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Summary

Standard methods for meta-analysis are limited to pooling tasks in which a single
effect size is estimated from a set of independent studies. However, this setting can be
too restrictive for modern meta-analytical applications. In this contribution, we illus-
trate a general framework for meta-analysis based on linear mixed-effects models,
where potentially complex patterns of effect sizes are modelled through an extended
and flexible structure of fixed and random terms. This definition includes, as spe-
cial cases, a variety of meta-analytical models that have been separately proposed in
the literature, such as multivariate, network, multilevel, dose-response, and longitu-
dinal meta-analysis and meta-regression. The availability of a unified framework for
meta-analysis, complemented with the implementation in a freely-available and fully
documented software, will provide researchers with a flexible tool for addressing
non-standard pooling problems.
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1 INTRODUCTION

Meta-analysis has become a standardmethod to summarize evidence in various scientific fields.1 Traditional applications require
a set of single effect size estimates that are collected from multiple independent studies. However, extensions to deal with
more complex meta-analytical problems have been presented. These include, potentially among others, multivariate models for
pooling multiple outcomes or multi-parameter associations,2,3 network meta-analysis for indirect mixed-treatment comparison,4
multilevel versions for hierarchically-structured studies,5 dose-response meta-analysis,6,7 and longitudinal meta-analysis for
studies reporting multiple estimates at different times.8 Although these extensions were presented separately, all of them can
be described as cases where multiple observations are collected within each study, and their dependence within and/or between
studies creates more complex correlation structures that need to be modelled or accounted for.
In this contribution, we review and bring together these different developments into a coherent unified framework, built on the

known link between meta-analysis and linear mixed-effects (LME) models, where patterns of effect sizes are modelled through a
flexible structure of fixed and random terms.9,10,11,12,13,14,15,16,17 The manuscript is organized as follows: the analytic formulation
of the unified framework is introduced in Section 2, followed by estimation and inferential procedures in Section 3. Specific
applications are presented in Section 4, including analytic definitions linked to the general framework, and illustrations through
real-data examples. Section 5 describes the software implementation of themodelling framework in the newR packagemixmeta,
while Section 6 presents the results of a simulation study. Section 7 draws some conclusions. R code and data for replicating

0Abbreviations: LME, linear mixed-effects; ML, maximum likelihood; REML, restricted maximum likelihood; GLS, generalized least squares; AIC, Akaike informa-
tion criteria; BIC, Bayesian information criteria; BLUP, best linear unbiased prediction; BCG, Bacillus Calmette-Guerin; TB, tubercolosis; OR, odds ratio; RR, incidence
relative rate; (R)IGLS, (restricted) iterated generalized least squares; RMSE, root mean square error
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examples and simulation results are added as supplementary material, with an updated version available at the personal website
and GitHub page of the last author.

2 A MIXED-EFFECTS FRAMEWORK FORMETA-ANALYSIS

A unified modelling framework can be defined by casting the meta-analytical problem as a LME model. In general terms, we
assume that there is a set of n total measures effect sizes (observations) of k different outcomes, representing units of analysis
aggregated in i = 1,… , m groups that are considered independent. Additional L− 1 inner levels of grouping could exist within
each of the m outer groups, for a total of L grouping levels. Grouping levels can be represented by studies themselves, as in
standard meta-analysis, or be defined either between or within studies. An extended mixed-effects meta-regression model for
the yi effect sizes (outcomes) in group i can be generally written as:

yi = Xi� + Zibi + �i , i = 1,… , m ,
bi ∼ N

(

0,	i
)

, �i ∼ N
(

0,Si
)

.
(1)

Here, Xi� defines the fixed effects that represent the population-averaged outcomes in terms of p unit-level meta-predictors
in the design matrix Xi, with fixed-effects coefficients �. The random part of the model, Zibi, describes the deviation from
the population averages in terms of q predictors defined at different grouping levels and composing the random-effects design
matrix Zi, with coefficients bi. The vector �i defines the unit-level sampling errors. The model have marginal distribution yi ∼
N
(

Xi�,�i
)

, where the marginal (co)variance matrix �i = Si + Zi	iZiT is given by the sum of within-group errors (assumed
known) and between-group random effects, defined by (co)variance matrices Si and 	i, respectively. The latter is composed
of a block-diagonal form of level-specific matrices 	(1),… ,	(L) (from outer to inner levels), defined by a set of parameters
� dependent on their specific form (e.g. unstructured, (heterogeneous) compound symmetry, (heterogeneous) autoregressive
of first order)18 and on constraints for ensuring positive-definiteness. These matrices are expanded consistently with the inner
structure of each group, similarly to Zi (see Section 4.3 for algebraic details).

3 ESTIMATION

Likelihood functions
The unknown parameters of the model in Equation 1 are the vector � of fixed effects, and the vector � that characterises the
set of level-specific (co)variance matrices of random effects composing 	i. These can be estimated through (restricted) max-
imum likelihood (ML and REML) estimators, with the marginal (restricted) log-likelihood functions derived from the LME
framework19,20 as:
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(2)

Note that the REML version lR only depends on �, as it is obtained by re-projecting y using a set of n − p orthogonal
error contrasts, a transformation which is reflected algebraically in the inclusion of the two additional determinant terms in
Equations 2. The estimators derived from REML are generally considered superior, in particular regarding the estimation of
random components, as they account for the loss of degrees of freedom in the estimation of � that induces a downward bias in
the ML counterpart. However, they pose limitations for hypothesis testing, as discussed below.
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For known �, maximum likelihood estimates of the fixed effects coefficients and their associated (co)variance matrix can be
easily obtained by generalized least squares (GLS) estimators, expressed in closed form as:

�̂ =

( m
∑

i=1
XT
i �

−1
i Xi

)−1 m
∑

i=1
XT
i �

−1
i yi ,

V
(

�̂
)

=

( m
∑

i=1
XT
i �

−1
i Xi

)−1

.

(3)

Fixed-effects meta-analytical models can be simply estimated using Equation 3 by setting�i = Si. For random-effects models,
when the random part is unknown, the joint estimation of � and � requires iterative methods for maximizing the likelihood
functions in Equations 2. For computational convenience, a profiled approach is preferable, where iterative algorithms are defined
in terms of parameters � only, and values of �̂ are obtained by Equation 3 and plugged in at each iteration, until convergence.
Alternative algorithms have been proposed, such as Newton-Raphson, expectation-maximization (EM), and (restricted) iterative
generalized least squares (IGLS adn RIGLS), each of them with different properties.18,21,22 See Section 5 for additional details.

Hypothesis testing and model comparison
Inferential procedures follow standard LME theory, and concern the fixed-effects parameter vector � and the set of random-
effects (co)variance matrices	(l), with l = 1,… , L. Regarding the fixed effects, under the marginal model and replacing �i in
Equation 3 with its ML or REML estimate through �̂, the vector �̂ follows a multivariate normal distribution with (co)variance
matrix V (�̂). These results can be used to derive approximated confidence intervals and (multivariate) Wald tests for specific
coefficients or their linear combinations. If the Wald test gives significant results, a common question is which particular linear
combinations of the coefficients are significantly different from zero. The common example is where we find a difference on
the k effect sizes and we wish to perform all possible comparisons. A simultaneous comparisons procedure which maintain the
overall type I error were proposed by Goldstein.23 Comparison between nested models can be performed through likelihood
ratio (LR) tests, or more generally using fit statistics such as the Akaike or Bayesian information criteria (AIC and BIC), each
of which is easily computed using the (restricted) maximum likelihood values from Equations 2.
LR tests and AIC/BIC can also be used for hypothesis testing and model selection, for instance by comparing alternative

structures for random-effects (co)variance matrices	(l), or by assessing the presence of heterogeneity at each grouping level l.
However, it must be noted that the chi-square distribution is a poor approximation to the actual distribution of the LRT statistic
when applied to a large number of parameters, and when testing heterogeneity, with the null hypothesis 	(l) = 0 lying on
the boundary of the parameters space. More importantly, the REML log-likelihood function is not invariant to one-to-one re-
parametrisation of the fixed effects, as this changes the specification of the error contrasts, and therefore LR tests and AIC/BIC
can only be used to compare REML models with the same fixed-effects specification.
In addition to inferential tools borrowed directly fromLMEmodels, other statistics traditionally used inmeta-analysis to assess

the presence and amount of heterogeneity can be easily extended in this more general mixed-effects framework, for instance the
Cochran Q and I2.24,25 These can be defined as:

Q =
m
∑

i=1

(

yi − Xi�̂
)T
S−1i

(

yi − Xi�̂
)

I2 =max
{

Q − n + p
Q

, 0
}

(4)

where �̂ are estimated by the correspondent fixed-effect model with no random term. The Cochran Q statistic follows a �2
n−p

distribution under the hypothesis of no heterogeneity, and can be used to define the related test, while the I2 statistic quantifies
the amount of heterogeneity as the proportion of total variation above that related to sampling error.

Prediction
In this complex meta-analytic setting, inferential procedures can be complemented with prediction tools that inform about poten-
tially complex relationships that are pooled across studies, including for example multivariate and non-linear associations.3 In
this context, predictions offer a method to link specific values of meta-regressors defined at any grouping level with effect size
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expectations. Given a set of unit-level meta-predictors x0 that form the design matrix X0 depending on the specific model (see
Section 4), the (marginal) predicted mean ŷ0 with (co)variance matrix V (ŷ0) are obtained by:

ŷ0 =X0�̂ ,

V
(

ŷ0
)

=X0V
(

�̂
)

XT
0 .

(5)

In addition to the marginal level, improved study-specific estimates can be obtain as best linear unbiased predictions (BLUPs).
These are interpreted as trade-off between yi and ŷi, with estimates of effect sizes borrowing information within and/or between
studies. BLUPs can be defined as conditional expectations given the random effects, and its empirical version ŷbi and (co)variance
matrix V

(

ŷbi
)

are provided as:

ŷbi =X0�̂ + Zi	̂iZT
i �̂

−1
i

(

ŷi − Xi�̂
)

,

V
(

ŷbi
)

=X0V (�̂)XT
0 + Zi	̂iZT

i − Zi	̂iZT
i �̂

−1
i Zi	̂iZT

i ,
(6)

It is interesting to note that, in a multilevel context, BLUPs can be defined also as predictions at higher levels of grouping.
For instance, BLUPs at level l ≤ L are derived by including in 	̂i and Zi only the random-effects components corresponding
to the grouping levels in l and above (see Section 4.3 for an algebraic definition of levels).

4 SPECIFIC APPLICATIONS

Different models for meta-analysis can be expressed as special versions of the general framework in Equation 1. These includes
the standard methods, extensions mentioned above, and their combinations, among potentially other models. In this section, we
describe the most common cases, graphically represented in Figure 1 , highlighting their distinctive aspects and their link with
the general framework.

Standard
Multivariate Multilevel

Dose-response Longitudinal

FIGURE 1 Graphical illustration of data structures in specific applications of the extended framework for meta-analysis.

Figure 1 shows how extensions of the standard model are generally characterized by repeated measures and groupings
that induce patterns of correlation across effect sizes. As in LME models, these potentially complex structures can be flexibly
modelled by a combination of fixed and random terms, optionally including meta-predictors with alternative parameterizations,
for instance indicators and continuous smooth functions. In the sub-sections below, we illustrate each case by replicating and
extending real-data meta-analyses from published studies, reproduced in the R scripts provided in the Supplementary Material.
Details on the data and substantive context can be found in the references or in the help pages of the R package mixmeta.
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4.1 Standard meta-analysis
The objective of a standard meta-analysis is to obtain a summary (pooled) estimate from single effect sizes estimated separately
in independent studies. The basic estimation procedures are based on the computation of weighted averages across studies, with
weights proportional to the precision of the estimates.26 The pooled estimate can be derived under fixed-effects or random-effects
assumptions,27,28 with random-effects models incorporating the underlying between-study variation into the weights.24

Analytic formulation
Several authors have already pointed out that the random-effects meta-analysis can be expressed as a LMEmodel in a regression
context.29,14 Specifically, the standard model for a set of effect sizes yi can be defined as:

yi = �0 + bi + �i , i = 1,… , m ,
bi ∼ N

(

0, �2
)

, �i ∼ N
(

0, s2i
)

,
(7)

where �0 is the pooled effect, bi are the study-specific random effects distributed with between-study variance �2, and �i is the
error term distributed with known within-study variance s2i . This standard model represents the simplest case of the general
extended framework in Equation (1), with n = m (a single estimate from separate studies), and scalar quantities Xi = Zi = 1,
� = �0, bi = bi, �i = �i, 	 = �2, and Si = s2i . In fixed-effects models, the term bi does not exist. The model in Equation (7)
can be extended to meta-regression by defining a set of study-level predictors xi =

[

xi1,… , xip
]T and setting Xi = xTi , where

usually xi1 = 1 specifies the intercept term.

Illustrative example
In this first example we consider a meta-analysis and meta-regression performed by Colditz and colleagues that evaluate the
efficacy of the Bacillus Calmette-Guerin (BCG) vaccine for preventing tuberculosis (TB).30 The dataset was used by several
authors to illustrate their random-effects regression models.29,15,17 The data refers to 13 prospective clinical trials that estimated
the odds ratio (OR) of TB between groups vaccinated with the (BCG) vaccine and non-vaccinated control populations.
We apply the general framework to estimate the parameters for the log-OR �0 and between-study variance �2 in Equation (7)

using a maximum likelihood estimator (see Section 3), replicating the results reported by Van Houwelingen and colleagues.17
Consistently, the estimated OR is 0.476 (95%CI: 0.336 to 0.675), with a clear indication of a protective effect of BCG vaccine,
and the estimated �2 is 0.302, with suggestions of a large heterogeneity (I2 = 92.6%). Similarly to the original analysis, we can
investigate the influence on vaccine efficacy of various meta-predictors such as study location, year of publication and method of
treatment allocation. For instance, adding latitude in a meta-regression model reduces the between-study variance and residual
heterogeneity (�2 = 0.004, and I2 = 56.2%). The coefficient for latitude is -0.033 (95%CI: -0.039 to -0.026), indicating an
improved efficacy of the vaccine at higher latitudes.

4.2 Multivariate meta-analysis
An important extension of the standard univariate model in Equation (7) is multivariate meta-analysis, in which each study still
reports single estimates, but for multiple effect sizes referring to different outcomes, such as disease free and overall survival
risks in cancer patients.31,2 The same model has been extended to other contexts, for instance to pool results from multi-
parameter functions defining non-linear relationships,3 or meta-analysis of diagnostic accuracy tests.32 A common application
of multivariate models is for network meta-analysis applied in mixed-treatment comparisons, where efficiency can be gained by
exploiting the correlation among effect sizes that measure relative effects across different treatments.33,4

Analytic formulation
In all these applications, the k-dimensional vector yi contains estimates for multiple (potentially correlated) effect sizes in each
study. A model for random-effect multivariate meta-analysis can be represented as follows:

yi = Xi� + bi + �i , i = 1,… , m ,
bi ∼ N (0,	) , �i ∼ N

(

0,Si
)

.
(8)

This can be written in terms of the general framework in Equation (1) by setting Xi = Zi = Ik, � =
[

�1,… , �k
]T, bi =

[

bi1,… , bik
]T, and k × k between-study 	 and within-study Si (co)variance matrices. Here each of the m studies represents a

group with multiple estimates, with a total of n = k ⋅m units in the balanced (full-outcome) case. Missing outcomes (unbalanced
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case) can be accounted for by excluding related rows in the matrices Xi and Zi. Similarly to the univariate case in sub-Section 7,
the model can extended to multivariate meta-regression by setting Xi = xTi ⊗ Ik, with ⊗ as the Kronecker product operator
and � being the kp-dimensional coefficient vector that defines the association of the k outcomes with the p predictors. This
notation defines the same set of meta-predictors for all outcomes, but it allows different associations for each of them. Alternative
parameterizations can be used to define outcome-specific sets of meta-predictors, or to impose the same effects across outcomes.

Illustrative example
As an example of multivariate models, we consider an application of network meta-analysis on 24 trials that compare four
alternative interventions to promote smoking cessation, labelled here A–D (see Table 1 ).34 Each trial compares only two or
three interventions, and the joint meta-analysis allows to gain information through indirect comparisons. Treatment A is used
here as the reference, and trials without an arm A were augmented with 0.01 individuals and 0.001 successes. Here the yi and
Si represent the log-OR of cessation and associated (co)variance error matrix of treatments B, C, and D versus A estimated in
each trial, including missing values. Below we replicate results previously presented in the article by White.35
The first model is formulated under the assumption of consistency, that is allowing heterogeneity between studies but with

no systematic variation across trial designs (defined by groups of trials reporting the same comparisons).36 This model can
be fitted using the general framework in Equation 1 expressed as Equation 8, with � =

[

�1, �2, �3
]T representing the three

comparisons of treatments B, C and D versus A. Following White,35 we impose a parsimonious structure to the random-effects
(co)variance matrix 	, assuming the same variance �2 for all the comparisons and fixing their correlation to 0.5. The results
of the consistency models are reported in Table 1 : treatments C and D are effective with respect treatment A, with substantial
heterogeneity among studies (�2 = 0.454 and I2 = 86.3%). The consistency assumption that direct and indirect evidence agree
with each other can be relaxed by defining and testing design-by-treatment interactions.33,36 This inconsistency model has 10
fixed-effects coefficients compared to the three of the simpler version, and a global Wald test with a p-value of 0.646 fails to
reject the consistency assumption.

TABLE 1 Example of multivariate (network) meta-analysis of 24 trials comparing alternative treatments of smoking cessation,
using a consistency model and a structured between-study (co)variance matrix. Previously reported by White.35

Comparison Estimated log-OR Standard Error p-value

Self-help versus no contact (B vs A) 0.398 0.330 0.227
Individual counselling versus no contact (C vs A) 0.702 0.196 0.000
Group counselling versus no contact (D vs A) 0.866 0.373 0.020

4.3 Multilevel meta-analysis
The previousmodels work under the assumption that studies independently provide single estimates of one or multiple outcomes.
This setting can be too simplistic for some applications of meta-analysis. For example, some studies can report multiple estimates
of the same effect size, either at different stages or for separate groups. Similarly, studies can exhibit nested levels of hierarchy,
with higher grouping factors being represented for instance by geographical areas, administrative units, or study characteristics.5
This configuration of repeatedmeasures and/or hierarchical structures creates a potentially complex pattern of dependence across
effect sizes that must be accounted for. Multilevel meta-analysis has been proposed, in different forms, to extend the model
defined in Section 4.1 by modelling the dependence through structured random effects.5,9,10,11,13

Analytic formulation
Here we provide a general definition of multilevel random-effect meta-analysis that is applicable in various settings. The pattern
of correlation is defined by aggregating effect sizes in groups, which can be defined both between and within studies. Nested
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grouping levels are used to express a hierarchical structure of random effects. For the sake of clarity, we start from a model for
n effect sizes (units) aggregated in two nested grouping levels, written as:

yijr = �0 + bi + bij + �ijr , i = 1,… , m , j = 1,… , mi , r = 1,… , nij ,

bi ∼ N
(

0, �21
)

, bij ∼ N
(

0, �22
)

, �ijr ∼ N
(

0, s2ijr
)

.
(9)

Here �21 is the variance of the random effects at the outer grouping level i, which includes m independent groups. In contrast,
�22 is the random-effects variance within each of the mi inner level groups nested in each outer-level group i. The units indexed
by r represent measured effect sizes from the nij studies in the inner group j nested within the outer group i, each with known
within-study variance s2ijr.
The model in Equation (9) can be extended to include an indefinite number L of grouping levels, with l = 1,… , L, and

generally written in terms of the unified framework described in Section 2. First, we define j = 1,… , gli as the number of
groups at level l within each outer level i, with g1i = 1 by definition. Each group includes r = 1,… , nlij units, with

∑

jl n
l
ij = ni.

The definition of the various elements in Equation 1 requires block-diagonal expansions and column binding consistent with
repeated measures and grouping levels, respectively, with

⨁

v av representing an operator that creates a block-diagonal matrix
of elements av. We first define the design matrix for the fixed effects as X = 1ni , and the known error structure at the outermost
level as �i =

⨁

rj �ijr. The random-effects part can be written by first defining design matrices for each group at various levels of
random effects as Zlij = 1nlij , then expanding them at each level as Zli =

⨁

j Zlij , and finally binding them as Zi =
[

Z1
i ,… ,ZLi

]

.
Consistently, the between-group (co)variance matrix is defined as 	i =

⨁

l Igli ⊗ �2l . The model can be extended further to
meta-regression by replacing Xi with a ni × p design matrix including p fixed-effects predictors. Similarly, ql random-effects
predictors at any level l can be included by replacingZlij with a n

l
ij×ql design matrix, and �2l with a random-effects (co)variance

matrix 	l .

Illustrative examples
In a first example, we consider a meta-analysis of 56 studies that evaluate the effect of a modified school calendar on standardized
reading achievement.37 The studies were performed in 11 separate school districts, with at least three studies in each district,
therefore providing a classic example ofmultilevel structure. Using the notation in Equation 9, in this example, the outer grouping
level i are the school districts, which define m = 11 independent groups. Within each school district, a variable number of
studies were performed, e.g. four studies were performed in the first school district, that is m1 = 4. The study j, nested within
the school district i, is the inner level in the multilevel structure with one single observation r = 1, with a single effect size
in each inner group j nested within the outer group i. We fitted three models with different random-effects structures using a
maximum likelihood estimator: first, a traditional meta-analysis using the model in Section 4.1, with a single level of random
effects assigned to each study; second, a single-level meta-analysis with random effects by district, therefore including repeated
measures within each group; third, a full two-level meta-analysis with nested random effects by study and district. The results,
partly replicating the analysis of Konstantopoulos,13 are reported in Table 2 . The comparison makes clear the advantage of
recognising the multilevel structure of the data, with the pooled effect size �0 increasing from 0.128 in the standard model to
0.184 in the two-level model. The latter, in addition, shows a better fit, as suggested by the lower AIC, and indicates the presence
of heterogeneity at both district and study levels, with �21 = 0.058 and �22 = 0.033, respectively.

TABLE 2 Example of multilevel meta-analysis of 56 studies that evaluate changes in standardized reading achievement
after the implementation of a modified school calendar, with studies clustered within school districts. Previously reported by
Konstantopoulos.13

Model Grouping levels Pooled estimate (Std error) Random-effects variances

�0 �21 (district) �22 (study) AIC

One-level (standard) Study 0.128 (0.043) - 0.087 37.292
One-level (repeated measures) District 0.196 (0.086) 0.075 - 69.432
Two-level Study within district 0.184 (0.080) 0.058 0.033 22.790
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A second example of multilevel meta-analysis considers 20 randomized trials of thrombolytic therapy, which evaluated short-
term mortality risks after a myocardial infarction.38 The hypothesis is that the thrombolytic therapy reduces the risk, and that
the benefit is particularly substantial for very early treatment. Some of the trials report separate estimates of absolute risk change
for sub-groups of treatment times, leading to a multilevel structure with 38 (potentially repeated) observations within 20 trials.
We applied alternative models fitted by REML, partly reproducing the analysis by Thompson and colleagues.10 Specifically:
a standard meta-analysis that ignores clustering by trial; a two-level meta-analysis; a two-level meta-regression that includes
treatment delay as a meta-predictor. The results, shown in Table 3 , show that both standard and two-levels random-effects meta-
analyses produce an estimate of absolute risk difference of -0.02600, suggesting a protective effects of thrombosis treatment,
and that the second model indicates presence of heterogeneity within but not between the higher level of grouping represented
by trials (�22 = 0.00747 and �21 < 0.0000). However, the inclusion of treatment delay in a meta-regression explains most of the
variability at the inner level (�22 = 0.00006), with a residual heterogeneity between trials of �21 = 0.00216. These models (and
other specifications) can be compared through AIC (when defined using the same fixed-effects structure) or using Wald tests for
meta-predictors.

TABLE 3 Example of multilevel meta-analysis of 20 randomized trials of thrombolytic therapy for myocardial infarction, with
multiple estimates of absolute risk change at different times of treatment. Previously reported by Thompson and colleagues.10

Model Fixed effects (Std error) Random-effects variances

�0 (intercept) �1 (treatment delay in hours) �21 (trials) �22 (times)

Standard meta-analysis -0.02600 (0.00314) - - 0.00747
Two-level meta-analysis -0.02600 (0.00314) - <0.00001 0.00747
Two-level meta-regression -0.03494 (0.00421) 0.00161 (0.00049) 0.00216 0.00006

4.4 Dose-response meta-analysis
Dose-response meta-analysis has been used to summarise linear and non-linear health associations across epidemiological stud-
ies.39 The standard approach consists of a two-stage procedure. In the first stage, study-specific associations are determined
using a set of parameters that represent estimates at different doses, usually retrieved from published data and relying on various
methods to approximate their (co)variance matrix accounting for within-study correlations.6 These estimates are then pooled in
the second stage using standard meta-analytical models (see Section 4.1) for linear dose-response relationships, or multivariate
methods (see Section 4.2) for multiple parameters of functions representing non-linear associations.40,41 Recently, Crippa and
colleagues have proposed a one-stage approach for dose-response meta-analysis that provides important advantages and allows
defining dose-response meta-analysis within the general framework proposed in Equation 1.7

Analytic formulation
The one-stage model for a linear dose-response random-effects meta-analysis can be written as follow:

yij = �xij + bixij + �ij , i = 1,… , m j = 1,… , ni ,
bi ∼ N

(

0, �2
)

,
[

�i1,… , �ini
]

∼ N
(

0,Si
)

.
(10)

Here, for each study i, the ni units yij represent the association measures (e.g., log odds ratios or log risk ratios) at different
doses xij , commonly retrieved by using published estimates. The fixed and random-effects parameters � and bi represent the
pooled linear dose-response association and its study specific deviations, respectively. Note the absence of an intercept for
this model. Similarly to the standard model in Equation 7, �2 represents the variance of the random effects. Following Crippa
and colleagues,7 this model can be written as a special version of the general framework in Section 2 by setting Xi = Zi =
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[

xi1,… , xij
]T, � = �, bi = bi, and 	 = �2. The within-study error structure is represented by a ni × ni matrix Si, usually

approximated using alternative methods.6,42 This model can be easily extended to the pooling of non-linear dose-responses by
applying functions to transform xij , for instance quadratic terms or splines, thus obtaining a ni × q matrices Xi and/or Zi, and a
q × q matrix 	.

Illustrative example
As an example of dose-response meta-analysis, we consider the data on eight cohort studies participating in the Pooling Project
of Prospective Studies of Diet and Cancer.43 Each study estimated the incidence relative rate (RR) of colorectal cancer in
various categories of alcohol intake while controlling for a set of potential confounders, using non-drinkers as the reference.
The categories were then converted in a dose by assigning the median value of individual consumptions, reporting log-RR
estimates at multiple levels in a continuous scale. We fitted alternative models using a maximum likelihood estimator, exploiting
the flexibility of the extended framework in defining fixed effects and within and between-study correlations. Specifically, we
specified linear and non-linear terms in both fixed and random parts, the latter by using natural cubic splines with internal knots
at approximately the 25th and 75th percentiles of alcohol consumption. Within-study correlations were optionally reconstructed
using the method of Greenland and Longnecker.39
The models are presented in Table 4 , including number of parameters and AIC, and partly replicate and extend results

presented by Crippa, Orsini and colleagues.6,42 Consistently, findings show that accounting for within-study correlation signifi-
cantly improves the fit of the model, as indicated by the lower AIC of model L2 vs L1. The RR corresponding to 12 grams/day of
alcohol intake in the two models changes to 1.080 (95%CI: 1.047–1.115) from 1.048 (1.016–1.080), respectively. The inclusion
of non-linear terms in both fixed and random parts does not improve the fit (NL1 vs L2). However, the simplification to linear
random effects in NL2, allowed by the flexibility of the unified framework, indicates evidence of non-linearity (NL2 vs L2).
The Cochran Q test for models NL1-NL2 suggests little evidence of heterogeneity (p-value = 0.25, not shown), as confirmed
by the better fit of the fixed-effects non-linear dose-response meta-analysis in model NL3. The predicted RR for different doses
obtained through linear and non-linear meta-analytic models L2 and NL1 are represented in Figure2 , with similar shapes to
graphs previously presented.6,42

TABLE 4 Example of dose-response meta-analysis of eight cohort studies on alcohol and colorectal cancer, with alternative
model specifications. Previously partly reported by Crippa, Orsini and colleagues.6,42

Model Within-study correlations Fixed effects Random effects Degrees of freedom AIC

L1 Zero correlation Linear Linear 2 -2.06
L2 Greenland and Longnecker Linear Linear 2 -6.13
NL1 Greenland and Longnecker Non Linear Non Linear 9 1.28
NL2 Greenland and Longnecker Non Linear Linear 4 -7.88
NL3 Greenland and Longnecker Non Linear None 3 -9.88

4.5 Longitudinal meta-analysis
Another example of recent extensions of meta-analytical methods is for applications with studies where the same outcome
is measured at several time points. Longitudinal meta-analysis have been proposed in this context to account for the intrin-
sic within and between-study correlations.8,44 The common procedure is to apply meta-analytical methods for multivariate
meta-analysis (see Section 4.2), treating effect sizes estimated at different times as separate outcomes,8,45,46 although this repre-
sentation poses important constraints, as explained below. Alternative approaches define the longitudinal design as a special case
of the multilevel setting described in Section 4.3, with repeated measures within each study.47,44 This provides a way to formu-
late longitudinal meta-analysis within the unified framework in Equation 1, offering a general, flexible, and efficient modelling
structure.
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FIGURE 2 Dose-response relationships between alcohol intake and incidence relative rates of colorectal cancer assuming a
linear and non-linear association (Models L2 and NL1 in Table 4 ), with 95% confidence intervals.

Analytic formulation
As mentioned above, traditional methods defines longitudinal meta-analysis as a multivariate model, where the effect sizes
yi = (yi,t1 ,… , yi,tk)

T measured at k times in study i are treated as separate outcomes, and modelled as in Equation 8. However,
this approach requires that the measurements are taken at common time points across studies, and while it may account for the
sequential order, for instance by imposing autoregressive structures to the within and/or between-study correlations for evenly-
spaced measures, it ignores most of the information provided by the longitudinal setting. A more flexible definition for a set of
effect sizes measures at ni times in study i is derived directly from LME models as:

yit =
(

� + ai
)

+
(

� + bi
)

tij + �it , i = 1,… , m , j = 1,… , ni ,
[

ai, bi
]

∼ N (0,	) ,
[

�it1 ,… , �itni

]

∼ N
(

0,Si
)

,
(11)

with �, �, ai, and bi as fixed and random coefficients for intercepts and slopes. This formulation treats time as a continuous
predictor that can be modelled through both fixed and random terms, and allows studies to report estimates at different times. The
traditional multivariate approach can be defined as a special case by using indicators for a common set of time points. The model
in Equation 11 can be written as the general framework in Equation 1 by setting ti =

[

ti1,… , tini
]T, and Xi = Zi =

[

1ni , ti
]

. 	
and Si define the random-effects and within-study error (co)variance matrices, respectively, optionally with specific structures,
such as diagonal or (continuous) auto-regressive of fist order (AR1). Themodel can allow non-linear trends by specifying smooth
functions of time (see Section 4.4), or include additional meta-predictors, in both cases either as fixed or random effects by
extending Xi and Zi, respectively.

Example of longitudinal meta-analysis
We illustrate an application of longitudinal meta-analysis using data on 17 randomized controlled trials comparing treatments
of malignant gliomas. Each study measured the survival OR at 6, 12, 18, and 24 months since the start of the treatment.48
Musekiwa and colleagues have previously analysed the data using multivariate models fitted with REML,45 defining various
longitudinal meta-analytic models with different specification of the within and between-study (co)variance structures. Here we
replicate and extend the results using the more flexible general framework and adopting alternative specifications.

The first set of results using multivariate models with indicators for the four time points are reported in Table 5 . Consistently
with the original analysis,45 the first three options (Models 1-3) do not allow correlations in the within-study errors, while the
other options (Models 4-6) assume a heterogeneous AR1 structure with correlation fixed at 0.61. Different structures were used
for the random-effects (co)variance, leading to different total degrees of freedom. The best-fitting option in terms of AIC is
Model 4, with independent random effects and AR1 within-study errors. The analysis can be extended by defining time as a
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TABLE 5 Example of longitudinal meta-analysis of 17 randomized controlled trials comparing treatments of malignant
gliomas, reporting survival odds ratio (OR) at multiple times after treatment. Previously partly reported by Musekiwa and
colleagues.45

Model (Co)variance structures Degrees of freedom AIC

Within-study errors Random effects

Model 1 Diagonal Diagonal 8 121.6
Model 2 Diagonal Compound symmetry 5 117.0
Model 3 Diagonal Heterogeneous AR1 9 120.9
Model 4 Heterogeneous AR1 Diagonal 8 107.5
Model 5 Heterogeneous AR1 Heterogeneous AR1 9 107.7
Model 6 Heterogeneous AR1 Unstructured 14 117.3

continuous variable, specifying an additional Model 7 as in Equation 11. This random-slope model specifies a diagonal structure
for intercept and (centered) time as random effects, and keeps the AR1 within-study errors, using only four degrees of freedom.
Models 7 and 4 were (re)fitted using maximum likelihood, that allows comparison between different fixed-effects specifications
(in this case, linear and through indicators, respectively). The results are graphically illustrated in Figure 3 , showing the pooled
OR along time after treatment. AIC indicates a better fit of Model 7 (101.4 vs 107.5, respectively), suggesting a linear trend and
actually little evidence of changes in survival along time, with a p-value of 0.92 for the coefficient � of time (not shown). This
example highlights the advantages offered by the modelling flexibility of the general modelling framework.
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Model 4 (Indicators) Model 7 (continuous)

FIGURE 3 Survival odds ratio after start of the treatment of gliomas (Models 4 and 7 fitted using maximum likelihood), with
95% confidence intervals.

5 SOFTWARE

The unified random-effect framework for meta-analysis and the frequentist inferential procedure described in the previous
sections are implemented in the R package mixmeta. The main function of the program is mixmeta(), which uses a simple
syntax to fit a wide range of meta-analytical models. For instance, the following code:
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mixmeta(cbind(y1 + y2) ~ x1 + x2, S, data, random = list(~ z1 | g1, ~ 1 | g2), method="reml")

performs a bivariate two-level meta-regression using a REML estimator. In this example, effect sizes for two outcomes y1
and y2, with unit-level errors S, are modelled in terms of fixed-effect predictors x1 and x2. Random effects are specified by
intercept plus variable z1 and intercept only, for nested grouping levels g1 (outer) and g2 (inner), respectively. The flexible
formula syntax, similar to that applied in the R package nlme for LME models, allows the definition of all the various versions
illustrated in Section 4. Other functions are available for hypothesis testing, predictions, model assessment, and simulations,
among other regression tasks.
At the time of writing, the package implements a hybrid estimation procedure, with few runs of a (R)IGLS algorithm followed

by quasi-Newton iterations. The former is robust to initial values and quickly moves close to the maximum likelihood, while
the latter provides a fast convergence within this region. As mentioned in Section 3, these algorithms adopt a profiled approach,
where the likelihood functions in Equations 2 are defined in terms of random-effect parameters � only, with a parameterization
that ensures positive-definiteness and allows different structures for any of the (co)variance matrices	(l). Computationally, the
estimation algorithms exploit the block-diagonal form of the design and (co)variance matrices defined in Equations 1–6, which
is particularly convenient in the presence of a high number of studies or outer groups. A QR decomposition is applied internally
in the GLS routine, providing numerical stability even in not well-conditioned least squares problems.

6 SIMULATIONS

We performed a simulation study to explore the validity and inferential properties of the software implementation of the unified
framework. We considered a complex case represented by a multivariate multilevel meta-analysis, combining the applications
described in Sections 4.2 and 4.3 within the general model defined in Equation 1. Specifically, we simulated k = 3 outcomes
and L = 2 grouping levels, with m groups at the (outer) level 1, each including g2i = 10 groups at the (inner) level 2. All the
fixed-effects � =

[

�1, �2, �3
]T, representing the three pooled intercepts, were simulated as 0.We assumed a compound-symmetry

structure for both the 3×3 random-effects (co)variance matrices	1 and	2, and a heterogeneous compound-symmetry structure
for the residual error matrix Si. Random-effects variances �21 and �22 were set to 1, while the residual error variances s2ijr were
sampled from a uniform distributionwith range [0.1, 2]. Various simulation scenarios are represented by combinations of number
of outer-level groups m (10 or 50), correlation �b1 and �b2 for each level of random effects (0 or 0.8), and residual correlation �w
(0 or 0.8). For each combination, we simulated 10,000 datasets using the function mixmetaSim(), and fitted the general model
with mixmeta() assuming the correct random-effects (co)variance structures.
Results are reported in Table 6 , showing the bias, root mean square error (RMSE), and coverage for the (first) fixed-effect

coefficient, and the bias for the four random-effects parameters. Simulations indicate a negligible amount of bias for both the
fixed and random-effects parameters in all scenarios. As expected, the RMSE decreases when increasing number of outer-level
units. The coverage is slightly below the nominal value, especially for scenarios with lower number (m = 10) of outer-level
groups. Inferential properties do not seem affected by the presence of within or between units correlation.

7 DISCUSSION

In this contribution, we have presented an extended mixed-effects framework that provides a common modelling and inferential
setting formeta-analysis. It includes traditional applications, but also non-standard extensions for which commonmeta-analytical
methods are not appropriate. The unified approach proposed here generally characterises these extensions as patterns of depen-
dence between effect sizes, modelled through fixed and random effects defined by meta-predictors and grouping structures.
This modelling approach allows a flexible specification of variety of meta-analytical models and facilitates the design and
implementation of non-standard pooling studies.
The LME structure adopted in the definition of the general model in Equation 1 provides substantial modelling flexibility,

through which important constraints in design and modelling aspects can be relaxed. For instance, analyses of longitudinal data
are traditionally performed using models for multivariate meta-analysis that consider repeated measurements from the same
study as multiple outcomes.8,6 However, this approach requires a limited set of measurements to be taken at the same doses/times
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TABLE 6 Simulation study: multivariate multilevel meta-analysis with k = 3 outcomes and L = 2 grouping levels, with m
groups at the (outer) level 1, each including g2i = 10 groups at the (inner) level 2. Eight simulation scenarios are defined by the
number of outer-level groups m and correlations �b1 and �b2 for each level of random effects.

Parameters �1 �1 �2 �b1 �b2
m �w �b Bias RMSE Coverage Bias Bias Bias Bias

10 0.00 0.00 0.000 0.349 0.940 -0.006 0.004 0.004 -0.004
50 0.00 0.00 -0.001 0.157 0.948 -0.001 0.001 0.002 -0.001
10 0.80 0.00 -0.005 0.351 0.930 -0.005 0.005 -0.045 -0.003
50 0.80 0.00 0.001 0.154 0.951 -0.000 0.001 -0.007 0.000
10 0.00 0.80 0.003 0.357 0.934 -0.007 0.004 -0.019 -0.030
50 0.00 0.80 -0.004 0.155 0.949 0.001 0.000 -0.002 -0.007
10 0.80 0.80 -0.006 0.347 0.928 -0.006 -0.001 -0.058 -0.015
50 0.80 0.80 0.001 0.153 0.951 0.000 0.000 -0.008 -0.003

across studies, and prevents their analysis as continuous variables. In the examples in Sections 4.4 and 4.5, we showed howmore
flexible models can be defined within our general framework, allowing studies to provide an indefinite number of measurements
taken at any point and the modelling of continuously dose-response shapes and trends through linear or smooth functions.
Similarly, the flexible definition of multilevel models in Section 4.3 allows the specification of complex hierarchical structures
and the inclusion of random-effects meta-predictors.
The extended framework presented in this paper is well placed for a two-stage analytical setting, where the estimated effect

sizes are derived from published studies or previously obtained from separate study-specific analyses. One-stage formulations
have been proposed for individual patient data (IPD) meta-analysis, when data from the original studies are available and can be
directly modelled.49 However, in many applications the one-stage approach provides little advantages, and two-stage procedures
offer a valid, computationally stable, and efficient alternative.9,50 In addition, the flexible framework proposed here allows exten-
sions of the two-stage design to address specific limitations, for example with the pooling of multiple study-specific parameters
of main and interaction terms to evaluates effect modification from participant-level variables. The two-stage approach relies
on the assumption of normal distribution of estimated effect sizes and random effects, thus requiring approximations, in par-
ticular for outcomes measured in a binary scale. One-stage methods based on generalized linear mixed models (GLMM) have
been developed in this setting, including versions with alternative distributional assumptions.11,51,52 While these have theoretical
and inferential advantages, they present considerable computational problems, and simulations show improvements only in the
presence of small and sparse data.53,54 An additional requirement of the two-stage procedure, when applied in multi-parameter
meta-analyses, is the knowledge of the within-study covariances. Methods for estimating them from published data were devel-
oped in multivariate meta-analysis,5,31,55 and in dose-response meta-analysis, and can be applied in this general model.56,57,58 In
addition, interestingly, the unknown correlations can alternatively be merged in a marginal random-effects structure that includes
within and between-study dependencies.16,59 One of the advantage of using an LME formulation in the extended framework is
that it does not require balanced data where the full set of effect sizes are measured (or reported) for each study. The extended
framework can in fact deal with unbalanced data and more generally deal with the presence of missing effect sizes. However,
the analysis requires the assumption of missing at random (MAR) to provide unbiased estimates.60
The methodology is implemented in the freely-available and fully documented R package mixmeta, which complements

standard software for meta-analysis and additional tools for specific extensions. For instance, some analysts have proposed the
use of general LME programs for fitting complex meta-analytical models, such as the procedure PROC MIXED in SAS,17 the
program GLLAMM in Stata,15 MLwiN,11 or the package nlme in R.61 However, the use of general LME software requires
advanced knowledge of statistical and computational aspects, and can be difficult for more applied users. Dedicated routines
are available for specific meta-analytical extensions, such as the Stata command and R package mvmeta for multivariate meta-
analysis,35,3 or the R package dosresmeta and drmeta Stata module for dose-response meta-analysis,42,62 while metafor in R
can offer a set of general tools for standard models and various extensions.63 Our implementation in mixmeta offers a flexible
platform where the full range of models presented in Section 4, and their combinations, can be defined through a simple syntax,
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fitted using an efficient computational structure, and estimated following a common underlying statistical theory. This software
can complement existing packages and modules for the specific meta-analytic extensions presented in Section 4.
The simulation study in Section 6 demonstrates the validity and good performance of the modelling framework and soft-

ware, even in a relatively complex application represented by a trivariate multilevel meta-analysis. However, some limitations
of the inferential approaches described in Section 3 must be acknowledged. The Wald test procedure for fixed effects is based
on asymptotic distributional approximations, and it ignores the uncertainty related to the estimation of the random-effects com-
ponents. This explains the small undercoverage of confidence intervals in Table 6 , which however can be non-negligible in
small-sample studies. Similarly, hypotheses on random effects are evaluated through LR tests and AIC/BIC, but these can have
poor performances and problems with boundary conditions. Solutions can be found in the LMEmodels literature, such as the use
of t or F distributions,18 adjustments for standard errors and degrees of freedom,64 and use of mixture distributions.23,18 Some
of these have also been defined for meta-analytical models,65,29,27,66,67,68 but still need to be fully developed for this extended
framework. Alternative methods can also be developed in a Bayesian framework, which offers advantages in accounting for
various sources of uncertainty, although requiring appropriate parameterizations and priors specification.69,27,10,70,71
There is an increasing interest in developing meta-analysis for applications in more complex pooling studies, beyond the now

established extensions described in Section 4.4,72 Emerging areas include investigations that apply two-stage designs for the
analysis of large datasets, where either the complexity of the first-stage regression or the computational demand prevent the
definition of a one-stage model, and the partition of the analysis in two steps provides a feasible and efficient approach.3,73,50
However, the limitations of traditional meta-analytical methods, requiring the estimation of single independent parameters from
each subset, poses important constraints in this setting. In contrast, the model in Equation 1 offers flexibility in the definition of
the two-stage analysis, allowing for instance repeated measurements in time or sub-groups, hierarchies and spatial or temporal
clustering, and complexmulti-parameter effect estimates. The definition of a unified framework formeta-analysis, complemented
with a full software implementation, provides researchers with a flexible tool for defining and applying flexible meta-analytical
models in a variety of pooling problems.
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