
 

Open Peer Review

Any reports and responses or comments on the
article can be found at the end of the article.

RESEARCH ARTICLE

No evidence of Zika, dengue, or chikungunya virus infection in
field-caught mosquitoes from the Recife Metropolitan Region,

 Brazil, 2015 [version 1; peer review: 2 approved]
Anita Ramesh ,     Claire L. Jeffries , Priscila Castanha ,

       Paula A. S. Oliveira , Neal Alexander , Mary Cameron , Cynthia Braga ,
Thomas Walker 3

Department of Parasitology, Instituto Aggeu Magalhães(IAM/FIOCRUZ Pernambuco), Recife, Brazil
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Abstract
The Recife Metropolitan Region (RMR), north-eastern Brazil,Background: 

was the epicentre of the 2015 Zika virus (ZIKV) epidemic, which was
followed by a 2016 chikungunya virus (CHIKV) epidemic. It historically has
amongst the highest incidence of dengue virus (DENV) infections and is the
only remaining focus of lymphatic filariasis (LF) in Brazil. In early 2015, a
molecular xenomonitoring surveillance project focused on Culex (Cx.)

 commenced to inform LF elimination activities. quinquefasciatus Aedes
 mosquitoes were also collected, concurrent with the first(Ae.) aegypti

microcephaly cases detected in the RMR. In terms of the 2015 ZIKV
epidemic, these are the earliest known field-collected mosquitoes,
preserved for potential RNA virus detection, when ZIKV was known to be
circulating locally.

Adult mosquitoes were collected in two sites (0.4 km ) of SítioMethods:   
Novo, Olinda, RMR, from July 22 to August 21, 2015. Mosquitoes were
morphologically identified, sorted by physiological status, and pooled (up to
10 mosquitoes per house per day or week). RNA was extracted, reverse
transcribed and the cDNA tested by real-time PCR.

A total of 10,139 adult female   and 939 adultResults: Cx. quinquefasciatus
female   were captured. All female   specimens wereAe. aegypti Ae. aegypti
included within 156 pools and screened for ZIKV, DENV and CHIKV. In
addition, a sub-set of 1,556   adult females in 182 poolsCx. quinquefasciatus
were screened for ZIKV. No evidence of infection with any of the three
arboviruses was found.

The absence of arbovirus detection may have beenConclusions: 
expected given the extremely restricted geographic area and collection of

mosquitoes during a very short time period of peak mosquito abundance
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mosquitoes during a very short time period of peak mosquito abundance
(July–September), but low arbovirus circulation (November–March). 
However, this study demonstrates the potential to retrospectively screen for
additional unexpected pathogens in situations of rapid emergence, such as
occurred during the outbreak of ZIKV in the RMR.
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Introduction
Vector-borne diseases (VBDs), which according to the World 
Health Organization (WHO) constitute nearly 20% of all com-
municable diseases, exert an enormous health, health system, and 
economic toll worldwide1,2. VBDs transmitted by the mosquitoes 
Aedes (Ae.) aegypti (e.g., dengue, chikungunya, Zika) and Culex 
(Cx.) quinquefasciatus (e.g., lymphatic filariasis), which thrive 
in crowded cities, are particularly difficult to control in areas 
of rampant urbanization. This is especially the case in a coun-
try like Brazil which, according to the United Nations, is over  
86% urbanized3.

Zika virus (ZIKV) and dengue virus (DENV) (family Flaviviridae, 
genus Flavivirus), as well as chikungunya virus (CHIKV)  
(family Togaviridae, genus Alphavirus), are single-stranded  
positive-sense RNA viruses, which are largely transmitted by 
vector species within the Aedes genus of mosquitoes. In Brazil,  
as in much of the rest of the world, Ae. aegypti is the principal 
vector of these arboviruses in urban areas, whereas Ae. albopic-
tus is the principal vector in peri-urban and rural areas4. Recent 
evidence exists that, in addition to the traditionally accepted 
mosquito-borne transmission pathways, sexual transmission of  
ZIKV can also occur5–7.

In Brazil, DENV was first introduced in the 16th century, causing 
sporadic epidemics over subsequent centuries, but disappeared 
alongside Ae. aegypti (targeted in yellow fever elimination 
campaigns) for several decades in the mid-20th century4,8,9.  
By the 1980s, DENV had re-emerged with the re-infestation 
of Ae. aegypti, and has since been a serious public health  
problem, with increasing morbidity and mortality10. By 2015, 
the economic impact of dengue, from a societal perspective, was  
estimated to be $1.2 billion USD per year11.

After its discovery in 1947 in the Zika Forest of Uganda, 
ZIKV was largely restricted to Africa and Asia for nearly  
60 years and was considered to cause relatively mild morbid-
ity and low mortality in humans7,12. In 2007, however, a ZIKV 
outbreak on the Yap Islands quickly spread to French Poly-
nesia and other Pacific Islands over the next eight years13. The  
geographical spread of ZIKV appeared similar to that of DENV 
and CHIKV, more severe neurological complications began to 
be associated with ZIKV infections, and reports from this time 
indicated a potential association between ZIKV infection and  
Guillain–Barré syndrome7,14–17. 

In December 2014, the north-eastern Brazilian state of  
Pernambuco reported several cases of a rash-associated illness 
and in March 2015 the states of Rio Grande do Norte and Bahia  
confirmed the first clinical isolates associated with such ill-
nesses to be ZIKV18–21. By July 2015, ZIKV had been detected in  
12 Brazilian states and by August 2015, health authori-
ties in Pernambuco reported a sharp increase in microcephaly 
cases that were soon suspected to be associated with ZIKV  
infections20,22. On November 11, 2015 the Brazilian Min-
istry of Health declared Zika and microcephaly to be a 
national public health emergency23. On December 1, 2015 the  

Pan American Health Organization (PAHO)/WHO reported the  
possible association between ZIKV and microcephaly in the 
Americas and provided public health guidelines for case manage-
ment, surveillance, and vector control24. On February 1, 2016, 
the WHO declared ZIKV to be a Public Health Epidemic of  
International Concern (PHEIC)25. However, by this time, CHIKV, 
rather than ZIKV, had become the predominantly circulating  
arbovirus in the Recife Metropolitan Region (RMR) and Brazil in 
general26.

The RMR has a population of over 3.7 million people in 14 
municipalities, including the cities of Recife and Olinda27. 
Nearly 30% of RMR residents live in favelas (slums) and areas 
of suboptimal municipal infrastructure, including proximate 
to polluted water bodies and in areas lacking refuse collection, 
which provide optimal conditions for Cx. quinquefasciatus and  
Ae. aegypti proliferation28. By 2018, many RMR munici-
palities had formally completed over 15 years of mass drug  
administration (MDA) via the WHO-led Global Programme 
to Eliminate Lymphatic Filariasis (GPELF)29,30. Nevertheless, 
the RMR is not only the last focus of lymphatic filariasis (LF) 
in Brazil, it is also largely considered to be the epicenter of the 
2015-2016 ZIKV epidemic, certainly in relation to the link  
between ZIKV and microcephaly21,22,31.

Molecular xenomonitoring (MX) and xenosurveillance (XS) 
— pathogen detection in adult mosquitoes as a proxy for 
human infection — have been proposed as useful tools for VBD  
surveillance32–35. Often, routine Ae. aegypti surveillance at the 
community level involves the use of entomological indices  
such as the house, container, and Breteau indices (HI/CI/BI) 
that use abundance estimates of immature mosquito stages 
as a possible indication of disease risk. However, systematic,  
coordinated MX may prove a better and more appropriate tool for 
arboviral surveillance because by capturing the adult mosquito it 
could be possible to determine arboviral infection rates.

In 2015, a three-year MX project on LF commenced in order 
to aid LF elimination activities in the RMR36. The MX project 
was designed to provide detailed entomological data in an LF 
endemic area subjected to MDA and explore human and mos-
quito infection transmission dynamics over a small geographic 
area, to be scaled up in future, in order to inform a larger  
MX surveillance system. In the first year, the MX project  
collected nearly 11,000 adult female Cx. quinquefasciatus and  
Ae. aegypti mosquitoes from July to August 2015.

The MX project had a primary objective of screening Cx. quin-
quefasciatus for Wuchereria (W.) bancrofti to determine if LF 
transmission was ongoing, as well as a secondary objective of 
screening Ae. aegypti for DENV (as, by the time the project 
commenced in early 2015, ZIKV and CHIKV were not yet 
known to circulate in Brazil). However, in order to detect the L3 
infective stage of W. bancrofti, as well as to detect DENV, all  
collected mosquitoes were stored at −80°C for RNA preser-
vation; this incidentally facilitated additional screening for 
ZIKV and CHIKV. Consequently, the Cx. quinquefasciatus and  
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Ae. aegypti samples from July-August 2015 represented the 
earliest existing mosquito collection from the 2015-16 ZIKV  
epidemic in the RMR that were stored for RNA preservation.

Six months after MX data collection, Ministry of Health (MoH) 
data indicated there were microcephaly cases surrounding 
the study area from where these mosquitoes were collected. 
Further, while Ae. aegypti was considered the principal vec-
tor of ZIKV, limited speculation began on the possible role of  
Cx. quinquefasciatus in the transmission of ZIKV in Brazil37. 
Therefore, in addition to screening Ae. aegypti for ZIKV, DENV, 
and CHIKV, a sub-set of the Cx. quinquefasciatus specimens  
were also screened for ZIKV. This paper presents the results 
of screening Ae. aegypti for ZIKV, DENV and CHIKV and  
Cx. quinquefasciatus for ZIKV, as well as the detailed results  
on Ae. aegypti abundance and physiological status, as these  
may relate to arbovirus infection and transmission in the RMR in 
2015.

Methods
Study site characteristics
Olinda is the second most populous and population-dense city 
of the RMR, with 377,779 residents in its area of 41.68 km2  
(Figure 1)27. It has a tropical monsoon climate (Köppen climate 
classification = As), and temperatures range from 30°C (86°F) 
in January and February to 21°C (70°F) in July38. The dry  
season peaks in November (average 36 mm rainfall), while the  
rainy season peaks in July (average 388 mm rainfall)39,40.

Mosquitoes screened in this study were collected from two sites 
within Sítio Novo, Olinda, RMR (Figure 1). Between them and 
accounting for a 100 m buffer zone, the two study sites covered 
a combined area of approximately 0.4 km2 containing approxi-
mately 5,514 residents, which was roughly equivalent to 1% 
of the territorial area and 1% of the population of Olinda, RMR  
(Figure 1)27. As previously described, the mosquitoes used in 
this study were captured from two studies to optimise an urban 
MX system for LF and arboviruses: a collection method com-
parison (CMC) to determine the ideal mosquito capture method 
and a mosquito mark release recapture (MMRR) study to deter-
mine mean and maximum mosquito dispersion36. Mosquito  
collection occurred between July 22 and August 21, 2015,  
coinciding with the end of the rainy season and associated peak in 
mosquito abundance.

House selection and mosquito collection
Detailed information on the study design and methods by which 
mosquitoes were collected have been described elsewhere36. 
Briefly, houses were selected for participation from satellite 
images and geographic information systems (GIS) software of 
ArcGIS 10.2 (ESRI 2014. ArcGIS Desktop: Release 10. Red-
lands, CA: Environmental Systems Research Institute) and QGIS  
2.10.1(QGIS Development Team (2015). QGIS Geographic 
Information System. Open Source Geospatial Foundation 
Project). Participant house selection accounted for geographic 
(aligning along transport arteries in CMC) and environmental  
(e.g., avoiding mangrove in MMRR) barriers, as well as local 

health authority advice on the most secure areas to work. A com-
bination of global positioning system (GPS) devices (Garmin 
GPSmap 76cs, 3 m precision) and geographic information system  
(GIS) / satellite image maps were used to locate selected houses.

Mosquitoes were collected in 35 houses between the two study 
sites as follows: a) 10 houses from the CMC study compar-
ing battery-powered hand-held aspirators with Centers for Dis-
ease Control and Prevention (CDC) light traps; and b) 25 houses 
from the MMRR study using fluorescent dust to detect mos-
quito dispersion (i.e., mean and maximum flight distance) using  
battery-powered hand-held aspirators only. The CMC study site  
was a commercial and residential zone with some paved streets, 
municipal sanitation, and drainage systems where houses were 
of higher quality construction, with brick walls, solid/perma-
nent roofs, some partially screened windows, and fewer wall 
openings. The MMRR study site was an infrastructure-lacking  
residential area with poorly paved streets, sanitation, and drain-
age where houses were often flooded from an adjacent area of 
riverine mangrove. After consent was obtained, participating 
households allowed study teams to enter their houses for daily 
mosquito collection for a total of 15 minutes per house during the  
hours of 9:00-11:30 am, Monday to Friday, over four weeks.

Post-collection mosquito transport, processing, and 
storage
Mosquito collection nets were placed in an open-top stor-
age box and transported back to the Instituto Aggeu Magalhães 
(IAM/FIOCRUZ Pernambuco) Insectary within two hours of 
field collection. Upon arrival, nets were immediately placed 
in a −20°C freezer for at least 20 minutes to immobilize the  
mosquitoes. Mosquitoes were then removed from the freezer 
and placed on ice for morphological identification, sex determi-
nation, and assessment of female physiological status. Female  
mosquito specimens were placed in Eppendorf tubes (maxi-
mum of 50 per tube, separated by species), labelled per house  
per day, and stored at −80°C.

Molecular processing and arboviral screening
All female Ae. aegypti specimens collected were included in 
molecular processing and arbovirus screening for ZIKV, DENV 
and CHIKV. For this species a pooling strategy of up to 10 mos-
quitoes per pool, grouped per house per week, was used. In 
addition, a sub-sample (15%) of female Cx. quinquefasciatus 
were screened for ZIKV, with the remainder preserved at −80°C  
for future molecular analysis. For Cx. quinquefasciatus speci-
mens, a pooling strategy of up to 10 mosquitoes, grouped per 
house per day (MMRR) or per house per week (CMC) was used. 
Sample processing comprised RNA extraction, reverse transcrip-
tion to generate cDNA, followed by PCR screening as detailed 
below. Prior to screening for arboviruses, each cDNA sample was 
tested using the appropriate mosquito species PCR to confirm  
RNA extraction and reverse transcription had been successful.

RNA extraction
RNA was extracted from Ae. aegypti mosquito pools using a 
combined TRIzol®-RNeasy® Mini kit extraction methodology. 
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Figure 1. Map of the City of Olinda, RMR, Pernambuco State, Brazil and two study sites (collection method comparison (CMC) and 
mosquito mark release recapture (MMRR)) from a central release point (CRP) containing 35 sentinel mosquito collection points 
within Sítio Novo, Olinda (July 22-August 21, 2015). Maps display City of Olinda, situated within the state of Pernambuco and country of 
Brazil, as well as two study sites containing 35 sentinel mosquito collection points within Sítio Novo, Olinda consisting of (a) 10 houses in a 
CMC and (b) 25 houses in a MMRR from a CRP.
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Ae. aegypti pools were homogenised on ice in 200 µL of nucle-
ase-free water using a sterile plastic pestle (Sigma Aldrich) 
to homogenise by hand. Once fully homogenised, and while  
mixing by pipetting to ensure a homogeneous solution, 100 µL of  
each homogenate was aliquoted and stored at −80°C for the 
possibility of later virus isolation. To the remaining 100 µL of  
homogenate, 1 mL of TRIzol® (Ambion) reagent was added and 
mixed thoroughly by inversion before incubation for 5 minutes 
at room temperature. 200 µL of chloroform was added and each 
tube was shaken vigorously by hand for 15 seconds, before a 
further 3-minute incubation at room temperature. Samples were 
centrifuged (Heraeus Megafuge 8R, Thermo Fisher Scientific) 
at 12,000 x g for 15 minutes at 4°C for phase separation. The 
clear upper aqueous phase (~650 µL) containing the RNA 
was carefully taken off and placed on ice, and the lower phases 
were stored at −80°C for any future analysis. An equal volume  
(650 µL) of 70% ethanol was added to the aqueous phase on ice 
and mixed carefully by pipetting before immediately transfer-
ring up to 700 µL of the mixed sample to a labelled RNeasy® 
Mini spin column (QIAGEN), placed in a collection tube. The 
spin column was centrifuged at room temperature (21°C) for  
15 seconds at 8,000 x g, the flow-through was discarded, and 
the remaining aqueous phase-ethanol mix was added to the spin  
column and the centrifugation process repeated. Once the  
samples had been added to the RNeasy® Mini spin columns, 
the manufacturer’s instructions were followed in subsequent 
steps according to the RNeasy® Mini procedure, with 700 µL 
of Buffer RW1, then 500 µL of Buffer RPE for each of the two  
subsequent wash steps. RNA was eluted from the spin columns 
in two separate elutions of 30 µL RNase-free water, with the first 
elution being used for reverse transcription to generate cDNA 
for downstream PCR analysis, and the second being stored at  
−80°C for any future analysis. RNA had been extracted previously 
from Cx. quinquefasciatus pools as part of the MX project for  
W. bancrofti screening using a TRIzol® extraction procedure36.

Reverse transcription
RNA samples were reverse transcribed using a QIAGEN Quanti-
Tect® reverse transcription kit according to manufacturer’s 
instructions. Briefly, genomic DNA was removed by adding 
2 µL gDNA Wipeout Buffer (7x) to 12 µL template RNA fol-
lowed by incubation in a thermal cycler (GeneAmp™ PCR 
System 9700, Applied Biosystems™) at 42°C for 2 minutes,  
prior to immediately placing the reactions on ice. Next, 6 µL of 
reverse transcription master mix was then added to each sample, 
comprising 1 µL RT Primer Mix, 4 µL Quantiscript® RT Buffer 
(5x) and 1 µL Quantiscript® Reverse Transcriptase per sample. 
All reactions were prepared on ice. The final reactions were 
placed in the thermal cycler at 42°C for 30 minutes, followed  
by 95°C for 3 minutes before a hold at 4°C.

Mosquito species real-time PCRs
In order to confirm successful generation of cDNA from mos-
quito samples, the appropriate mosquito species PCR was 
used to check each group of cDNA samples. For Ae. aegypti, a  
species-specific probe-based assay was used, targeting the internal 
transcribed spacer 1 (ITS1) region of this species41. The primers 
and probe used were Ae. aegypti FOR (named ITS1_F338 in 41): 

5’-CGCTCGGACGCTCGTAC-3’, Alternative Ae. aegypti REV:  
5’-GGCGGCTTCGAGCTTC-3’ and Ae. aegypti Probe  
(AegyITS1P in 41): 5’-6-FAM-CAGAACACGCCAGACACGT-
TCGTACG-TAMRA-3’. The alternative reverse primer was an  
adjustment from the reverse primer (ITS1_R427) in  41 after  
alignment of Ae. aegypti ITS1 sequences available in GenBank 
at the time of preparatory work for the study, generated from 
source material from multiple countries and continents, high-
lighted genetic variation in the primer binding site for ITS1_R427. 
The alternative reverse primer was therefore designed, aiming 
to account for areas of genetic variation and improve detection 
of Ae. aegypti from different localities. As no ITS1 sequences 
for Brazilian Ae. aegypti were available at the time, a consensus 
sequence from those available for alignment was generated to 
try to best account for the genetic variation for use as a synthetic 
standard positive control. The 99 bp target consensus sequence  
used was 5’-CGCTCGGACGCTCGTACGTACCGCACCACAAC-
CGCATCCGTACGAACGTGTCTGGCGTGTTCTGAACT-
GAACTGTGTCTCGCCGAAGCTCGAAGCCGCC-3’.

In addition, to cross-check for specificity of the Ae. aegypti PCR 
results from the cDNA samples in this study, an Ae. albopictus  
species-specific probe based PCR41, also targeting the ITS1 region, 
was used on a small sub-set of the samples. The primers and probe 
used were Ae. albopictus FOR (named ITS1_F440 in [41]): 5’-
GTCAGCAGGGCCGAACC-3’, Ae. albopictus REV (ITS1_R510 
in [41]): 5’-GACGACCCGCCACTTAGCT-3’, Ae. albopictus 
Probe (AlboITS1P in [41]): 5’-6-FAM- CAGGGCACATACGTC-
CGCTTTGGTT-TAMRA-3’ and the 71 bp target sequence  
(5’-GTCAGCAGGGCCGAACCCGCGCAGGGCACATACGTC-
CGCTTTGGTTTGACATAGCTAAGTGGCGGGTCGTC-3’) 
was used to generate a synthetic standard to use as a positive  
control.

For both Aedes species-specific probe-based assays, PCR reac-
tions were prepared using 10 µL of 2x Promega GoTaq® Probe 
qPCR Master Mix, a final concentration of 0.3 µM of each 
primer, 0.1 µM probe, 5µl of nuclease free water and 2 µL  
template cDNA to a final reaction volume of 20 µL. 2 µL CXR  
passive reference dye added to each 1 ml GoTaq Probe qPCR 
Master Mix tube on first use. Prepared reactions were run on 
an Applied Biosystems 7500 Fast Real-Time PCR System for  
2 minutes at 95°C, followed by 40 cycles of 95°C for 15 seconds  
and 60°C for 1 minute. The increase in FAM fluorescence was 
monitored in real time by acquisition during the combined 
annealing/extension step of each cycle using the FAM filter. 
ROX was used as the passive reference dye. Synthetic standard  
positive controls (a minimum of 3, 10-fold dilutions per run), 
in addition to no template controls (NTCs) were included on 
each PCR run. Results were analysed using the 7500 Fast  
Software v2.0.6 and the inter-assay quantitation cycle (Cq)  
values produced by the synthetic standard positive controls  
were comparable across runs.

For cDNA generated from pools of Cx. quinquefasciatus, a host 
SYBR green quantitative PCR assay was designed targeting the 
S7 ribosomal protein (S7) mRNA gene (GenBank Accession  
# AF272670.1)36. Primers used were Cx. quinquefasciatus FOR: 
5’ -AAGGTCGACACCTTCACGTC-3’ and Cx. quinquefasciatus  
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REV: 5’-GCGCCGCGAATAGTTTACAG-3’ and the 95 bp tar-
get sequence (5’-AAGGTCGACACCTTCACGTCGGTGTACA 
AGAAGCTGACCGGACGCGACGTCACGTTCGAGTTCCC 
GGAACCCTACCTGTAAACTATTCGCGGCGC-3’) was used to 
generate a synthetic standard to use as a positive control.

PCR reactions were prepared to a total volume of 25 µL,  
containing 12.5 µL of 2x QIAGEN QuantiTect® Sybr Green 
Master Mix, 0.3 µM final concentrations of each primer, 8.5 µL 
of nuclease-free water and 2 µL of template cDNA. Prepared 
reactions were run on an Applied Biosystems 7500 Fast Real-
Time PCR system for 15 minutes at 95°C followed by 40 cycles  
of 94°C for 15 seconds, 55°C for 30 seconds, 72°C for 30 sec-
onds, and a final melt curve analysis as produced by the 7500 
software (95°C for 15 seconds, 60°C for 1 minute, continuous 
detection during ramping to 95°C for 30 seconds, followed by a 
final 60°C for 15 seconds). Generation of amplified product in 
each reaction was monitored in real time through acquisition of 
SYBR green fluorescence readings during the annealing step 
of each cycle using the SYBR filter and the dissociation of gen-
erated products was monitored during the melt curve segment 
using continuous detection between the second and third steps,  
using the same SYBR filter.

Arbovirus real-time PCRs
ZIKV screening was undertaken using a hydrolysis probe-
based real-time PCR targeting the envelope structural gene42 
with the primers and probes ZIKV FOR (named ZIKV 1086  
in 42): 5’- CCGCTGCCCAACACAAG-3’, ZIKV REV (ZIKV 
1162c in 42): 5’-CCACTAACGTTCTTTTGCAGACAT-3’,  
and ZIKV Probe (ZIKV 1107-FAM in 42): 5’-6-FAM-AGCCTAC-
CTTGACAAGCAGTCAGACACTCAA-BHQ1-3’. A synthetic 
standard for use as a positive control was generated with the 
sequence 5’- CCGCTGCCCAACACAAGGTGAAGCCTAC-
CTTGACAAGCAATCAGACACTCAATATGTCTGCAAAA-
GAACGTTAGTGG-3’, comprising the 77 bp target sequence and 
matching the Brazilian ZIKV sequences available in GenBank at 
the time of study preparation. A local Brazilian ZIKV isolate (ZIKV 
strain H. sapiens/Brazil/PE243/2015; GenBank accession number:  
KX197192) was also used as a biological positive control43. 
PCRs were carried out using the Promega GoTaq® Probe qPCR 
Master mix as detailed above, except primer and probe final  
concentrations were 0.9 µM and 0.25 µM, respectively.

In addition, an alternative ZIKV probe-based real-time PCR was 
used for confirmatory testing44, with primers and probes Goffart 
ZIKV FOR: 5’-CTTGGAGTGCTTGTGATT-3’, Goffart ZIKV 
REV: 5’-CTCCTCCAGTGTTCATTT-3’, and Goffart ZIKV Probe: 
5’-6-FAM-AGAAGAGAATGACCACAAAGATCA-TAMRA-3’. 
The 187 bp target sequence 5’-CTTGGAGTGCTTGT 
GATTCTGCTCATGGTGCAGGAAGGGCTGAAGAAGA 
GAATGACCACAAAGATCATCATAAGCACATCAATGG 
CAGTGCTGGTAGCTATGATCCTGGGAGGATTTTCAATGA 
GTGACCTGGCCAAGCTTGCAATTTTGATGGGTGCCACCT 
TTGCGGAAATGAACACTGGAGGAG-3’ was used as a syn-
thetic standard positive control for this assay. The Promega GoTaq®  
Probe qPCR Master mix was used as fully detailed above, 
except primer final concentrations were 0.9 µM and final probe  
concentration was 0.25 µM.

DENV screening was undertaken using a SYBR green real-time 
PCR with generic pan-DENV primers45; Pan-DENV FOR: 5’-
TTGAGTAAACYRTGCTGCCTGTAGCTC-3’ and Pan-DENV 
REV: 5’-GTRTCCCAKCCDGCNGTRTC-3’. A serial dilution 
of DENV-2 cDNA generated from Aag2 cells (infected with 
DENV-2 at MOI 0.5, 5 days post-infection) was used as a  
biological positive control for this assay and PCRs were car-
ried out using the QIAGEN QuantiTect® Sybr Green Master 
Mix as detailed above, except primer final concentrations  
were 0.5 µM, and the annealing temperature used in thermal cycling 
was 60°C.

CHIKV screening was undertaken using a SYBR green real-
time PCR targeting the E1 structural gene46. Primers used were 
CHIKV FOR (named CHIK/E1/10367/+ in 46): 5’-CTCATAC-
CGCATCCGCATCAG-3’ and CHIKV REV (CHIK/E1/10495/- 
in 46): 5’-ACATTGGCCCCACAATGAATTTG-3’. The 129 bp 
target sequence of the E1 gene (5’-CTCATACCGCATCCGC 
ATCAGCTAAGCTCCGCGTCCTTTACCAAGGAAATAATA 
TCACTGTGGCTGCTTATGCAAACGGCGACCATGCCG 
TCACAGTTAAGGACGCTAAATTCATAGTGGGGCCAATG 
T-3’) was used to generate a synthetic standard to use as  
a positive control. PCRs were carried out using the QIAGEN 
QuantiTect® Sybr Green Master Mix as detailed above (primer 
concentrations of 0.3 µM and 55°C annealing temperature).

Data analysis
Mosquito collection data were double entered by two inde-
pendent data entry staff, cleaned, and analysed with Stata 14  
(StataCorp. 2015. Stata Statistical Software: Release 14. College  
Station, TX: StataCorp LP). Maps of abundance were generated 
using ArcGIS 10.2 (ESRI 2014. ArcGIS Desktop: Release 10. 
Redlands, CA: Environmental Systems Research Institute). Data 
from mosquito collection and sorting were compiled in Excel 
to construct strategies for mosquito pooling. Molecular results 
from each individual PCR were analysed using the 7500 Fast  
Software v2.0.6 prior to exporting and combining all the data  
for each PCR test, for each sample, within an Excel database.

Ethical approval and consent
Study aims and methods were presented to head of house-
holds and verbal and written informed consent was sought; 
households were enrolled upon receipt of written informed  
consent. All names, addresses, and GPS coordinates of par-
ticipating houses and residents were concealed from study staff 
apart from the principal investigator and study coordinator, 
both of whom held the linking keys. Field teams worked during  
the mornings of weekdays due to security concerns as well as 
to increase acceptability of daily aspiration or CDC light trap 
placement/net collection. Ethical approval was obtained from 
the Research Ethics Committees of the Instituto Aggeu Magal-
hães (IAM/FIOCRUZ) and the London School of Hygiene &  
Tropical Medicine (LSHTM) [CAAE: 44535515.0.0000.5190; 
LSHTM: 10276; 10185].

Results
Vector abundance and physiological status
A total of 11,078 adult female mosquitoes (Ae. aegypti and 
Cx. quinquefasciatus) were collected (Table 1). As may be 
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expected from studies that largely collected mosquitoes via 
battery-powered aspirators during the hours of 9:00-11:30 
am, nearly 90% of the overall yield of mosquitoes were  
Cx. quinquefasciatus. Furthermore, as denoted in Table 1, nearly 
65% of female mosquitoes collected were blood-fed, semi-gravid, 
or gravid. The spatial distribution of mosquitoes is presented in  
Figure 2 and Figure 3. Ae. aegypti displays a much more uniform 
spatial distribution across both study areas (CMC and MMRR,  
Figure 2). However, comparatively in space, Cx. quinquefasciatus 
is more aggregated within the area of poorest (MMRR) than the 
area of better (CMC) sanitation (Figure 3).

Molecular screening of Ae. aegypti and Cx. quinquefasciatus 
mosquitoes
As mentioned previously, 100% (939) of the Ae. aegypti and 
15% (1,556) of the Cx. quinquefasciatus adult female speci-
mens collected were included in molecular screening (Table 2). 
All cDNA samples generated from mosquito pools, when 
tested with the respective (Ae. aegypti or Cx. quinquefasciatus) 
species-specific PCRs, produced positive results. A small  
subset of the Ae. aegypti pools were also cross-checked with the 
Ae. albopictus PCR, giving all negative results. These species- 
specific results therefore demonstrated that each pool had been 

Table 1. Adult Female Cx. quinquefasciatus and Ae. aegypti 
Collections, MX in Sítio Novo, Olinda (July 22-August 21, 2015).

Physiological Status Ae. aegypti Cx. quinquefasciatus Totals

Unfed 116 3905 4,021

Blood-fed 348 4881 5,229

Semi Gravid 268 516 784

Gravid 207 837 1,044

Subtotal 939 10,139 11,078

Figure 2. Spatial Distribution of Total Ae. aegypti (green) Female Mosquitoes in Sítio Novo, Olinda (July 22-August 21, 2015). Map 
displays mosquitoes captured July 22-August 21, 2015 from two study sites containing 35 sentinel mosquito collection points within Sítio 
Novo, Olinda consisting of (a) 10 houses in a collection method comparison (CMC) and (b) 25 houses in a mosquito mark release recapture 
(MMRR) from a central release point (CRP).
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successfully processed to enable amplification by PCR and  
provided added confidence to the morphological identification and 
pooling of the specimens.

All samples were initially tested in duplicate using the ZIKV 
PCR. Unfortunately, some widespread low-level amplification 
occurred with this assay, which appeared to be non-specific or 
produced equivocal results across the first and second tests. Any 
samples which appeared positive, or for which the initial results 

were inconclusive, were taken forward for a third test with 
the ZIKV PCR. Due to difficulties in generating unequivocal  
results using the original ZIKV PCR, confirmatory testing was 
carried out on a subset of those samples that remained incon-
clusive (including those demonstrating the strongest amplifi-
cation previously) using the alternative Goffart ZIKV PCR. 
This assay produced negative results for all samples tested, 
with no amplification. Using a stringent process for analysis of  
the results, as no sample produced consistent, reliable and 

Table 2. The Number of Individual Specimens, Pools of 
Mosquitoes and Compositional Breakdown of Samples Included 
within Processing and Molecular Screening.

Physiological Status Ae. aegypti Cx. quinquefasciatus Totals

Unfed 116 676 792

Blood-fed 348 724 1,072

Semi-Gravid 268 148 416

Gravid 207 8 215

Total individuals 939 1,556 2,495

Number of pools 156 182 338

Average pool size 6 9 7

Figure 3. Spatial Distribution of Total Cx. quinquefasciatus (blue) Female Mosquitoes in Sítio Novo, Olinda (July 22-August 21, 2015). 
Map displays mosquitoes captured July 22-August 21, 2015 from two study sites containing 35 sentinel mosquito collection points within Sítio 
Novo, Olinda consisting of (a) 10 houses in a collection method comparison (CMC) and (b) 25 houses in a mosquito mark release recapture 
(MMRR) from a central release point (CRP).

Page 9 of 16

Wellcome Open Research 2019, 4:93 Last updated: 19 JUL 2019



repeatable positive amplification on the original ZIKV PCR 
and the confirmatory testing demonstrated no amplification 
from any samples, it was concluded that all samples were nega-
tive for detectable ZIKV. All cDNA samples generated from the  
Ae. aegypti pools were also tested using the DENV and CHIKV 
PCRs but produced negative results. Cq values obtained  
from all PCR experiments are available as Underlying data47.

Discussion
This study, which screened Ae. aegypti mosquitoes for ZIKV, 
DENV, and CHIKV and Cx. quinquefasciatus for ZIKV, found no 
evidence of arboviral infection. However, the mosquitoes screened  
in this study were originally collected for the entirely differ-
ent purpose of developing an MX system for LF elimination 
and so are subject to several points of discussion. The mos-
quitoes were sampled according to population-based designs  
appropriate for the development of an MX system for LF  
elimination. In particular, these designs sought a) to maximise  
numbers caught in a small area, while preferentially selecting those 
more likely to be infected (blood-fed, semi-gravid, and gravid), 
and b) to measure the spatial dispersion of Cx. quinquefasciatus,  
which again required a small study area36. Hence, these designs 
were not powered to estimate the extent of infection in mosqui-
toes. This is a different approach to studies that are designed to 
collect mosquitoes from areas or populations with purposeful 
sampling methods related to high human infection prevalence 
(e.g., hospitals and houses with ZIKV-infected patients using 
index case methods), which would have been more likely to detect  
mosquitoes infected with arboviruses48.

In general, infected mosquitoes would be most likely found 
in the same vicinity of infected human hosts (on whom mos-
quitoes are feeding). Additionally, the number of mosquitoes 
needed to detect infection in humans is inversely proportional, 
so in areas with a lower prevalence of human infection, more 
mosquitoes would be needed to detect infection and vice 
versa. However, in this case, the arboviral infection rates of the  
corresponding human population were not known at the time of  
collection (indeed, ZIKV and CHIKV were not known to circu-
late locally when the mosquitoes were collected in July-August 
2015). Further, amongst reported arboviral disease from 
the time of mosquito collection, at the advent of circulating 
ZIKV and CHIKV in the RMR, there existed a high degree of  
misclassification based on physician diagnoses and a lack of labo-
ratory-confirmed results to differentiate between the circulating  
arboviruses.

Mosquitoes screened in this study were collected from within 
a very limited geographic range, approximately 1% (0.4 km2) 
of the territorial area and 1% (5,514 persons) of the population 
of Olinda, RMR (Figure 1). In order to have a greater chance 
of capturing mosquitoes in an area of high or medium arbo-
viral infection prevalence, it would have been ideal to capture  
mosquitoes over a wider geographic area, but the collection area 
was largely restricted due to logistical issues in running two  
concurrent field experiments. Unless the study site was an area 
of high human infection prevalence, it would have been very 
unlikely to detect infection in mosquitoes given the sample size of  
mosquitoes collected, and the geographic area over which they 
were collected. 

Mosquitoes screened in this study were collected at the time of 
peak mosquito abundance, within one month following the end 
of rainy season in the RMR39,40. However, peak arboviral inci-
dence in the RMR typically occurs between November and 
March each year per regular Brazilian Ministry of Health reports; 
this has been largely established for DENV, although recent  
ZIKV and CHIKV epidemics seem to have affected these trends 
in recent years26,49,50. Thus, while the study teams were able to 
collect a large quantity of mosquitoes over one month between 
July and August 2015, the likelihood of collecting and detecting  
arbovirus-infected mosquitoes would have always been expected 
to be low.

In accordance with the objective to design an MX surveil-
lance system for the endgame of LF elimination in order to 
prevent or stem recrudescence, the original studies targeted  
Cx. quinquefasciatus. At the time, Ae. aegypti mosquito capture 
was a secondary objective. It should be mentioned that the  
absolute numbers of Cx. quinquefasciatus, including of potentially  
‘exposed’ (blood-fed, semi-gravid, gravid) status, were notable in 
that a greater than expected number were captured; this may not 
be surprising given that battery-powered aspirators used in the 
CMC and MMRR experiments preferentially collect mosquitoes 
of all but unfed physiological status. The fact that fewer  
Ae. aegypti were collected than Cx. quinquefasciatus (Table 1) is 
unsurprising given the collection method and deployment sched-
ule, which were designed to heavily favour Cx. quinquefasciatus  
collection.

As aspirators preferentially collect post-bloodmeal resting 
females, and as aspiration occurred from 9:00-11:30 am each 
day in order to coincide with resting Cx. quinquefasciatus, it 
is not surprising that 90% of the overall mosquito yield was  
this species, as opposed to Ae. aegypti.

Aedes aegypti has long been established as the common vector 
for the flaviviruses DENV and ZIKV, as well as the alphavirus 
CHIKV (although in other regions, particularly Asia and SE Asia, 
Ae. albopictus is also considered a significant vector)51,52. Since 
2016, there has been some speculation regarding the potential  
role of Cx. quinquefasciatus in ZIKV transmission37,48,53. As such, 
this study screened Ae. aegypti (as would be expected, based 
on historical literature) for ZIKV, DENV, and CHIKV but also  
screened Cx. quinquefasciatus for ZIKV.

Since the mosquitoes screened in this study were collected,  
several studies have considered whether Cx. quinquefascia-
tus is capable of transmitting ZIKV44,54–67; including research  
conducted in the RMR, although not specifically in Olinda37,48. 
Worldwide, since 2016, only two studies — one in Brazil and 
one in China — reported that Cx. quinquefasciatus may transmit  
ZIKV47,53. However, multiple other groups have not replicated  
these findings and cast doubt on this species’ vector competence  
for ZIKV. Since 2016, another group found that Cx. quinque-
fasciatus collected in China were not competent for ZIKV and  
recommended that Ae. aegypti be targeted for future vector  
control64. Similarly, results from the RMR indicating that  
Cx. quinquefasciatus is competent for ZIKV transmission have  
not been replicated, and results from other studies have added 
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weight to the theory that Cx. quinquefasciatus is not capable  
of transmitting ZIKV44,54,65,66.

As the present study was unable to detect arboviruses in  
Cx. quinquefasciatus, it can neither support nor confirm the 
potential role of Cx. quinquefasciatus in ZIKV transmission. It 
should be noted that even if infection had been detected in the  
Ae. aegypti or Cx. quinquefasciatus pools tested, it is possible  
that the mosquitoes could have simply ingested arbovirus- 
infected blood from a human host and were not involved in  
onwards transmission.

Low arboviral infection prevalence rates in field mosquitoes 
have resulted in difficulties in generating accurate estimates and 
often pooling is required for mosquito arboviral surveillance68–74. 
Additionally, publication bias may lead to negative stud-
ies being absent in the literature. Ultimately, a larger sample 
size of mosquitoes would have been needed to determine 
any correlation between mosquito infection rates and human  
cases in the RMR (but it should be noted that doing so was not 
the objective of the CMC and MMRR studies from where 
the mosquitoes tested in this study originated). For example, 
a recent study conducted in Puerto Rico reported CHIKV  
infection rates (IRs) of 1.75-2.48 infected mosquitoes/1000 
mosquitoes, IRs for ZIKV of 1.2-2.0 infected mosquitoes/1000  
mosquitoes and IRs for DENV of 0.15-0.67 infected mosquitoes/ 
1000 mosquitoes resulting from more than 77,000 mosquitoes  
analysed75.

The mosquito samples screened in this study are the earliest 
known adult mosquito samples from the RMR that were col-
lected and stored for RNA virus preservation and analysis during  
the onset of the ZIKV outbreak. Nevertheless, the study  
team experienced significant intra- and inter-institutional delays 
with permissions, including significant logistical restrictions on 
exporting samples and with obtaining reagents, to some extent 
similar to those described by others in relation to this Zika  
outbreak76. In addition to logistical considerations, there can 
often be difficulties in the rapid introduction of new molecular 
techniques in outbreak situations. During the initial stages of the  
discovery of a pathogen in a novel location, it can often take 
some time for genetic sequence data and information on any  
genetic variation of local isolates to become widely avail-
able. In such situations, previously established PCR methods 
are likely to have been designed using sequences from histori-
cal, geographically disparate isolates, increasing the potential 
difficulties in quickly identifying and adopting the most suitable  
PCR method to use. A lack of such sequence data for  
in silico molecular assay design and primer/probe binding 
checks, to indicate whether they are likely to be of sufficient  
sensitivity for the current local isolates, can be problematic77.

Often, difficulties can arise even when a well-established PCR 
is first used in a new setting, particularly as part of a rapid out-
break investigation, where available reagents and equipment may 
vary. At the onset of an outbreak, there can also be limitations in 
availability of sufficient biological positive controls of local origin 
and from the appropriate sample matrix (in this case mosquitoes)  

for thorough sensitivity and specificity testing, optimisation, and 
quick and confident resolution of any equivocal results78. For 
several such reasons, including the occurrence of non-specific  
amplification and equivocal results, which has been seen in 
some other studies, the analysis and interpretation of molecu-
lar results within this study has been highly stringent to avoid 
the possibility of false positive results77. There remains a  
possibility that some variable amplification could occur due to 
the viral load present being on the limit of detection of an assay; 
however, as repeatable, reliable amplification was not obtained,  
our analysis concluded that no detectable ZIKV was found.

Conclusions
None of the Ae. aegypti screened in this study revealed any  
evidence of arboviral infection with ZIKV, DENV, and CHIKV. 
Similarly, no Cx. quinquefasciatus pools were infected with 
ZIKV. Since mosquitoes were captured from an extremely 
restricted geographic area and during a very short time period of 
peak mosquito abundance (July to September), but low arbovirus  
circulation (November to March), this is perhaps not surprising. 

Yet, this research still identifies a role for continued MX of  
Ae. aegypti and Cx. quinquefasciatus for epidemic and emerg-
ing arboviruses in this densely populated urban setting. While 
this study did not detect arboviral infection in either species 
and the role of Cx. quinquefasciatus in ZIKV transmission has 
been largely refuted, it demonstrates that comprehensive MX  
may allow for retrospective, as well as prospective, analy-
sis. MX also facilitates the testing of new hypotheses (includ-
ing of divergent vector transmission pathways) and increases 
the chances of detecting emerging infections. In addition, 
opportunities for robustly testing collections of mosquitoes for  
multiple pathogens can provide greater possibilities for the  
generation of valuable pathogen transmission data, maximising  
the scientific output from the original sampling effort.

However, MX surveillance must be adjusted to allow for suf-
ficient mosquito capture (particularly Ae. aegypti for arbovi-
ral surveillance), geographic coverage (encompassing greater 
environmental and population heterogeneity), and inclusion of  
different human populations potentially exposed to and at risk 
for pathogens under surveillance. It is important to note that 
from a public health risk assessment perspective, true MX would  
ideally be community-based in order to provide spatiotemporal 
estimates of infection and disease prevalence and incidence, as  
opposed to potentially biased estimates based on methods that 
preferentially screen those likely to be infected with patho-
gens of interest. Importantly, factors related to transmission 
dynamics should be prioritised when designing MX systems, 
including those related to both the mosquito (e.g. dispersion,  
species distribution, environmental factors such as availability 
of water for oviposition) and human (e.g. infection incidence,  
prevalence, host immunity to arboviruses) populations.

MX may seem labour and cost-intensive, and there is less data 
on studies using mosquitoes rather than humans to monitor 
VBDs in human populations. This is especially the case when 
considering the wealth of human health data that is readily 
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available in most settings. However, while the current evidence 
base on MX may suggest that it is not yet refined enough to be 
used as a complete replacement or total proxy for monitoring  
VBDs in human populations, mosquito-based MX has the  
potential to greatly optimise current VBD surveillance and 
enhance early warning systems for of currently known and emerg-
ing VBDs in many parts of the world. In urban centres such 
as the RMR — where Zika (and its associated clinical sequale  
such as microcephaly and Guillain–Barré), dengue, chikun-
gunya, and LF have caused enormous strain on public health 
systems in recent years — such enhanced surveillance sys-
tems could be very helpful for not only planning the allocation 
of public health resources but also better protecting the general  
public potentially affected by these devastating diseases. 

Data availability
Open Science Framework: No evidence of Zika, dengue, and 
chikungunya virus infection in field-caught mosquitoes from the 
Recife Metropolitan Region, Brazil, 2015. https://doi.org/10.17605/
OSF.IO/H2MJ947.

This project contains all underlying real-time PCR data  
generated in this study.

Data are available under the terms of the Creative Commons 
Zero “No rights reserved” data waiver (CC0 1.0 Public domain  
dedication).
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