costing studies can significantly influence study findings and,
therefore, the economic analyses they inform. Use of the simple mean to summarize the results of multisite costing studies
should be considered inappropriate. Our study demonstrates that several alternative better-performing methods are
available.
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Introduction

In low- and middle-income countries (LMICs), there is
increasing interest in understanding the costs of healthcare pro-
grams, such as those that deliver vaccines or provide human im-
munodeficiency virus (HIV) treatment. Cost data can be used to
prioritize health interventions, inform budgeting and planning for
the scale-up of health programs, and identify opportunities for
improved efficiency.1-4 Cost data can also inform planning for
sustainable health financing as countries grow economically and
transition out of support from international donors such as Gavi,
the Vaccine Alliance, and the Global Fund.5,6 In recent years,
several large multisite costing studies have been conducted to
improve the availability of cost data for global health programs
when routine data are unavailable. These studies are distinguished
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by their analyses of cost and service volume data collected from a
sample of healthcare delivery sites, with the aim of drawing
conclusions about the larger program in which the study sites
operate. These studies typically have reported summary estimates
for the costs per person or for the total costs of the overall
program.

Multisite healthcare costing studies have adopted different ap-
proaches to estimating program-level costs using data from a
sample of sites. For example, a study analyzing data from 161 HIV
treatment sites across 5 countries reported both the simple and the
volume-weighted mean of facility-level unit costs for each country
in the study.7ACenters forDiseaseControl–supported costingstudy
of HIV treatment in programs supported by the United States
President's Emergency Plan for AIDS (PEPFAR) used the median to
create country-specific estimates using cost data from 43 sites
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Table 1. Empirical data sets used in our simulation study

Original
study

Health
intervention

Sampling
frame
available

Country Number
of sites

Avahan20 HIV prevention No India 129

EPIC8-13 Routine
immunization

Yes Benin 46
Ghana 50
Honduras 71
Moldova 50
Uganda 49
Zambia 51

MATCH7 HIV treatment Yes Ethiopia 41
Malawi 30
Rwanda 30
Zambia 30

ORPHEA19 Prevention of
mother-to-child
transmission of HIV

No Kenya 51
Rwanda 53
South Africa 42
Zambia 56

ORPHEA19 HIV testing
and counseling

No Kenya 56
Rwanda 53
South Africa 42
Zambia 60

Marseille
et al.21

HIV treatment No Zambia 45

EPIC indicates the multi-country study on the costing and financing of routine
immunization and new vaccines; HIV, human immunodeficiency virus; MATCH,
Multi-Country Analysis of Treatment Costs for HIV/AIDS; ORPHEA, Optimizing
the Response in Prevention: HIV Efficiency in Africa.
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across 5 countries.3 Researchers reporting the results of the EPI
costing & financing project, a study of routine infant immunization
costs across 319 sites and 6 countries, used a variety of methods to
summarize results, including both simple and volume-weighted
means.8-13

Estimation techniques differ in terms of the quality of infer-
ence they provide. The statistical characteristics of an estimator
can be summarized by its bias (the difference between the ex-
pected value of the estimator and the true value being estimated)
and efficiency (the variance of the estimator in comparison with
other possible estimators). Estimation errors (differences between
the estimate and the true quantity) can influence the conclusions
drawn from multisite healthcare costing studies and the eco-
nomic analyses they inform.

Given the variation in estimation methods across multisite
healthcare costing studies in LMICs, there is a need to better un-
derstand the benefits and drawbacks of different approaches. The
theoretical properties of estimators for ratios (such as the costs
per person of a healthcare program) and totals (such as the total
costs of a healthcare program) have been well studied in the
sample statistics literature.14,15 Quantitative measures of estimator
performance (such as the magnitude of bias) depend on the
characteristics of the data being studied. For example, the pres-
ence and magnitude of economies of scale in healthcare programs
in LMICs16,17 are likely to influence the performance of different
summary estimators. In this article, we describe current estima-
tion practices in the multisite healthcare costing literature in
LMICs, compare different estimation methods, and make recom-
mendations for calculating and presenting summary statistics in
these studies.
Methods

Systematic review

We conducted a preregistered systematic review of the
summary estimators used in published multisite costing studies
from LMICs. We searched Pubmed for studies published through
January 1, 2017, using terms related to costs and LMICs, and
similarly searched an online costing study repository.18 Search
strategies are described in the supplementary appendix (see
Appendix Table 1 in Supplementary Materials found at https://
doi.org/10.1016/j.jval.2019.05.007). We included studies that
(1) analyzed cost data from 5 or more sites in an LMIC, as
defined by the World Bank in 2016; (2) considered a defined
individual health intervention, package of interventions, or care
for a defined health condition; (3) reported a summary estimate
of central tendency for total or unit costs of the health inter-
vention, and (4) were published in English. We excluded studies
based on reported charges such as claims data sets, studies
reporting only site-level costs without any summary estimate,
and studies of community-level interventions, such as behavior
change campaigns. We did not consider composite cost esti-
mates combining data from multiple health system levels
because the methodological issues around these estimates were
beyond the scope of this study. One author screened titles and
abstracts to identify articles for full text review and then
reviewed full text articles to determine inclusion and extract
relevant data. From each included study we extracted biblio-
graphic information, information on health intervention and
setting, and estimation approach. We analyzed the characteris-
tics of the included studies and the proportion of studies that
included different summary estimators. We disaggregated
findings by publication year and health intervention.
Evaluation of estimator properties

To evaluate estimator performance, we imputed realistic
complete population cost data sets for different health programs
using empirical sample data from costing studies in LMICs. The
imputed data sets contained cost and service delivery volume
information for all healthcare delivery sites in each program (eg,
all routine immunization delivery sites in Honduras). From each
imputed data set, we drew repeated samples of varying sizes and
compared how different estimators performed in estimating the
unit costs of delivery in the overall program.

Imputation of complete population data sets
Quantitative descriptions of estimator performance require

realistic information about the data being studied. To create real-
istic data sets of full populations of healthcare delivery sites, we
imputed data sets of healthcare delivery costs and volumes using
information from the 20 empirical data sets listed in Table 1. The
original empirical data sets, which were publicly available or were
shared by the original study authors, contained data on a sample of
service delivery sites and represented 12 countries (Benin, Ethiopia,
Ghana, Honduras, India, Kenya, Malawi, Moldova, Rwanda, South
Africa, Uganda, Zambia) and 4 types of health interventions (HIV
prevention, HIV testing, HIV treatment, and routine immuniza-
tion).7-10,12,13,19-21 They therefore reflected variation across coun-
tries and health interventions in the distribution of costs and
service delivery volumes. We included only data sets with 30 or
more delivery sites because these larger studies provide better
evidence for imputing realistic populations of sites (Table 1).

When a study’s sampling frame was available and had full
information on delivery volume in the population, we used
this sampling frame to impute cost data for nonsampled sites.
When these data were not available, we imputed both volumes
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and costs for nonsampled sites. We used nonparametric ap-
proaches for imputation to most accurately reflect the empir-
ical distributions of costs and volumes in the observed data
and to avoid making parametric assumptions that might
mirror those used in later analysis. To impute volume data, we
sampled from a kernel density fit to the distribution of de-
livery volumes in the sample.22 To impute cost data, we first
used a regression spline to estimate the mean relationship
between costs and volume in the empirical sample and then
included dispersion around this mean relationship by sampling
from the distribution of residuals from the fitted regression.
This approach is similar to a parametric bootstrap but relaxes
the distributional assumptions around the residuals from this
approach (eg, allowing for outliers).23 We compared the
imputed data with the empirical samples to confirm that the
imputation approach reproduced the features of the sample.
Our imputation methods are described further in the supple-
mentary appendix (See Appendix 1.2 in Supplementary Mate-
rials found at https://.doi.org/10.1016/j.jval.2019.05.007).

Simulation of repeated multisite cost studies
From each imputed data set, we drew 10,000 simple random

samples, each of sizes 5, 10, 20, 40, and 80. We analyzed each
sample using 5 estimators of central tendency: the simple mean,
the volume-weighted mean, the median, a calibration estimator
that reweights the sample to reproduce known features of the
population (in this case, total delivery volume), and a regression
estimator using a log-log specification. The first 3 estimators were
the most commonly used in the reviewed literature. The calibra-
tion and regression estimators were not found in the literature but
were included to assess whether they might perform better than
the commonly used estimators. We did not examine the full
universe of estimators, but the 5 that were selected reflect the
most commonly used estimators and a subset of the possible al-
ternatives with the potential to outperform the more commonly
used approaches. Both the calibration and regression estimators
use auxiliary information to improve estimation: the calibration
estimator uses the total service delivery volume in the program of
interest, and the regression estimator uses the service delivery
volume of every site in the program of interest. This information
may be available, as it is often used to inform sampling
procedures.

The five estimators were implemented as follows, where n
represents the number of sites in the sample, Ci represents the
total service delivery costs at site i, and Qi represents the total
service delivery volume at site i:

� Simple mean: The simple mean was calculated as follows:

1 Xn Ci
Means ¼ n
i¼1

Qi

� Volume-weighted mean: The volume-weighted mean was
calculated as follows:

Mean ¼
Pn

i¼1CiP
vw n
i¼1Qi

� Median: The median was calculated as the median of the site-
level unit costs in the sample, using the “median” function in
R.24

� Calibration estimator: The calibration estimator reweights sam-
ple values such that the total service volume implied by the
weighted sample is equal to the total volume in the popula-
tion.25,26 Using the Newton-Raphson algorithm, the weights are
adjusted such that the sum of the weighted sample volumes
equals true total volume. This estimator was implemented using
the survey package in R,27 as previously described elsewhere.28

� Regression estimator: A linear regression model of the following
form was fit to the sampled data:

logðCiÞ¼a1blogðQiÞ1εi
This model was then used to make predictions for the total costs
at each site in the overall population. Unit costs were estimated as
the sum of the predicted costs divided by the (known) total de-
livery volume in the population.

We calculated the bias, variance, and root mean squared error
(RMSE) of each estimator in each data set for each sample size. We
calculated the bias as the difference between the expected value of
the estimator (over repeated samples from a particular popula-
tion) and the true value of the parameter (in that population).
RMSE, which is the square root of the average squared deviation of
the estimator from the true parameter value, combines informa-
tion about bias and variance into a single measure (where the
squared RMSE is the sum of the variance and the squared bias).
We focused on identifying the estimator that minimized RMSE.

Results are reported by intervention area, then pooled across
all data sets. In the pooled analysis, we examined (1) the average
performance across different imputed data sets, as measured by
bias, standard deviation, and RMSE, and (2) the frequency of
extreme results, as measured by the proportion of estimates
greater than a specified percentage away from the true parameter
value. For comparability, bias, standard deviation, and RMSE are
reported as a percentage of the true unit cost for each data set.

Sensitivity analyses
By using empirical data sets from different health domains in

our simulation study, we were able to study estimator perfor-
mance in a range of data sets with realistic cost-volume re-
lationships. For a sensitivity analysis, we also examined how bias
varied when changing the costvolume relationship or the amount
of variation in delivery volumes.

We drew simple random samples in our main analysis. For
sensitivity analyses, we also compared estimator performance
under stratified random sampling and sampling proportional to
volume.

The Institutional Review Board of the Harvard T. H. Chan
School of Public Health determined that this study was not
human-subjects research.
Results

Systematic review

We identified 6774 records for initial review. After applying our
inclusion criteria, we identified 100 studies for analysis (see
Appendix Fig. 1 in Supplementary Materials found at https://doi.
org/10.1016/j.jval.2019.05.007). Table 2 summarizes findings
from the systematic review. We found that the number of studies
meeting inclusion criteria increased significantly in recent years:
We identified 61 eligible studies in the 2012 to 2016 period and
only 23 in the 2007 to 2011 period. Before 2007, this type of study
in LMIC settings was rare.

A variety of estimators were used to summarize cost data.
Approximately one-third of the studies (37.0%) reported more
than 1 summary estimate of costs. The most commonly reported
summary estimators were the volume-weighted mean (52.0% of
studies) and the simple mean (34.0%). Of the studies analyzed,
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Table 2. Summary of findings from our systematic review*

Number of publications (%), by year

Before 2007 2007-2011 2012-2016

All 16 23 61

Region (World Health Organization) Before 2007 2007-11 2012-16
Africa 6 (38) 12 (52) 39 (64)
Americas 3 (19) 5 (22) 8 (13)
Eastern Mediterranean 0 0 3 (5)
Europe 0 0 2 (3)
Southeast Asia 6 (38) 8 (35) 10 (16)
Western Pacific 1 (6) 1 (4) 3 (5)

Health domain Before 2007 2007-11 2012-16
HIV/AIDS 6 (38) 7 (30) 30 (49)
Vaccination 5 (31) 1 (4) 7 (11)
Reproductive and maternal health 3 (19) 3 (13) 12 (20)
Malaria 0 4 (17) 3 (5)
Other 2 (13) 8 (35) 9 (15)

Number of delivery sites (total, across all countries in study) Before 2007 2007-2011 2012-2016
5-9 2 (13) 5 (22) 16 (26)
10-14 2 (13) 6 (26) 8 (13)
15-19 7 (44) 6 (26) 6 (10)
201 5 (31) 6 (26) 30 (49)
Not reported 0 0 1 (2)

Site sampling approach Before 2007 2007-2011 2012-2016
Simple random sampling 2 (13) 1 (4) 4 (7)
Stratified random sampling 7 (44) 3 (13) 14 (23)
Clustered random sampling 3 (19) 6 (26) 11 (18)
Stratified and clustered random sampling 2 (13) 0 6 (10)
Purposive sampling 6 (38) 15 (65) 34 (56)
Exhaustive sampling 0 3 (13) 12 (20)
Sampling approach not described 0 2 (9) 0

Outcome measured Before 2007 2007-2011 2012-2016
Total costs (eg, for country or district) 1 (6) 7 (30) 14 (23)
Cost per site 5 (31) 7 (30) 16 (26)
Cost per person, service, or person-time of care 15 (94) 22 (96) 57 (93)
Other 4 (25) 3 (13) 1 (2)

Reported variation in site-level cost estimates Before 2007 2007-2011 2012-2016
Range 4 (25) 5 (22) 11 (18)
Interquartile range 0 2 (9) 5 (8)
Standard deviation 0 2 (9) 8 (13)
All sampled values reported 4 (25) 2 (9) 7 (11)
Other 1 (6) 1 (4) 0
Not reported 8 (50) 12 (52) 37 (61)

Summary estimator of central tendency Before 2007 2007-2011 2012-2016
Simple average across sites 5 (31) 10 (43) 19 (31)
Average across sites, weighted by volume 10 (63) 13 (57) 24 (39)
Average across sites, weighted by other characteristics 2 (13) 2 (9) 3 (5)
Average across sites, weighted by volume and other characteristics 0 1 (4) 5 (8)
Median across sites 4 (25) 6 (26) 11 (18)
Simple average across individuals, sampled from multiple sites 0 3 (13) 6 (10)
Other 5 (31) 7 (30) 8 (13)
Not described 0 1 (4) 11 (18)

Estimate of uncertainty in central tendency Before 2007 2007-2011 2012-2016
Reported 1 (6) 2 (9) 9 (15)
Not reported 15 (94) 21 (91) 52 (85)

*Publications may be counted twice if they fit into more than 1 of the categories listed under a given heading. For example, a publication may be counted twice under
the “Region” heading if it includes data from an African country and from a Southeast Asian country.
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13.0% exclusively reported the simple mean and 14.0% reported
both the simple mean and the volume-weighted mean.

Most studies reported only summary estimates and did not
report the variance or any other characteristics of the distribution
of site-level estimates. Only 12% of studies reported confidence
intervals or other measures to describe statistical uncertainty in
summary estimates (Table 2).

As shown in Table S2 (see Appendix Table 2 in Supplementary
Materials found at https://doi.org/10.1016/j.jval.2019.05.007),
estimator use varied by health domain. The simple mean was

https://doi.org/10.1016/j.jval.2019.05.007


Figure 1. Estimator performance as measured by absolute bias, standard deviation, and root mean squared error (RMSE) for 5
estimators across all included studies (log scale). Each column of panels shows the results for a particular estimator (labeled across the
top of the figure). Each row of panels shows results for a given measure of estimator performance. The x-axis is the sample size used in
the simulation. The y-axis is the measure of estimator performance (estimated through simulation), presented as a percentage of the
true unit cost, on the log scale. The ribbons represent the range of results from conducting simulations in different imputed data sets:
The bottom of the ribbon is the best result, the top is the worst result, and the solid line is the mean result across data sets. For example,
the upper far left panel can be interpreted as follows: On average across the different data sets in our simulation, the simple mean
estimator has an absolute bias of 51% of the true cost in samples of 5 sites (range from 12%-113%). This bias remains roughly constant
for increasing sample sizes. In contrast, the upper far right panel shows that the absolute bias in the regression estimator is very large in
samples of 5 sites and decreases to 9% on average (range 0.1%-54%) in samples of 10 sites, 3% on average (range 0.0%-7%) in samples of
20 sites, 2% on average (range 0.2%-5%) in samples of 40 sites, and 2% on average (range 0.2%-5%) in samples of 80 sites.
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reported in 32.6% of HIV studies, 30.8% of vaccination studies, and
57.1% of malaria studies in the review. The volume-weighted mean
(or mean weighted by volume and other characteristics) was re-
ported in 58.1% of HIV studies, 61.5% of vaccination studies, and
42.9% of malaria studies in the review.

Estimator bias, variance, and RMSE

Figure 1 shows the mean performance of each estimator across
the 20 data sets in the simulation, bounded by the best and worst
performance of that estimator. The top row of panels shows that
whereas the bias in the simple mean and median stayed large as
the sample size increased, the bias of the other estimators
decreased with sample size. In samples of 80 sites, the simple
mean exhibited an absolute bias of 50.6% and the median
exhibited an absolute bias of 20.8% of the true unit cost on average
across data sets. The simple mean had a positive bias in all 20 data
sets. The median had a positive bias in 18 of 20 data sets.

As shown in the middle row of panels, the standard deviation
of the different estimators varied slightly. In samples of 40 or 80
sites, the calibration and regression estimators generally out-
performed other estimators.
The bottom row of panels shows the RMSE of each estimator
for different sample sizes. In samples of 5 sites, the weightedmean
and calibration estimator had the lowest RMSEs (45.9% and 46.3%
of the true parameter value, respectively). In samples of 10 or 20
sites, the calibration estimator had the lowest RMSE (18.1%-27.3%).
In samples of 40 or 80 sites, the regression estimator had the
lowest RMSE (8.1%-12.0%) (Fig. 1).

Figure 2 shows the fraction of samples in which the estimated
value differed from the true value by more than a specified per-
centage. As the sample size increased, the calibration estimator,
weighted mean, and median all performed noticeably better, but
the simple mean did not. In our simulation, in samples of 20 sites,
there was a 13.3% chance that the simple mean would generate
estimates that were more than 100% away from the true unit cost.
There was a 41.2% chance that the simple mean would generate
estimates that were more than 50% away from the true unit cost.
Even in samples of 80 sites, there was an approximately 11.3%
chance that the simple mean would generate estimates that were
more than 100% away from the true value. In contrast, in samples
of 20 sites, there was an only 2.0% chance that the calibration or
regression estimators would generate estimates more than 50%
away from the true unit cost, and there was only a 4.1% chance



Figure 2. Percent chance of estimation error larger than a specified value. Each panel shows results from simulations of a different
sample size (5, 20, and 80 sites). The lines show findings for 5 estimators. The y-axis is the probability that an estimate (generated by a
particular estimator with samples of a particular size) will differ from the true population value by more than the percentage (X) along the
x-axis. For example, in the middle panel, the place where the simple mean line crosses the 50% line on the x-axis can be interpreted as
follows: For sample sizes of 20 sites, the simple mean generates estimates that are more than 50% away from the true value
approximately 43% of the time.
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that the weighted mean would generate estimates more than 50%
away from the true unit cost (Fig. 2).

We expect the performance of the simple mean to be influ-
enced by the strength of the relationship between costs and vol-
ume and by the variance in delivery volumes. In a sensitivity
analysis, we examined the empirical relationship between these
characteristics and the bias estimates from our main analysis. The
results in Figure S4 (see Appendix Fig. 4 in Supplementary Ma-
terials found at https://doi.org/10.1016/j.jval.2019.05.007) confirm
that bias in the simple mean increases with the strength of the
cost-volume relationship and with the variation in delivery vol-
umes in the population. A regression of estimated bias on coeffi-
cient of variation and elasticity estimates for each study sample
showed that a single standard deviation increase in the coefficient
of variation in delivery volumes was associated with a 24.5% (95%
confidence interval [CI] 14.3-34.9) increase in the bias. A single
standard deviation increase in the magnitude of the elasticity with
respect to delivery volumes (ie, an increasingly negative elasticity)
was associated with a 62.0% (95% CI 50.4-74.7) increase in the bias
in the simple mean.

We also examined how estimator performance changed with
different sampling approaches. Under stratified sampling, our
main conclusions do not change. Under sampling proportional to
delivery volume, the bias in the simple mean is resolved. With
this approach, weighting is done in the sampling stage rather
than in the analysis stage. Results from sensitivity analyses are
reported in the supplementary appendix (See Appendix 2.2.2 in
Supplementary Materials found at https://doi.org/10.1016/j.jval.2
019.05.007).

Discussion

There are many potential sources of variation in healthcare
cost estimates, including the way researchers conceptualize the
appropriate cost data to collect and the data collection methods
they use (eg, retrospective or prospective, top-down or bottom-up
approaches). Another important source of variation in multisite
cost studies results from the techniques used to analyze data. The
question of how to select an appropriate sample has been
explored extensively elsewhere14,15; this study focused on
comparing methods for estimating central tendency after a sam-
ple has been collected. We reviewed the literature of multisite
healthcare costing studies in LMICs to understand the estimators
used to generate summary estimates. We then conducted com-
puter experiments to assess the performance of 5 summary esti-
mators in realistic scenarios created from a large number of
empirical healthcare costing data sets. We found substantial
variation in the methods used to summarize data collected from a
sample of delivery sites and found large and avoidable deficiencies
with some of these methods.

Our systematic review identified 100 studies published
through the end of 2016, the majority of which were published
from 2012 to 2016. Across these studies, the most commonly used
summary estimators were the volume-weighted mean, the simple
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mean, and the median. The simple mean, which was shown in our
simulations to overestimate unit costs by 50.6% on average, was
reported in 34.0% of the studies included in the review.

Evaluations of estimator performance are often particularly
concerned with unbiasedness and asymptotic properties. How-
ever, our systematic review highlighted that multisite costing
studies tend to have small samples. In this setting, variance is an
important contributor to estimation error. Because the main goal
in selecting an estimator is to reduce overall error, we used RMSE
to compare the estimators in our study.

In simulations, the calibration estimator, regression estimator,
and volume-weighted mean all performed significantly better
than the simple mean or median in terms of RMSE. Each of these 3
estimators has advantages. The volume-weighted mean had the
largest RMSE of the 3 estimators, but it requires the least data, is
the least computationally complex, and may be the simplest
method to describe to stakeholders. For these reasons, in many
studies it may be preferred over the calibration or regression
estimator. Both the calibration estimator and the regression esti-
mator improve on the performance of the simple mean by
leveraging auxiliary information. This reduces variance relative to
the simple mean, but it also requires additional data: The
regression estimator requires data on site-level volumes for all
sites, and the calibration estimator requires data on the total
number of sites and total service volume. Therefore, when the 3
best-performing estimators are compared, the volume-weighted
mean requires the least auxiliary information, followed by the
calibration estimator and then the regression estimator. In situa-
tions where it is not feasible to collect data from a large number of
sites, it may be advantageous to collect auxiliary information on
volumes that can allow the use of a regression or calibration
estimator to reduce variance. Although we did not examine this in
our analysis, the calibration and regression estimators could both
incorporate additional information beyond delivery volume (eg,
facility type, case mix, or quality). The regression estimator could
also be used with alternative specifications. Complex functional
forms or additional predictors could, however, lead to overfitting,
resulting in worse predictive performance.

Our study has several limitations. Our simulations did not
include all possible methods but, rather, focused on the main
methods used in the literature and several viable alternatives. We
simulated simple random sampling, but a large proportion of the
studies included in our systematic review used purposive sam-
pling to select health facilities. Although we cannot know how this
influences results, if purposive selection is informed by relevant
characteristics such as facility size (ie, if it functions as a crude
form of stratified sampling), then the performance of all of the
included estimators could improve relative to simple random
sampling.

Although our main findings are consistent across data sets
from different health domains, estimator performance will vary
depending on the characteristics of the health program being
studied. For example, the bias in the simple mean will tend to be
lower if large portions of the cost of a healthcare program exhibit
no economies of scale (eg, medications) and higher if large por-
tions of the cost exhibit significant economies of scale (eg, human
resource costs).
Conclusion

The choice of summary estimator inmultisite costing studies can
significantly influence study findings and, therefore, the economic
analyses they inform. For researchers who use the results from
costing studies in economic models, our findings highlight the
importance of considering potential bias in cost estimates. Use of the
simple mean to summarize the results of multisite costing studies
should be considered inappropriate. Our study demonstrates that
several alternative better-performing methods are available.
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