
LSHTM Research Online

Pizzi, C; (2013) Growth and infancy in three contemporary cohorts : selection bias and other
methodological issues. PhD thesis, London School of Hygiene & Tropical Medicine. DOI:
https://doi.org/10.17037/PUBS.04653855

Downloaded from: https://researchonline.lshtm.ac.uk/id/eprint/4653855/

DOI: https://doi.org/10.17037/PUBS.04653855

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively
contact researchonline@lshtm.ac.uk.

Copyright \copyright\ and Moral Rights for the papers on this site are retained by the indi-
vidual authors and/or other copyright owners

https://researchonline.lshtm.ac.uk

https://researchonline.lshtm.ac.uk/id/eprint/4653855/
https://doi.org/10.17037/PUBS.04653855
https://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk
https://researchonline.lshtm.ac.uk


LSHTM Research Online

Pizzi, C; (2013) Growth and infancy in three contemporary cohorts : selection bias and other
methodological issues. PhD thesis, London School of Hygiene & Tropical Medicine. DOI:
https://doi.org/10.17037/PUBS.04653855

Downloaded from: https://researchonline.lshtm.ac.uk/id/eprint/4653855/

DOI: https://doi.org/10.17037/PUBS.04653855

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively
contact researchonline@lshtm.ac.uk.

Available under license. To note, 3rd party material is not necessarily covered under this li-
cense: http://creativecommons.org/licenses/by-nc-nd/3.0/

https://researchonline.lshtm.ac.uk

https://researchonline.lshtm.ac.uk/id/eprint/4653855/
https://doi.org/10.17037/PUBS.04653855
https://researchonline.lshtm.ac.uk/policies.html
mailto:researchonline@lshtm.ac.uk
https://researchonline.lshtm.ac.uk


Growth in Infancy in Three 
Contemporary Cohorts: Selection 

Bias and Other Methodological
Issues

Costanza Pizzi

A thesis submitted to the University of London for the degree of
Doctor of Philosophy

London School of Hygiene and Tropical Medicine, 2013



A Nonno Enzo ed Olmo, 
per i loro sguardi teneri, che mi mancano molto



Declaration

Statement of Own Work

All students are required to complete the following declaration when submitting their thesis. A short
ened version of the School’s definition of Plagiarism and Cheating is as follows (the full definition is 
given in the Research Degrees Handbook):
The following definition of plagiarism will be used:
Plagiarism is the act of presenting the ideas or discoveries of another as ones own. To copy sentences, 
phrases or even striking expressions without acknowledgement in a manner which may deceive the 
reader as to the source is plagiarism. Where such copying or close paraphrase has occurred the mere 
mention of the source in a biography will not be deemed sufficient acknowledgement; in each instance, 
it must be referred specifically to its source. Verbatim quotations must be directly acknowledged, either 
in inverted commas or by indenting. (University of Kent)
Plagiarism may include collusion with another student, or the unacknowledged use of a fellow student’s 
work with or without their knowledge and consent. Similarly, the direct copying by students of their 
own original writings qualifies as plagiarism if the fact that the work has been or is to be presented 
elsewhere is not clearly stated.
Cheating is similar to plagiarism, but more serious. Cheating means submitting another student’s work, 
knowledge or ideas, while pretending that they are your own, for formal assessment or evaluation. 
Supervisors should be consulted if there are any doubts about what is permissible.

Declaration by candidate

I have read and understood the School’s definition of plagiarism and cheating given in the Research 
Degrees Handbook. I declare that this thesis is my own work, and that I have acknowledged all results 
and quotations from the published or unpublished work of other people.

3



Signed:

Date: May 1, 2013

Full name: Costanza Pizzi



Abstract

There is broad recognition that early life growth trajectories are important predictors for the onset of 
several diseases. This thesis addresses two methodological challenges that arise in life-course studies of 
infant growth: (i) the bias that may derive from participants’ selection in cohort studies, and (ii) the 
modelling of individual growth trajectories. Data from socio-economically diverse populations were 
used to address them: the Italian NINFEA web-based birth cohort, the Portuguese GXXI birth cohort, 
and the Chilean GOCS cohort.
Participants’ selection affects all cohorts, but web-based designs are thought to be more affected than 
traditional ones. The thesis first examines possible selection mechanisms by Monte Carlo simulations 
and then uses population registry data to assess evidence of selection bias among NINFEA participants. 
The simulations show that under sensible scenarios there is only weak bias in the effects estimated 
from a selected sample. Comparisons of NINFEA participants with their source population (via 
registry data) show that the confounding patterns present in NINFEA differ from those in the source 
population, revealing that participants’ restriction may either increase or decrease the confounding 
bias in an association of interest.
Studying individual early life growth data requires dealing with the quality of the growth measurements 
and the nonlinearity of the trajectories. Alternative models are compared in terms of their ability to 
address these problems while extracting salient features of weight growth. SITAR results to be the most 
useful model for life-course enquiries. An extension of this model, that includes explanatory variables, 
is fitted on the three cohorts to study the effect of prenatal exposures on different biologically defined 
dimensions of the growth process. This reveals some interesting mechanisms.
This thesis contributes to the interpretation of results obtained from cohort studies with restricted 
participation, and to the implementation of advanced growth models useful for life-course research.
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Preface

This is a research paper style thesis and therefore consists of a series o f publications, preceded by some 

introductory chapters and followed by a conclusion. In total four research papers, one commentary 

and a book chapter are included. I am the first-author of all the four research papers, and a co

author of the commentary and the book chapter. The commentary, the book chapter and three of 

the four research papers have already appeared or have been accepted for publication, while the last 

research paper has been submitted and is currently under review. This Ph.D. addresses two main 

methodological challenges that may arise in the design and analysis of life course studies of infant 

growth: the potential selection bias due to selection of cohort study participants and the modelling 

of individual growth trajectories. As a consequence, the publications included in this thesis focus 

on these two separated strands of research. The thesis is composed of three parts: ‘Introduction’ 

(Part I), ‘Selected Publications’ (Part II) and ‘Discussion’ (Part III). Part I consists of three chapters. 

Chapter 1 gives a brief introduction to the epidemiological motivation for life course studies of growth 

in infancy, with particular focus on the existing literature on the main exposures influencing growth 

during infancy. The aims of this thesis are presented in Chapter 2, while in Chapter 3 a description 

of the three datasets used to address the research questions is provided. Part II includes the selected 

publications, which are divided into two chapters. Chapter 4 includes the contributions focused on 

selection bias: these consist of two research papers, the commentary and the book chapter. These 

publications are preceded by a brief introduction. A summary overview of the alternative models 

suggested in the anthropometric and statistical literature to describe growth in infancy is provided 

as an introduction to Chapter 5, where the two research papers dedicated to growth modelling and
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the study of its predictors are included. Part III consists of the conclusive Chapter 6, in which final 

considerations and areas of future work are discussed.
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Part I

Introduction
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Chapter 1

Background

Pregnancy is a highly susceptible period that can result in unfavourable outcomes for the baby, such as 

prematurity or low birth weight for gestational age, which in turn may have consequences for postnatal 

growth and a number of subsequent diseases. The concept that the causes of adult non-communicable 

diseases can be tracked back to fetal life, known as “Developmental Origins of Health and Disease” , 

is at the core of life course epidemiology. It is built upon the notion that biological, social and 

environmental factors acting in early life affect the response of an individual to later environments 

and his/her susceptibility to diseases in adult life (Barker, 1998; Gluckman et al., 2010; Kuh and Ben- 

Shlomo, 2004). The body of data supporting this hypothesis is now overwhelming, with several studies 

showing how birth size and early growth influence the onset and development of a wide range of chronic 

diseases, including cardiovascular and coronary heart diseases (Barker, 1998; Eriksson, 2011), diabetes 

(Whincup et al., 2008), hypertension (Ben-Shlomo et al., 2008; Gamborg et al., 2009; Huxley et al., 

2000; de Jong et al., 2012), obesity (Baird et al., 2005; Monteiro and Victora, 2005; Ong et al., 2000), 

cancer (De Stavola et al., 2004), cognitive function (Raikkonen et al., 2009; Yang et al., 2011), as well 

as overall mortality (Crump et al., 2013; Risnes et al., 2011). Moreover there is evidence that the 

developmental environment induces effects that are transmitted to succeeding generations (Godfrey 

et al., 2010). For example it has been shown that women exposed to a poor fetal environment, but to 

rich nutritional conditions later in life have an increased propensity to becoming obese and experience
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gestational diabetes (Warner and Ozanne, 2010). These in turn are risk factors for their offspring’s 

obesity risk in adult life (Fall, 2011). Another example of intergenerational effects is that of women 

exposed to diethylstilbestrol during their fetal life, who have been demonstrated to be at greater risk 

of preterm delivery as well as other adverse pregnancy outcomes (Hoover et al., 2011). Prematurity in 

turn is likely to increase the offspring’s risk of adverse outcomes in adulthood, including cardiovascular 

and metabolic diseases (Roggero et al., 2013). Adopting a developmental perspective may therefore 

guide the implementation of timely interventions to improve the health of the future generations. This 

will also require the assessment of whether the associations of birth size and early growth with later 

outcomes are modified by factors that influence intrauterine growth as well as by postnatal factors 

that influence early life growth.

Understanding the latter, and in particular postnatal catch-up growth, has been given much attention 

in the last decades. Catch-up growth is defined as that process whereby children small at birth 

compensate for intrauterine restraint with a rapid postnatal growth, returning within the first two 

years of life to their genetic trajectory (Tanner, 1986). This type of growth pattern is very important 

as it has been extensively demonstrated that children exposed to a rapid postnatal weight gain have an 

increased risk of become obese (Baird et al., 2005; Monteiro and Victora, 2005; Ong and Loos, 2006; 

Ong et al., 2000; Tzoulaki et al., 2010) and of other related adverse outcomes (van der Gugten et al., 

2012; Huxley et al., 2000; Leunissen et at, 2009, 2012). As a consequence there is an increasing interest 

in evaluating potential predictors of rapid weight gain in infancy (Batista et al., 2012; Mihrshahi et al., 

2011; Ong et al., 2000, 2002; Wijlaars et al., 2011) as well as early life determinants of overweight 

and obesity later in life (Dubois and Girard, 2006; Fall, 2011; Monasta et al., 2010; Ong, 2010). In 

particular Ong et al (Ong et al., 2000) showed that the factors affecting catch-up growth were those 

related to intrauterine growth restriction, in particular maternal smoking during pregnancy, parity and 

parental size.

The majority of the studies that have investigated the relationship between birth weight and size or 

growth in infancy with later outcomes have defined infant/childhood growth in height or weight in 

terms of the difference between measurements taken at two fixed time points, limiting therefore the 

understanding of how particular features of the growth pattern may contribute to the outcome of
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interest. Whilst for example the relationship between the adiposity rebound, a concept introduced 

by Rolland-Cachera et al (Rolland-Cachera et al., 1987) to describe the period between 5 and 7 years 

of age when body mass index (BMI) begins to increase following a minimum, and later obesity has 

been studied widely (Ohlsson et al., 2012; Rolland-Cachera, 1998; Williams and Goulding, 2012), 

similar features of the infant growth curve have been examined only more recently. Silverwood et 

al (Silverwood et al., 2009b) studied the association between the infant BMI peak, defined as the 

maximum reached by the BMI trajectory around age 9 months, and BMI later in life, finding that 

both BMI and age at BMI peak were positively associated with BMI in adulthood. More recently 

much attention has been given to the role of these and other developmental milestones, such as age 

at menarche and pubertal growth spurt, in influencing the risk of later diseases (Ohlsson et al., 2012; 

Ong et al., 2012; Prentice and Viner, 2012; Silverwood et al., 2009b). As a consequence there is also 

an increasing interest in identifying factors influencing the timing of such milestones (DAloisio et al., 

2013; Deardorff et al., 2012; Hui et al., 2012; Ong et al., 2012; Wehkalampi et al., 2011).

Life course models (Ben-Shlomo and Kuh, 2002) have also highlighted the potential importance of risk 

factors acting in early life. In particular Dietz (Dietz, 1994) recognized the existence of three critical 

periods for the development of obesity, identifying gestation and early infancy as the first relevant 

stage. The importance of the first two years o f life was also stressed by Cole (Cole, 2000), who showed 

that the increase in adult height observed from one generation to the next (secular trend) occurs 

mainly within this period, with height at 2 years best predicting adult height.

The first periods of life, including fetal life, could thus be a window of opportunity for intervention. 

There is growing consensus that the study of the factors influencing fetal and infant growth, especially 

within the first 6 months o f life (Botton et al., 2008) - the period o f fastest growth in the entire life 

span, and hence most susceptible to adverse condition - is of major importance for the prevention of 

many later diseases, especially obesity in adolescence and later in adulthood. However, studies of early 

growth and of its predictors should take into account the complexity of the infant growth process. A 

review of the main aspects related to the study of growth in infancy is provided below.
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1.1 Growth in Infancy

Human growth can be defined as the series of changes to the size, shape and functions of an individual 

organism which occur over time from conception to maturity (Hauspie, 1998). Its general postnatal 

growth has been classified in five stages: infancy, childhood, juvenile, adolescence (or puberty) and 

adulthood. Individual organs, tissues and growth dimensions have been observed to expand at different 

rates according to these periods (Bogin, 1998). More specifically, postnatal linear growth (that is 

growth in length/height) can be divided into three phases, infant, childhood and puberty periods, 

and their features have been modelled by Karlberg in the infancy-childhood-puberty (ICP) model 

(Karlberg, 1998). It characterises a high growth rate immediately after birth followed by a rapid 

deceleration until 3 years of age. After that, the velocity slows down until the onset of puberty, 

when the growth rate starts increasing again. From a biological point of view, linear growth during 

infancy has been considered as a continuation of the intrauterine growth: in utero this is regulated 

by placental functions, while after birth it is the outcome of the interplay between food supply and 

growth hormones (Weaver, 2006). Weight growth generally follows the same pattern, however it is 

characterised by more fluctuations that may include decreases. As for linear growth, postnatal weight 

growth is also regulated by nutrition. Most infants with small size at birth experience rapid postnatal 

weight gain (catch-up growth), and, as discussed above, the latter has been consistently associated 

with increased risk of subsequent obesity (Baird et ai, 2005; Monteiro and Victora, 2005; Ong and 

Loos, 2006; Tzoulaki et al, 2010). However, low birth weight has also immediate adverse effects. 

Indeed it has been shown that not inducing catch-up growth in these children, either via improved 

nutrition or via growth hormone therapy, is associated with an increased risk of postnatal infections 

and mortality (Ong, 2007). The balance between the disadvantages and the benefits of postnatal catch

up growth has been described in the literature as ‘the catch-up dilemma’ . Weaver (Weaver, 2006) has 

distinguished between two types of postnatal rapid growth: (i) catch-up growth, which follows in utero 

growth restriction and which consists of linear and muscle growth together with fat accumulation, 

and (ii) accelerated growth, which may occur at any age due to overfeeding, and which implies fat 

accumulation without linear growth. The former process (catch-up growth) could be beneficial, while 

accelerated growth could be the mechanism leading to subsequent obesity (Weaver, 2006). In order to
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provide valid guidelines for postnatal nutritional strategies directed at children with small size at birth, 

Ong suggested that “the concept of ‘healthy catch-up growth’ should be the goal of future research” 

(Ong, 2007).

When referring to infancy it is important to acknowledge that the term infant derives from the Latin 

word “infans” , meaning “unable to speak” and it is typically applied to babies up to 24 months of age. 

However, definitions of human infancy vary considerably, and according to the specific context. While 

in the ICP linear growth model (Karlberg, 1989), the infancy component is assumed to start during 

fetal life and end at 3 years of age, from a natural science perspective (Bogin, 1998) human infancy 

is associated with the lactation phase, which ends when the child is weaned from the breast and thus 

corresponds to a less precise time point.

1.2 Assessment of Growth

The older and simpler method for describing the growth of an individual is anthropometry, that is 

the measurement of the body. Human growth is indeed usually expressed as the change in any one 

of many anthropometric dimensions. We now review the main ones, distinguishing between prenatal 

(fetal) and postnatal growth.

1.2.1 Prenatal growth

As already discussed above, evidence of intrauterine growth is usually assessed at birth, typically 

through direct measurement of birth weight. Since this is strongly determined by the gestational 

age at delivery, it is important to analyze and interpret birth weight conditionally on gestational 

age. Many studies, indeed, define a restricted growth newborn as that infant with a birth weight 

smaller than ‘normal’ for its gestational age, i.e. small for gestational age (SGA). The usual approach 

to adjust birth weight for gestational age is via standardisation of the weight measurements using a 

reference distribution to generate z-scores or Standard Deviation-scores (SD-scores). Specifically, these 

are created by subtracting the mean value of a standard distribution corresponding to the gestational 

age of the newborn from the observed value for that newborn and then dividing this measure by the 

SD of the reference distribution for that gestational age. This score can be interpreted as a measure
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of distance (in term of SDs) between the observed measure and the centre of the reference population. 

Usually the birth weight distribution is further conditioned on other factors, in particular sex, as it is 

known that birth weight strongly differs also according to gender. The reference distribution could be 

internal, when the mean and SD of the observed distribution are used (appropriate for large samples), 

or external, when a separate dataset is selected to be representative of the population from which the 

sample originated. SGA infants are then identified as those with SD scores less than the 10th percentile 

of the standardised birth weight distribution (Goldenberg and Oliver, 1997). Problems may arise when 

the chosen standard population is inappropriate for the analyzed dataset (see Section 1.2.2).

It should also be acknowledged that failure to achieve accurate measurements of gestational age at 

birth is frequent and might be due to several factors (Salomon et al., 2010). Gestational age is indeed 

usually derived by estimating the date of conception using the last menstrual period and assuming a 

regular 28-day menstrual cycle. However this approach may be limited by memory bias or by irregular 

menstrual cycle, which would lead to inaccurate dating of the ovulation. An alternative approach 

is the use of ultrasound examination of anthropometric dimensions such as crown-rump length and 

biparietal diameter in the first or second trimester o f pregnancy. The latter has proven to be more 

reliable in predicting the date of conception (Salomon et al., 2010).

1.2.2 Postnatal growth

Height and weight are the two most widely used dimensions in growth studies, with height being a 

composite of linear dimensions and weight a composite of varying tissues, used as an estimate of the 

total mass of the body (Malina, 1998). Percentage fat, fat mass and fat-free mass are usually indirectly 

estimated from skinfold thickness measurements (i.e. triceps, biceps, subscapular, abdominal, suprail- 

iac), which are sensitive to the extremes of adiposity, using previously developed prediction equations 

(Cameron, 1998). When these are not available, adipose tissue in infancy is mostly assessed on the 

basis of BMI (Cole, 1986), though this index does not distinguish between fat and muscle mass and is 

influenced by body build and lean tissues (Cole, 2002; Rolland-Cachera et al., 1987).

When studying growth, it is crucial to consider which aspect of the growth process we want to capture: 

absolute weight and height may describe the size of a subject, but if we are interested in exploring
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change in body-shape we need measurements that are independent of size. As regards weight, this can 

be achieved by calculating either of these weight for height indices:

- relative weight: ratio of the observed persons weight to a reference weight for a person of his height 

and sex (or other standardising variables).

- indices of the form ^  , such as the weight-height ratio (p = l), the BMI (p=2), the Ponderal Index 

(p=3), or the Benn Index (where p is allowed to take a non-integer value) (Benn, 1971), choosing the 

index with the smallest correlation with height. The p that better meets these criteria in infants and 

children differs with age and gender. During infancy it has been shown that the optimal value of p 

increases in the first months of life becoming greater than 2 and then slightly decreases again until 

about 20 months (Gartside et al., 1984). Further, in order to use the Benn index with infants an 

optimal value of p could be calculated for different narrow periods; however it has been argued that 

Benn‘s assumption of small correlation between index and height holds in adults but may be violated 

in children (Lazarus et al., 1996).

In order to account for temporal changes, these indices may need to be adjusted for age, using a 

standard population and creating a relative index. An alternative is the standardisation of the anthro

pometric measurements to generate z-scores or SD-scores, as already described for birth weight for 

gestational age. This approach is valid when the variables are normally distributed, if not a transfor

mation should be first used. Alternatively the LMS method proposed by Cole (Cole and Green, 1992), 

could be applied: this is a general approach for time-dependent variables in which median, variability 

and skewness of the distribution are all allowed to change over time. When using standardisation, 

the choice o f the reference population is a crucial issue. As for birth weight, this could be internal 

(appropriate for large sample), or external. Usually sex- and age-specific standards are used. Problems 

may arise when the chosen standard population is inappropriate for the analyzed dataset: for example 

when unknown differences in the sex- and age-specific distribution between the reference data and the 

observed data exist; or when the reference data refer to a different time period with respect to the 

observed data (Silverwood et al., 2009a). Similar considerations may apply to geographical aspects, 

or to ethnicity and socio-economical status issues (Hermanussen et al., 2012).

As stated above, anthropometric dimensions needed to investigate growth vary according to the aspect
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of the growth process/growth disorder we are interested in. It has been suggested that, during infancy, 

weight is more useful than length to assess poor growth, as well as to identify children experiencing 

a catch-up growth (Cole, 2002). In contrast height is considered the most important indicator to 

assess poor growth beyond infancy (Cole, 2002). Moreover obtaining accurate measures of length in 

infancy usually requires more sophisticated techniques and better trained personnel than those needed 

to properly measure weight (Cole, 2002). Due to these reasons in this thesis weight measurements 

are used to assess growth in infancy. This decision is also driven by the fact that growth data of the 

children in one o f the cohorts available for this Ph.D. are gathered from questionnaires completed by 

their mothers, and the accuracy of the length measures for this cohort is lower than that of the weight 

measures (see Chapter 3).

As a consequence growth in weight is the main focus of the following sections.

1.3 Factors Influencing Growth

As stated in the introduction, it has been shown that several exposures occurring prior to and during 

gestation are correlated with pregnancy outcomes and in particular birth weight. These together with 

other postnatal exposures have also been found to be associated with growth during infancy. We now 

review the main ones.

1.3.1 Prenatal growth

Maternal constraint, defined as that process by which a series of maternal and placental non-genetic 

factors limit fetal growth (presumably as a reflection of limited nutrients supply), acts in all pregnancies. 

However it has been argued that its effect is greater among those involving mothers who are younger, 

smaller and of lower parity (Gluckman and Hanson, 2004).

In 1987 the World Health Organization carried out a review of the studies, published in the period 

1970-1984, that concerned potential determinants of intrauterine growth or gestational duration, upon 

which weight at birth depends (Kramer, 1987). According to this review, cigarette-smoking is the 

largest direct causal factor for birth weight, followed by low caloric intake or low weight gain during 

pregnancy. The other main determinants that were identified are maternal pre-pregnancy weight,
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Figure 1.1: Factors with a causal influence on low birth weight in developed countries. From Kramer, 
1987 (Kramer. 1987).

parity, infant sex, maternal height, ethnicity, maternal low birth weight and previous low birth weight 

children (see Figure 1.1). Few years later, Brooke et al (Brooke et al., 1989) confirmed that, among 

numerous potential factors including alcohol, caffeine, socioeconomic and psychosocial characteristics, 

smoking during pregnancy has the most important effect on birth weight for gestational age. Several 

other studies showed that mothers who smoke cigarettes during pregnancy have babies weighing less 

than those of non-smoker women, and a dose-response relationship was also established (Britton et ai, 

2013: Erickson and Arbour. 2012; Nobile et ai, 2007; Ong et al., 2002; Schell, 1998).

Recent studies confirmed many of the other associations reported by Kramer in 1987, in particular 

with parental anthropometry - especially from the maternal side - parity, maternal pre-pregnancy 

weight and pregnancy weight gain, socioeconomic status and infant sex. For example, mother’s leg
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length in childhood was found to be positively associated with children’s birth weight independently 

of maternal birth weight and adult height (Martin et al., 2004). Knight et al (Knight et al., 2005) 

showed that paternal height, but not BMI, influences size at birth, in particular length and measures 

of skeletal growth, while both maternal height and BMI are associated with offspring birth weight and 

length. A positive association between paternal height and birth weight was also found by Shah et 

al (Shah, 2010). Similar results were observed by Griffiths et al (Griffiths et al., 2007), who reported 

that contribution o f parental height on offspring birth weight is similar and significant, while maternal 

weight is more influential than paternal weight. The intergenerational (parental-offspring) correlation 

in size at birth has also been observed by more recent studies (De Stavola et al., 2011; Selling et al., 

2006; Shah, 2010).

A huge number of investigations in the last few years have focused on the role of maternal pre

pregnancy overweight /obesity, maternal weight gain during pregnancy and related adverse conditions, 

such as gestational diabetes, on fetal growth and birth outcomes. According to the fetal overnutrition 

hypothesis greater maternal adiposity during pregnancy alters the fetus developmental environment 

and in particular the transfer of glucose, free fatty acids and amino acids to the fetus, leading to 

permanent changes in the appetite control and metabolic systems of the offspring. The body of data 

supporting the association of maternal pre-pregnancy obesity, maternal diabetes and excessive weight 

gain during pregnancy with newborn macrosomia is now overwhelming (Catalano et al., 2012; Mamun 

et al., 2011; Metzger et al., 2008; Roland et al., 2012). Moreover there are studies showing that 

maternal underweight, and low weight gain during pregnancy negatively affect fetal growth, being 

associated with increased risk of preterm births and SGA infants (Campbell et al., 2012; Dietz et al., 

2006; Jeric et al., 2013).

It is also well-documented that mean birth weight increases with parity and that nulliparity increases 

the risk of SGA children (Campbell et al., 2012; Catalano et al., 2012; Erickson and Arbour, 2012; 

Nobile et al., 2007; Ong et al., 2002; Roland et al., 2012). Similarly low maternal socioeconomic status, 

usually proxied by educational level, has been repeatedly associated with adverse pregnancy outcomes 

(Bouthoorn et al., 2012; Dubois and Girard, 2006; Jansen et al., 2009; Nobile et al., 2007). The latter 

finding might be partly explained by the fact that women of low socioeconomic status are more likely
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to be obese, to smoke during pregnancy and to suffer of hypertension (Jansen et al., 2009).

In addition to the risk factors identified by the 1987 World Health Organization review (Kramer, 

1987), other exposures have been related to fetal growth and birth outcomes. For example, the 

influence of maternal age has been investigated, although the evidence gathered from these studies is 

conflicting. While a number of researchers showed that young maternal age increases the risk of infant 

low birth weight or intrauterine growth restriction (Borja and Adair, 2003; Kirchengast and Hartmann, 

2003; Malabarey et al., 2012; Strobino et al, 1995), other studies found that women having later age 

pregnancies (i.e. age >  35 years) are more likely to experience adverse pregnancy outcomes (Campbell 

et al., 2012; Kenny et al, 2013; Koo et al., 2012). Shah et al (Shah, 2010) also found a significant 

association between advanced paternal age and increased risk of offspring low birth weight. It has 

been argued that the association observed between young maternal age and low birth size may partly 

be explained by factors that are proxies for social class differences and behavioural characteristics that 

underlie early childbearing. Moreover it has been suggested that biological immaturity of the teenager 

mother may also influence the offspring birth size (Scholl, 1998).

An association between alcohol intake during pregnancy and birth weight has also been established, 

even if with less support than the one for smoking. Overall, studies found that intake of one or 

more alcohol drinks per day during pregnancy leads to reduced offspring birth weight and occurrence 

o f preterm delivery (Carter et al., 2007, 2013; Feldman et al., 2012; Goldberg, 1998). Furthermore, 

gestational hypertension/preeclampsia has been associated with reduced fetal growth and prematurity 

(Jacquemyn et al., 2006; Spiegler et al., 2013; Xiong et al., 2002). A study which explored factors 

influencing pre- and postnatal growth identified several exposures associated with placental weight: 

modifiable factors (parity, smoking during pregnancy), and non modifiable factors (parental height, 

gender) (Hindmarsh et al., 2008). Placental weight was shown to reflect mainly the effect of other 

determinants of fetal size, possibly playing a role of mediator in the association between many maternal 

characteristics and birth weight (Campbell et al., 2012; Ouyang et al., 2012; Roland et al., 2012; Salafia 

et al., 2008).

Finally in the last decade much attention has been given to the influence of air pollution on pregnancy 

outcomes, with studies providing some evidence that exposure to pollution during pregnancy increases

32



the risk of preterm birth, restricted fetal growth and low birth weight (van den Hooven et al, 2012; 

Laurent et al., 2013; Maisonet et al, 2004; Olsson et al, 2013; Padula et al, 2012).

1.3.2 Postnatal growth

The influence of many of these factors persists after birth thus affecting growth during infancy. As 

already discussed, children born small are likely to compensate for their experience of intrauterine 

restraint with a rapid postnatal growth. In a recent twin study, Touwslager et al (Touwslager et al, 

2011) showed that the higher the birth weight the slower the postnatal growth rate, although it should 

be acknowledged that distribution of size and growth pattern of twins differ from those of singleton. 

In a study investigating the factors influencing catch-up and catch-down growth in height, defined as a 

change in z-score between child height z-score and birth length z-score greater than 0.67 and lower than 

-0.67 respectively, it was observed that intrauterine growth restriction (defined on the basis of the ratio 

between observed birth weight and mean weight for gestational age) in term infants is associated with 

increased risk of postnatal catch-up growth (Batista et al, 2012). Since smoking during pregnancy has 

a strong negative effect on birth weight for gestational age (see previous section), it is not surprising 

that several researchers observed that children of smokers with a low weight at birth are more likely to 

quickly catch-up and then exceed their expected weight compared to children of non-smokers (Chen 

et al, 2006; Howe et al., 2012; Power et al, 2003). In 2002, Ong et al (Ong et al., 2002) claimed that 

infants of smoking mothers with a low birth size complete their catch-up within the first 12 months 

of life without being heavier or taller than infants of non-smoking mothers. However, the latter result 

partly conflicts with the evidence, gathered from several other studies, that smoking during pregnancy 

is a strong risk factor for childhood obesity (Dubois and Girard, 2006; Monasta et al, 2010).

Females remain generally somewhat shorter than males all over infancy and childhood until adolescence, 

and are also typically a little lighter than boys (Tanner, 1989). Griffiths et al (Griffiths et al., 2007) 

found that parental size influences both birth weight and infant weight gain with maternal weight 

having a greater influence on weight at birth than paternal one (as discussed before), while parental 

height and weight contributing equally to postnatal weight growth. It has been repeatedly observed 

that maternal height affects postnatal growth rate (Bocca-Tjeertes et al., 2011; Botton et al., 2010;
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Lourenco et al., 2012; Power et al., 2003) being positively associated with growth velocity, especially 

in height. Botton et al (Botton et al., 2010) observed that paternal BMI is instead associated with 

increased weight growth rate.

When investigating the factors influencing failure to thrive, Blair et al (Blair et al., 2004) found parental 

height and parity to be respectively negatively and positively associated with slow postnatal weight 

gain. The effect of parity with postnatal growth, especially in weight, has been consistently observed 

(Batista et al., 2012; Bulk-Bunschoten et al., 2002; Hui et al., 2010; Ong et al., 2002; Wells et al.,

2011) , with infants of primiparous pregnancies having faster postnatal growth.

As observed for birth weight, the body of data supporting the association of maternal pre-pregnancy 

obesity, maternal diabetes and gestational weight gain during pregnancy with growth in weight during 

infancy is large. Several studies reported a positive influence of these factors, especially maternal 

obesity, on either weight gain in the first months of life (Deierlein et al., 2011; Regnault et al., 2010), 

or increasing adiposity tissue (Modi et al., 2011; Vohr et al., 1999). Linabery et al (Linabery et al.,

2012) found an effect only at birth and after 1.5 years of life. Moreover, as for smoking, maternal pre

pregnancy obesity has been consistently numbered among the most relevant risk factors of offspring 

obesity later in childhood (Dubois and Girard, 2006; Monasta et al., 2010). Little is known instead on 

the influence of gestational hypertension/preeclampsia on postnatal growth. A study evaluating the 

effect of pregnancy-induced hypertension on weight gain at 28 or 42 days postpartum in a Chinese 

birth cohort showed that infants of mothers with hypertension are at greater risk of postnatal catch-up 

growth only if babies experienced intrauterine growth restriction (Baulon et al., 2005).

Much attention has been given to the role of socioeconomic status on postnatal growth in weight and 

height. While Howe at al (Howe et al., 2011) found that the effect of maternal education on ponderal 

index is significant only after infancy, another study reported a significant inverse association between 

high socioeconomic status and weight velocity in the first months of life (Wijlaars et al., 2011). An 

opposite result -  increasing weight velocity during the first year of life at increasing level of maternal 

education -  was instead observed among children belonging to an Hong Kong Chinese birth cohort (Hui 

et al., 2010). Power et al (Power et al., 2003) observed that infants of lower socioeconomic status are at 

higher risk of having a low birth weight and a subsequent high BMI in adult life, while Bocca-Tjeertes
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et al (Bocca-Tjeertes et al., 2011) found that deprived children are more likely to experience postnatal 

growth restraint in weight and height. Studies carried out in developing countries reported a positive 

association between high socioeconomic status and postnatal growth velocity in height (Kang Sim et al., 

2012; Lourenco et al., 2012; Matijasevich et al., 2012), while the opposite was observed in a Danish 

cohort (Silva et al., 2012). Furthermore findings from a UK birth cohort showed that inequalities in 

height during childhood arise mainly through socioeconomic differential in birth length (Howe et al., 

2012). A recent study found that maternal depression reduces growth at 6 months of life, and the 

authors argued that this effect might be partly due to social deprivation status, and in turn to life-style 

factors such as smoking status and alcohol consumption (Traviss et al., 2012).

The association between alcohol consumption during pregnancy and postnatal infant growth has been 

less studied. Carter et al observed that infants of mothers who drank moderately during pregnancy 

are on average lighter and shorter at birth with differences persisting up to 12 months of life, and with 

stronger effects for infants of binge-drinking mothers during pregnancy (Carter et al., 2007, 2013). 

Finally growth hormones have been suggested to have a minimal effect on postnatal growth, since 

infant growth up to 6 months is considered as a continuation from prenatal growth which is influenced 

mainly by nutrition whilst largely growth hormone independent (Mehta et al., 2005). Mathematically 

(Karlberg, 1987) and clinically (Mehta et al., 2005) it has been observed that infant growth begins to 

be hormone dependent after 6 months of age. Growth during infancy indeed has been suggested to 

be the outcome of the interplay between nutrition and the rate of growth programmed in pregnancy, 

mainly reflecting parental size (Cole, 2000). Breastfeeding is in fact the most relevant factor in the 

nutrition and growth of the infants (see below) (Binns, 1998).

During the first year of life height velocity is fast and energy needs are consequently high. It is well- 

documented that breastfed children have an adequate nutritional supply from birth until at least 4-6 

months of life with breast-milk alone meeting the nutrient needs for an appropriate growth rate and 

body composition and better protection from infant morbidity (Binns, 1998; Kramer and Kakuma, 

2012). Moreover introduction of supplementary food in the first 6 months of life has been shown not 

to provide any growth advantage (Dewey, 2001). After 6 months of age neither breast-milk nor infant 

formula alone provide enough energy for growth and evidence concerning the effect and duration of
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breastfeeding on infant growth is conflicting, mostly depending on the population been investigated. 

A number of studies indeed claimed that children exposed to prolonged and exclusive breastfeeding 

experience a greater weight gain for the first weeks of life followed by a reduced rate of accretion so 

that at about 1 year of age breastfed children appear on average shorter and thinner relative to those 

bottle- or mixed-fed (Beath, 2007; Dewey, 2001; Hediger et al., 2000; Victora et al., 1998). Other 

studies restricted their evaluation to the first months of life, showing that exclusive breastfeeding is 

associated with reduced weight growth velocity (Bulk-Bunschoten et al., 2002; de Hoog et al., 2011; 

Mihrshahi et al., 2011; Regnault et al., 2010; Zhang et al., 2012) or that shorter duration of exclusive 

breastfeeding is associated with increased growth rate (Betoko et al., 2012). However Dewey (Dewey, 

2001) argued that this is the result of infant self-regulation of energy intake rather than of nutritional 

deficits and other studies reported that infants who were exclusively breastfed for six or more months 

did not experience a deficit in weight or length gain after 12 months of age (Agostoni et al., 1999; 

Kramer et al., 2002, 2004). Haschke et al (Haschke and van’t Hof, 2000) showed that duration of 

breastfeeding has an inverse association with length and weight until 24 months but not at 36 months 

of age, while in a recent study Woo et al (Woo et al., 2013) observed that increasing duration of 

exclusive breastfeeding only modestly decreases the weight-for-age measure at 1 year. Furthermore, 

early introduction of solid food, associated with lower rate of ever been breastfed, was found to be 

a positive risk factor for weight gain during the first year (Kim and Peterson, 2008). Some authors 

argued that the negative association observed between breastfeeding and subsequent weight gain could 

be attributable to reverse causation. In a recent study Kramer et al (Kramer et al., 2011) showed 

that, at least during the first 6 months of life, lower weight-for-age are associated with increased risk of 

weaning and of discontinuing exclusive breastfeeding in the following month. Based on these findings, 

the same author argued against a causal protective effect of exclusive breastfeeding on risk of later 

obesity, which has been reported by several studies (see a review of systematic reviews in (Monasta 

et al., 2010)), suggesting that infants who grow slowly are satisfied by the breast-milk, while those 

growing faster request supplementary nutrition due to their increased growth rate (Kramer et al., 

2012). Other researchers argued that the negative association between breastfeeding and weight gain 

could be due to residual confounding mainly due to smoking and socioeconomic status. In particular
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it was observed that breastfed infants have greater birth weight (Bulk-Bunschoten et al., 2002), babies 

from the most affluent families are more likely to be breastfed (Fawzi et al., 1998; Wright et al., 2006) 

or to be breastfed for longer periods (Betoko et al., 2013), and children of smoking mothers are more 

likely to be breastfed for a shorter duration (Nafstad et al., 1997).

Finally, a recent twin study compared the genetic and environmental influences on three different 

dimensions of the weight trajectories in infancy: the size, the velocity and the tempo of growth (i.e. 

developmental age), where the latter is indicated by the age at peak weight velocity (Johnson et al., 

2011). The authors concluded that the size and velocity parameters are primarily driven by genetic 

factors, while the tempo dimension mainly depends on environmental determinants.

1.4 Final Comments

Fetal and early life growth are known to influence the onset and development of a wide range of 

chronic diseases later in life. The identification of exposures and conditions occurring during and before 

pregnancy which affect fetal an infant growth is therefore relevant for a life course perspective. However 

approaches commonly used to analyse growth data and their association with early exposures often 

focus on relatively simple aspects of growth, such as differences in size at pre-specified age intervals, 

and do not provide a comprehensive summary of the patterns of infant growth, limiting therefore the 

understanding of how prenatal factors relate to different dimensions of the growth process. The timing 

of developmental milestones has been given increasing interest in life course epidemiology. However, 

although infancy has been identified as a critical period for the development of diseases later in life, 

most of the attention has been focussed on studying adiposity rebound in childhood and height growth 

spurt in puberty. In this thesis I aim to examine features of growth during infancy, using methods that 

allow the identification of biologically meaningful features of growth trajectories in infancy, within 

a life course framework. Studying growth during this period should allow to identify early factors 

affecting infant growth and indicate how these factors affect specific components of the infant growth 

process (e.g. growth rate, timing of weight/adiposity peak), thus offering insights into the mechanisms 

governing infant growth and contributing to the understanding of its role in the development of a wide 

range o f later diseases.
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Chapter 2

Aims

This Ph.D. aims at modelling individual infant weight trajectories using three recently established 

cohort studies: the “Nascita e INFanzia: gii Effetti dell’Ambiente” (NINFEA) birth cohort study, 

based in Italy, the Geracao XXI (GXXI) birth cohort study, based in Northern Portugal, and the 

Growth and Obesity Cohort Study (GOCS), based in Chile.

Because NINFEA members are volunteers who participate only via a web-based system, analyzing 

their data also requires the consideration of selection bias problems. Hence the thesis first examines 

possible selection mechanisms by Monte Carlo simulations of cohort studies, assessing their impact on 

the crude estimate of the effect of interest, and then uses population registry data from the same region 

as NINFEA (i.e. data from the source population) to assess how selection into the web-based NINFEA 

birth cohort (the sample from the restricted source population) affects the confounding patterns for 

the associations of interest.

Alternative modelling approaches for the available growth data are then studied in the second part 

o f this PhD. They are compared in term of their ability to validly represent the data and to address 

issues related to the structure of the measurements (number, irregularity and completeness of the 

observations) and to the nature (e.g. non-linearity) of the growth trajectories, while identifying bio

logically meaningful features of growth. Models suggested in the anthropometric and in the statistical 

literatures are evaluated, with particular focus given to their implementation within the random effects
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models framework. The availability of information on several prenatal variables in each cohort is then 

exploited to study their association with growth trajectories using the Superimposition by Translation 

And Rotation (SITAR) model, a shape invariant random effects model that is extended to allow for 

the inclusion of explanatory variables.

In summary the aims of this Ph.D. are:

1. Examine under which circumstances the selection mechanisms that drive recruitment into cohort 

studies may induce confounding in the selected sample and therefore may or not lead to biased 

estimates of effects of interest.

2. Modelling individual infant weight trajectories using three recently established cohort studies.

These are accomplished by addressing the following objectives:

(а) examine sample selection mechanisms for the recruitment of participants into cohort studies and 

their consequences for the estimate of an effect of interest;

(б) investigate how selection into the web-based NINFEA birth cohort affects the confounding pat

terns present in the source population;

(c) compare the ability of alternative growth modelling approaches to fit weight trajectories in in

fancy and to identify biologically meaningful features;

(d) assess whether the results of fitting these models are affected by the type of available data (age 

range, number and timing of follow-up);

(e) study the prenatal influences of weight trajectories in infancy and compare them across the three 

cohorts.
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Chapter 3

Case Studies

The thesis examines data from three studies: the NINFEA web-based birth cohort study concerning 

children born in Italy, the GXXI birth cohort established in the Porto region of Northern Portugal 

and the GOCS cohort based in Chile. All cohorts involve children born in the new millennium.

This chapter describes the datasets, introduces statistical and epidemiological issues specific to these 

cohorts and provides a summary of the growth measurements available in each cohort. Since this thesis 

focuses on weight trajectories in infancy, a more detailed description of the weight data available in 

each cohort is provided. In the last section of this chapter a summary of the cohorts/datasets involved 

in the analyses of each Research Paper is given.

3.1 NINFEA Study

The NINFEA study is an ongoing web-based birth cohort, co-ordinated by the Cancer Epidemiology 

Unit of the University of Turin that aims at recruiting pregnant women via the Internet and following 

up their children.
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3.1.1 Background

NINFEA started in July 2005 as a pilot study in the city of Turin, Italy, and since December 2007 has 

been extended to the whole nation. Recruitment is still on-going and will last until at least a sample 

size of 7,500 babies is achieved.

As stated in Richiardi et al (Richiardi et al, 2007), “the source population of the NINFEA cohort 

includes all babies born to pregnant women who have enough knowledge of the Italian language and 

the use of the Internet to complete the online questionnaires. Members of the cohort are babies born 

to women in this source population who become aware of the study and volunteer to participate 

through registration on the study website (www.progettoninfea.it)” . Recruitment therefore occurs 

during pregnancy, when the women complete the first online questionnaire, with participants being 

self-selected.

The study is advertised both through active and passive methods. Active advertisement is carried 

out in the Piedmont region (mainly in the city of Turin), and since July 2010 in the Tuscany region, 

with the following methods: (i) posters at the main hospitals of the city; (ii) leaflets enclosed with the 

results of laboratory tests and ultrasounds; (iii) leaflets distributed at the pre-delivery classes and (iv) 

leaflets enclosed with the baby health book. Therefore, this approach is inherently limited to selected 

geographical areas and targets; in order to enlarge the study to the whole of Italy at the end of the 

pilot phase the NINFEA study was also advertised online through: (5) links to NINFEA study website 

posted on the hospitals’ websites and on websites dedicated to pregnant women; (6) participation in 

discussion forums related to pregnancy, and (7) a NINFEA page in facebook. It is also likely that a 

proportion of participants obtained the information from other members of the cohort.

The cohort is followed-up actively through questionnaires: three long Internet-based questionnaires 

administered during pregnancy (Q l), at 6 (Q2) and 18 (Q3) months after delivery, and then other 

short questionnaires, the first of which is administered when the children are 4 years old (Q4) and the 

second when they are 7 years old (Q5). It is important to notice that the time of administration of 

the questionnaires could vary within an established age range: for the Q2 between 12-24 months after 

conception (because contact times were defined from the time of the first questionnaire, when only 

expected date of delivery was known), for the Q3 between 16-30 months after delivery (or between
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24-36 months after conception if date of delivery was not reported at Q2), for the Q4 between 46-59 

months after delivery (no Q4 is administered if date of delivery is not gathered at Q2 or Q3) and for 

the Q5 between 82-94 months after delivery. The Q1 includes questions on several family and maternal 

characteristics (demographic, lifestyle, environmental and occupational exposures) as well as on the 

pregnancy and on the maternal reproductive and medical history. Moreover questions about the use 

of the Internet are included in Q1 (Richiardi et al., 2007). With Q2 and Q3, information on maternal 

characteristics in the last part of pregnancy, pregnancy outcome, delivery, gestational duration and 

characteristics of the baby at birth are collected. Questions on feeding type, child diet, sleep pattern, 

child diseases and medicines, mother-father-child relationship and child development are included 

as well. The Q4 is a short questionnaire focused on the cognitive, functional and anthropometric 

development of the children, while the Q5 is focused on the respiratory health of the children. Since 

September 2008 biological samples of saliva of both the child and the mother are collected.

Because of logistic reasons recruitment and follow-up questionnaires have been adapted since the onset; 

thus questions slightly differ with year of recruitment, with the final version introduced in November 

2008. NINFEA is an on-going study, therefore available data vary with time o f data download and 

analyses reported in each paper included in this thesis have been performed using different versions of 

the NINFEA database (see section 3.4.1). All the downloaded datasets include both the pilot study 

and the updated version. The data used to generate Research Paper IV (included in Chapter 5) are 

described below, as this is the most up to date version of the data used in this thesis. This was 

downloaded in March 2012 and consists of 4,787 records; records wrongly generated by the system 

(n = l) as well as records relative to multiple pregnancies (n=151), miscarriages (n=38), babies who 

died at delivery (n=8), and records relative to women who registered after delivery (67) and for whom 

the Q2 was not opened, that is for whom conception occurred less that 12 months before the date of 

the data download (n=572), were excluded. These exclusions lead to a dataset of 3,950 records relative 

to 3,666 mothers.

Out of these, 816 records were excluded from the growth data analyses because weight measurements 

for the first 4 years of life (that is the age range analyzed in Research Paper III, see Section 3.4.1) were 

not available: 268 records were relative to children whose mothers completed the first questionnaires,
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Excluded from  grow th analyses
Included Lost to follow-up Not filled Q2 yet No growth data
N = 3 ,134  N = 268  N = 476  N = 72

MeaniS'D or % N Mean±SD or % N  Mean±SD or % N M eaniSD  or % N

M aternal characteristics
Age at registration 33.1 ±4.1 3,134 32.4 ±5.1 268 32.8 ±4.7 476 33.2 ±4.2 72

Pre-pregnancy weight (Kg) 60.9 ±11.4 3,043 60.2 ±10.6 217 61.1 ±10.8 443 59.8 ±10.9 65
Height (cm) 164.7 ±6.2 3,039 164.6 ±6.5 217 164.8 ±6.2 443 163.4 ±5.5 65

Pre-pregnancy BMI (Kg/m2) 22.4 ±3.9 3,031 22.2 ±3.6 217 22.5 ±3.7 443 22.4 ±3.9 65
Italian nationality 96.1% 3,013 95.9% 257 94.3% 449 97.2% 70

Graduated 58.4% 1,809 42.9% 106 50.0% 230 56.3% 40
First pregnancy 73.9% 2,250 57.9% 103 66.4% 300 62.3% 33

Infertility treatment 7.2% 218 5.3% 11 7.1% 31 10.6% 7
Smoking during pregnancy 
Paternal characteristics

8.6% 265 12.8% 31 10.3% 47 14.9% 10

Weight (Kg) 78.6 ±11.4 3,003 78.3 ±11.8 210 78.8 ±10.8 438 79.1 ±15.5 69
Height (cm) 177.7 ±6.8 3,024 177.6 ±6.9 212 178.3 ±6.7 439 177.9 ±6.8 68

BMI (Kg/m2) 24.9 ±3.1 2,992 24.8±3.3 210 24.8 ±3.2 438 24.5 ±2.7 68
Graduated 40.2% 1,219 30.5% 65 31.7% 139 33.3% 23

Italian native speaker 96.7% 2,932 95.3% 201 93.2% 408 94.2% 65

Table 3.1: NINFEA: Baseline characteristics stratified by rate of questionnaires completion.



W eight grow th data
Complete (N = l,9 3 7 ) Partial (N = l,1 9 7 )

M eaniSD  or % N Mean±SD or % N

M aternal characteristics
Age at registration 33.2 ±4.2 1,937 33.1 ±4.2 1,197

Pre-pregnancy weight (Kg) 60.9 ±11.3 1,899 60.9 ±11.6 1,144
Height (cm) 164.6 ±6.0 1,895 165.0 ±6.4 1,144

Pre-pregnancy BMI (Kg/m2) 22.5 ±3.9 1,891 22.4 ±3.9 1,140
Italian nationality 96.6% 1,872 95.3% 1,141

Graduated 58.6% 1,126 58.0% 683
First pregnancy 75.8% 1,456 70.6% 794

Infertility treatment 7.3% 138 7.0% 80
Smoking during pregnancy 
Paternal characteristics

8.3% 159 9.1% 106

Weight (Kg) 78.6 ±11.7 1,891 78.6 ±11.0 1,126
Height (cm) 177.7 ±6.8 1,886 177.8 ±6.9 1,138

BMI (Kg/m2) 24.9 ±3.2 1,868 24.9 ±3.1 1,124
Graduated 38.3% 726 43.2% 493

Italian native speaker 96.6% 1,829 96.8% 1,103

Table 3.2: NINFEA: Baseline characteristics stratified by rate of weight data completion.



but were subsequently lost to follow-up; 476 to children for whom, at the time of the data download, 

the Q2 had not yet been completed although it could still have been completed; and 72 to children for 

whom (at least) Q2 was completed but no weight measurements was reported in the questionnaires. 

Participants with no growth data recorded were automatically excluded from the growth data analyses, 

while growth analyses carried out on those subjects with incomplete weight measurements (e.g. with 

weight measures available only for a subset of follow-up occasions) were based on the uninformative 

missingness (Missing At Random (MAR) assumption (Rubin, 1976)).

In order to check whether subjects included in the analyses are a representative sample of the whole 

cohort and to assess the validity of the MAR assumption and hence to investigate potential biases 

arising from the analyses of the subjects with incomplete weight data, baseline characteristics of the 

study-subjects stratified in the categories discussed above, were compared. Results are reported in 

Table 3.1 and Table 3.2. Baseline factors known to be potentially associated with birth size and infant 

growth were investigated; in particular parental size, nationality and educational level, maternal age 

at registration into the study, smoking and alcohol consumption during pregnancy, parity and use of 

infertility treatment.

There is some evidence of an association between maternal and paternal educational level and retention 

into the study, with the smallest proportion of graduated mothers and fathers observed among those 

lost to follow-up (43% and 30% respectively) and the highest among those who were included in the 

growth data analyses -  see Chapter 5 -  (58% of mothers and 40% of fathers). The distribution of 

nulliparous women follows the same pattern, with the prevalence decreasing from 74% among those 

included to 58% among those lost to follow-up. The distribution of maternal smoking follows instead 

the opposite pattern, with the proportion of women who smoked during pregnancy slightly higher 

among those lost to follow-up (13%) or without any weight measurements (15%). No major differences 

were highlighted when comparing the characteristics of those who had not completed the Q2 yet with 

those included in the analyses (Table 3.1). Although there is an indication for potential selection of 

the participants who remain into the study, mainly driven by socioeconomic factors, this might also 

be due to the small size o f the group o f those lost to follow-up.

When comparing those with complete with those with incomplete growth data, the distributions of
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the prenatal characteristics appeared to be very similar (Table 3.2).

3.1.2 Growth measurements

All growth measurements of NINFEA children are gathered from the questionnaires that are completed 

by their mothers. Revisions of the questionnaires were undertaken after enrolment of approximately 

the first 1,500 participants, thus the available data vary with year of recruitment. In particular, women 

who enrolled until November 2008 were asked to report the child’s weight and length at birth, 3 and 6 

months at the time of the second questionnaire, as well as the head circumference at 3 and 6 months 

(Q2), while at Q3 they were asked to report the weight and length measurements of the baby at 12 

and 18 months. When the Q2 and Q3 questionnaires were updated, a new question was introduced 

regarding the child’s weight and height at the actual time of completion of these questionnaires and 

the source of information used to enter the growth measurements (i.e. whether the mothers used the 

child health book or they simply recalled the measure). In contrast Q4 was set up from the outset to 

include questions on anthropometric measures both at 4 years of age and at the time of completion of 

the questionnaire.

The response for the length/height measurements was lower compared to that for the weight measures. 

Although this was partly predictable, as measuring and recording length during the first 2 years of 

life is less common, further analyses highlighted an additional explanation. It appears to be that a 

number of mothers, when completing the information on their child’s length, wrongly entered the head 

circumference measures instead. This observations, drawn from the data distribution, is supported 

by the fact that in the “Piedmont children health and growth book” , completed whenever a child is 

examined by the paediatrician, weight and head circumference are recorded up to 2 years of age and it 

is highly likely that mothers referred to that book to answer and thus reported the head circumference 

value instead of length.

Table 3.3 shows a summary of the weight measurements available at fixed time points only (0, 3, 6, 12, 

18 and 48 months of age) among the 3,134 NINFEA participants included in the growth data analyses, 

stratified by gender. As expected, newborn males are heavier than females and these differences persist 

during infancy. The birth weight data are more complete than the measures at 3 and 6 months, all
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reported at the time of completion of Q2. We should stress that the 3 months and 12 months growth 

measures were reported at 6 and 18 months respectively (when the follow-up questionnaires were 

administered) and thus may be affected by recall bias. The same may apply to birth weight, also 

collected in Q2 -  when the child was about 6 months old, but the extent of this bias is expected to be 

much lower, as mothers tend to remember correctly their children’s birth weight. The extent to which 

measurements error affects the NINFEA birth data is the focus of the next section.

W eight (kg)
Follow-up age Males (n =  1,585) Females (n =  1,549)

(month) N  M ean SD  N  M ean SD

0 1,527 3.33 0.48 1,509 3.18 0.46
3 1,301 5.98 0.82 1,239 5.52 0.72
6 1,230 7.89 0.93 1,198 7.26 0.85

12 891 10.12 1.15 904 9.33 1.07
18 898 11.71 1.26 902 10.87 1.24
48 357 16.89 2.20 340 16.08 2.30

Table 3.3: Weight measurements of NINFEA participants by gender.

3.1.3 Link to the Piedmont birth registry

When establishing the NINFEA study, the major concern raised by funders and ethics committees was 

the validity of a cohort in which participants are recruited using the internet. The main issue is thus 

one of selection bias, due to the restriction of the source population from which the study-subjects 

potentially arise. This bias may indeed occur as participants in the NINFEA study differ from the 

population of pregnant women both because the source population is restricted to internet users and 

because they volunteer to participate.

Moreover m easurement error is likely to affect the growth measurements recorded in the NINFEA 

study, as these are both self-reported and in part collected retrospectively.

In order to address both these issues a probabilistic linkage of the NINFEA dataset downloaded in July 

2010 (that is with a previous version of the dataset than the one used for the growth data analyses 

o f  this Ph D.), with the Piedmont Birth Registry (PBR) for the period 2005-2008 was carried out. 

This was done after exclusions o f multiple pregnancies, births occurred after 31 December 2008 and
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births that had occurred outside Piedmont. The birth registry recorded information both specific to 

the parental characteristics and to the pregnancy. In particular data on maternal and paternal age at 

delivery, educational level and occupation were available together with maternal smoking and alcohol 

consumption during pregnancy as well as intake of folic acid. Maternal parity, occurrence of previous 

miscarriages and use of infertility treatment to aid conception, type o f delivery, gestational age, birth 

size (weight, length and head circumference), baby health status at birth and feeding pattern soon 

after birth were also recorded in the registry data.

These linked data formed the basis of the assessment of the potential selection bias affecting NINFEA. 

This is the topic of Research Paper II (Pizzi et al, 2012), which is included in Chapter 4.

Validation of N INFEA birth data

The linkage with the birth registry data was also used in order to assess the extent of any measurements 

error affecting the NINFEA birth data quality. In particular a validation of the birth weight and 

gestational age measurements was performed. The probabilistic linkage was successful for 1,298 births, 

but births with gestational age earlier than the 25th week or later than the 44th week, as well as 

those with an implausible birth weight in either dataset, were further excluded, reducing the linked 

dataset to 1,295 births. Due to missingness among the NINFEA data, validation o f the birth weight 

variable was carried out on 1,160 subjects, while validation o f gestational age on 1,219. Bland-Altman 

plots (Martin Bland and Altman, 1986) were used to assess agreement between the two data sources 

(PBR and NINFEA). In particular it was assessed whether there is a systematic bias in the NINFEA 

measurements and whether the size of the difference between the two measurements is approximately 

constant throughout the range of measurements.

Birth weight A Bland-Altman plot of birth weight measurements is shown in Figure 3.1. The 95% 

limits o f agreement, given by the mean difference plus or minus 1.96 times the standard deviation o f the 

differences, goes from -189.8 gr to 192.8 gr, with the mean difference being 1.46 gr. The 95% confidence 

interval of this difference is (-4.2; 7.1) and correlation between the difference and the mean of the two 

set o f measurements was 0.05 (p-value-0.06). These results suggest that there is no systematic bias 

in the birth weight measures self-reported by the mothers.
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Figure 3.1: Bland-Altman plot of birth weight data collected in NINFEA and in the Piedmont Birth 
Registry.

Gestational age Figure 3.2 display the Bland-Altman plot for the gestational age at birth in weeks, 

where each point has been weighted by the absolute frequency. The mean difference is equal to 0.56 

(with a 95% confidence interval of (0.51; 0.62)), meaning that on average the gestational age reported 

in the NINFEA questionnaire is half a week greater than the one recorded in the PBR. The 95% limits 

of agreement of the Bland-Altman plot (Figure 3.2) range from -1.3 to 2.4 weeks. Correlation between 

the differences and the mean was 0.07 (p-value=0.01). Overall there is an indication of a light tendency 

for the women to over-report their gestational age when filling the NINFEA questionnaire, compared 

to registry data.
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Figure 3.2: Bland-Altman plot of gestational age measures collected in NINFEA and in the Piedmont 
Birth Registry.

3.2 Geracao X X I Study

The GXXI study is the first Portuguese birth cohort, carried out by the Department of Hygiene and 

Epidemiology of the University of Porto. It aimed to recruit approximately 10,000 newborn babies 

and followed them up from birth to young adulthood in order to examine pre- and postnatal growth 

and development and relate these to health outcomes later in life.

3.2.1 Background

The cohort was established in 2005 in the Porto region of Northern Portugal, the second largest city 

in Portugal. All live children born to women resident in one of the six Districts included in the Porto 

region, admitted to one of the five public hospitals in Porto for delivery with a gestational age at birth 

greater than 24 weeks were eligible to participate. The recruitment period lasted from the end of April 

2005 until August 2006. Blood collection was also planned but this was slightly delayed and actually
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started in March 2006. A group o f 1500 mothers, included in the main cohort, was recruited before 

delivery, if the first prenatal visit took place within the twelfth gestational week. They were actively 

followed during their pregnancy with various developmental and dietary data collected at regular times. 

The remaining women were enrolled during an appointment few days before their due date and, for the 

majority, baseline questionnaires were completed between 24 and 72 hours after delivery; these included 

three questionnaires: one for the baby, one for the mother (both completed by the mother), and one 

for the father (completed by the fathers themselves). With the baseline questionnaires, information 

on parental socioeconomic and demographic characteristics, reproductive history, disease history, diet 

and life-style characteristics, pregnancy, delivery and anthropometric history were collected.

Children were actively foilowed-up through questionnaires planned at 3, 6, 12/15, 24 and 48 months. 

Due to logistic and financial limitations it was not possible to interview every participant at each 

follow-up visit. Therefore a restricted time period was allocated for each follow-up occasion (cross- 

sectional interviews). The 3 months interviews were performed on a small random sample of the cohort 

by telephone. The 6-15 months evaluations were carried out when mother attended the local reference 

Health Centre where trained interviewers administered the questionnaires; while for the 2-year follow

up, mothers were offered an incentive of a free dental or eye check to attend this appointment. At 

this occasion child growth data (weight, height and head circumference), collected prospectively in the 

parent held health records during each child health professional examination, were gathered for entry 

into the database. Follow-up children questionnaires recorded information on feeding and diet habits, 

sleep and crying pattern, health status, environment characteristics and baby development.

The data available for the Ph.D. analyses are those relative to the baseline questionnaires (the child 

and mother’s, not the father’s one) for the whole study and those collected at the 2-year questionnaire 

for about 1,000 participants. In total, 8646 infants were born to mothers in the Porto study during 

the study period and were recruited, representing approximately 95% o f those eligible. Among these, 

290 babies from multiple pregnancies were excluded and a further 45 newborns were excluded because 

o f missing mother’s baseline questionnaire. The remaining baseline data consist of 8,311 singleton 

children. At the 2-year follow-up, data for 826 infants were available, o f which 794 from singleton 

pregnancies. Data from both baseline (child and mother) and follow-up questionnaire were available
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for 786 subjects (8 subjects with follow-up data but without baseline questionnaire), while for 7,525 

participants only baseline characteristics are currently available.

Growth data analyses were therefore carried out in the 786 children who participated to the 2-year 

follow-up. As already discussed above, women were offered to attend this appointment with an in

centive of a free dental or eye check; moreover a restricted time period was allocated for the 2-year 

follow-up interviews. In order to check if the probability o f accepting the appointment was influenced 

by specific factors, i.e. to check for the potential occurrence of a selection mechanism, or to check if 

the babies offered to participate in the 2-year follow-up were different from the rest of the cohort, 

baseline maternal and newborn characteristic of these 2 groups were compared. Results are reported 

in Table 3.4: according to the baseline factors investigated, no major differences were found and thus 

it is reasonable to consider the 786 subjects who completed the 2-year questionnaire a representative 

sample of the whole cohort.

3,2.2 Growth measurements

As already reported in the previous section, at the 2-year follow-up interview, the child growth data, 

collected prospectively in the parent held health records during each child health professional ex

amination, were gathered for entry into the database. For each subject, weight, height and head 

circumference values measured at about 1, 2, 4, 6, 9, 12, 15, 18 and 24 months of age were recorded, 

together with the dates when the measurements were actually taken. The measurements collected at 

birth, at 12/15 and 24 months, however, differ from the others, as these were measured directly from 

the interviewers of the GXXI study. So it is important to acknowledge that the source of the latter 

measurements is different and these are more standardised. Moreover up to 6 additional anthropomet

ric measurements, taken routinely by the health professionals whenever the babies went to the doctor, 

with the corresponding examination date were entered into the database. Thus, anthropometric data 

collected were up to 16 time points (at birth and then 9 other fixed occasions plus 6 additional), ones 

for each of the growth dimensions.
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W ith 2-year follow-up Without 2-year follow-up
(n=786) (n=7,525)

Mean ±SD or % N Mean ±SD or % N

M aternal characteristics
Age 30.4 ±5.0 785 29.4 ±5.7 7,512

Height (cm) 161.6 ±5.9 670 160.6 ±6.2 5,767
Pre-pregnancy weight (Kg) 62.2 ±11.7 750 61.6 ±11.4 7,321

Pregnancy weight gain (Kg) 13.0 ±5.1 585 12.9 ±5.5 5,853
Birth weight (gr)

<2500 8.8% 21 7.2% 160
2500-4000 81.9% 194 86.0% 1,923

> 4 0 0 0 9.3% 22 6.8% 151
Years of education >12 28.2 % 217 23.3% 1,737

Have a partner 94.4% 736 93.4% 6,996
Employed 76.5% 530 70.0% 5,093

Partner employed 94.1% 622 93.8% 6,535
No previous pregnancy 50.5% 394 47.7% 3,579

Nulliparous 62.6% 490 59.4% 4,451
Use of infertility treatment 2.5% 19 1.7% 129
Smoking during pregnancy 18.8% 145 22.4% 1,666

C hild ’s characteristics
Birth weight (gr) 3,185 ±484 758 3,191 ±490 7,394

Birth length (cm) 48.9 ±2.3 724 48.8 ±2.2 7,062
Birth head circumference (cm) 34.3 ±1.5 697 34.3 ±1.5 6,892

Gestational age (weeks) 38.7 ±1.6 738 38.6 ±1.8 7,226
Male gender 50.7 % 385 51.2 % 3,775

Natural childbirth 53.1 % 399 50.2 % 3,733
Malformation at birth 1.5% 10 1.3% 87

Table 3.4: GXXI: Baseline characteristics stratified by 2-year follow-up participation.

Among the 786 children considered, 3 were found to have missing values for all the follow-up growth 

variables and were therefore excluded from subsequent analyses. Table 3.5 shows descriptive statistics 

o f the weight measures recorded. As shown in Table 3.4, at the time the GXXI data were made 

available for this Ph.D. gender information was missing for 26 babies.
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W eight (kg)
Follow-up age Males (n =  384) Females (n =  373)

(month) N M ean SD N M ean SD

0 378 3.23 0.50 370 3.15 0.45
1 366 4.12 0.69 352 3.87 0.59
2 341 5.19 0.75 342 4.82 0.68
4 342 6.76 0.87 338 6.27 0.81
6 333 7.87 0.96 333 7.36 0.89
9 303 9.11 1.15 292 8.54 1.01

12 316 10.09 1.24 309 9.52 1.12
15 265 10.89 1.33 270 10.36 1.20
18 266 11.61 1.43 256 11.05 1.38
24 248 12.83 1.58 236 12.39 1.52

Table 3.5: Weight measurements of GXXI participants by gender.

As expected, the proportion of missing values increases with time in each gender group and therefore 

mean values may be affected by selection bias. Weight data are available for all the time points for 

about 33.5% of the females babies and 29.5% of the male babies. As observed for NINFEA participants, 

newborn males are heavier than females with differences persisting all over the infancy period. Only 

for 19 participants information on 6 extra growth measurements were recorded, however data on at 

least one additional visit were available for 378 babies. Among these, about 22% concerns the first 3 

months of life, more than 55% covers the first year and only 5% were collected when the children were 

older than 2 years.

3.3 Growth and Obesity Cohort Study

GOCS is an on-going Chilean cohort aiming to follow the children until the end of puberty to study 

the association of early growth with children’s maturation, adiposity and associated metabolic com

plications.

3.3.1 Background

The study was initiated in 2006, when all children aged 3.0-4.9 years who attended nursery schools 

of the National Nursery Schools Council Program in the south area of Santiago, Chile, and who met
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the inclusion criteria were invited to participate in the study (Corvalan et al, 2009). The following 

inclusion criteria were applied to the study: i) single birth with a gestational age of 37-42 weeks and 

a birth weight between 2500 and 4500 grams; ii) absence of physical and psychological conditions 

that could severely alter growth (only 6 children excluded due to these conditions). Among the 1,498 

children eligible to participate, 1,195 accepted (80%) to take part in the study.

At the time of enrollment, mothers were interviewed to collect information on sociodemographic status, 

perinatal and feeding history of the child, current physical activity and feeding behaviour o f the child, 

and maternal ginecological and obstetric history. Since 2006 GOCS children and their families have 

been contacted on a yearly basis and in 2009 a second follow-up of the cohort was initiated. In this 

occasion, 1,045 children out of the 1,195 belonging to the original cohort (87%) were evaluated. In 

order to measure metabolic markers, blood samples were collected on a subsample of 300 children at 

recruitment (children aged 4 years), and then on the whole cohort when children were 7 years old 

and when children reached the Tanner stage II of maturation (Tanner, 1962). Moreover children body 

composition was measured on a subsample of 500 children in 2007 (when children were about 6 years 

old) and annually thereafter via bio-impedance measurements. In 2010-2011 body composition of a 

subsample of 500 children was also measured using deuterium dilution techniques.

3.3.2 Growth measurements

Anthropometric data from birth up to 36 months of life were retrospectively gathered from child health 

records. For each subject, weight and height values measured at about 1, 2, 4, 6, 12, 18, 24 and 36 

months o f age were recorded, together with their actual date at measurements. From 3 years onwards 

(after recruitment) children were prospectively measured annually. These measurements were taken 

by a dietitian who visited the nursery school in 2006 and 2007; thereafter measurements were taken 

at the Institute o f Nutrition and Food Technology of the University o f Chile. The data available for 

this Ph.D. include measurements up to 8 years of age (though measurements up to age 10-11 are 

now available), however, for direct comparison with the other cohorts, only data up to age 4 were 

used. Among the 1,195 children considered, 41 were found to  have missing values for all the 0-4 years 

follow-up weight measurements and were therefore excluded from the subsequent analyses. Table 3.6
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shows descriptive statistics of the 0-4 years weight measures recorded.

Follow-up age 
(month)

Males (n = 
N Mean

W eight (kg)
570) Females (n =  

SD N Mean
579)

SD

0 569 3.44 0.43 579 3.37 0.39
1 405 4.43 0.59 408 4.26 0.53
2 401 5.57 0.67 399 5.26 0.57
4 383 7.19 0.83 389 6.67 0.746 366 8.17 0.88 381 7.64 0.87

12 464 10.16 1.13 473 9.57 1.0718 413 11.54 1.28 438 11.01 1.23
24 446 12.96 1.52 450 12.44 1.51
36 320 15.28 1.89 364 14.96 1.92
48 458 18.08 2.51 478 17.98 2,66

Table 3.6: Weight measurements of GOCS participants by gender.

As observed for the other cohorts, the proportion of missing values generally increases with time in 

each gender group, and thus mean values may be affected by selection bias. Newborn males are 

heavier than females and these differences persist during infancy. Due to its inclusion criteria children 

included in the GOCS study are slightly heavier than NINFEA and GXXI participants at all ages 

and in both genders. By age 4 the difference appears to widen considerably, with GOCS males and 

females weighting on average 18.1 and 18.0 kg respectively (Table 3.6), while the corresponding figures 

in NINFEA are 16.9 and 16.1 kg (Table 3.3). It should however be noted that GOCS growth data 

were not measured at exact ages, and those intended to be measured at 4 years (follow-up age of 48 

months in Table 3.6) were actually measured between 37 and 56 months of age.

3.4 Cohorts Summary

Figure 3.3 summarizes the 0-4 years weight measures available i„  the three cohorts («eluding, for 

N K FEA and GXXI, only fixed time points at which the anthropometric measures were planned to be

observed).

An issue to be considered when dealing with longitudinal growth data is the potential effects o f miss- 

ingness, either due to loss to follow-up because o f  migration, refusal to continue participation or due
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Figure 3.3: Weight measurements available in the three cohort studies.

to ‘ item non-response’, i.e. missing values for some of the variables collected at a given wave. The 

latter arises whenever the sequence of measures from one study-subject is incomplete at intermediate 

times. Possible other sources of bias occurring in these cohorts are the effect of the measurement error, 

which is likely to particularly affect the maternal prenatal GOCS data due to its study design (the 

questionnaire on prenatal exposures is administered when the children are approximately 3-4 years 

old), and the potential follow-up selection mechanism, already discussed above.

3.4.1 Analyzed datasets

The GXXI and GOCS cohorts are used only for the growth analyses, and thus contribute to Research 

Papers III and IV. NINFEA is instead involved both in the analyses focused on selection bias and in 

the growth modelling analyses. However, as already discussed in this chapter, NINFEA is an on-going 

study, therefore analyses reported in each Research Paper have been performed using different versions 

of the NINFEA database. In detail:

.  Research Paper I (see Chapter 4) uses simulated data to address objective (a) (see Chapter 2). 

and therefore none of the three cohorts is involved in the analyses.

.  Research Paper II (see Chapter 4) focuses on objective (b) (see Chapter 2). Data from the

57



Piedmont Birth Registry were used to address this objective, after these were linked to the 

NINFEA database downloaded in July 2010. The latter includes 1,105 singleton births occurred 

within December 2008 in the municipality of Turin.

• Research Paper III (see Chapter 5) addresses objectives (c) and (d) (see Chapter 2) and involves 

all the three cohorts. In detail 845 singleton NINFEA children, 783 singleton GXXI children 

and 1,149 singleton GOCS children are included in the analyses of this paper. In order to assess 

the sensitivity of the growth models to the age range analyzed (objective (d))} for the NINFEA 

and GOCS cohorts, for which growth data are available up to age 4 and 8 respectively, data up 

to 4 years o f age are included. This is in contrast to GXXI, for which data up to age 2 only 

are available. The NINFEA dataset used for this paper was downloaded in November 2011 and 

includes those children who, at the time of the data download, were eligible for completion of 

the 4-year follow-up questionnaire. These are the children for whom growth measurements are 

available at fixed time points only (0, 3, 6, 12, 18 and 48 months).

• Research Paper IV (see Chapter 5) investigates the prenatal influences of weight trajectories in 

infancy (objectives (e) in Chapter 2), and therefore involves weight data up to 2 years o f age. 

In particular it includes 2,925 singleton NINFEA children with available data on gestational age 

at birth and whose mothers were born in Italy, 738 singleton GXXI babies of likely Portuguese 

origin with known gestational age at birth, and 959 singleton GOCS children of non-indigenous 

origin with exact gestational age data. The NINFEA dataset used for this paper was downloaded 

in March 2012 and includes children with at least one growth measure within the first two years of 

life (this is why the NINFEA sample involved in this paper is much bigger than the one included 

in the analyses of Research Paper III). Growth data used in the analyses o f this paper include 

both measurements available at fixed time points (0, 3, 6, 12, and 18 months) and at the time 

of completion of the 6-months and 18-month follow-up questionnaires.
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Chapter 4

Selection Bias

4.1 Preamble

In epidemiology the term “selection bias” is used to indicate several types of bias, for example: bias 

resulting from selection of the participants from a restricted source population (i.e. the population 

from which the sample is drawn) according to specific criteria, bias due to participants’ self-selection, 

bias due to informative censoring in longitudinal studies, or to more general missing data mechanisms, 

bias deriving from erroneous selection o f controls in case-control study (Hernan et al., 2004).

This chapter focuses on the potential bias that may arise from selection of study participants from a 

restricted source population, with particular attention given to cohort designs. Issue of generalizability 

o f the study findings is beyond the scope of this thesis. The main focus is instead on investigating 

under which circumstances the selection mechanisms may induce (or reduce) confounding in the study 

sample and therefore may lead the selected study to be more or less affected by such bias than a study 

where participants are representative of the source population (see Figure 4.1).
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SOURCE POPULATION

Figure 4.1. Study sample and source population.

Selection of study participants potentially affects all cohort studies, but web-based designs, such as 

the NINFEA birth cohort used in this thesis, are generally thought to be more prone to than tradi

tional designs. Participants of internet-based studies are required to have access to the internet in 

order to become aware of the study and volunteer. Hence they are selected both because they are 

based on a restricted source population -  the internet users -  (we will refer to this as intentional 

non-representativeness) and because the study-population is a self-selected sample of this restricted 

source population {unintentional non-representativeness) (see Figure 4.2). This is the motivation for 

investigating the extent and direction of bias that may affect the results of studies like NINFEA. 

Research Paper I addresses the issue of the quantification of the bias from a theoretical perspective 

while Research Paper II deals with considerations specific to NINFEA. The Book Chapter addresses 

methodological issues about internet-based studies and discusses examples of the use of the internet 

in the context of different types of epidemiological designs.

61



Become aware of the 
study and volunteer

^  Unintentional 

Have access to the internet

t Intentional

Italian pregnant women

Figure 4.2: Selection into the web-based NINFEA birth cohort.

Participation in web-based studies is undoubtedly associated with socioeconomic status, as observed for 

the NINFEA birth cohort (Pizzi et al., 2012). However conducting cohorts studies in specific subgroups 

o f the source population (intentional selection) is an approach frequently used in epidemiology due to 

its numerous advantages, such as' better follow-up rates, increased study feasibility and sample size as 

well as potentially better control of confounding. The British Doctor Study is a typical example of 

such a study design (Doll et al., 2004). Moreover unintentional non-representativeness may occur in 

every cohort study, even those based on random sampling from the source population, due to refusal 

to participate or other reasons, such as unsuccessful contact. This is the case of the Danish National 

Birth Cohort, whose overall participation rate is 31%, with women of low socioeconomic status strongly 

unrepresented (Jacobsen et al., 2010).

The concern thus should be whether correct scientific inference can be drawn from non-representative 

samples, and this is the topic of the Commentary included in this chapter. This issue has occasionally 

prompted rather heated debates, as in the case of the two members of the US National Children’s 

Study Steering Committee, who vacated their position when the sampling design was changed to 

recruit participants from offices o f physicians instead of from the general population (Chi, 2012). The
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major criticism usually raised against the use of selected samples is the potential bias in the exposure- 

outcome association o f interest. This may happen in cohort studies -  where the outcome occurs after 

participant selection into the study -  if both the exposure o f interest and a risk factor for the outcome, 

which are independent in the general population, affect the probability of selection and thus become 

associated in the selected sample. Research Paper I (Pizzi et al., 2011) investigates this setting. Under 

this scenario the restriction will lead to biased estimates of the exposure effect unless the risk factor for 

the outcome (which in this context would play the role of a confounder) is known and measured so that 

analyses can be carried out conditioning on such variable. An alternative scenario is one in which the 

exposure of interest and the risk factor are already associated in the source population. In this situation 

the analysis of the selected sample may be affected from increased or reduced confounding due to this 

risk factor depending on the magnitude and direction of their association in the source population 

and o f the associations of both exposure o f interest and risk factor with the selection process. As 

before valid inference is achieved if the confounder is controlled for, and this applies whether or not 

the cohort is randomly selected from the source population or from a restricted subgroup. A special 

case of this latter scenario, particularly relevant if the confounder is unknown or unmeasured, is when 

the association induced by the sample selection process between the exposure and the confounder 

perfectly compensates the association originally present in the population, so that the estimate of 

the exposure-outcome relation obtained in the selected sample will be unbiased. This issue is related 

to violations of what in graph theory is known as faithfulness (Glymour, 2006). It follows that it is 

difficult to predict whether control of confounding can be better achieved in the source population 

or in its restricted version, as each o f them will have its own confounding pattern. Obviously these 

conclusions cannot be applied to other types o f selection, such as informative loss to follow-up, or to 

other study designs, such as case-control studies, where the outcome may affect selection.

The Research Papers, Commentary and Book Chapter included in this thesis chapter use the termi

nology of Directed Acyclic Graphs (DAGs) to illustrate the problems potentially arising from selecting 

participants from a restricted source population or from self-selection of study participants. For this 

reason the next section gives a brief introduction to DAGs in the context o f sample selection in cohort 

studies.
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4.1.1 Directed Acyclic Graphs

Causal diagrams are a powerful tool to integrate statistical and subject-matter information and ex

plicitly draw assumptions about the causal relations existing among the variables o f interest. These 

graphs allows the researchers to distinguish between causal effects and associations, to identify po

tential sources of bias in the estimate of the causal effect o f interest and to choose an appropriate 
analytical strategy.

A DAG is a graph made of nodes, representing variables, and edges (arrows) between nodes indicating 

the direction of the causality. These graph are called “directed” since each edge is a single-headed 

arrow and “acyclic” since they contain no cycles (no variable causes itself) (Greenland et al., 1999; 

Pearl, 1995, 2000). A DAG is causal when all common causes of each pair of nodes are included in tiie 

graphs (Hernan and Robins, 2012). For example, Figure 4.3(a) represents a DAG where E causes D 

and there are no common causes for these variables, alternatively these other causes would need to be 

depicted in the graph. A path is defined as sequence of edges (pointing in any directions) connecting 

one variable to another (see Figure 4.3). Two types of path exist: a directed path is a path between any 

two variables where all arrows are single-headed and point ‘forwards’ (see Figure 4.3(c)); a backdoor 

path is a path between any two variables, e.g. E and D, that starts with an arrow pointing to the first 

(e.g. path E -C -D  in Figure 4.3(5)). Associations are transmitted along paths, with directed paths 

being causal and backdoor paths being associational. Nodes in a path can take various names, in 

particular they can be defined as parent, child, ancestor and descendant. In Figure 4.3(c), for example, 

E is the parent of C, D is the child o f C, E is the ancestor o f D and D is the descendant of E. A 

collider is a node within a path with at least two parents: for example C is a collider in Figure 4.3(d). 

Conditioning on a collider or on a child/descendant of a collider, induces an association (spurious 

association) among its parents. This is the case of Figure 4.4, in which E and D become associated 

(represented by a dashed line) because of the conditioning (represented by a square around C) on the 

collider C. More precisely, if E and D are independent in the population (as in Figure 4.4), they will 

not be necessarily independent within strata o f C; while if they are not independent, their association 

might be altered within strata o f C. Finally a path can be open or blocked (closed). In particular
‘ I acknow ledge th e lecture by Rhian D aniel entitled “A n  in troduction  , . r

(M od u le  o f  A dvanced  Statistical M ethod s in E pidem iology, L S H T M  M asters P r o g S L l H ^ S ^ f
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a path is blocked if it contains at least one collider and we do not condition on it nor on any of its 

descendant (as in Figure 4.3(d)), or if we condition on at least one node in the path which is not a 

collider (e.g. we block the path of Figure 4.3(b) conditioning on C). A path is open if it is not blocked, 

with open paths transmitting associations and blocked paths not transmitting associations.

(a) E --- > D (b) E <---  C — > D

(c) E --- > C — > D (d) E --- * C <—  D

Figure 4.3: Some simple DAGs.

65



Figure 4.4: The consequence of conditioning on a collider. The dashed 
induced by conditioning on C (represented by a square around C). line represents an association

It follows that in order to have an unbiased estimate of the relation of interest (causal effect) backdoor 

paths (i.e. association^ paths) have to be blocked, while directed paths (i.e. causal paths) have to 

be open. Criteria to identify variables to be controlled for in order to obtain an unbiased estimate 

(that is to avoid confounding for the exposure-outcome association of interest) have been suggested. 

In 1995 Pearl (Pearl, 1995) stated that there is no confounding if, after removing all edges out of the 

exposure (E), there are no unblocked backdoor paths from E to D (the outcome). In 1999 Greenland 

(Greenland et ai, 1999) described the relevant algorithm in the epidemiological literature as follows: a 

set of variables Z. none of which are descendants of the exposure (E) or the outcome (D), is sufficient 

to control for confounding if, having removed all edges pointing out of E and having linked all pairs 

o f variables that share a child or descendant in Z, there is no unblocked path from E to D which does
not pass through Z.

The spurious associations induced by conditioning on .  collider „  the ^  c|(,ment for 

sample selection in epidemiological studies, and in this context i, has been referred to os collide, bias 

Causation and association are two different concepts, with causal relations, as .heady stated above 

being directed, while associations being the sum of directed and undirected paths. Moreover while 

sample associations can be directly observable, causal effects cannot. Informally, there is bias when 

the true causal effect is different from the corresponding estimate. particular when exposure and 

on,con,e are associated in the sample, but the null hypothesis o f no causal effect holds we say that
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there is “bias under the null” . Under the assumption of no measurement error, the latter can derive 
from two causal structures:

1. Common causes: this is the scenario depicted in Figure 4.3 (b), where the exposure and the

outcome share the common cause C. Under this structure E and D will be associated even if not 

causally related.

2. Conditioning on a common effect: this is the scenario shown in Figure 4.4, where E and D become 

associated within strata of C.

Most epidemiologists refer to the former bias as confounding, while to the latter as selection bias. 

However the bias resulting from conditioning on a common effect (structure 2 above) should be more 

generally called collider bias. As extensively discussed in all the publications included in this chapter, 

collider bias may induce confounding, and this is the reason why, in the context of cohort studies, 

the bias induced by the selection process (e.g. restriction of the source population) in the exposure- 

outcome association of interest has been defined with different terms. While some researchers refer to 

this as selection bias (Hernan et al., 2004), others defines it as a special case of confounding (Rothman 

et al., 2008). Those arguing in favour o f the term “selection bias” distinguish between the bias that 

arises from the presence of a common cause of exposure and outcome, i.e, confounding bias (structure 1 

above), from the bias due to the confounding induced by conditioning on a collider (structure 2 above), 

that is by the restriction of the source population. In this framework the use of the term “collider bias" 

or “collider-stratification bias” , which derives from the causal diagrams terminology (Greenland, 2003), 

is a formal way to overcome the overlap between selection bias and confounding. Clearly both these 

causal structures result in lack of comparability between the exposed and the unexposed. A  simple 

DAG representing this latter situation (i.e. collider bias inducing confounding in the E-D relation) 

is shown in Figure 4.5. This DAG is the starting point o f Research Paper I and o f the following 

publications.
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Figure 4.5: Confounding induced by conditioning on a collider. The dashed line represents an associ
ation induced by conditioning on C (represented by a square around C).
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ABSTRACT
Background Participants in cohort studies are frequently 
selected from restricted source populations It has been 
recognised that such restriction may a ffect the study 

validity.
Objectives To assess the bias that may arise when 
analyses involve data from cohorts based on restricted 
source populations, an area little  studied in quantitative 

terms.
Methods Monte Carlo simulations were used, based on 
a setting where the exposure and one risk facto r for the 
outcome, w hich are not associated in the general 

population, influence selection into the cohort. All the 
parameters involved in the simulations (ie, prevalence 

and effects of exposure and risk factor on both the 

selection and outcome process, selection prevalence, 

baseline outcome incidence rate, and sample size) were 

allowed to  vary to  reflect real life settings.
Results The simulations show that when the exposure 
and risk factor are strongly associated w ith  selection 
(ORs of 4 or 0.25) and the unmeasured risk factor is 

associated w ith  a disease HR of 4, the bias in the 
estimated log HR for the exposure-disease association 
is ± 0 1 5  When these associations decrease to  values 
more commonly seen in epidemiological studies (eg, ORs 

and HRs of 2 or 0.5), the bias in the log HR drops to  just 

± 0.02
Conclusions Using a restricted source population for 

a cohort study w ill, under a range of sensible scenarios, 

produce only relatively weak bias in estimates of the 

exposure—disease associations.

INTRODUCTION
Selection of study subjects from restricted source 
populations according to prespecified criteria is an 
approach that is frequently used in cohort studies. 
The purposes of such restrictions are to enhance 
study feasibility and to increase the prevalence of 
exposure or the completeness of follow-up, thereby 
increasing study validity and precision. Typically 
this may involve recruiting participants from 
a subgroup of the general population, rather than 
sampling directly from the entire general popula
tion. Such subgroups may be defined on the basis of 
occupation, gender, geographical area, birth cohort, 
etc. The British Doctors’ Study1 and the Nurses' 
Health Study,2 occupational cohorts,8 follow-up of 
participants in specific events,-4 analyses restricted to 
specific subgroups of the population, such as non- 
smokers,1' ancillary analyses of non-randomised 
exposures in randomised studies,6 and follow-up 
studies of screening attendants' are all examples of 
cohort studies based on restricted samples.

Undoubtedly, restriction of the source popula
tion may introduce problems of generalisability of 
the study findings, but this also applies to studies 
that are based on the general population (eg, most 
cardiovascular epidemiology involves cohort studies 
in specific communities rather than true general 
population samples). We will therefore not consider 
issues of generalisability here; rather, our focus is on 
whether using a restncted source population may 
affect the validity of the exposure—disease associ
ations.8 v In particular, bias will be introduced if 
a risk factor for disease is not associated with 
exposure in the general population but is associated 
with exposure in the study population, as a result 
of the selection process Such biases can lie repre
sented using directed acyclical graphs (DAGs).8 1 1' 
The example depicted in figure 1A represents 
a population in which there is no association 
between an exposure (E) and a disease (D); there is 
another risk factor (R) for the disease, but this 
is not a source of confounding as it is not associated 
with the exposure. However, E and R both affect 
the likelihood of being selected (S=l) into the 
study. When analyses are restricted to the selected 
subjects, there is an inherent conditioning on S (as 
represented by a square around S in figure IB), 
which leads to a spurious association between 
E and R (represented by a dashed line). Under this 
scenario, even if E has no causal effect on D, the 
backdoor path E—R—D is opened and the estimated 
associational RR between the exposure and the 
disease (ARRnC) may differ from the causal RR 
(CRRde)- This could, for example, be the situation 
in a cohort study of the effect of obesity (E) on 
breast cancer (D) based on breast cancer screening 
participants (the restncted source population). In 
this example, obese women (E) are less likely 
to attend the screening programmes,14 while 
women wtth a family history of breast cancer (R) 
are more likely to participate Among those who 
attend screening (le, conditioning on those with 
S=l), obesity (E) and family history of breast 
cancer (R) become positively correlated. In fact an 
obese woman is more likely to have a family 
history of breast cancer within the selected sample 
than in the general population, because otherwise 
she may not have participated in the screening 
programme. As a result, family history of breast 
cancer is a confounder of the obesity—breast cancer 
association if studied among screening attendees, 
but is not—or to a lesser extent—in the general 
population.

This type of bias has been extensively discussed 
in the causal inference literature from a theoretical 
point of view.s 9 Hernan and colleagues’ 2004 paper
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Figure 1 Diagram of a cohort based on a selected sample. (A) In the 
population the exposure o f interest (E) is not associated w ith  the disease 
o f interest (D) that is caused by a risk factor |R). Both E and R affect the 
probability of being selected (S) as a member of the cohort. (B) The 
s tudy is carried out in the selected sample, and therefore there is an 
inherent conditioning on S (a box around a variable means conditioning 
for that variable) w hich generated an induced association between E and 
R (represented by a dashed line).

on selection bias provides the conceptual framework and indi
cates that if the risk factor associated with the selection process 
is known and measured, it is possible to adjust for selection bias, 
whereas if the nsk factor is unmeasured, the effect estimates 
may be biased. However, although the theoretical basis of 
selection bias is clear, there have been few attempts to quantify 
the likely strength of such biases One exception is that of 
Greenland,15 who studied the setting of figure IB with dichot
omous exposure and outcome variables, employing methods 
originally developed to quantify the impact of unmeasured 
confounding.1'' He calculated the likely maximum strength of 
the bias in the estimation of the E—D association in the S=1 
stratum as a function of the ORs corresponding to the true 
associations depicted in figure IB (ie, ORSn, ORSr, ORdr). 
However, it is not clear how these results apply to cohort 
studies. Because of the increasing frequency of cohort studies 
based on selected populations, such as the internet-based birth 
cohort studies based in Italy (NINFEA cohort) and New Zealand 
(ELFS),1' quantifying the potential biases involved in analysing 
such data is timely and relevant.

Our aim is therefore to study the extent of these biases. We 
use simulations to mimic a vanety of cohort restrictions and 
disease settings and examine the consequent bias in the esti
mated exposure hazard (or rate) ratio (HR) of disease. We then 
discuss these results in terms of whether, and under what 
circumstances, the resulting selection bias is serious enough to 
strongly bias the exposure effect estimates. For simplicity, we 
will assume throughout the paper that there is negligible 
random variation, that all variables are measured without error, 
and that there is uninformative censoring.

SAMPLE SELECTION AND OISEASE RISK FACTORS
As previously recognised.* ,s a fundamental charactenstic of 
selection bias in restricted cohort studies is that the selection 
process makes a disease nsk factor, which may not be associated 
with the exposure in the general population, become associated 
with the exposure among the study population and therefore act 
as a confounder.

408

Confounders in the general population and risk factors that 
become confounders in a restricted source population are usually 
indistinguishable when the study is analysed. Although typi
cally some disease risk factors (ie, potential confounders) are 
known a priori, it is seldom known whether these are associated 
with the exposure of interest in the specific population in which 
the study will be carried out. Both in general population-based 
and restricted cohorts, therefore, researchers attempt to collect 
information on all known and suspected important risk factors 
of the disease in the population that they are studying, regard
less of their expectations about whether these are associated 
with the exposure or not. The example of the association 
between smoking and socioeconomtc position (SEP) illustrates 
this point well. Depending on the population and the calendar 
period, SEP can be positively or negatively associated, or not 
associated at all, with smoking. Researchers aiming to estimate 
the association between smoking and mortality will always 
attempt to collect information on SEP and, in most instances, 
will control for it, irrespective of whether the confounding effect 
of SEP is due to a real association between SEP and smoking in 
the general population or a spurious association caused by the 
sample selection process.

Another possible consequence of the selection mechanism is 
a change in magnitude, and in extreme cases direction, of 
the confounding effect of a risk factor. This may occur if the 
strength of the association between the risk factor and the 
exposure in the selected sample differs from that originally 
present in the general population. For example, when two 
(parent) variables influence a third (child) variable in the same 
direction, conditioning on the child variable likely leads to 
a negative association between the parent variables.8 Thus, if an 
exposure and a confounder influence the selection process in the 
same direction, the original association between exposure and 
confounder will be reduced in the subset of those who partici
pate if they were originally positively associated, or increased if 
their original association was negative. For example, in many 
populations smoking and physical exercise are negatively asso
ciated. In a hypothetical study restricted to blood donors, who 
typically have a healthy lifestyle and thus smoke less and exer
cise more than the average individual in the general population, 
the sample selection would add a positive association between 
smoking and physical exercise. Therefore, the original negative 
association present in the general population would be, if 
anything, attenuated among blood donors.

In the next section, we use simulations to quantify the likely 
extent of selection bias arising from the use of restricted cohorts.

QUANTIFICATION OF THE BIAS 
Methods
We conducted Monte Carlo simulations of alternative settings 
corresponding to the scenario of figure IB to quantify the 
resulting bias in the estimation of the E—D effect when condi
tioning on S=1 and not adjusting for R.lv The generation 
process of the four variables of figure IB is described below.

We generated E and R as marginally independent binary 
vanables, with prevalence, respectively Pt and PR. initially set 
equal to 0.5 in the source population. They were later allowed to 
decrease to 0.25 for Pe and to 0.1 for P r , in order to investigate 
scenarios more frequently addressed by epidemiologists.

The binary variable S was generated using a logistic regression 
model with baseline prevalence, Ps, equal to 0.5 and with the 
ORs for the explanatory binary vanables E and R taking values 
0.25, 0.33,0.50, 2, 3 and 4. Specifically, with ots indicating the log
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(odds) of S=1 among the non-exposed, Pse indicating the log 
(OR) corresponding to exposure E and Psr indicating the log 
(OR) corresponding to R, the generating model was:

logit {S = 1) = a s + fistE + 0sRR (1)

A more complex model that included an interaction term 
between E and R was also considered:

logit (S =  1) =  a s +  fiseE +  $ sRR +  f i^ E  *R (2)

with OR.nteo corresponding to exp(/Jintcr), set at values 0.5 or 2. 
The interaction term was introduced to examine more realistic 
selection settings. For example, in the first empirical demon
stration of Berkson's bias, Roberts and colleagues found that not 
only do chronic conditions increase the chance of hospital
isation. but they often also interact more than multiplica- 
tively.20

We generated time to the outcome D assuming a constant rate 
A—that is, we assumed that time to event followed an expo
nential distribution.21 The baseline rate A0 was set equal to 0.01, 
0.03 or 0.06 events/year, with administrative censonng time set 
at 5 years. The rate A was allowed to be affected only by R, with 
HRdr taking values 0.25, 0.33, 0.50, 2, 3 and 4, while we 
assumed no E-D  association—that is, HRDt= l .  Specifically, 
with 0de indicating the log(HR) of D for the exposure E and 0DR 
indicating the log(HR) of D for the risk factor R, the log rate 
function for D, log(A), was defined as:

log( A) =  logAo +  0PI-E + PdrR (3)

with 0de fixed at 0.
We generated a total of 1000 Monte Carlo simulated datasets 

of 5000 subjects for each combination of the parameters 
described above. We also used a size of 2500 subjects, increasing 
the number of simulations (n=2000), to deal with the greater 
impact of random variation.

In each simulated dataset, we estimated two main parameters 
in the stratum S=1 (which sample size varies as a consequence 
of the selected parameters for the selection process): the asso
ciation between E and R (ORer) and the association between E 
and D (HRqe) which is induced by the selection process. The 
estimate of HRde was obtained fitting a Cox proportional 
hazards regression model with no adjustment for R.23 We then 
calculated the bias in the E-D association as the difference 
between zero, that is the true value of /?DE, and the logarithm of 
the estimated HRde- For each scenario, we summansed the bias, 
and the estimated values of 0de, in terms of means, SD, and 5th 
and 95th percentiles.

Results
We first considered the situation with prevalence of E and R 
both equal to 0.5, ORinter= l  (ie, no multiplicative interaction), 
and Ao=0.03 (the ‘reference scenario’ in table 1). As expected, the 
size of the bias in the estimation of ORde depended on: (i) the 
induced association between the exposure and the risk factor 
(ORer), which increased in absolute terms with the absolute 
size of ORsr and OR$e; and (ii) the magnitude of the association 
between the risk factor and the disease (HRdr). The largest 
values of the bias in the log OR were ±0.15 (table 1, ‘reference 
scenario*), which were reached when OR$e, ORSr and HRDr 
were furthest from the null value (ie. equal to 0.25 or 4). Note 
that in table 1 the range for log(ORnR|s-i) is not symmetrical 
because the magnitude of the association induced by the
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Table 1 Bias in the crude estim ation of the E -D  association by 
selected values o f the  data generating parameters; results from  1000 
sim ulations

N PlE =  l| P i» = t i
Baseline 
rate of D Interaction

Mean |llH 
range*

Mean E D 
bias range |

Reference scenario

5000 0.5 0.5 0.03 No -0 .31 ; 0.45 0.15; 0.15
Alternative scenarios

5000 0.5 0.5 0.03 Yes 0.98; 0.74 0.24; 0.27
5000 0.25 0.5 0.03 No 0.31; 0.45 0.15; 0.15
5000 0.5 0.5 0.01 No -0.31; 0.45 -0 .1 5 ; 0.16
5000 0.5 0.5 0.06 No 0.31; 0.45 -0 .14; 0.15
2500$ 0.5 0.5 0.03 No 0.32; 0.45 0.15; 0.15
5000 0.5 0.1 0.03 No -0 .3 3 ; 0.45 -0 .1 2 ; 0.07

a[tfn expressed as log(OR). 
t ( ta  expressed as Ioq(HR).
¿Results from 2000 simulations.
E, exposure; R, risk factor. D, disease

selection between E and R also depends on the prevalence of S in 
the population (Ps), with the strongest association obtained 
when Ps=0.5. Supplementary table 1 presents the complete 
results for all combinations of the values of O R .se» O R sr  and 
HRdr The mean bias decreased from ±0.15 to just ±0.02 when 
the three ORs/HRs were equal to 2 or 0.5.

When an interaction term between E and R was included in 
the model generating S, the induced E-R association increased 
considerably (figure 2), up to a log(OR) of 0.98 (table 1, row 2) 
when ORSe and ORSr were equal to 0.25 and the ORinter was 
0.5. The bias increased accordingly, ranging from -0.24 to 0.27 
(table 1, row 2). This situation is equivalent, in terms of induced 
bias, to those involving very strong marginal associations with 
selection. It is clear from figure 2 that the impact of the inter
action is not the same for all the parameter combinations, as the 
magnitude of the induced E—R association is strengthened or 
reduced according to the sign of the interaction term but also to 
the size of the stratum of subjects exposed to both E and R.

Neither the prevalence of the exposure E (table 1, row 3) nor 
the baseline rate for the disease D (table 1, rows 4—5) or the 
sample size (table 1, row 6) affected the extent of the bias. 
Conversely, the prevalence of R, which becomes a confounder of 
the E—D association when S = l, had a non-marginal effect. For 
a given value of the induced E-R association, the bias reached its 
peak when the prevalence of R among the selected subjects (S= l 
stratum) was 0.5. For this reason, when the population preva
lence of R was set equal to 0.1 instead of 0.5, the range of the 
mean bias decreased to (-0.12; 0.07) (table 1, row 7).

DISCUSSION
Conducting cohort studies in a restricted sample of the general 
population may offer several advantages, including more precise 
measurement of the exposure, higher exposure prevalence, 
enhanced feasibility of the study, better control of confounding, 
increased sample size, higher recruitment rates, and a higher 
completeness of follow-up. These advantages should be balanced 
against issues of validity.

In this paper we have shown, via simulations, that the 
possible bias introduced by restriction of the source population is 
usually weak when internal comparisons are carried out within 
the cohort, with a maximum bias in the log(HR) of ±0.15.

These results are in agreement with those of Greenland,15 
who used an analytical approach to quantify the maximum 
selection bias in settings where the outcome risk is rare so that 
the analysis of cohort data can be performed using logistic
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Figure 2 Mean OR of the induced E - R  association in the stratum of 
those selected (S = 1 ) by selected values of the association of the 
exposure (ORSe) and the risk factor (0Rs r) w ith  the selection process 
and of the E - R  interaction (0R ,nfer); results from 1000 simulations.

regression. Our simulations add further insight to these results 
as we examined a wide range of disease and selection parame
ters. including exposure and risk factor prevalence, which 
highlighted their individual role in influencing the extent of the 
bias. Further, we considered settings where exposure and risk 
factor interact when influencing the selection process. Some 
additional points are warranted.

First, the bias is necessarily small when the association 
between the exposure of interest and the selection process is 
relatively weak (ie, 0.5<OR<2). In particular, when the expo
sure-selection OR is equal to 2 or 0.5, while the risk factor- 
selection OR and the risk factor-disease HR are allowed to take 
values up to 4 or down to 0.25, the maximum bias in the esti
mated exposure-disease association is within the ±0.07 range

What wa already know on this subject

a  Baseline selection of participants in cohort studies may affect 
the study validity.

a  This happens when, because of the selection process, the 
confounding effect of an unknown or unmeasured disease risk 
factor is larger in the selected sample than in the general 
population.

What this study adds

► W e conducted Monte Carlo simulations to quantify the likely 
extent of the selection bias affecting the exposure-disease 
association, varying all the parameters involved: prevalence 
and effects of exposure and risk factor on both the selection 
and outcome process, selection prevalence, baseline inci
dence rate of the outcome and sample size.

► The maximum bias is relatively weak (± 0 .1 5  in the log Hazard 
Ratio scale). When scenarios typically seen in epidemiological 
studies were considered the bias in the log Hazard Ratio drops 
to ±0.02.
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(on the log hazard scale). For example, consider the Million 
Women Study, a cohort nested within the breast screening 
programme in the UK.7 From the study carried out to compare 
the characteristics of the study participants with the rest of the 
population (women who attended the screening but did not join 
the study plus not attendants),'^ the participation OR for 
current use of hormone replacement therapy, which is the main 
exposure of interest of the study, was derived. This estimated 
OR was about 1.6. On the basis of this information it is possible 
to assume that, in this cohort, the bias introduced by the 
baseline selection on the estimates of the effect of hormone 
replacement therapy on the outcome of interest would be 
negligible.

Second, selection must be associated with one or more 
unmeasured or unknown disease risk factors in order to intro
duce bias. However, unknown or unmeasured disease nsk factors 
can introduce bias whether or not the cohort is based on the 
general population or a restricted source population; in the latter 
case, the sample selection can either increase or decrease the 
overall bias, with a magnitude and direction difficult to predict if 
there are multiple risk factors involved.24

Third, we have shown that even when all of the associations 
involved in the selection and outcome mechanisms are reason
ably large (eg, all ORs/HRs of 4.0 or 0.25), the prevalence of the 
nsk factor R is about 50% and there is no adjustment for R, the 
resulting bias is relatively weak (ie, ±0.15 on the log scale). 1 his 
is reassuring, as this scenario is rather extreme and very unlikely 
to occur in practice. Besides, a disease risk factor with a 50% 
prevalence and a disease HR of 4 0 would have an attributable 
fraction of 60% and is therefore unlikely not to have been 
known and measured when a study is planned.

The scenarios considered in our simulations were restricted to 
binary exposure and binary risk factor and assumed no associ
ation between the exposure and the nsk factor in the general 
population. A limitation is that we examined only the case of 
a single unmeasured determinant of the disease that also influ
ences the selection process. However, we believe it is unlikely 
that multiple and independent important disease risk factors 
would affect the sample selection. It is indeed reasonable to 
consider R as a vector resulting from the combination of a set of 
correlated risk factors, all moderately associated with S. Finally, 
we only showed the findings derived from the analyses based on 
the assumption of a null causal association between the expo
sure and the outcome of interest; however choosing a true 
associational value, different from zero would not modify 
the simulation results and therefore our conclusions.

We conclude that using a restricted source population for 
a cohort study will, under a range of sensible scenarios, produce 
only weak bias in estimates of the exposure-disease associa
tions. On the other hand, the use of such restrictions may 
increase the response rate and the exposure prevalence, as well as 
being the only feasible approach in many circumstances.
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Supplementary Table 1: Mean and Standard Deviation (SD) o f  the Bias in the Crude Estimation o f 

HRde by Selected Values o f the ORSh, ORSr and HRor Parameters: Results 
From 1,000 Simulations

O R sf O R s r H R „ , M e a n  b ia s  ( P m ) S D  b ia s  ( P n r ) P ( E - l l S - l ) P ( R - 1 | S - 1 ) p ( d = i i s - d

0 .25 0 .25 0 .25 - 0 .049 0 .192 0 .270 0 .2 7 0 0 .112
0 .25 0 .25 0.33 - 0 .038 0 .203 0 .2 7 0 0 .2 7 0 0.115
0 .25 0 .25 0.5 - 0 .033 0 .1 9 4 0 .2 7 0 0 .2 7 0 0.121
0 .25 0 .25 2 0 .053 0.161 0 .2 7 0 0 .2 7 0 0.171
0 .25 0 .25 3 0 .073 0 .155 0 .2 7 0 0 .2 7 0 0 .200
0 .25 0 .25 4 0 .100 0 .142 0 .2 7 0 0 .270 0 .224
0 .25 0 .5 0 .25 -0 .0 4 0 0 .1 8 7 0 .272 0 .388 o . t o o
0 .25 0 .5 0 .33 - 0 .034 0 .182 0.271 0 .388 0.104
0 .25 0.5 0.5 - 0 .012 0.181 0 .272 0 .388 0.113
0 .25 0 .5 2 0 .034 0 .145 0 .272 0 .389 0.185
0 .2 5 0 .5 3 0 .054 0 .1 2 9 0 .272 0 .388 0 .226
0 .25 0.5 4 0 .060 0 .115 0 .272 0.388 0.261
0 .25 2 0.25 0 .089 0 .1 7 4 0 .3 1 4 0 .588 0 .079
0 .25 2 0.33 0 .070 0 .163 0 .3 1 4 0 .588 0 .0 8 6
0 .25 2 0.5 0 .044 0 .153 0 .3 1 4 0 .588 0 .100
0 .25 2 2 - 0 .033 0.101 0 .3 1 4 0 .588 0 .209
0 .25 2 3 - 0 .053 0 .089 0 .3 1 4 0 .588 0.271
0 .25 2 4 - 0 .060 0 .080 0 .313 0 .588 0 .323
0 .25 4 0.25 0 .1 5 0 0 .158 0 .3 5 0 0 .650 0 .073
0 .25 4 0.33 0 .114 0 .145 0 .3 5 0 0 .650 0.081
0 .25 4 0.5 0 .074 0 .1 4 4 0 .3 5 0 0 .6 5 0 0 .0 9 6
0 .25 4 2 -0 .0 5 6 0 .090 0 .3 5 0 0.651 0 .217
0 .25 4 3 - 0.091 0 .078 0 .3 4 9 0 .6 5 0 0 .285
0.25 4 4 - 0 .1 0 9 0 .072 0 .3 5 0 0 .6 5 0 0 .342
0.5 0 .25 0.25 - 0 .033 0 .166 0 .388 0 .272 0.111
0.5 0 .25 0.33 - 0 .032 0 .1 6 0 0 .3 8 8 0 .272 0 .115
0.5 0 .25 0.5 - 0 .015 0 .159 0 .3 8 9 0.271 0.121
0.5 0.25 2 0 .033 0 .133 0 .3 8 8 0 .2 7 2 0 .172
0.5 0 .25 3 0 .048 0 .1 2 4 0 .3 8 9 0 .272 0 .200
0.5 0 .25 4 0 .056 0 .116 0 .388 0 .272 0.225
0.5 0.5 0.25 -0 .0 2 7 0 .158 0 .3 9 0 0.391 0 .099
0.5 0 .5 0 .33 - 0 .028 0.151 0.391 0.391 0 .104
0.5 0.5 0.5 - 0 .0 2 0 0 .1 4 7 0 .3 9 0 0 .390 0 .113
0.5 0.5 2 0 .019 0 .1 1 6 0 .3 9 0 0 .390 0 .1 8 6
0.5 0.5 3 0 .0 2 6 0 .105 0 .3 9 0 0.391 0 .227
0.5 0.5 4 0 .0 3 6 0 .0 9 8 0 .3 9 0 0 .390 0.261
0.5 2 0.25 0.041 0 .145 0 .4 1 7 0 .583 0 .079
0.5 2 0.33 0 .037 0 .134 0 .417 0 .584 0 .087
0.5 2 0.5 0 .023 0.131 0 .4 1 7 0 .583 0 .100
0.5 2 2 - 0 .013 0 .0 8 7 0 .417 0.583 0 .209
0.5 2 3 - 0 .0 2 6 0 .0 8 0 0 .4 1 6 0 .583 0 .269
0.5 2 4 -0 .0 3 3 0 .0 7 2 0 .417 0 .583 0.321
0.5 4 0.25 0.071 0.141 0 .435 0 .6 3 7 0 .074
0.5 4 0.33 0 .0 5 9 0 .134 0 .435 0 .638 0.081
0.5 4 0.5 0.041 0 .1 1 9 0 .435 0 .6 3 8 0 .096
0.5 4 2 -0 .0 2 8 0 .0 8 0 0 .4 3 4 0 .637 0 .215
0.5 4 3 - 0 .052 0 .072 0.435 0 .638 0.281
0.5 4 4 -0 .0 5 9 0 .065 0 .434 0 .638 0 .338
2 0.25 0.25 0 .050 0 .1 3 9 0 .588 0 .314 0 .107
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2 0.25 0.33 0.041 0.135 0 .588 0 .313 0.111

2 0.25 0.5 0 .0 2 6 0 .130 0 .5 8 8 0 .314 0 .119

2 0.25 2 -0.031 0 .107 0 .5 8 8 0 .314 0 .177

2 0.25 3 -0 .062 0 .099 0 .588 0 .3 1 4 0 .2 0 9

2 0.25 4 -0 .077 0 .094 0 .5 8 8 0 .314 0 .238

2 0.5 0.25 0.031 0 .129 0 .583 0 .417 0 .097

2 0.5 0 .33 0 .030 0 .129 0 .5 8 4 0 .417 0.101

2 0.5 0 .5 0 .022 0 .118 0 .583 0 .417 0.111

2 0.5 2 -0 .012 0 .092 0 .583 0 .417 0 .189

2 0.5 3 - 0 .032 0 .082 0 .583 0 .417 0.232

2 0.5 4 - 0 .042 0 .078 0 .583 0 .4 1 6 0 .269

2 2 0.25 - 0 .033 0 .125 0 .557 0 .557 0 .082

2 2 0.33 - 0 .026 0.121 0 .557 0 .5 5 6 0 .089

2 2 0.5 - 0.021 0.111 0 .557 0 .5 5 6 0 ,102

2 2 2 0 .018 0 .079 0 .5 5 7 0 .557 0 .206

2 , 2 3 0 .026 0 .069 0 .558 0 .557 0 .263

2 “  2 4 0.031 0 .063 0 .557 0 .557 0 .313

2 4 0.25 - 0 .069 0 .119 0 .545 0.591 0 .0 7 9

2 4 0 .33 -0 .0 4 9 0.111 0 .5 4 4 0 .592 0 .086

2 4 0.5 - 0 .029 0 .106 0 .545 0.591 0 .099

2 4 2 0 .030 0 .076 0 .545 0.591 0 .210

2 4 3 0.043 0 .065 0 .545 0 .592 0 .272

2 4 4 0 .049 0 .059 0 .545 0.591 0.324

4 0.25 0 .25 0.101 0.125 0 .650 0 .3 5 0 0.103

4 0.25 0.33 0 .089 0 .126 0 .650 0 .3 5 0 0.108

4 0 .25 0.5 0 .060 0 .122 0 .6 5 0 0 .3 5 0 0 .116

4 0.25 2 - 0 .0 8 0 0 .1 0 0 0 .6 5 0 0 .350 0.181

4 0.25 3 -0 .1 2 0 0 .095 0 .6 5 0 0 .350 0.217

4 0.25 4 - 0 .149 0 .087 0 .6 5 0 0 .3 5 0 0 .249

4 0 .5 0 .25 0 .059 0 .1 2 9 0 .6 3 8 0 .435 0.095

4 0.5 0 .33 0 .049 0 .122 0 .638 0 .435 0 .100

4 0.5 0 .5 0 .034 0 .115 0 .6 3 7 0 .435 0 .110

4 0.5 2 -0 .0 3 6 0 .0 8 9 0 .638 0 .435 0 .192

4 0 .5 3 - 0 .056 0 .079 0 .6 3 7 0 .435 0.236

4 0 .5 4 -0 .0 7 4 0 .072 0 .638 0 .4 3 4 0.275

4 2 0 .25 -0 .0 6 2 0 .117 0.591 0 .544 0 .084

4 2 0 .33 - 0 .043 0 .1 1 6 0.591 0 .545 0 .090

4 2 0.5 - 0.031 0 .102 0 .5 9 2 0 .545 0.103

4 2 2 0 .028 0 .075 0 .592 0.545 0.205

4 2 3 0.045 0 .0 6 6 0.591 0 .545 0.261

4 2 4 0 .055 0 .064 0.591 0 .5 4 4 0.309

4 4 0 .25 - 0 .104 0 .1 1 4 0 .573 0 .572 0 .080

4 4 0 .33 - 0 .085 0 .114 0 .572 0 .573 0.088

4 4 0.5 - 0 .054 0 .1 0 6 0 .573 0 .572 0.101

4 4 2 0 .050 0 .074 0 .572 0 .5 7 2 0 .208

4 4 3 0 .076 0 .063 0 .572 0 .572 0.267

4 4 4 0 .089 0 .059 0 .573 0 .573 0 .318
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4.2.1 Addendum to Research Paper I

Continuous Outcome

The scenarios investigated in Research Paper I were restricted to a binary outcome. Below additional 

results from settings with continuous instead of a binary outcome are presented.

Monte Carlo simulations of alternative settings corresponding to the scenario of Figure lb  o f Research 

Paper I were conducted. Again, E and R were generated as marginally independent binary variables, 

with prevalence set equal to 0.5 in the source population. The binary variable S was generated using 

a logistic regression model with baseline prevalence equal to 0.5 and with the ORs for the explanatory 

binary variables E and R, ORSb and ORs r , each taking values 0.25 and 4. The situation in which 

there is no association between the exposure and the selection (ORSE =  1) was also considered. The 

continuous outcome D was simulated to have a normal distribution with mean 3 (aD) to mimic the 

distribution o f the birth weight (in kg) o f Caucasian babies. The outcome was allowed to be affected 

both by R, with taking values 1 and 0.5 and by E, with 0DE taking value 0 or 0.5 according to 

the following model:

E(D) — cap + PdeE + PdrR + e (4

with e normally distribute with mean 0 and SD equal to 1.

In each simulated dataset, we estimated the marginal association between E and D (¡3DE) in the 

stratum S = l, i.e. the subset of the study participants defined by the selection process. This is obtained 

by fitting a linear regression model of D on E with no adjustment for R. The bias in the E-D association 

was then calculated as the difference between the true coefficient o f E in the marginal regression of 

D on E in the population (0 or 0.5 in this setting) and the estimated coefficient of E in the marginal 

regression of D on E in the sample (that is in the stratum S = l). For each scenario, the bias was 

summarised in terms o f means and SD.

The results are shown In Table 4.1. As observed for the binary outcome, the sire of the bias depended 

on the size o f ORsr and ORSe , and on the magnitude o f the association between the risk factor and the 

disease ((Jon). The largest value o f the bias was -0.1 (corresponding to minus 100 grams), which was
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reached when ORSr, ORSe and fiDR were furthest from the null value. The estimated bias decreased 

to a maximum of -0.05 when ¡¡d r  decreased from 1 to 0.5. Table 4.1 also shows that, assuming no 

association between the exposure and the selection indicator (ORse =  1) and no interaction between 

E and R in their effect on D, there was no bias, both when the scenario of a null association between 

the exposure and the outcome of interest was considered (PDE =  0) and when a true effect o f E on D 

different from the null was considered (/?de =  0.5).

ORse ORsr Pd r Pd e Estim ated Bias(/?DE) SD Bias(/?£)E)

0.5 0 0.03 0.06
0.25 0.5 0.03 0.06

1 0 0.06 0.07
0.25 0.5 0.06 0.07

0.5 0 -0.05 0.04
4 0.5 -0.05 0.04

1 0 -0.10 0.05
0.5 -0.10 0.05

0.5 0 0.00 0.05
0.25 0.5 0.00 0.05

1 0 0.00 0.05
1 0.5 0.00 0.05

0.5 0 0.00 0.04
4 0.5 0.00 0.04

1 0 0.00 0.04
0.5 0.00 0.04

0.5 0 -0.05 0.04
0.25 0.5 -0.05 0.04

1 0 -0.10 0.04
4 0.5 -0.10 0.05

0.5 0 0.04 0.03
4 0.5 0.04 0.03

1 0 0.07 0.04
0.5 0.07 0.04

Table 4.1: Estimated bias in the marginal (with respect to R) estimation o f 0DB by selected values of the 
ORse, ORsr and 0dr parameters: results from 1,000 simulated datasets of 5,000 subjects.
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Missing data, selection bias and non-collapsibility

As stated in the introduction to this Chapter the term “selection bias” is used to indicate several 

types o f bias, including bias arising from missing data mechanisms. The relationship between the 

potential bias that may arise from selection of study participants from a restricted source population, 

as investigated in this thesis, and the issues arising when the aim is to estimate causal effects from 

incomplete data is of special interest. In particular the paper by Daniel et al (Daniel et al, 2012), which 

uses causal diagrams to guide analyses in missing data problems, is o f relevance to further examine 

the scenarios considered in Research Paper I and the additional scenarios investigated in this section. 

In their paper the authors formally extend the backdoor criterion suggested by Pearl (Pearl, 1995) 

and Greenland (Greenland et al., 1999) to incomplete data settings. In particular they show that in 

order to identify the causal effect of an exposure on the outcome in the subset with complete data two 

conditions need to be satisfied (Daniel et al, 2012). Condition 1 is equivalent to the original backdoor 

criterion (as described in section 4.1.1) but applied to an extended causal diagram. This is the original 

diagram to which all parents of the exposure of interest and all parents o f descendants of the exposure 

o f interest (except for parent of the selection/missingness indicator S) are added. The set {S }  U 2  

o f variables that satisfy this extended backdoor criterion includes the variables that block any open 

backdoor path in this extended diagram, where additionally all their common parents are joined by a 

dotted line, as well as the parents of any of their ancestors. Condition 2 is satisfied if, having removed 

in the original causal diagram all arrows into the exposure and having linked any pair o f variables that 

are both parents of a variable in 2  or that share a child which is an ancestor o f a variable in 2 ,  all 

paths from S to D not passing through E are blocked (Daniel et al, 2012)

The extended causal diagram corresponding to Figure lb  o f Research Paper I is shown in Figure 4.6, 

where in the latter the unknown parents of E, Uu have been added. In the setting studied in Research 

Paper I it is not possible to condition on R as this is an unknown risk factor (that is R cannot be 

included in the set Z), thus the backdoor path E-R-D is open and Condition 1 is not satisfied. For the 

same reason the path S-R-D is not blocked and Condition 2 is not satisfied. This setting thus leads, 

in general, to biased estimates o f causal effects.

According to Daniel et al (Daniel el at, 2012) Condition 1 ensures that any association estimated
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Figure 4.6: Extended causal diagram corresponding to Figure lb  of Research Paper I.

between the exposure and the outcome conditional on Z  is causal, while Condition 2 concerns only 

“the intercept” , i.e. the mean or prevalence of D (at the baseline level o f all other variables in the 

model), depending on whether the outcome is continuous or binary. However following personal 

correspondence with the first author, it has transpired that this is not correct. Condition 2 is in 

general needed for an unbiased estimate of all estimands but there are exceptions where Condition 2 is 

not met but certain causal contrasts can be estimated without bias in the selected population for which

S = 1 by COnditi° ning ° nly ° n 0ne such ^ception was seen in the settings with continuous outcome 

and a null effect of E on S reported in Table 4.1. There, Condition 2 is not met and still no evidence 

of bias in the slope parameter was found. This occurs because -  under the assumed parametric model 

for D that did not include any E-R interactions -  the mean outcome difference between exposed and 

unexposed in the full population, i.e. the marginal mean difference (marginal with respect to R), is 

the same as the marginal mean difference in the two strata defined by S=0 and S=1 separately. There 

are two crucial features o f this setting which leads to this: the mean difference is a collapsible contrast 

and there is no E-R interaction. The estimated intercept is always biased, and even the estimated 

contrast would be biased in any other setting, i.e. when the contrast is noncollapsible (eg an odds 

ratio or hazard ratio) and/or when there is an interaction between E and R in their effect on D. The 

association between R and S, and the unavailability o f R, means that intercepts and contrasts are 

marginalised over the distribution of R, which is different in the population and the selected sample
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by virtue of the association between R and S. In the special case of a collapsible contrast and no E-R 

interaction, it does not matter how the marginalisation over R is done. Condition 2 must therefore be 

met when the estimand of interest is not collapsible and/or there is interaction between E and R in 

their effect on D. This is the case, for example, when the outcome is binary and interest focuses on 

the exposure-outcome hazard ratio or odds ratio.

For this reason we revisited the simulations of Research Paper I to consider the scenario of a null 

association between the exposure and the selection indicator (ORSe =  1), both assuming a null 

association between E and D (see Figure 4.7) and assuming a value different from the null (see Figure 

4.8). The extended causal diagrams corresponding to these two scenarios are represented in Figure 4.9 

and 4.10 respectively, with U2 being the unknow parents of the outcome D. According to the algorithm 

suggested by Daniel et al (Daniel et al, 2012) in both settings Condition 1 is satisfied, but Condition 

2 is not.

E

Figure 4.7, Causal diagram o f a study conducted in a «looted sample: a null association between the 
exposure of interest and both the selection indicator and the outcome is assumed.

When it was assumed a null association between the exposure and the outcome, as in Research Paper 

I, the bias resulted to be 0. However this was not the case when a true causal effect different from the 

null was assumed. In particular, we set ORSr equal to either 0.25 or 4, HRdr -  conditional on E -
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Figure 4.8: Causal diagram of a study conducted in a selected sample: the exposure of interest is 
associated with the outcome but not with the selection indicator.

l
E

Figure 4.9: Extended causal diagram o f a study conducted in a selected sample: a null association 
between the exposure o f interest and both the selection indicator and the outcome is assumed.
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K

Figure 4.10. Extended causal dingram of n- study conducted in a selected sample: the exposure of 
interest is associated with the outcome but not with the selection indicator.

equal to either 0.25 or 4, HRDE -  conditional on R -  equal to 2, the baseline rate equal to 0.03, 0.1 

and 0.2 events/year and the administrative censoring time at 5 years. The size of the bias was found to 

increase as the baseline rate increased, reaching a maximum of -0.01 .h en  the baseline rate was equal 

to 0.03, and a maximum of -0.03 and -0.05 when the baseline rate was equal to 0.1 and 0.2 events/year 

respectively. The hazard ratio is noneollapsible and therefore the marginal HRDE (with respect to 

R) is different from the conditional HRDE (conditional on R) even when R is a confound™, with 

the difference increasing as the prevalence o f the outcome increases. Informally the marginal HR is 

equal to the conditional HR integrated over the distribution o f R. The conditional HR is the same 

in the source population and in the selected sample but the distribution o f R is different because R 

affects the selection (see Figure 4.10). It follows that when the conditional HR is integrated over the 

distribution of R to get the marginal HR the resulting effect is different in the source pnpoulation and 

in the sample. However, unde, the null hypothesis (no effect o f E on D) the conditional HR (on the 

log scale) is 0 for all values o f R, both in the population and In the sample. Therefore even if averaging 

over two different distributions of R the marginal HR (on the log scale) with respect to R will also be

0. This Is the reason why the setting depicted in Figures 4.7 leads to unbiased estimates o f the causal 

effect, even when the parameter of interest is noncollapsible.

In summary if the parameter of interest is a collapsible contrast (e.g. a mean or a risk difference), and
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if, conditional on R, is the same at every level of R (thus assuming no interaction between E and R in 

their effect on D), then only the intercept will be biased if Condition 2 fails and Condition 1 holds. In 

contrast whenever the parameter of interest, when calculated conditional on R, depends on R (i.e. E 

and R interact in their effect on D), or whenever the effect of interest is noncollapsible, such as an HR 

(or OR), and is different from the null, then the estimator of the marginal effect (with respect to R) 

in the selected sample will be unbiased for the marginal effect (with respect to R) in the population 

only if, in addition, Condition 2 holds.
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ABSTRACT
Background Several studies have examined the effects 
of sample selection on the exposure-outcome 
association estimates in cohort studies, but the reasons 
why this selection may induce bias have not been fully 
explored.
Aims To investigate how sample selection of the web- 
based NINFEA birth cohort may change the confounding 
patterns present In the source population.
Methods The characteristics of the NINFEA participants 
(n = 1 1051 were compared with those of the wider 
source population— the Piedmont Birth Registry (PBR)—  
(n=36 092). and the association of two exposures 
(parity and educational level) with two outcomes (low 
birth weight and birth by caesarean section), while 
controlling for other risk factors, was studied. Specifically 
the associations among measured risk factors within 
each dataset were examined and the 
exposure—outcome estimates compared in terms of 
relative ORs.
Results The associations of educational level with the 
other risk factors (alcohol consumption, folic acid intake, 
maternal age, pregnancy weight gain, previous 
miscarriages) partly differed between PBR and NINFEA, 
This was not observed for parity. Overall, the 
exposure—outcome estimates derived from NINFEA only 
differed moderately from those obtained In PBR, with 
relative ORs ranging between 0.74 and 1.03. 
Conclusions Sample selection In cohort studies may 
alter the confounding patterns originally present in the 
general population. However, this does not necessarily 
introduce selection bias in the exposure-outcome 
estimates, as sample selection may reduce some of the 
residual confounding present in the general population.

INTRODUCTION
Cohort studies are frequently conducted in selected 
populations, with the study subjects either self- 
selected or selected according to some prespecified 
criteria. The consequence of this selection process 
on the internal validity of the exposure-outcome 
associations has been defined as selection bias,' or 
a special case of confounding,2 and have been 
extensively discussed in the literature. In particular, 
the use of self-selected or restricted populations for 
cohort studies may introduce bias if the selection 
mechanism alters the original (population-level) 
associations between the exposure(s) of interest 
and the other risk factor(s) for the outcome, 
therefore changing the strength and, possibly, the 
direction of confounding.1 2

Several papers have compared the characteristics 
of participants in cohort studies with those of non
participants to assess the representativeness of the 
study sample. ’ Two of these have also evaluated 
the potential effects of the selection process on the 
exposure—outcome estimates of interest within the 
context of birth cohorts.4 s However, none of these 
earlier studies have specifically explored the mech
anisms through which bias can be induced by the 
sample selection process.

In this paper, we aim to examine these mecha
nisms, focusing on comparisons of the confounding 
patterns (ie, the associations among all outcome 
risk factors, including the exposure of interest) for 
the associations of interest in the general popula
tion and in the selected sample.

We will use data from the NINFEA study, an 
established ongoing web-based birth cohort, in 
which study subjects enrol through the internet.12 
It started as a pilot study in the city of Turin 
(capital of the Piedmont Region, Italy) but it has 
been extended, since December 2007, to the rest of 
the country. Recruitment occurs during pregnancy, 
when the women are informed about the study and 
may choose to register on the study website. The 
existence of the study is advertised at hospitals and 
family clinics of selected areas and through websites 
of interest for pregnant women. Undoubtedly the 
NINFEA participants are a selected sample of the 
source population, with participation strongly 
associated with socioeconomic factors.12

We decided to investigate the impact of the 
changes in the confounding patterns due to the 
sample selection on the exposure—outcome associ- 
ational estimates observed in NINFEA, by 
comparing the characteristics of the study partici
pants with those of the wider source population 
(the Piedmont Birth Registry, PBR). Our specific 
objectives were: (1) to explore the frequency of 
selected variables in PBR and NINFEA; (2) to 
compare the associations between the exposure of 
interest and the other risk factors available in the 
sample and in the source population; (3) to formally 
compare the exposure—disease association estimates 
obtained in PBR and in NINFEA; and (4) to examine 
alternative potential mechanisms leading to these 
results using directed acyclic graphs (DACs).1,,-ls

MATERIAL A N D METHODS 
Data

We used the PBR data for the period 2005-08, 
which includes 145 885 pregnancy records, created 
by midwives at the time of the delivery.16
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Theory and methods

Compulsory computerised birth registration was established in 
the whole of Italy in 2001. In Piedmont it is of particularly high 
quality and completeness.17 Records from PBR were linked to 
those from the NINFEA study (data downloaded in July 2010). 
The latter included 1547 singleton pregnancies after exclusion of 
births occurring after December 2008 and those occurring 
outside Piedmont. The date of birth of the mother, the date of 
birth and the sex of the child, and the hospital and ward where 
the delivery occurred were used as (deterministic) linkage key 
variables. The linkage was successful for 1298 (84%) births. We 
further excluded births with gestational age earlier than the 25th 
or later than the 44th week, as well as those with implausible 
birth weights in the PBR data. This led to reducing the original 
dataset to 145496 records, 1295 of which were linked to 
NINFEA. Since most of the NINFEA births occurred in the city 
of Turin and most of their parents were Italian, we further 
restricted the analyses to children born in Turin from Italian 
parents to avoid strata with sparse data. Thus the final PBR 
dataset was substantially reduced (n=36092), unlike the 
NINFEA dataset (n=1105).

The PBR holds information on maternal and child/delivery 
characteristics. In particular, data on parents’ age, educational 
level and occupation were available, together with maternal 
smoking and alcohol consumption during pregnancy as well as 
pregnancy weight gain and intake of folic acid. Information on 
the reproductive history of the mother (ie, parity, previous 
miscarriages and use of infertility treatment) and information 
on reproductive outcomes (ie, type, gestational age. birth size) is 
also recorded in the PBR.

Statistical analysis
In order to assess the impact of selection on the estimate of an 
effect of interest, we examined two outcomes: low birth weight 
for gestational age (LBW( defined as birth weight lower than the 
20th percentile of the internally gestational age-standardised 
distribution) and birth by caesarean section.

We then selected the main potential risk factors recorded in the 
PBR for these two outcomes and examined their prevalence ORs 
of participation in NINFEA. Self-selection or cohort restriction 
may introduce non-negligible bias in cohort studies when the 
exposure-selection OR is ^2  or <0.5.18 In our study, only parity 
and maternal education satisfied this criterion. Thus, we chose 
these two main predictors of participation as the exposures of 
interest and studied them in association with the two outcomes, 
while we treated the other variables—maternal age, weight gain 
dunng pregnancy, consumption of folic acid, alcohol during

pregnancy and history of previous miscarriages—as potential 
confounders. Maternal smoking and use of infertility treatment 
were not considered further as potential confounders because of 
their low population prevalence.

The analyses involved: (1) estimating the Prevalence ORs 
(POR); (2) investigating the effects on the exposure—potential 
confounder associations of restricting the analyses to the 
selected sample; and (3) for each outcome separately, formally 
comparing the estimated exposure—outcome associations 
obtained in the selected sample and in the original population.

For simplicity, all continuous variables were dichotomised. 
Namely, low pregnancy weight gain was defined as a weight 
gain lower than the 20th percentile in PBR (10 kg); young 
maternal age as lower than the PBR median (33 years); and 
maternal parity as nulliparous (ie, no previous live births) 
versus parous. Logistic regression analyses were performed to 
study associations, leading to estimated ORs and corresponding 
95% CIs. For the two outcomes of interest, both the crude 
and the fully adjusted (by all potential confounders) ORs for 
the two exposures were estimated in each dataset. Their 
formal comparison was performed in terms of relative O Rs— 
that is, the ratios of the NINFEA-based OR over the PBR-based 
OR, with CIs obtained as in Nohrcf a l .'s We focused on ORs in 
line with previous publications on self-selection bias4 5 
although results were substantially unchanged when based on 
risk ratios.

RESULTS

Of 36092 delivery records included in the PBR dataset, 1105 
were participants of the NINFEA cohort—that is, a participation 
proportion of 3.1%.

Predictors of participation
The two exposures of interest (maternal education and parity) 
and most of the seven other potential selected risk factors were 
associated with participation in NINFEA. Low parity, high 
educational level and non-smoking during pregnancy were the 
strongest predictors in both crude and mutually adjusted anal
yses (table 1). There was some evidence of effect modification 
between maternal education and age (pcO.OOl), with the OR 
of participation for high education level increasing from 1.9 
among older women (>32 years) to 3.4 among younger ones 
(<32 years). When this interaction was included in the model 
the adjusted ORs for the other factors did not change (data not 
shown).

Table 1 Frequency distribution of potential risk factors and crude and adjusted ORs of participation into 
the NINFEA cohort study__________________________________

Potential risk factors

Frequency 
distribution (%) Effect on participation (3.1%)
PBR NINFEA Crude OR Adjusted OR•  95% Cl

Parity (1 +  ) 43.5 21.2 0.34 0 3 2 0.27 to 0 37
Maternal education (graduate) 181 34.1 2 42 2.30 2 02 to  2 62
Smoking during pregnancy 8 9 3.7 0.39 0.43 0.31 to 0 59
Alcohol during pregnancy 21.5 27.4 1.39 1.32 1 15 to  1.51
Infertility treatment 2.0 3.8 2.00 1.31 0.95 to 1.81
Folic acid intake 80.3 85 8 1.50 1.34 1.13 to 1 60
Maternal age (> 3 2  years) 53 7 58.4 1.22 1.30 1.14 to 1 48
Previous miscarriages 17.5 17.7 1.02 1.10 0 93 to 1 29
Low pregnancy weight gain (<  10 kg) 186 196 1.07 1.10 0.95 to 1 29

•Adjusted for all the other variables in the table.
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Associations between exposures and risk factors
Parity
There is a substantial difference in the distribution of parity 
across the two datasets: about 45% of PBR records involved 
women with parity greater than 0, compared with about 20% in 
the NINFEA study (table 1).

In the PBR population, parity was associated with almost all 
the potential confounders, although ORs were greater than 1.5 
only for maternal age and history of previous miscarriages (table 
2). Findings in NINFEA were generally similar, although the 
association between maternal age and parity was slightly 
stronger (OR=3.17; 95% Cl 2 27 to 4.45 in NINFEA vs 
OR - 2.45; 95% Cl 2.35 to 2.56 in PBR) (table 2).

Maternal education
Maternal education also has a different distribution in the two 
datasets, with more educated women contributing to NINFEA 
(table 1). In PBR, maternal education was strongly associated 
with maternal age (OR=2.09, 95% Cl 1.97 to 2.21) while in 
NINFEA the association with maternal age was weaker 
(OR=1.22, 95% Cl 0.95 to 1.57), and that with folic acid intake 
was stronger (table 3).

Associations between exposures and outcomes
Caesarean section
The upper left side of table 4 reports the crude ORs of caesarean 
section for parity and maternal education, obtained in PBR and 
NINFEA. The estimates obtained from NINFEA are closer to the 
null value than those obtained from PBR, as reflected by relative 
ORs below 1.0. When the ORs were adjusted for all other 
potential risk factors, the estimates from PBR and NINFEA were 
both reduced to a similar extent, leading to substantially 
unchanged relative ORs (table 4).

Low birth weight for gestational age
The crude ORs of LBW for parity were reasonably similar when 
estimated in PBR and NINFEA (relative OR=0.79; table 4). 
When these estimates were adjusted for potential confounders, 
their relative sizes did not change markedly (relative OR=0.74, 
95% Cl 0.49 to 1.13). However, residual confounding should not 
be discounted, as information on a number of known risk factors 
for LBW was not available, and it is therefore hard to predict 
whether the adjusted OR estimate of 0.43 found in NINFEA is 
more or less affected by residual confounding than that of 058  
found in PBR.

High level of education was found to be inversely associated 
with LBW The ORs estimated in PBR and in NINFEA 
were equal, leading to crude and adjusted relative ORs of 1.0 
(table 4).

Table 2 Crude associations (OR and 95% Cl) of parity (parous vs 
nulliparous) with other potential risk factors in the Piedmont Birth 
Registry (PBR) population and among the NINFEA participants

Potential risk factors

Parity (1 +  vs 0)

PBR
OR (95% Cl)

NINFEA
OR (95% Cl)

Alcohol during pregnancy 0.92 (0.87 to 0.97) 1 08 (0.78 to  1.49)

Folic acid intake 0.77 (0.74 to 0.82) 0 89 (0 59 to  1.33)

Maternal education (graduate) 1.11 (1 05 to  1.17) 1 24 (0 92 to  1.68)

Maternal age (> 3 2 ) 2.45 (2.35 to  2.56) 3.17 (2.27 to  4.45)

Low pregnancy weight gain (<  10 kg) 1 .33(1 26 to  1.40) 1.26 (0.89 to  1.79)

Previous miscarriages 1.67 (1.58 to  1.76) 1 59 (1.12 to  2.26)
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Table 3 Crude associa tions (OR and 95% C l) of m aterna l education 
w ith  o ther p o te n tia l risk  fac to rs  in the  P iedm ont B irth  R egis try  (PBR) 
population and am ong the  NINFEA partic ipan ts_______________________

Maternal education (graduate vt 
non-graduate)

PBR NINFEA
Potential risk factors OR (95% Cl) OR (95% Cl)

Alcohol during pregnancy 1 09 (1 02 to 1 16) 1 03 (078 to 1.36)
Folic acid intake 1.01 (0 95 to 1.08) 1 44 (09 9 to 2.10)
Parity I t  + | 111 (10 5 to 1.17] 1 24 (092 to 1 68)
Maternal age (> 3 2  years) 2 09 (1.97 to 2.21) 1.22 (0.95 to 1.57)
Low pregnancy weight gain (< 1 0  kg) 101 (09 4 to 1.08) 102 (075 to 1 40)
Previous miscarriages 0 9 5 (08 9 to 1 02) 0 85 (061 to 1 18)

PBR, Piedmont Birth Registry.

OAGs illustrating the effect of changes in the confounding 
pattern due to sample selection on bias
In a web-based cohort study, such as NINFEA, the sample 
selection process is driven by two main mechanisms: (1) the 
restriction of the source population to internet users; and (2) the 
decision to participate For simplicity we will focus here only on 
the latter mechanism; however, this line of reasoning can be 
generalised to any other selection mechanism.

Conditioning on volunteers may either induce or attenuate 
bias depending on the population-level relationships between 
the exposure of interest and the other risk factors. The two main 
scenarios that may arise are illustrated, using DAGs, in figures 1 
and 2, where E indicates the exposure of interest, R is a risk 
factor for the disease of interest D, U] and U 1 are other 
unmeasured variables, and S is an indicator of selection into the 
sample. For simplicity, we assume no causal effect of the 
exposure on the outcome, no interaction between E and R in 
their effect on D, and that no mediator on the E—D pathway 
can influence selection. In the first scenario (figure 1), E and R are 
independent in the general population and both affect the 
likelihood of being selected (through volunteering), either 
directly (figure 1A) or as proxy of some other factors U| and Uj 
(figure IB). Restricting on S induces an association between E 
and R, making R a confounder in the subset of the participants 
Thus selection is likely to induce bias in the exposure—disease 
association unless the back-door path E—R—D is blocked, for 
example by adjustment. In our data, this may be the case of 
maternal education (E) and folic acid intake (R), which are both 
associated with participation (table 1). These variables are 
independent in the PBR population (OR 1.01 in table 3), but 
become associated among the NINFEA participants (OR 1.44 
in table 3).

In the second scenario (figure 2), E and R still affect the 
probability of participation, but now they share a common 
cause U (figure 2A), implying that R is already a confounder in 
the general population. Under this scenario the selection process 
can either induce or attenuate the bias, depending both on the 
strength and direction of the E—R association present in the 
general population and of the equivalent associations within the 
restricted sample defined by S. Although there are a number of 
exceptions,19 typically when two variables influence a third one 
in the opposite {same) direction, conditioning on the latter leads 
to a positive (negative) spurious association between the first 
two variables.”  It follows that when E and R are, for example, 
positively associated in the general population, selection is likely 
to attenuate the bias in an unadjusted estimate of the E -D  
association, if E and R have a qualitatively similar effect on the 
probability of volunteering. The opposite would happen if they
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Table 4 Crude and fully adjusted ORs for the effect of parity and maternal education on caesarean section and LBW in the birth registry population 
and in the NINFEA cohort, together with the corresponding relative ORs______________

Crude OR (95% Cl) Fully adjusted OR (95% Cl)

Risk factors PBR NINFEA ROR PBR NINFEA ROR

Caesarean section 

Parity 1.68 (1 60 to 1.76) 1.34 (0.92 to 1.93) 0.80 (0.55 to  1.15) 1.51 (1.44 to 1.59P 1 22 (0 84 to  1.78)* 0 81 (0 56 to  1 1 8 )*

Maternal education 1.15 (1 08 to 1.23) 1.0 (0.71 to 1.39) 0 86 (0.62 to  1.20) 1 07 (1.01 to  1 .14 )| 0.97 (0 69 to 1.35) f 0 90 (0 65 to  1 25) f

LBW

Parity 0 59 (0 56 to 0 63) 0.47 (0.31 to  0.71) 0 79 (0.53 to  1.19) 0 58 (0.55 to  0 61)* 0 4 3  (0 28 to  0 66)* 0.74 (0 49 to  1.13)*

Maternal education 0 86 (0.80 to 0 92) 0.86 (0.64 to 1.17) 10  (0.75 to  1.35) 0.86 |0  80 to  0 .9 2 )t 0 89 (0 65 to  1.21 ) f 1 03 (0.76 to 1 39) f

•Adjusted for maternal age, occurrence of previous miscarriages, folic acid intake, alcohol consumption during pregnancy, maternal pregnancy weight gain and maternal education 
f  Adjusted for maternal age, occurrence of previous miscarriages, folic acid intake, alcohol consumption during pregnancy, maternal pregnancy weight gam and parity 
LBW. low birth weight; PBR, Piedmont Birth Registry; ROR, relative OR.

had a qualitatively opposite effect on selection. We observed this 
pattern in our data. Let us consider the case of parity and 
maternal age, which are, respectively, negatively (OR=0.32) and 
positively (OR -1.30) associated with participation in NINFEA 
(table 1) while they are positively associated in the source 
population (OR=2.45; table 2). When analyses are restricted to 
the NINFEA data, the OR for their association increases to 3.17 
(table 2). In contrast, the OR for the association between 
maternal education and maternal age, which are both positively 
associated with the probability of being selected (table 1)— 
decreased from 2.09 in PBR to 1.22 in NINFEA (table 3). As 
a consequence the OR for maternal education and caesarean 
section, for example, estimated adjusting for all other known 
risk factors except for maternal age, shows a smaller degree of 
residual confounding than that estimated from PBR. In partic
ular the estimate derived from PBR increases from 1.07 (95% 
Cl 1.01 to 1.14; table 4) when fully adjusted, to 1.14 (95% Cl 
1.08 to 1.22) when adjusted for all measured risk factors except 
for maternal age. The corresponding figures from NINFEA are 
0.97 (95% Cl 0.69 to 1.35; table 4) and 0.98 (95% Cl 0.70 to 
1.37), which are almost identical.

A special and relevant case is when the association in the 
population between E and R is due to a common unmeasured 
cause U, which also influences the probability of volunteering 
(figure 2B). Under this scenario, conditioning on S may imply 
a partial conditioning on U and a consequent attenuation of the 
confounding bias due to E—U—R—D. For example, if socioeco

Figure 1 Diagram of a cohort where subjects volunteer to participate. 
(A) In the population the exposure of interest (E) is independent of the 
disease risk factor (R) and both affect the likelihood of being selected 
into the sample (S), through volunteering. (B) (E) is independent of the 
disease risk factor (R) and both affect the likelihood of S (through 
volunteering) as a proxy of some other factors (U).

nomic condition (U) is a determinant of smoking (E) and 
drinking (R) in pregnancy as well as of volunteering, restricting 
the analyses to the selected sample is equivalent to adjusting for 
a proxy of socioeconomic status. As a consequence the associa
tion between smoking and drinking would be attenuated in the 
selected sample.

DISCUSSION
In this paper we have investigated whether the patterns of 
confounding present in NINFEA differed from the ones observed 
in the whole PBR population, and assessed the extent of 
selection bias affecting the NINFEA study, by comparing the 
exposure-outcome associational estimates derived from these 
two datasets.

Undoubtedly the NINFEA participants differ substantially 
from the general population. Consistent with what has been 
found in other birth cohort studies, participating mothers 
are more likely to take folic acid during pregnancy, to be 
nulliparous, to be less likely to smoke,4 s and are on average older 
at delivery and with a higher educational level' than in the 
general population.

Several papers have examined the baseline characteristics of 
participants in cohort studies in comparison with those of non
participants to assess the representativeness of the study 
sample,*“ 11 but none of them has specifically explored the 
mechanisms through which the extent of bias in the exposure- 
outcome estimates may be related to changes in the 
confounding patterns for the associations of interest. We have

A

u Volunteering D

D

Figure 2 Diagram of a cohort where subjects volunteer to participate. 
(A) In the population the exposure of interest (E) and the disease risk 
factor (R) are associated between each other as they share a common 
cause of some other factors (U), and they both affect the probability of 
participation (S), through volunteering. (B) In the population E and R 
share a common cause U, and U also affects the probability of 
volunteering.
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focused on the associations between the exposures of interest 
and the other risk factors for which we had information both in 
the general population, and in the selected sample. The extent of 
the bias affecting the exposure—disease association estimates in 
NINFEA was then assessed in the light of the potential effect of 
changes in the confounding patterns due to the sample selection.

Our findings indicate that the main variables to be controlled 
to minimise bias identified for the general population may not 
be the most important or relevant ones for analyses involving 
a cohort study of a selected subgroup of the general population. 
For example, our data showed that the estimated associations 
between maternal education and the other potential risk factors 
in NINFEA differed from those in PBR (table 3). Similar 
reasoning would apply to the role of unknown confounders, and 
therefore it is not possible to predict whether estimates based on 
a selected cohort would be more or less biased than those based 
on the equivalent population-based cohort. In fact, consistent 
results between the source population and the selected cohorts 
would argue in favour of similar confounding patterns or 
absence of confounding. Analogously, if results differ, this may 
imply that either residual confounding is an important issue 
for the exposure-disease association of interest or that the 
distribution of some unknown modifiers of this association 
differs between the selected and the population-based cohort. 
Obviously, these two scenarios are not mutually exclusive.

In order to understand whether the estimates derived from 
the selected sample are more or less valid than those obtained in 
the general population, it would be necessary to distinguish 
between the scenarios depicted in figures 1 and 2. In other 
words, it would be necessary to know whether the exposure (E) 
and the potential unmeasured confounder (R) are already asso
ciated in the general population or become associated in the 
selected sample. In some cases, expert opinion could be invoked 
to assess the likelihood of one scenario over the other. However, 
there is little published data on E -R  associations in different 
populations but associations among risk factors are very likely.20

The Findings presented here are based on a relative small study 
size, as our analyses of the NINFEA cohort include only 1105 
subjects; thus, the precision of some estimates was low. In 
particular the numbers were too small to explore the effects of 
some important variables, such as maternal smoking during 
pregnancy and use of infertility treatment. Another limitation of 
this study concerns the lack of data on important risk factors 
and the consequent potential effect of residual confounding 
which may partly explain the observed differences in the 
estimated effects.

Taking this into consideration, our study nevertheless suggests 
that the estimates derived from NINFEA do not differ consid
erably from those obtained from PBR. with relative ORs ranging 
between 0.74 and 1.03. In agreement with previous studies 
investigating the effect of non-participation in birth cohort 
studies,4 5 we have shown that even in a web-based birth cohort, 
selection does not induce substantial bias in the exposure- 
outcome associations we investigated. It is however important 
to consider the expected magnitude of these effects of interest 
when evaluating potential biases: when this is really small, even 
a moderate bias becomes relevant.

It should also be noted that this study only concerns baseline 
selection in cohort studies, which is by definition independent of 
the outcome. Our results cannot be extrapolated to the selection 
arising because of informative drop-outs, or to other epidemio
logical study designs, such as cross-sectional studies or case- 
control studies, where the disease/outcome status may affect 
participation.
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What is already known on this subject

► Several papers have examined the baseline characteristics of 
participants in cohort studies in comparison with those of 
non-participants and some have also evaluated the potential 
effects of the selection process on the exposure-outcome 
estimates of interest.

► However none of these studies have specifically explored the 
mechanisms through which bias can be induced by the 
sample selection process.

What this study adds

► By comparing the confounding patterns and the exposure- 
outcome associations between the general population and the 
NINFEA internet-based birth cohort study sample, w e found 
that possible differences in the estimates of the exposure- 
outcome associations between a selected and a population- 
based cohort reflect changes in the confounding patterns due 
to the sample selection process.

► Therefore, unless all relevant confounders in the two cohorts 
are known and measured, it is not possible to predict whether 
estimates based on a cohort selected at baseline would be 
more or less biased than those based on the equivalent 
population-based cohort, as sample selection might also 
reduce the confounding already present in the general 
population.

In conclusion, possible differences in the estimates of the 
exposure—outcome associations between a selected and a popu
lation-based cohort reflect changes in the confounding patterns 
due to the sample selection process. Therefore, unless all relevant 
confounders in the two cohorts are known and measured, it is 
not possible to predict whether estimates based on a cohort 
selected at baseline would be more or less biased than those 
based on the equivalent population-based cohort, as sample 
selection might also reduce the confounding already present in 
the general population.
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Internet-based epidemiology
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Piemonte, Italy
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3 Computational Epidemiology Lab, 1SI Foundation, Turin, Italy

1. INTRODUCTION

Currently almost 2 billion persons worldwide, i.e. 30% o f the world population, have access 

to the internet (Internet World Stats). These numbers are accurate as o f  June 30,2010 and will soon 

be outdated: access has grown by 445% from 2000. The proportion o f  users varies by country, 

being 77% in North America and 58% in Europe, with notable peaks in the Nordic countries, where 

Denmark and Finland are above 85% and Norway and Sweden are above 90%. Figure 1 provides a 

global view on the proportion o f  users and growth in use in the last ten years.

The proportion o f users is not homogenously distributed in the population. In 2007, for 

example, according to Eurostat data, in all EU countries, with no exceptions, the proportion of 

internet users was higher among men than women and among people aged 16 to 24 than older 

persons (United Nations Economic Commission for Europe -UNECE- 2011). It is reasonable, 

however, to expect that sooner or later almost everybody in the world will have access to the 

internet, with no marked countiy, age or sex differences. This is a very attractive prospect for 

epidemiologists and human researchers in general, who already recognized the possibility o f using 
the internet to conduct field studies in the early 1990s.

It is perhaps surprising that the internet has been initially used mainly to conduct surveys 

rather than longitudinal studies or interventions, although the latter are less vulnerable to selection 

bias. The first medical surveys, such as those o f patients with inflammatory bowel diseases (Hilsden 

et al. 1999; Soetikno et al. 1997) or diabetes (Baehring et al. 1997), have been published at the end 
o f the 1990s.
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Figure 1. Proportion of internet users on June 30, 2010 and growth from 2000 to 2010 in seleeted countries. 

(Internet World Stats 2011)

These studies were pioneered by surveys carried out by psychologists and sociologists 

(Berrcns et al. 2003; Buchanan and Smith 1999; Kraut et al. 2004; Skitka and Sargis 2006). In 

1997, Kushi and colleagues reported the launch of a pilot study for an internet-based cohort on diet 

and breast cancer (Kushi et al. 1997) and a small number of web-based birth cohort studies have 

been conducted in the last ten years (Hercberg ct al. 2010; Mikkelsen ct al. 2009; Richiardi et al. 

2007; Treadwell et al. 1999; Turner et al. 2009). However, most of the internet-based medical 

studies are currently intervention trials. The internet was first suggested as a tool to manage all 

aspects of the trial, including randomization and data acquisition (Kelly and Oldham 1997; Pepine 

et al. 1998) but, in the last ten years, it has often been used for the purpose of recruiting study 

participants (McAlindon et al. 2003; Wang and Ettcr 2004).

The idea of using the internet in empirical research in general, and epidemiological research 

in particular, often receives skeptical reactions. Typical concerns include problems related to lack of 

exposure heterogeneity in the study participants, phantom participations, duplicate records by the 

same participant, low data quality, and confidentiality issues (Gosling ct al. 2004; Skitka and Sargis 

2006; van Gelder et al. 2010). in fact, most of these problems have limited implications or can be 

solved technically. For example, the lack of heterogeneity does not apply to most of the exposures,
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as in many countries more than half o f  the population has access to the internet. Similarly, various 

methods have been developed to identify duplicate entries, to enhance data quality and to ensure 

data security and confidentiality, including the use o f  encrypted connections, registration through 

individual username and password, the use o f  screening questions to detect duplicates and checks 

for implausible answers (Baer et al. 2002; Bowen et al. 2008; Dillman and Smyth 2007; Gosling et 

al. 2004; van Gelder et al. 2010).

As for any study based on volunteers, the main critical issue related to internet-based 

research is, however, the representativeness o f participants for the study population and the 

likelihood o f selection bias. This is currently largely debated. At an international conference held in 

2008, for example, one o f the authors heard the editor o f  an epidemiological journal saying that, 

because o f concerns about self-selection, he was a priori against publishing results o f internet-based 

surveys. Issues o f selection and selection bias will be extensively discussed in this chapter both in 

an ad-hoc section and within the context o f the discussion about the use o f  the internet in each type 

o f study design.
In contrast to its limitations, the use o f the internet in epidemiological research offers several 

advantages, including decreased costs, simplified logistics, rapidity, flexibility, the possibility to 

tailor the questionnaire to the participants’ characteristics, instantaneous checks to identify 

inconsistencies as well as to reduce errors resulting from data entry (Baer et al. 2002; Dillman and 

Smyth 2007; van Gelder et al. 2010). Moreover, on-line studies have fewer constraints than 

traditional studies, both from a geographical and a temporal point o f view: they can reach distant or 

“ hidden”  populations as well as they can recruit continuously for several years. Some other 

advantages are specific to the different study designs and will be discussed further in the 

corresponding sections o f this chapter. However, a common feature o f  internet-based studies, often 

overlooked, is the active involvement and empowerment o f the study subjects (Rhodes et al. 2003). 

They can give feedback over the whole duration o f  the project and receive (and comment on) 

information about the study results. For example, it is not uncommon that, within the framework o f 

an internet-based study, researchers keep constant contact with the study participants using social 

networks.

In several studies, the internet has been used to submit on-line questionnaires to a pre

specified population, including members o f  a “traditional” cohort (Ekman et al. 2006; Russell et al. 

2010), members o f internet panels (Silver et al. 2002; West et al. 2006) or members o f a mailing list 

(Ruddy et al. 2010). In all these studies, the internet was not used to directly recruit participants, 

whereas it was used as a tool to deliver a questionnaire to a pre-selected population. We will not 

discuss advantages and limitations o f on-line questionnaires and technicalities on how to prepare
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them in this chapter (about these issues see for example references (Baer et al. 2002; Dillman et al. 

2009; Ekman et al. 2007; Kongsved et al. 2007; Russell et al. 2010; Schleyer and Forrest 2000; van 

Gelder et al. 2010). Rather, we will focus on the internet as a method to recruit study participants 

and its influence on study design and validity. Typically, internet-based studies use on-line 

questionnaires but this is not a necessary feature. Indeed, researchers may have a direct contact with 

participants via the internet, for example, to complete a telephone interview or to obtain biological 
samples (Etter et al. 2005; Richiardi et al. 2007).

In this chapter we will address general methodological issues about internet-based studies 

and discuss examples o f the use o f  the internet in the context o f  different types o f  epidemiological 

designs, from surveys to randomized studies. Debates about the use o f the internet in 

epidemiological research may be affected by preconceived opinions either in favor or against it. 

Being involved in internet-based research, we cannot be objective but we will aim at discussing the 

different issues impartially.

2. SELECTION AND SELECTION BIAS IN INTERNET-BASED STUDIES

Participants in an internet-based study are doubtless a selected population, regardless o f the 

epidemiological design chosen to carry out the study. This is due to two main reasons: i) the source 

population is restricted to internet users (either all internet users or users o f specific websites), and 

ii) participation o f subjects should be voluntary. What does instead depend on the study design is 

the mechanism through which bias may be induced by the sample selection process. We will 

illustrate these mechanisms in different study designs also using directed acyclic graphs (DAG) (see 

Chap. Directed Acyclic Graphs o f this handbook.) indicating E as the exposure of interest, R as a 

risk factor (or a set o f risk factors) for the outcome o f  interest D, U¡ as other unknown/unmeasured 

variables and S as the indicator o f selection into the sample. In all figures, a square around S will 

indicate conditioning on study participation.

In surveys aiming at estimating the prevalence o f  a disease, there is selection bias if  the 

disease status or any determinant o f the disease is associated with the selection probability. This is 

very likely to happen in internet-based studies. If determinants o f selection are known, it is possible 

to apply weights and obtain a valid estimate o f  the prevalence. However, in most situations it is 

very difficult to obtain a good picture o f  the determinants involved in the selection in a study based 

on volunteers recruited through the internet.

In studies aiming at estimating associations, in general there is selection bias if the 

probability o f selection depends on both the exposure (E) and the outcome (D) o f interest (Hernán
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et al. 2004). This is illustrated in Figure 2. For example, in an internet-based cross-sectional study 

on asthma, the probability o f volunteering to take part into the study could be associated with 

having asthma (D) as well as with living in a heavily polluted area (E). Under these circumstances, 

because o f the conditioning on selection, an internet-based study would most likely find an 

association between air pollution and asthma even in the case o f  a lack o f a true causal association 

between these two variables. This type o f selection bias can be large.

Figure 2. Diagram of a study where selection of the study subjects (S) depends on both the exposure (E) and 
the outcome (D) of interest. The dashed line represents an association induced by conditioning on S 
(represented by a square around S).

2.1 Longitudinal studies

In longitudinal studies where the outcome o f  interest occurs after being selected into the 

study sample, the mechanism that we have just described does not apply but selection bias may still 

occur (Glymour 2006; Heman et al. 2004). In particular, if the likelihood o f participation in the 

study depends on both exposure (E) and a disease risk factor (R) for the outcome o f  interest (D), 

and these are independent o f  each other in the general population, the selection process induces an 

association between E and R; R becomes a confounder o f the E-D association and thus, if we cannot 

adjust for it in the analyses, the estimate o f  the association is biased (Figure 3). We (Pizzi et al. 

2011) and others (Greenland 2003) showed that the potential bias induced by this mechanism is 

usually moderate. For example, assuming no effect o f  the exposure on the incidence o f the disease 

(true rate ratio = 1.0), the estimated exposure-disease rate ratio is 0.95 even if i) the odds ratio o f 

selection associated with the exposure is 2 .0 , ii) the odds ratio o f selection associated with the risk 

factor is 4.0 and iii) the risk factor increases the risk o f the disease by 4-fold (Pizzi et al. 2011). The 

ideal situation is a randomized study in which, thanks to randomization which occurs after selection 

o f study subjects, the exposure is not associated with selection in the study. Under this situation, 

assuming compliance to the treatment assigned, there is no possibility for selection bias even when 

some risk factors (R) are strong determinants o f the selection.

E

D
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Figure 3: Diagram of a cohort study based on a selected sample. In the population the exposure of interest 
(E) is independent of the risk factor (R) and is not associated with the outcome of interest (D). Both E and R 
affect the likelihood of being selected as member of the study (S). In the selected sample (i.e. conditioning 
on S - represented by a square around S), E and R become associated (indicated by a dashed line).

It should be noted that, when the exposure and the disease risk factor are associated in the 

general population, the selection mechanism will alter the confounding effect o f  the risk factor, 

either increasing or decreasing it, according to the strength and direction o f the association between 

E and R (in the general population) and also o f the associations between E and R with S.

Let us now focus on the specific case o f an internet-based cohort study and the effect o f 
restriction on internet users, by discussing some hypothetical examples.

(i) In the first example, the exposure o f  interest (E) and the risk factor (R) are independent in 

the general population and both are associated, either directly (Figure 4a) or indirectly (Figure 4b), 

with the likelihood o f being an internet user and thus o f  being selected into the sample.

Figure 4: Diagram of an internet-based cohort study, a) In the population, the exposure (E) and the disease 
risk factor (R) are independent, and E is not associated with the outcome o f interest (D). Both E and R affect 
the likelihood of being an internet user and thus of being selected as member of the study (S). In the selected
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sample (i.e. conditioning on S - represented by a square around S), E and R become associated (indicated by 
a dashed line), b) Here, E and R affect the likelihood o f being an internet user as proxy of other factors (U| 
and U2).

In Figure 4a, for example, socioeconomic status (E) as well as year o f birth (R), which are 

assumed to be independent in the general population, could affect the probability o f being an 

Internet user. In Figure 4b, socio-economic status (Ui) could be a cause o f  being an internet user 

and o f being a smoker (E), while year o f birth (U2) could affect both the likelihood o f being an 

internet user and height (R). In these scenarios, the restriction on internet users induces a spurious 

association between E and R, and, therefore, year o f birth becomes associated with socio-economic 

status (Figure 4a) and smoking becomes associated with height (Figure 4b).

(ii) In a second example, the exposure o f interest (E) and the disease risk factor (R) are already 

associated in the general population as they share a common cause (U3). This scenario is illustrated 

in Figure 5.

Figure 5: Diagram of an internet-based cohort study. In the population the exposure (E) and the disease risk 
factor (R) are associated as they share a common cause Uj, and both E and R are associated with the 
likelihood of being an internet user. In the selected sample (i.e. conditioning on S - represented by a square 
around S), U( and l /2 become associated (indicated by a dashed line) thus altering the original association 
between E and R.

This is in fact an extension o f  the scenario depicted in Figure 4b, where an additional factor 

(U3), for example place of birth, could affect both smoking (E) and height (R). Under this scenario 

it is hard to predict whether the restriction o f the source population to internet users would increase 

or decrease the bias, as this depends on the strength and direction o f the E-R association existing in 

the general population and on the strength and direction o f the spurious E-R association induced by 

the sample selection process (as a consequence o f  the association induced between Ui and U2).
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(iii) A further example o f interest is when E and R are associated in the general population 

because they share a common cause which, in turn, is a determinant o f being an internet user. This 

is shown in Figure 6  that summarizes the case o f a study in which socio-economic status (Uj) is a 

cause o f being an internet user as well as o f being a smoker (E) and taking regular exercise (R).

Figure 6: Diagram of an internet-based cohort study. In the population the exposure (E) and the disease risk 
factor (R) are associated as they share a common cause U3, which also affects the likelihood of being an 
internet user. In the sample, the condition on S (represented by a square around S) implies a partial condition 
on U3,thus attenuating the association between E and R.

Under this scenario, restricting the study to internet users implies a partial conditioning on 

U3 and therefore a likely attenuation o f  the E-R association among the study participants compared 

with the general population. This means that the restriction would diminish the confounding effect 

o f  R and thus the corresponding bias induced in the exposure-outcome association.

In these examples we only considered the restriction to internet users as a potential source o f 

selection. Similar considerations can be made for the second source o f selection that is volunteering. 

Our examples demonstrate, however, that the effect o f  selection on the exposure-disease association 

in longitudinal studies is difficult to predict and can induce or attenuate confounding bias present in 

the general population (Pizzi et al. 2012). However, even when it induces bias, its magnitude is 

expected to be small as discussed above.

If the aim o f  the study is to estimate the incidence o f the disease, bias is more likely to 

occur. The disease status itself cannot affect the likelihood o f selection (as it may occur in surveys) 

but any disease risk factor (R in Figures 3 to 6 ) that is associated with being an internet user or 

volunteering would bias the estimate o f the incidence.

2.2 Case-control studies

Case-control studies can be restricted to a specific population and still reveal valid 

associations (apart from some o f the considerations just mentioned for cohort studies). Thus, the 

restriction to cases who are internet users (or, for example, who seek information about their disease
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on the internet) is not expected to introduce a large bias by itself. The concern is, however, on the 

effect o f this restriction on the control selection, as control subjects should be representative o f  the 

source population from which the cases originated. When cases and controls arise from two 

different source populations, there are clearly factors with different distributions across the two 

groups, which, when associated with the exposure o f interest, lead to cases and controls being no 

longer comparable.

Even when the principle o f  the same source population is met, selection bias may occur if 

the exposure is associated, either directly or through other factors, with the probability o f selection, 

i.e. the sample fraction o f controls (and cases when applicable) is not constant across exposure 

levels. In this situation, the causal structure becomes similar to that depicted in Figure 2 or Figure 7, 

both implying selection bias. Figure 7, for example, could depict a scenario in which cases with a 

disease o f interest (D) are compared with controls originating from the same source population but 

having another disease (C). I f the disease (C) is associated with the exposure o f  interest (E) (in this 

scenario through the common cause Ui) then there is selection bias (Hernán et al. 2004).

u , ---------*. c

Figure 7. Diagram of a case-control study in which cases have the disease of interest (D) and controls have a 
control disease (C). Both C and D affect the probability of selection in the study (S) and C is also associated 
with the exposure of interest (E), as they share a common cause U|. In the selected sample (i.e., conditioning 
on S - represented by a square around S), C and D become associated (indicated by a dashed line) thus 
altering the original association between E and D.

Since participants in an internet-based case-control study are self-selected, it is not unlikely 

that some o f the determinants o f the exposure or the exposure itself are associated with volunteering 

and thus with selection. It should be noted, however, that the causal structures summarized in 

Figure 2 and 7 do not always introduce bias. Indeed, there is no bias if  the ratio o f  the selection 

probabilities o f exposed and unexposed cases is the same as the ratio o f the corresponding selection 

probabilities in exposed and unexposed controls. Under this special scenario, E and D are still 

determinants o f the selection but the association remains to be valid.
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3. IN T E R N E T - B A S E D  R E C R U IT M E N T

The use of the internet allows recruitment of study participants from large populations with 

a decrease in cost and time. Internet recruitment is similar to "traditional” studies in that it requires 

the specification of the source population. For example the source population of an internet-based 

study aiming at surveying cancer patients residing in Italy is defined by those internet users who 

reside in Italy and have cancer. However, in internet-based studies there is no available list for 

random sampling from the source population and participants are self-selected volunteers. Thus, 

apart from defining the source population by means of eligibility criteria, researchers have little 

possibility to influence the selection of study participants. Internet-based recruitment typically goes 

through two processes: i) people in the source population need to become aware of the existence of 

the study and ii) they need to agree to participate.

F ig u re  8. Distribution on how participants to the Intluwcb study got to know about the existence of the study 

(based on about 2000 respondents). Influweb, Italy, 2008-2000 (Influenzanet 2011)

The study has to be advertised in order to efficiently reach all members of the source 

population. The advertisement of a study of individuals with a specific disease or exposure would 

have to involve websites targeting that disease/exposure, while a study targeting the general 

population would be more efficiently advertised by means of a publicity campaign involving 

television, radio, and newspaper coverage and word of mouth. The internet-based Nutrinet-Sante 

study, for example, which aims at recruiting a large cohort of individuals from the French general 

population, advertises the existence of the study through a multimedia campaign, different websites, 

and professional health channels (Hercberg et al. 2010). On the basis of our experience in the Italian 

Influweb study (an internet-based monitoring project for influenza surveillance in Italy), when the 

target is the general population, television seems to be the most effective means of communication.

•  tv
#  Newspapers

#  Internet
•  Radio, magazines, conferences
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especially if the advertisement takes place in Scientific Communication programs, while articles on 

the front page o f  online newspapers seem to be very efficient in terms o f visits to the website but 
not in terms o f new volunteers (Figure 8) (Paolotti et al. 2010).

The Danish Pregnancy Planning Study, an internet-based cohort study o f women o f 

reproductive age, was advertised through a pop-up advertisement in a national health-related 

website as well as with press releases to reach the media (Mikkclsen et al. 2009). An internet-based 

study o f determinants o f gout attacks was advertised using a Google advertisement linked to the 

search term “gout”  (Zhang et al. 2007). Over a period o f 11 months, the advertisement was 

displayed 866,703 times, 6 .6% o f which led to a visit o f the study website.

An often overlooked issue is that an integrated approach to advertise an internet-based study 

aiming at recruiting for a long period implies intense and continuous efforts. Conversely, if the 

study is only advertised via selected websites, the recruitment process is less demanding, although 

the recruitment rate will be lower. Thus, to reach large sample sizes, an integrated approach is 

generally necessary. Furthermore, the methods used to advertise the existence o f the study will 

impact on the characteristics o f  the study participants and the probability o f selection bias. If a 

mother-child cohort, for example, is advertised only during antenatal courses, there will be an 

oversampling o f  nulliparous women who are more likely to attend these courses. An integrated 

approach could reduce this source o f selection and spread the information about the study to the 

whole source population. A  recent study compared three methods o f  advertisement for a survey o f 

young adult smokers, namely: (1) advertisement on a single general website (Craiglist 2011); (2) an 

internet campaign to target social networks and lifestyle-based websites; (3 ) an invitation sent to 

members o f  an internet panel (Ramo et al. 2010). The internet campaign yielded the largest number 

o f participants but it was less cost-effective (about 43 USS per completed survey) and was the 

method associated with the largest proportion o f incomplete surveys. Roughly spoken, the three 

samples differed in terms o f age, sex, ethnicity, education attained, nicotine dependence and recent 

use o f marijuana and cigars. Fewer or no differences were found in other variables, including 

alcohol use and smoking prevalence.

Once the members o f  the source population are aware o f  the study, they should access the 

study website and volunteer to participate. This is obviously a key issue. During the pandemic 

season, from October 2009 to March 2010, the Influweb website (Influenzanet 2011), for example, 

was visited 90,000 times and roughly 3,000 persons participated. The success o f volunteering 

depends on several elements: the study website should not only induce participation but the study 

topic should also be o f  interest among the source population. For example, influenza during the 

H1N1 pandemic was a topic prone to gain the interest o f  the public and to reach the media. In other
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words, intemet-based recruitment is more efficient when the study is about a topic o f general 

interest (Paolotti et ai. 2010; Tilston et al. 2010), or targets a strongly motivated population, such as 

smokers trying to quit smoking (Civljak et al. 2010) or pregnant women (Richiardi et al. 2007). 

Even when an integrated approach for advertisement is used and the population is motivated to 

participate in the study, the participation proportion is not going to be high compared to traditional 

studies. For example, we used several means to advertise the existence o f the NINFEA (Nascita ed 

INFanzia: gli Eetti dell’Ambiente) study (NINFEA 2011), a birth cohort study, to the population o f 

the city o f  Turin, Italy. We have recently estimated that about 3-4% o f the total number o f pregnant 

women present in the population (excluding those bom outside Italy) participated in the study (Pizzi 

et al. 2012). Considering that about 60% o f the pregnant women have access to the internet, and 

thus belong to the source population, this proportion translates into a participation proportion o f 5 - 

7%.

Some intemet-based surveys collect anonymous data but many internet-based studies 

require registration and collect demographic information. This is an obvious requirement for 

follow-up studies in which subjects should be identified and be re-contacted but it is also used in 

surveys, for example to limit the problem o f duplicate or phantom participations. Researchers 

undertaking a web-based study should therefore check that their platform is compliant with privacy 

regulations in the country where the study is ongoing. Upon registration, users have to be informed 

what these requirements are and, as in any epidemiological study collecting non-anonymous data 

through questionnaires, they should sign an informed consent form. In many studies an online 

informed consent is used to decrease costs and organizational efforts and to enhance participation 

(the alternative being a mailed hard copy o f the informed consent to be signed by participants). For 

example, in the NINFEA study women provide online consent when they register and complete the 

study questionnaires, while they provide an additional written consent if  they also donate a saliva 
sample.

The use of the internet to collect non-anonymous data may raise concerns about safety and 

confidentiality issues. Researchers typically use technical solutions, such as encryption, firewalls, 

HTTPS (Hypertext Transfer Protocol Secure) protocol, etc, which provide the same level o f safety 

as traditional epidemiological studies, as, for example, mail surveys (Baer et al. 2002; Kraut et al. 

2004). It is possible that potential participants are reluctant to participate in an intemet-based 

questionnaire fearing that their data could be accessed from people from outside the study. To 

address this issue, within the NINFEA study, we interviewed a small number (n = 37) o f  women 

who were both aware o f the study and had access to the internet but did not participate in the study
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(Richiardi et al. 2007). No woman reported that she did not participate for fear o f  revealing personal 

information, while the most common reason o f non-participation was lack o f interest in the study.

4. STUDY DESIGNS

The internet has been used in the context o f most of the classical epidemiological studies, 

including cross-sectional (see Chap. Descriptive Studies o f this handbook.), cohort studies (see 

Chap. Cohort Studies o f this handbook.), interventions (see Chap. Intervention Trials o f this 

handbook.), and case-control studies (see Chap. Case-Control Studies o f  this handbook.). Basic 

characteristics o f these study types are discussed in detail in the chapters listed above.

4.1 Cross-sectional studies

Cross-sectional studies or surveys are typically carried out to measure prevalence and are 

particularly vulnerable to selection bias. If participants have a different prevalence of the disease o f 

interest compared to non-participants, and it is not possible to apply weights to counterbalance this 

difference, results o f the study will be difficult to interpret. This drawback makes the use o f the 

internet in surveys very problematic.

Although characteristics o f internet users can be investigated and may sometimes be known 

for certain populations, determinants o f self-selection in a specific study are almost unknown. It is 

possible to obtain a rough estimate o f  the number o f  individuals who visit the study website to 

estimate a sort o f response proportion (number o f participants out o f the number of visitors). 

However, this proportion is relatively useless as the number o f visitors differs from the number o f 

subjects who became aware o f  the study. Furthermore, the response proportion would give little 

information on the amount o f  bias in the estimate o f  the disease prevalence, as the key issue is 

whether volunteering is associated or not with the probability o f  having the characteristic of 

interest.

Having this strong limitation in mind, intemet-based surveys can still be useful for a number 

o f reasons, including to conduct qualitative studies in which population representativeness is less 

relevant; to rapidly obtain information to generate hypotheses or develop a study protocol; to reach 

hidden populations; to identify patients with rare diseases.

Simmons and colleagues carried out an intemet-based cross-sectional study between 2001 

and 2002 to obtain information on possible precipitating factors o f  multiple sclerosis (MS) 

(Simmons et al. 2004). The aim was to generate hypotheses and select potential precipitating factors
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to be investigated in a cohort study o f MS patients. An anonymous questionnaire in English was 

posted on the MS Australia and the MS International Federation websites for a period o f about 10 

months. About 2,500 self-selected patients from 60 countries in total, mainly from USA, Australian 

and UK, completed the questionnaire. They reported factors that in their opinion were improving 

their condition or worsening their MS symptoms.

Behavioral research or studies on HIV and sexually transmitted diseases amongst men who 

have sex with men (MSM) are most often conducted on convenience samples, as MSM is a hard-to- 

reach population (a so-called “ hidden” population). Therefore, internet-based surveys using 

anonymous questionnaires are becoming increasingly common in this field (Elford et al. 2009; 

Evans et al. 2007; Hirshfield et al. 2004; Rosser et al. 2009). A study conducted in London in 2002 

and 2003 recruited about 4,000 participants from HIV-positive patients attending outpatient clinics 

(12%), men seeking an HIV-test (10%), men using gyms in central London (35%) and internet 

users, the latter either via chat rooms or the websites o f  gaydar (2 0 1 1 ) and gay.com (2 0 1 1) (4 3%). 

The samples had different socio-economic and behavioral characteristics and most likely none of 

them was representative o f the whole MSM population.

A number o f studies aimed at comparing characteristics o f participants in an internet-based 

cross-sectional study with study participants based on a representative sample o f the population 

(Andersson et al. 2002; Etter and Pemeger 2001; Evans et al. 2007; Klovning et al. 2009; Marcus et 

al. 2009; Miller et al. 2010; Ross et al. 2005). Unsurprisingly, participants recruited via the internet 

had different characteristics and disease prevalence, most often in an unpredictable direction and 

magnitude. This reinforces the concept that cross-sectional studies can only be conducted over the 

internet if their aim does not require a population representative sample.

4.2 Cohort studies

In 1997, an editorial on the use o f the internet in epidemiology suggested the possibility of 

conducting a cohort study o f  internet users, defining this study population as an epidemiologists’ 

dream coming true (Rothman et al. 1997). Authors were briefly listing some o f the most evident 

advantages, such as fast enrolment o f a large sample, prolonged contact with cohort members, 

inexpensive and efficient follow-up, as well as some possible problems, underlying the risk o f 

marauder and phantom users, and issues o f information validity. According to a response letter to 

this editorial, Kushi and colleagues were already piloting at that time the feasibility o f an internet- 

based cohort study (Kushi et al. 1997).
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Indeed, the use o f the internet to recruit a cohort is very attractive as, in longitudinal studies, 

a representative sample is not a necessary requirement to get valid associational estimates. The 

epidemiological dream, however, has infrequently materialized in the last decade (Hercbcrg et al. 

2010; Mikkelsen et al. 2009; Richiardi et al. 2007; Treadwell et al. 1999; Turner et al. 2009).

In 2005 we started the NINFEA study, which is an internet-based mother-child cohort 

carried out in Italy (NINFEA 2011). A parallel study was started two years later in New Zealand 

(The Early Life Factors Study o f Childhood Diseases). We will therefore use the NINFEA cohort as 

an example to illustrate advantages and limitations o f using the internet to conduct a cohort study.

NINFEA is a multi-purpose cohort aiming at investigating the effects o f certain exposures 

during pre-natal and early post-natal life on infant, child and adult health (Richiardi et al. 2007). It 

enrolls pregnant women in order to follow-up their children for at least 18 years. Members o f the 

cohort are children bom to women who are internet users, become aware o f the study and volunteer 

to participate. At any time during the pregnancy, they can register through the project website 

(www.progettoninfea.it) and complete the first questionnaire that lasts about 30 minutes. They are 

asked to complete two other 30-minute long questionnaires at 6  and 18 months after delivery. Long

term follow-up involves linkage with available population registries and periodical very short on

line questionnaires focusing on specific outcomes (e.g. cognitive development, respiratory diseases, 

etc.).

We advertise the existence o f the study using both “active”  and “passive”  methods. Active 

methods involve the collaboration o f health personnel to distribute leaflets and/or to introduce the 

study to pregnant women when they reach hospitals or family clinics for reasons related to the 

pregnancy. Therefore, this approach is inherently limited to selected geographical areas and targets 

a (roughly) pre-specified catchment population. Currently, the NINFEA study is actively advertised 

in the city o f Turin (900,000 inhabitants), in the Tuscany Region (4,000,000 inhabitants) and, with a 

lower intensity, in the Piedmont Region (4,000,000 inhabitants including those living in Turin). One 

o f the potential advantages o f active recruitment that we have not yet explored is the involvement o f 

specific populations characterized by high levels o f specific exposure or diseases o f interest. Let us 

suppose, for example, that in a community living around a large industrial area there are concerns 

on the possible reproductive effects o f industrial emissions. It would be hard to quickly set up a 

“traditional”  mother-child cohort in this population, especially if there are no research 

infrastructures already available in the area. It would, however, be possible to actively advertise the 

existence o f  the internet-based cohort in that population in order to recruit a sufficient number o f 

pregnant women. The online questionnaires could be modified accordingly to incorporate questions 

about the exposure o f interest in the area.
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Passive recruitment includes methods that do not involve the health personnel, including the 

internet and the media. So far we have not launched a media campaign to advertise the NINFEA 

study, while we use the internet in various ways: links to our study website posted on the hospitals’ 

websites and on websites dedicated to pregnant women, participation in discussion forums related 

to pregnancy, and a NINFEA page in Facebook. This type o f  passive recruitment is not entirely 

automatic, as forums change constantly as well as they become more or less popular among internet 

users. This implies constant monitoring o f the accesses and the need to routinely post reminder 

messages. Furthermore, there should be bilateral interaction with the users o f the forum to keep the 

discussion lively and attract new participants.

Doubtless, participants in the NINFEA cohort are strongly selected. When compared with 

the general population we found that NINFEA participants have a higher socio-economic status, a 

lower parity, are less frequently non-Italian citizens, and smoke less but have a higher alcohol 

consumption during pregnancy (Pizzi et al. 2012; Richiardi et al. 2007).

As mentioned above, participating women should complete 30-minute follow-up 

questionnaires at 6  and 18 months after delivery and shorter questionnaires thereafter. The use o f 

the internet makes the follow-up rather efficient. In the NINFEA study we collect information via 

email, landline telephone, cell phone and postal address at the time o f the registration. When it is 

time to complete a follow-up questionnaire we email the women asking to access the website and 

complete the questionnaire. Non-responders are additionally contacted first by email and then by 

telephone and regular mail. Currently, about 60-65% o f  the women reply after email contacts, while 

remaining women have to be contacted using traditional approaches. Overall, the final response to 

the second and third questionnaires is about 85-90%.

During the first five years o f the study we have learned some valuable lessons regarding the 

follow-up. First, it is fundamental that contact information is obtained through mandatory questions 

at the time o f the registration. This allows a much higher follow-up completeness at the cost o f a 

small baseline dropout o f participants who are not willing to reveal this type o f  information. Indeed, 

in cohort studies baseline selection is a much smaller problem than incomplete follow-up and the 

initial contact strategy should aim at assembling a cohort whose members guarantee high long-term 

participation. Second, although many authors have concerns about phantom participants in internet- 

based studies, in the NINFEA cohort this was a minor problem. Some people registered to the 

website to further understand about the questionnaires, but if public information about the project is 

clear enough we believe that phantom participants and registration from non-eligible individuals are 

not important issues. For example, in our cohort participation should occur before delivery. Indeed, 

so far, nobody participated after delivery, but we have been contacted by women asking if it is
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possible to participate after the baby was bom. This suggests that the information on the website 

was clear enough to prevent registration after delivery. The possibility o f  duplicate registrations o f 

the same participant is a more relevant issue. Although it is not difficult to identify them at the time 

o f  the statistical analyses, using key-variables based on the available demographic information, 

duplicate registrations can make the follow-up procedures more complex. Let us take the example 

o f  a pregnant woman who registers twice with two different dates for the last menstruation (because 

o f  typos or because the pregnancy was re-dated between the two registrations): what date should be 

considered for the follow-up? When should the woman be re-contacted? Most likely this person will 

be contacted twice. It is possible to introduce checks in order to limit the number o f duplicate 

registrations and facilitate the follow-up procedures but, in our experience, it is not possible to 

avoid them completely. A third issue is change o f  email address. Pregnant women and families with 

small children quite frequently change job and/or home. It is therefore important to keep frequent 

contact with the participants to give them updates about the study as well as to check contact 

information. If the email address has changed it is possible to contact the woman by telephone or 

letter and ask her to update her information. Indeed “ traditional”  cohort studies are affected by the 

same problem, and having the participants’ email address and a population restricted to internet 

users only helps in obtaining a high follow-up participation proportion.

A potential limitation o f the internet-based recruitment is that there is no direct contact with 

the participants and thus, exposure information is self-reported and it is more difficult to obtain 

biological samples. In the NINFEA cohort, we collect samples o f saliva from the mothers and the 

children using self-collection kits sent by regular mail. About 60% o f the members o f the cohort, so 

far, agreed to donate a sample. Successful collection o f biological samples has also been achieved 

in other internet-based studies, such as collection o f saliva samples from subjects enrolled through a 

smoking cessation website (Etter et al. 2009). In an ongoing nationwide French cohort study aiming 

at recruiting half a million individuals (Nutri-Santeé cohort), participants can donate a blood sample 

by visiting local sample collection centers (Hercberg et al. 2010).

Currently the NINFEA study recruits and follows up about 25 subjects per week, 

employing overall (including IT experts and research assistants) less than three persons-years per 

year. Its intemet-based design offers two main advantages, namely efficiency and flexibility, which 

are obtained at the cost o f population representativeness. Flexibility is an often overlooked 

characteristic. The cohort will be able to recruit for an indefinite period and its population coverage 

has changed and will change over time. Other Italian regions will be able to start active recruitment 

in the future and it will be possible to adapt the questionnaire to other populations. Indeed, a parallel 

study has been launched in 2007 in New Zealand (The Early Life Factors Study o f Childhood
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Diseases 2011) and other countries may join in the future. Furthermore, compared to traditional 

studies, it is easier to add, delete or modify questions to all participants or selected subgroups, both 

to improve the questionnaire and to assess exposures previously uncovered. For example, during the 

H 1N 1 pandemic in the winter o f 2010  we added some specific questions about vaccinations that 

were not planned in 2005. Based on our experience and other internet-based cohort studies, we 

believe that this methodology will be increasingly used in the next years, especially when the target 

o f the cohorts will concern highly motivated people (e.g. pregnant women), or populations difficult 

to reach or difficult to follow-up (e.g. short-term migrants) or when researchers will aim at fast 

recruitment o f large samples.

4.3 Case-control studies

In case-control studies, cases and controls should be selected from the same source 

population, independently o f their exposure status. As discussed before in this chapter, this is 

difficult to achieve using internet-based recruitment. Thus, it is not surprising that we could not find 

any example o f  a study in which both cases and controls were selected using the internet. A recent 

study describes the selection o f a control sample to be used for genetic analyses: about 4,500 

subjects were selected in the USA both among a group o f internet panelists and using ad-hoc 

internet recruitment (Sanders et al. 2010). However, study cases were traditionally selected and the 

study focused on genetic variants, which are unlikely to be strongly associated with self-selection in 

the study.

Case and control selection could be very problematic using the internet but not impossible. 

We can imagine different approaches, which are described using a hypothetical example o f a case- 

control study on celiac disease in Italy.

In a first approach, cases could be selected via a link posted on a specific website, for 

example the website o f  the Italian Celiac Association. All potential cases visiting the website would 

be informed about the study and a small proportion o f them would volunteer to participate. The 

advertising efforts would have to last until a sufficient number o f patients is enrolled in the study. 

The source population for this study would include all subjects that, if diagnosed with celiac 

disease, would search information on the internet. Then controls could be recruited by posting 

information about the study in a number o f disease-specific websites, say the websites o f the Italian 

Associations for asthma, chronic bowel disease and type 1 diabetes. Obviously, these diseases 

would have to be unrelated with the exposure o f interest. Again, control participants would be self- 

selected volunteers and the participation proportion would be expected to be very low. The
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association estimates obtained from an internet-based case-control study o f this type would be valid 

had the determinants o f self-selection been similar among cases and controls or had these 

determinants been unrelated with the exposure status. Unfortunately these conditions are both rather 

strong and difficult to check in the data.

A second approach for an internet-based case-control study would begin with the definition 

o f the source population. For the hypothetical internet-based study on celiac disease determinants in 

Italy, a broad definition of the source population would include all Italian internet users. 

Recruitment o f case patients would then involve the website o f  the Italian Celiac Association, any 

other website o f  potential interest for celiac disease patients as well as media campaigns. Case 

participants would again be strongly selected. Controls would have to be selected from the same 

source population, namely from internet users. Recruitment would thus involve media campaigns 

and links posted in various websites, not necessarily o f  interest for celiac patients.

A stricter definition o f the source population could improve this study design. For example, 

the source population could include users o f a specific website, say the website o f  a national 

newspaper. Everybody accessing the website would be invited to participate in a study, and case 

patients would include volunteers with celiac disease while control subjects would include all the 

other volunteers. It could be possible also to adopt a two-stage approach in which, in the first stage, 

a generic health internet-based survey is offered to persons accessing the website and, at the second 

stage, cases with celiac disease and a sample o f controls without celiac disease are further 

interviewed.

Irrespectively o f whether a broader or a stricter definition for the source population is used, 

case and controls would again be strongly selected and the critical issue would be whether the 

determinants o f the selection are associated with the exposure o f  interest and if  they differ between 

cases and controls.

This brief description o f hypothetical internet-based case-control studies emphasizes their 

vulnerability to selection bias. Careful methodological work and empirical testing is still needed 

before an internet-based case-control study can actually be conducted. Apart from selection bias, 

however, internet-based case-control studies would have other important limitations. Firstly, 

recruitment o f incident cases through the internet seems even more problematic and most likely an 

internet-based case-control study would involve prevalent cases, with the well-known 

corresponding limitations. Secondly, even if a study manages to involve cases and controls from the 

same source population without selection bias, the use o f  the internet introduces selection among 

cases. It is hard to predict if case participants would have a more or less serious disease but the 

selection would most likely introduce problems o f  generalizability. Furthermore it would be
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difficult to distinguish between factors causing the disease and factors affecting its severity or the 
patients’ overall health status.

A case-crossover design (see Chap. Modem Epidemiological Study Designs o f  this handbook) 

which does not involve the selection o f control subjects could be a more sensible option for an 

internet-based study. An internet-based case-crossover study on gout (Online Gout Study 2011) has 

indeed been launched in 2003 (Zhang et al. 2007). The existence o f  this study was advertised using 

Google links. Gout patients were invited to register and asked to complete a control-period 

questionnaire every three months investigating risk factors for gout attack in the preceding two 

days. Moreover they were asked to complete an “attack questionnaire” if they were experiencing a 

gout attack. Participants were also provided a hard copy o f the attack questionnaire in case they 

could not access the internet during the gout attack but in fact this option has been rarely used 

during the study.

As any other case-crossover study, this study aimed at evaluating trigger factors and acute 

effects (Hunter et al. 2006; Zhang et al. 2006). Exposure information was collected prospectively, 

because patients were recruited before having the actual gout attack, thus limiting the possibility o f 

selection bias. It is also possible to imagine a different design, in which patients participate when 

they have an event, say a gout attack, and complete the exposure information for the control 

period/s retrospectively. Under this scenario, there is possibility o f selection bias if their likelihood 

o f accessing the study website and participating in the study depends on some of the trigger factors 

under investigation. For example a patient could experience a gout attack after having used a 

diuretic. He or she might suspect that the diuretic was the cause o f  the gout attack and use the 

internet to check for this hypothesis. Then, he or she accesses the study website, in which there 

might also be some general information about the disease, and decide to participate. Obviously, this 
would induce selection bias.

4.4 Intervention studies

For a number o f  reasons internet recruitment fits very well with intervention studies, 

namely: 1) randomization is likely to cancel bias due to self-selection, 2 ) the randomization can be 

easily managed centrally through the website, also stratifying for a number o f variables and 

patients’ characteristics, and 3) pragmatic and explanatory trials become very similar in design and 

conduct. Indeed, internet recruitment is the most correct setting in which to test tailored 

interventions offered via the internet to unselected patients/populations. These types o f 

interventions are becoming more and more frequent. We have carried out an admittedly cursory
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PubMed search restricted to clinical trials using "internet-based" and “intervention" as the 

keywords. It revealed a clear trend in increasing number of papers with time (Figure 9).

Internet-based trials in medicine have been conducted starting from the end of the 1990s / 

beginning of 2000s. In 2000, for example, McAlidon and colleagues started online recruitment for a 

feasibility study of an internet-based clinical trial of glucosamine vs. placebo in patients with 

osteoarthritis of the knee (McAlindon et al. 2003). The main outcome was knee pain, assessed using 

a validated online self-completion questionnaire 12 weeks after intervention. Volunteers completed 

an eligibility screening questionnaire and, if applicable, they were asked to send a signed hard copy 

of the informed consent and copies of medical records. Upon confirmation of the osteoarthritis of 

the knee, they were randomized into the treatment or placebo group. To those subjects included in 

the treatment group, the pills were mailed every second week. Although this study involved 

internet-based recruitment, the intervention to be tested was not an online-intervention (as it 

involved mailed pills) and relied on having access to the actual medical records to confirm the 

diagnosis and obtain detailed information on the disease. These aspects may decrease the possible 

methodological advantages of using the internet.

Figure 9. Number of papers identified in PubMed using “internet-based" and "intervention” as the keywords 

and restricting the search to clinical trials (search carried out in November 2010)



Studies testing online primary care interventions for health risk behaviors are more common, 

including those on diet and nutrition, physical activity, smoking habit and alcohol consumption 

(Civljak et al. 2010; Portnoy et al. 2008; Vandelanotte et al. 2007; Webb et al. 2010). A recent 

Cochrane review on internet-based interventions for smoking cessation identified 20 studies 

published until June 2010 (Civljak et al. 2010). Most o f these studies used an internet-based 

recruitment and all o f  them were published after 2004. Some o f  the trials compared an internet 

intervention with either no intervention at all or an offline intervention; others compared different 

types o f internet interventions. In general, the study designs were very heterogeneous and many 

studies had a relatively high proportion o f drop-outs. Authors concluded that the evidence o f long

term benefits for programs delivered only by the internet (as compared with offline interventions), 

is very limited, while there is some evidence that tailored (i.e. interventions specifically designed to 

meet the characteristics o f a target individual or group) internet interventions are more effective 

than non-tailored internet interventions.

Rabius and colleagues advertised an intervention trial targeting smokers who wanted to quit 

smoking on the website o f the American Cancer Society (Rabius et al. 2008). Potential participants 

were asked to complete a baseline questionnaire and provide informed consent. If eligible, they 

were randomized to receive access to one o f  five tailored interactive websites providing 

interventions for smoking cessation or a more static page set up at the American Cancer Society 

website serving as control treatment. The main outcome (successful abstinence for the last 30 days) 

was assessed 13 months after randomization, first emailing a survey questionnaire and then 

contacting by phone those who did not answer. Out o f almost 6,500 individuals enrolled in the 

study, only 38% answered the follow-up questionnaire. Analyses were first conducted among the 

respondents only and then re-conducted assuming that non-respondents did not quit smoking: in no 

case there was a significant difference in smoking cessation across the intervention arms. The high 

drop-out rate between follow-ups, however, limited the study power.

Low completeness o f  follow-up was also observed in a trial set up on the Stop-tabac.ch 

website (Stop-tabac.ch 2011) to compare an original and a modified version o f an online tailored 

program for smoking cessation (Etter 2005). The main outcome (smoking abstinence in the last 

seven days) was assessed via email 11 weeks after randomization, using up to three reminders. 

Almost 12,000 subjects were randomized in the study, with a response proportion at the follow-up 

questionnaire o f  35%. In the analyses, non-respondents were assumed to still smoke. The original 

version o f the program was found to be more effective, with 1 additional quitter every 26 

participants.
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Although many internet-based randomized intervention studies have a high proportion o f 

loss to follow-up, we do not think that this is a characteristic inherent to the study design. It is 

possible to increase participation by obtaining more detailed contact information at baseline 

(telephone number, cell phone number, address, second email) and by recruiting a more committed 

and motivated population, for example by having 1-2 follow-up questionnaires before 

randomization. Furthermore, in a pragmatic setting, a certain proportion o f loss to follow-up should 
be expected.

Randomized trials recruiting participants through the internet are feasible and, thanks to 

randomization, do not suffer from selection bias more than if a traditional approach o f recruitment 

is used. Generalizability problems, namely the restriction to self-selected internet users, are minor 

when the intervention involves online programs. There are, however, some limitations. Firstly, it is 

difficult to have direct contact with participants and to include medical exams in the protocol, thus 

limiting the use o f this study design in clinical settings. Secondly, in many studies, attrition to 

follow-up questionnaires was low and thus there is a need o f methodological improvements to limit 

drop-outs and increase motivation o f the participants. Thirdly, internet-based recruitment may lose 

its efficiency when the aim o f  the trial is to test an offline intervention.

4.5 Surveillance

The main aim o f surveillance is to monitor trends in the rate o f  disease occurrence, both to 

gain insight in the current situation o f an established disease and to detect outbreaks o f emerging 

diseases.

In this paragraph we will not go into detail in describing the aspects o f surveillance, instead, 

we will concentrate on surveillance conducted by means o f the internet as a way to collect data 

from sources not easily accessible by traditional surveillance.

The widespread diffusion o f  computers and o f the internet has provided a tool capable o f the • 

earliest possible detection o f epidemics, giving allowance to a timely and maximally effective 

public health response worldwide. Surveillance data, as well as behavioral data, social contacts and 

risk perception can be collected by exploiting new Information and Communication Technology 

(ICT) techniques and methodologies to better understand the spread o f infectious diseases (for 

example by collecting information on behavioral data to understand human immunodeficiency virus 

transmission) and obtain real-time data, which are crucial to rapidly identify public health 

emergencies, understand global trends, feed realistic data-driven models to assess the impact on the 

population, and optimize the allocation o f  resources.
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Existing traditional disease surveillance systems have limitations. For example, in the case o f 

influenza-like-illness (ILI), monitoring methods rely on sentinel networks o f physicians, laboratory 

scientists, public health professionals and epidemiologists. Although they may mirror influenza 

activity, they cannot be implemented as real-time surveillance tools: either they only record proxy 

measures o f influenza, or they contain unavoidable time delays between incidence and reporting. 

Traditional schemes require individuals to access health services and rely on the propensity o f 

individuals to consult. Age-stratified rates o f physician consultation may vary widely with different 

health care and health insurance systems. For non-severe diseases especially, only a minor (and 

unknown) fraction o f all infected individuals sees a doctor, and frequently after a considerable 

delay, when a complication has occurred or in case a doctor’ s certificate is required, A web-based 

platform can be used to detect cases from those individuals who are less prone to consult a doctor 

when sick but agree to fill in a brief web survey about their symptoms. Moreover, traditional 

monitoring schemes typically lack uniform standards for clinical definitions that vary considerably 

between countries and even between reporters (EISN -  European Influenza Surveillance Network). 

By using web surveys, standard platforms can be used across different countries to collect uniform 

data without major economic efforts.

In the following, we will focus on the case o f influenza-like-illnesses (ILI) for which internet- 

based technologies have been successfully used. These internet surveillance systems for ILI have 

been implemented in Belgium and Netherlands in 2003 (under the name “Der Orote Gricpmeting”  -  

the Great Influenza Survey), in Portugal in 2005 (“Gripenet” ), in Italy in 2007 ("Influwcb”), in the 

UK in 2009 (“ Flusurvey”) and in Sweden in 2010 (“ Influensakoll” ) with the aim o f measuring 

influenza activity and collecting important public health information in real-time (for example, 

during the 2009 H1N1 pandemic, the web platform detected the peak activity o f  the influenza more 

than one week in advance with respect to the general practitioners (GPs). Platforms are now 

grouped under the umbrella o f Influenzanet, forming a network o f platforms to measure ILI in the 

community at a European level.

For each platform, registration o f participants takes place through the web page (see flowchart 

in Figure 10). Upon registration, following provision with a password protected account, 

participants are asked to complete a baseline questionnaire with questions about age, sex, household 

size and composition, occupation, location o f home and workplace, membership o f a risk group, 

etc. Participants are also able to create accounts on behalf o f  their family/houschold enabling the 

entry o f  data from elderly people or children. Each week, participants are asked to complete a 

symptoms questionnaire as to whether or not they had symptoms in the previous week. To maintain
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participants’ interest and remind them to complete the questionnaire, a newsletter containing 

influenza facts and news is sent each week. The platforms, called Internet Monitoring Systems 

(IMS), are updated on a daily basis during the whole influenza season with items including the 

estimated incidence and the spatial distribution of cases.

Results from the Belgian, Dutch, and Portuguese surveys have been analyzed under the name 

“ Great Influenza Survey (GIS)” (Friesema et al. 2009). The estimated seasonal influenza incidence 

curves given by these systems were highly correlated with those obtained through the traditional 

surveillance method. These analyses also offer the encouraging indication that the internet-based 

approaches can detect increased influenza activity more rapidly than surveillance-based reports by 

general practitioners (Marquet et al. 2006). Moreover, it is possible to estimate delays between the 

onset and the consultation dates and to detect changes in contact patterns and general behavior 

(Friesema et al. 2009).

Figure 10. Diagram of recruitment and follow-up in the Influweb study
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During the 2009 H1N1 pandemic, IMSs have proved to be valuable tools in gaining an insight 

into the evolution of the pandemic in real-time. In particular, the web-based system was launched in 

the UK during the first pandemic wave and went on collecting data until the end o f the pandemic. 

Participants answering the symptoms questionnaires during the pandemic were asked more accurate 

follow-up questions about healthcare-seeking behavior, the delay o f  consultation with respect to the 

onset o f symptoms; if they took time o ff work and for how long; if they took antiviral medication; if 

they were willing to be vaccinated against H l N 1; etc (Tilston et al. 2010).

Since participants would select their symptoms from a pre-spccified list, it was also possible 

to test different definitions of ILI, and to compare the resulting incidence with the one estimated by 

the Health Protection Agency (HPA). During the pandemic, to get a clearer picture o f the epidemic 

evolution, the HPA asked for random testing o f patients accessing different health care settings, 

which allowed evaluation o f  the true number o f  cases and thus adjustment o f  the estimates, by 

means o f a method that was expensive and induced further delays in the data stream. The IMS to 

monitor ILI in the community was a direct and timely alternative, providing an incidence curve with 

a timing o f the peak being close to the adjusted HPA case estimates. In making comparisons 

between web-based system estimates and HPA case numbers, results suggest that trends can be 

captured by the IMS even more reliably than standard GP-based systems, even though it remains 

unclear how accurate they are for estimating the absolute level o f incidence (Tilston et al. 2010).

The UK web-based surveillance platform that ran continuously from July 2009 to March 2010 

(i.e during both the first -summer- and the second -Autumn- pandemic wave in England in 2009) 

has also detected changes in healthcare seeking behavior between the two waves (Brooks-Pollock et 

al. 2011). These behavioral modifications, due to changing scientific information, media coverage 

and public anxiety, affected official case estimates. The web-based platform was able to detect a 

decrease from 43% to 32% in the percentage o f  individuals with ILI symptoms who sought medical 

attention from start to the end o f the epidemic. Adjusting official numbers accordingly, it was 

possible to estimate that there were 1.1 million symptomatic cases in England, over 40% more cases 

than previously estimated, and that the autumn epidemic wave was 45% bigger than previously 

thought.

A  further aspect for which surveillance is crucial is the development o f  accurate 

prediction models. When an outbreak occurs, usually short- and long-term predictions are based on 

observed data (provided by GP consultations or dcath/hospitalization records) combined with 

mathematical models updated as more data arise. For example, Bageuelin and colleagues (2010) 

carried out a real time assessment o f the effectiveness and cost-effectiveness o f  alternative influenza
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A/HINlv vaccination strategies. To generate plausible autumn scenarios under different 

vaccination options, they fitted a transmission dynamic model using the estimated number o f cases 

determined by means o f  a web-based surveillance platform, calls to the UK National Pandemic Flu 

Service and GP calls and consultations. In this specific case, data collected by means o f the web 

platform were used to estimate the proportion o f 1LI cases calling the GP during the influenza 

A/HINlv in UK.
One o f the important limitations that remain related to internet-based surveillance is the lack 

o f  medical or laboratory confirmation o f diagnosis. Data collected by means o f a web platform will 

never be able to replace the virological analysis or clinical diagnosis carried out by GP surveillance. 

In direct contact with the patient, the GP can exclude other diseases than 1LI and the virological 

analysis can give further information about the subtype o f influenza virus. A possibility to 

overcome the latter limitation could be to send self-sampling kits to a selected subset o f the internet- 

based system participants. An attempt in this direction has already been made (Cooper et al 2008) 

and this possibility should be explored further. Another possible limitation o f internet-based 

surveillance is that participants are not representative o f  the general population. This issue has been 

addressed by re-weighting the sample according to the age and sex distribution in the general 

population (Tilston et al. 2010), although it is never possible to exclude that participation in an 

internet-based system is positively or negatively associated with the risk o f 1LI.

In conclusion, internet-based surveillance has the potential to capture a wider range o f 1LI 

cases than traditional surveillance, as well to track changes in health care attendance patterns in 

real-time. Even though internet-based surveillance has limitations and cannot replace traditional 

GP-based surveillance, it can provide an important support to enable the collection o f valuable 

additional information, both in ordinary surveillance and during public health crises when the 

sentinel GPs surveillance and Public Health systems are under stress. While ILI has been used in 

the early deployment o f the system, in subsequent years these IMSs will consider other diseases and 

infections.

5. WEB 2.0

Very recently, the internet has started offering new possibilities for epidemiological research 

based on the so-called web 2 .0 , which refers to the active generation o f  contents by the internet 

users through various means including online communities, web searches, social networks, etc. 

(Lee 2010). For example, these new communication and information habits over the internet may be 

used to quantify outbreaks o f  specific diseases (Eysenbach 2002, 2009). A well-known example is
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the use o f Google searches to obtain real-time estimates o f influenza-like-illness (ILI) in the United 

States (Ginsberg et al. 2009): Ginsberg and colleagues developed a method to identify automatically 

ILI -  related web search queries and use them to estimate ILI weakly percentages; these estimates 

had a correlation above 0.90 with data obtained from the US Surveillance Network o f  the CDC 

(Centre for Disease Control and Prevention).

The potential sources o f information available in the web 2.0 are growing fast. As examples, 

data on disease outbreaks can be obtained from chat rooms, blogs, press release or Facebook 

(Brownstein et al. 2009, 2010; Eysenbach 2009), while exposure data, say on air pollution, can be 

obtained continuously from sensors worn by self-selected volunteers, and automatically transferred 

in real-time for model analyses (Mobile Environmental Sensing System Across Grid Environments, 

Message 2008; Mobile Air Quality Monitoring Network, Institute for Software Integrated Systems 

2011). There are however obvious limitations in using these sources o f data, including issues o f 

generalizability, bias and exposure and outcome measurement. Currently, areas o f epidemiological 

research which may actually benefit from the use o f  web 2 .0  remain to be explored and identified.

6 . CONCLUSIONS

Fifteen years ago, the internet was advocated as a promising tool for epidemiological 

research (Rothman et al. 1997). Since then, some internet-based studies have been conducted, 

including a number o f  surveys and intervention trials along with few cohort studies. Nevertheless, 

the use o f the internet in epidemiological research is still very limited. Van Gelder and colleagues 

have recently reviewed analytic epidemiological papers published in 2008-2009 in four top general 

medical journals (the British Medical Journal, The Journal o f  the American Medical Association, 

the Lancet and The New England Journal o f  Medicine) and in three top epidemiological journals 

(American Journal o f Epidemiology, Epidemiology and International Journal o f Epidemiology), 

finding that only about 1% o f the scrutinized 2,094 studies used internet-based questionnaires (van 

Gelder et al. 2010). Since online questionnaires can be also used in studies which do not recruit 

online, the actual number o f internet-based studies is smaller. For this chapter, we have scrutinized 

papers published between September 21, 2009 and September 20, 2010 in eleven leading 

epidemiological journals (Environmental Health Perspective, American Journal o f Epidemiology, 

Epidemiology, International Journal o f Epidemiology, American Journal o f Public Health, 

American Journal o f  Preventive Medicine, European Journal o f Epidemiology, Preventive 

Medicine, Journal o f Epidemiology and Community Health, Journal o f Clinical Epidemiology,
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Annals o f Epidemiology). We have identified only two papers, both methodological, concerning an 

internet-based cohort (Huybrechts et al. 2010) and an internet-based survey (Klovning et at. 2009).

These data demonstrate that the use o f the internet has not yet routinely entered the 

epidemiological practice. Moreover, most publications o f internet-based studies deal with feasibility 

or proof-of-concept studies.

Evidence on the validity and reliability o f  web-based questionnaires has started 

accumulating (Apovian et al. 2010; Brigham et al. 2009; Donker et al. 2009; Miller et al. 2002; 

Rankin et al. 2008; Touvier et al. 2010, 2011; West et al. 2006) and some studies have successfully 

used mixed methods involving both web-based and mailed questionnaires for the follow-up o f 

traditionally recruited cohorts (Ekman et al. 2006; Russell et al. 2010). However, methodological 

research on the use o f the internet to recruit unspecified populations in the context o f the various 

types o f study designs is still in its infancy. In detail, we need to better understand when an internet- 

based survey can be carried out and if it is possible to tackle some o f its inherent problems o f 

selection bias; we need to further investigate the impact o f baseline selection in internet-based 

cohort studies, as well as evaluate the determinants o f completeness o f  follow-up; we should refine 

our ability to advertise the existence o f internet-based studies to the relevant source population; we 

should develop methods to improve attrition in internet-based randomized studies; we should 

understand if it is possible to conduct internet-based case-control studies; and we should understand 
when surveillance can (or should) be carried out via the internet.

In our opinion the short-, medium-term agenda for internet-based research applied to 

epidemiology should prioritize innovative field work and methodological studies on the acquired 

data. In other words, the debate on whether internet-based research is valid or not should overcome 

a-priori formed opinions and become more evidence-based where this chapter has indicated that 

randomized trials, cohort studies and surveillance may be successfully carried out using the internet.
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We agree with Rothman and colleagues that scientific inference in epidemiology does not require 

representativeness o f the general population or target population in order to be valid. This is an 

important message and we welcome Rothman and colleagues’ paper which has clearly expressed 

this position \

On the other hand, perhaps Rothman and colleagues go too far in arguing that representativeness 

should be avoided as a matter o f principle, and we consider that there are some situations where 

representativeness is the most sensible approach. For example, it would be rare for researchers to 

only study one age-group, and to then attempt to extrapolate their findings to other age-groups, if 

sufficient numbers and funding were available to also sample adequate numbers from these other 

age-groups.

In our experience, there are three usual reasons for deliberately opting for non-representativeness in 

a study design ( ‘ intentional’ non-representativeness): (i) practical reasons, e.g. it may be most 

practical to restrict a study to those who have a telephone; (ii) to minimise bias, e.g. by restricting a 

study to a particular population subgroup (as in the British doctors study *) so that there is less 

likelihood of lifestyle differences between exposed and non-exposed within that group; and (iii) in 

order to focus on one or more population subgroups, e.g. if we wish to compare exposure-outcome 

estimates in different ethnic groups 3. In the first instance, representativeness is not necessary and 

would usually not improve the feasibility o f  the study; in the latter two situations it should 

specifically be avoided.

In addition, non-representativeness may also be ‘unintentional’ , e.g. in longitudinal studies because 

o f low baseline response rates or the recruitment o f volunteers rather than a formal sample o f  a 

defined population. Such unintentional selection may occur both in studies involving random 

population samples and in those involving non-representative samples. In this paper we will focus

131



mainly on the issues involved in intentional non-representativeness, but will also consider issues o f 

unintentional non-representativeness. In this latter situation, the potential for bias may be relatively 

greater. In particular there is potential for large bias if the outcome o f  interest or its early signs 

affect the probability o f baseline selection. We will argue however, that, provided that the outcome 

does not affect selection, situations o f intentional and non-intcntional non-representativeness are 

generally similar in terms o f validity. Furthermore, baseline self-selection is likely to create a group 

o f  more motivated persons in longitudinal studies, which may result in a better response to follow

up and, thus, in decreased selection bias. Thus, the possibility o f bias from lack o f 

representativeness needs to be balanced against the likelihood o f bias from poor response to follow

up in a more representative sample. For example, most researchers, if given the choice, would opt to 

base a study on 50% o f the population and then achieve good follow-up rates, rather than to start 

with a representative sample and then only achieve 50% follow-up.

We should also note that in some instances the aim o f  an epidemiological study is primarily 

descriptive, e.g. to estimate the prevalence o f a condition such as asthma in the general population \ 

and in these studies representativeness is necessary to obtain valid estimates. Furthermore, such 

studies often are not completely descriptive. For example, prognostic research is population and 

time specific, but the identification o f a cause o f  disease progression may add information on the 

understanding o f  a biological phenomenon.

We will focus on ‘analytical’ studies which aim to estimate a particular exposure-disease 

association, while appropriately controlling for confounding and avoiding other biases. In this 

situation, we agree that representativeness is not a goal per se, but rather needs to be justified in the 

context o f the particular study. For example, in a clinical trial where we want to understand the 

efficacy o f a treatment for a disease, a random sample is clearly not needed and in many ways it can
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be inappropriate. Typically we restrict the initial studies to high risk patients or to patients expected 

to have a high compliance with the assigned treatment and follow-up.

We have been involved in discussions on representativeness a number o f times since 2005, when 

we started an internet-based birth cohort in Italy (NINFEA cohort, www.prottcttoninfca.it') 5, 

followed by a similar study in New Zealand (ELFS cohort, www.eIfs.org.nz), Internet-based 

recruitment has advantages in terms o f feasibility, costs and possibilities o f reaching traditionally 

understudied populations. However, this approach is often criticized on the basis o f its consequent 

lack o f representativeness o f the general population. Internet-based recruitment selects participants 

who have access to the internet, become aware o f  the existence o f the study, and volunteer to 

participate. Thus, it is based on a restricted source population and the study population is a self- 

selected sample o f the source population (i.e. non-representativeness is both intentional and 

unintentional).

In this commentary we describe these criticisms and argue, in line with Rothman and colleagues, 

that restricting a study to a subgroup o f the general population does not usually hamper scientific 

inference, and may often enhance it. We focus on infant cohort studies, but the same arguments 

generally apply to the corresponding case-control and cross-sectional studies based on the same 

restricted populations. We focus on the main two arguments which we have received against using 

non-representative populations in internet-based birth cohorts: (i) lack o f heterogeneity; and (ii) the 

potential for bias. We also consider a third potential criticism relating to selection on a mediating 

variable.

Criticism l :  N on-representative cohorts lack heterogeneity.
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One major criticism o f the use o f non-representative samples is the resulting lack o f heterogeneity, 

with regards to exposures, potential effect modifiers, or both. Although it is true that restriction may 

decrease the range o f exposure levels and the magnitude o f the contrasts, in fact, we argue that 

using non-representative samples may often enhance study power to assess main effects and effect 

modification. To study a rare exposure, for example, either we assemble a very large cohort or we 

do ‘ smart selection’ o f  its members. For example, in an internet-based birth cohort study, in which 

members are characterized by a high socioeconomic status, women having their first pregnancy 

after their forties are overrepresented. When high maternal age is the exposure o f interest, an 

internet-based birth cohort becomes more efficient than a birth cohort which is representative o f the 

general population. Similarly using non-representative samples may enhance our ability to assess 

heterogeneity with regards to potential effect modifiers, e.g. by ensuring that there are adequate 

numbers in each of the ethnic groups to be considered if we suspect or are interested in potential 

modification by ethnicity.

These arguments refer to issues o f study efficiency, but lack o f heterogeneity among study 

participants may be an advantage with regards to controlling confounding. Ideally, the best study in 

terms o f scientific validity would be a design involving large heterogeneity in the exposure and 

complete homogeneity in all other characteristics (provided we did not wish to investigate effect 

modification and/or the effects o f varying population contexts).

O f course it should be acknowledged that lack o f heterogeneity is not always an advantage, 

particularly when there is important effect modification. It can happen that exposure has strong 

effects in one population subgroup and weaker or non-existent effects in another. If a study is based 

on the latter subgroup, then the effects o f  exposure will not be identified. However, once again, to 

explore such effect modification usually requires non-representative samples, e.g. by studying equal 

numbers in each age-group, gender or ethnic group.
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Unless we are explicitly interested in, or have a priori reason for, investigating heterogeneity, 

generalizability is a matter o f scientific inference rather than representativeness. There are many 

situations in which such generalisability is relatively straightforward. Smoking causes lung cancer 

in every population in which it has been studied, and there was no bias, and considerable practical 

advantages, to restricting one o f the key early studies to British doctors 6. Similarly, smoking 

presumably causes lung cancer in those with or without a telephone, those who have registered to 

vote and those who have not, and in those who use and those who do not use the internet. With rare 

exceptions, such restrictions may greatly enhance study practicality and thereby response rates and 

power, and have little or no effect on validity or generalisability.

Criticism 2: i f  the exposure o f  interest is associated with the probability o f  selection, the 

exposure-outcom e associations estimated in a non-representative cohort may be biased.

The second major criticism o f  the use o f non-representative samples is the possibility o f introducing 

selection bias. When conducting a cohort study on a selected population, it is likely that there are 

factors that are associated with selection and are also determinants o f  the disease o f interest. For 

example, in a cohort study restricted to British doctors, familial history o f early mortality from 

cardiovascular diseases may affect both the lifetime probability of cardiovascular diseases and the 

decision o f becoming a doctor. As with other risk factors, the exposure o f  interest may also be 

associated with the probability o f selection: for example socioeconomic status may affect both 

smoking habits and grades at high school (and therefore the probability o f being admitted to a 

Medical School). If both the exposure and another risk factor for the disease o f interest are 

associated with the probability o f selection, baseline restriction can introduce bias in the exposure- 

outcome association. This is a type o f collider bias that has been discussed extensively in the 

epidemiological literature, including by us in the context o f internet-based cohorts7’ ®. Fortunately,
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the amount o f bias that is expected to be introduced by this phenomenon is small unless all o f the 

associations involved in generating the bias are very strong. Assuming that all relative risks 

involved are o f  2.0, the bias, in logarithmic scale, will be o f 0.02 (i.e. a RR for the exposure- 

outcome association o f 1.02, when the true relative risk is 1.00), while assuming that all RRs are o f  

4.0 it will be o f 0.15 (i.e. a RR o f 1.16, when the true RR is 1.00)7.

However, the exposure o f interest is almost always associated with some disease risk factors in the 

general population, whether or not we study a restricted subpopulation. Indeed each general 

population, at a given point in time, will have its specific confounding pattern. There is no reason to 

assume that confounding patterns for, say, the association o f  smoking with cardiovascular disease in 

London, UK, in 2012 is the same o f that present in Turin, Italy, in 2012: we could, for example, 

expect that in London smoking is associated with drinking beer while in Turin it is associated with 

drinking red wine. The confounding pattern in the selected cohort may differ from that o f  the 

corresponding general population, but we cannot predict whether the amount o f  confounding will be 

greater, similar or smaller. The bottom line is that each population, including a selected study 

population, has its own confounding pattern. Valid scientific inference is achieved if the 

confounders are controlled for, and there is no reason to believe that control o f  confounding can be 

more easily achieved in a population-based cohort than in a restricted cohort. Indeed, we can 

intentionally restrict the cohort to decrease confounding bias. For example, if we are not able to 

precisely measure the amount o f  alcohol consumption in the general population, and we know that 

alcohol is a relevant confounder o f the association o f interest, we can restrict the study to non

drinkers and occasional drinkers.

In a recent paper, we compared, for selected exposures and outcomes o f  interest, the confounding 

pattern o f the NINFEA internet-based cohort with that present in the corresponding general
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population, showing that the overall confounding was not larger, but was qualitatively different, 

than that present in the general population ®.

As mentioned above, it is not impossible to devise situations in which selection bias could occur 

due to restriction (i.e. non-representativeness), e.g. when an exposure and an unmeasured risk factor 

for the disease are independent in the general population but both are associated with the probability 

o f  selection. Our argument is not that such bias is impossible, but rather that restricted studies are 

often likely to be less affected by confounding. Also, any small likelihood o f bias from using non

representative samples needs to be balanced against the likelihood of bias if attempts to use random 

representative samples result in low response rates at follow-up and/or a greater likelihood o f 

information bias. The British doctors study is a relevant example once again, in which the non

representative sample has likely induced better follow-up and greater validity o f the smoking 

information gathered. To insist on doing the study in a random general population sample would 

have had little or no benefit, and considerable disadvantages in terms o f logistics and study validity.

Criticism 3: I f  an intermediate variable in the causal pathway from  the exposure to the outcom e 

is associated with the selection, exposure-outcom e associations estimated in a non-representative 

cohort may be biased.

We would therefore argue that the main reasons for opposing the use o f non-representative samples 

-  lack o f  heterogeneity and the potential for introducing selection bias and/or confounding -  are 

rarely valid, and are generally outweighed by the benefits o f this approach, although o f course this 

conclusion is highly hypothesis- and study-dependent. In the rest o f this paper, we will consider an 

issue which has been less debated, namely the situation in which an intermediate variable (a 

mediator, that is a variable that is on the pathway from the exposure to the outcome) is associated 

with the probability o f  selection.
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In most circumstances, baseline selection in cohort studies takes place before the intermediate 

variable is manifest. For example in the British doctors study it could be assumed that members o f 

the cohort became doctors before the occurrence o f manifest mediators o f the effect o f the exposure 

(smoking) on the outcomes o f interest. Analogously, in an internet-based birth cohort, having access 

to the internet likely occurs before pregnancy and, thus, before most o f the possible intermediate 

variables may become manifest. Within this framework, if there is a variable affecting both the 

intermediate variable and the probability o f selection, the use o f a non-representative sample could 

alter the exposure-mediator confounding pattern. This situation is illustrated in Figure 1 using 

directed acyclic graphs. Figure la shows a non-representative cohort in which selection introduces 

exposure-mediator confounding that was not present in the general population; Figure lb shows the 

case o f  a representative cohort in which there is already exposure-mediator confounding; in Figure 

lc  a non-representative cohort study is conducted in the same population o f Figure lb; in Figure Id 

the exposure-mediator confounder also affects the probability o f  selection. An example o f  the 

scenarios depicted in Figures lb and Id would be the effect o f  pre-pregnancy BMI (E) on pre-term 

delivery (O), in which gestational hypertension is a possible mediator (M). Socio-economic class 

(C) would be an exposure-mediator confounder, assuming that it affects both pre-pregnancy BMI 

and gestational hypertension but, in a simplified scenario, it is not a determinant o f pre-term 

delivery otherwise. In a study restricted to internet users, socioeconomic status would also affect 

selection (S) (as in Figure Id) and thus, restriction would be likely to decrease exposure-mediator 

confounding due to socioeconomic status.

In summary, some o f  the scenarios described in Figure 1 increase the overall exposure-mediator 

confounding, while others decrease it. We consider that there is no reason to expect that non

representative cohorts tend to have a larger exposure-mediator confounding than representative 

cohorts, although we can always plan the selection in order to decrease exposure-mediator 

confounding. We should acknowledge that a confounder o f the exposure-mediator association is
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often treated as a confounder o f the exposure-outcome association, especially when quantifying the 

role o f  the mediator is not the focus o f  the study. In this context, scenarios described in Figure 1 

become very similar to those described in the previous section (Criticism 2).

It is possible that baseline selection occurs after an intermediate variable becomes manifest. This 

may typically happen both in representative and in non-representative cohorts when there is 

unintentional non-representativeness. In a study involving internet-based recruitment, the fact that 

participants are volunteers that should need to first be aware o f  the existence o f  the study may 

enhance this potential problem. If the intermediate variable has a direct effect on the selection, a 

number o f  different scenarios may occur. The simplest scenario is that described in Figure 2, in 

which there is only a direct effect from the mediator to the selection. According to the causal 

relationship described in this figure (in which there are no other factors affecting the selection), the 

effect o f  the exposure on the outcome o f interest would be attenuated. It should be considered, 

however, that typically the decision to participate in the study depends on a large number o f factors 

and the selection process is poorly predicted by a single intermediate variable. Thus, the situation 

described in Figure 2 in most instances should introduce a negligible or modest bias in the estimate 

o f  the exposure-outcome association. The example o f  the effect o f  maternal pre-pregnancy BMI on 

preterm delivery in which gestational hypertension is an intermediate factor may be used to 

illustrate also the situation in which selection is directly affected by an intermediate variable. In 

particular, the decision o f pregnant women to participate in the study could depend on whether they 

have gestational hypertension or not.

The relationship between intermediate variables and selection can become much more complex than 

described above *: for example, the selection could be affected both by the intermediate variable 

and by the participant’ s reaction to the intermediate factor. For example, in the hypothetical study 

o f the effect o f maternal pre-pregnancy BMI on the risk o f pre-term delivery, where gestational
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hypertension acts a mediator, we would have to consider that women are usually monitored during 

the remaining part o f pregnancy and may be prescribed blood pressure medications. Participation in 

the cohort could be affected both by the gestational hypertension and by the consequent activities, 

e.g. those taking medications, being more or less likely to volunteer to participate in the study.

The interplay between intermediate variables and selection, as well as the natural history o f disease, 

will have to be fully explored in a future work. However, it should be emphasized that, regarding 

selection, the issue can be solved by taking into account the temporal relationships between the 

variables under study and, thus, by enrolling the participants before the intermediate variable or its 

early signs could become manifest. In a birth cohort study involving enrolment during the first 

trimester o f  pregnancy, for example, selection cannot be directly affected by intermediate variables 

acting later in pregnancy or at birth.

Conclusions

In conclusion, we agree with Rothman and colleagues that scientific inference does not require 

representativeness, and often explicitly requires that study samples should not be representative. 

Overall, representativeness can be harmful or beneficial depending on the study question and 

context. There is no reason to embrace representativeness per se, as often restriction can enhance 

the practicality o f a study and/or the validity o f the scientific inferences. We acknowledge that 

further work is needed to fully understand some specific situations, in particular when an 

intermediate variable directly affects baseline selection. However, leaving aside this specific issue, 

we consider that the view that studies based on representative samples are clearly better than those 

based on restricted samples is untenable. Rather, although it is perhaps too strong to argue that 

representativeness should always be avoided, it is usually not necessary, and often should be 

avoided.
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Figure 1. Effect o f selection in a cohort study in which a mediator (M) o f the effect o f the exposure 

(E) on the outcome (D) becomes manifest after the selection has occurred, a) Non-representative 

cohort in which the mediator (M) and the selection (S) are affected by a common cause (R), and the 

exposure (E) is also associated with selection; b) Representative cohort in which there is exposure 

(E) -  mediator (M) confounding from C; c) Scenarios described in Figure la and Figure lb coexist; 

d) Same as Figure lb, but the confounder (C) also affects selection.
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Figure 2. Selection o f cohort participants (S) is affected by the mediator (M) o f the exposure (E> 

outcome (D) association.
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Chapter 5

Growth Modelling

5.1 Preamble

The aim o f  modelling growth Is to summarise ¡„dividual data, made o f repeated anthropometric mea- 

surements taken on a ,object at different ages, into „ed u ced  number o f parameters, without significant 

loss o f information. This process should allow the comparison o f growth patterns between individuals 

or populations and, when the growth function is differentiable, to identify particular features of the 

growth curve such as turning points (e.g. timing of BMI peak during the first year o f life) or velocity 

and acceleration at any time point within the observed age range. The target is thus to summarise 

the individual growth measurements taken at varying age, into a smooth curve, which could represent 

the underlying growth trajectory more closely that the raw data themselves. The optimal degree of 

smoothness, that is the one that provides a satisfactory balance between goodness of lit and both 

model parsimony and parameter, Interpretabllity, thus mods to be found. Farther, it is desirable that 

the fitting procedures used to estimate these models are robust to missing values and measurement 

error and to irregularity of the ages at which observations are made, which are common issues in 

longitudinal growth studies (Berkey, 1982).

Several models have been propped in the literature to describe human growth, either specific to an 

anthropometric measurement o , to ,  range o f ages. Hereafter we will refer to this class of models as
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“Biological models” . More general statistical models have also been applied to growth data to describe 

their patterns and extract particular features. These include in particular polynomials and fractional 

polynomials models (Royston and Altman, 1994), random effect models (Goldstein, 2010), splines 

methods (Ruppert et al., 2003) and latent growth models (Jung and Wickrama, 2008). Hereafter we 

will refer to these class of model as Statistical models . Some of these models will be briefly reviewed 

here.

5.1.1 Biological models

Among the models specifically developed to describe human growth, many are concerned with at 

least the first 2 years of life, for example the Jenss-Bayley (Jenss and Bayley, 1937), Count (Count, 

1943), Berkey-Reed (Berkey and Reed, 1987), infancy-childhood-puberty (ICP) Karlberg (Karlberg, 

1987) and Jolicoeur-Pontier-Pernin-Sempe (Jolicoeur et al., 1988) models, with the last two describing 

growth in height from birth through to final adult height. On the other hand, the Jenss-Bayley, Count 

and Berkey-Reed models have been proposed for both height and weight, but covering only the first 

6 /8  years of life.

All o f these models were conceived as models to be fitted separately on each individual. Extensions 

for the joint modelling of multiple individuals are discussed later. Also these models were originally 

conceived for un untransformed anthropometric measures. Formal specifications of these models as 

fitted separately on each subject are given below, with y,j being the anthropometric measurement 

made for subject j ,  j  =  1, . . . , J ,  at times ttj , i =  1, . . . , n^, the o^s being the unknown subject- 

specific parameters and ejjS being the error terms assumed to be normally distributed with mean 0 

and variance â y.

The Jenss-Bayley model

Vij =  aij +  a2jtij -  ea« +a*>*y +  Cij (5.1)

where is height or weight at age ttj, with t ranging from birth to 6 /8  years. The model accounts 

for the rapid decelerating growth usually observed after birth via the exponential component, 

which after infancy becomes negligible.
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The Count model

Vij =  aij + a2jtij +  a3j log ttj +  etj (5 .2 )

This model has been used to describe height and weight as well as some skull dimensions in early 

childhood. Count presented also a model which considers height throughout the whole period of 

growth, adding an additional component for the time 6 to 11 years and one for the last phase of 

growth (Count, 1943).

The Berkey-Reed model

Vij = a i j  +  +  a 3j logtij +  a 4j ( j - ' j  +  €ij (5.3)

Vij =  Qij +  a 2jtij +  a3j logtij +  a 4j ^ +  a5j +  cu (5-4)

These two versions of the Berkey-Reed model are an extension of the Count model with the 

addition of one and two decelerating terms respectively, which, in turn, allow for one or more 

inflection points in the growth curve. Here y can be either height or weight as well as head 

circumference.

The Kalberg-infancy component model

Vij =  aij +  a2j(l -  e~a'ijto ) +  tij (5.5 )

This is the infancy component of the ICP model, already mentioned above, which consists of a 

decelerating function lasting until about 3-4 years of age. It is an exponential function, where y 

is height.
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The Jolicoeur-Pontier-Pemin-Sempd model

1

1 +  ( & ) “ «
+  Ui (5.6)

here t'̂  represents the ‘total age’ of subject j  from conception (that is age plus the duration 

of the pregnancy), y is height and A is adult height, with the model describing its growth from 

birth until maturity.

Other anthropometric models have been proposed in the literature, for example the Preece-Baines 

model (Preece and Baines, 1978) used to describe growth in height from age two years to maturity, 

but they are not presented here because they deal with human growth after the infancy period and 

therefore are not relevant for this Ph.D. The Jenss-Bayley model (5.1) and the 4-parameters version 

o f the Berkey-Reed model (5.3), which were specifically developed to model weight in the first years 

of life (as well as height), will be reviewed in detail in Research Paper III.

5.1.2 Statistical models

As already stated, the model described above (defined as “Biological models” ) were specifically devel

oped to describe human growth in a given anthropometric dimension for a specific age range. These 

models imply a basic functional form of the growth curve with their parameters usually allowing some 

functional interpretation (Hauspie and Molinari, 2004). In contrast, general statistical models do not 

postulate a particular form of the growth curve. Furthermore because the repeated observations for an 

individual within the sample are not mutually independent inferential problems arise when all data are 

analyzed together. Data such as these are called hierarchical. These also arise for example with data 

on patients clustered within hospitals, children within schools, siblings within families etc. Growth 

data collected on cohorts o f children are therefore a special case of hierarchical data (called longitudi

nal data) where the clusters are the individuals who are followed over time. A particular feature that 

distinguishes this type of data from standard clustered data is that the strength of dependency within 

each cluster is influenced by the time interval elapsed between observations, that is the within cluster 

correlation structure is driven by time. There are alternative approaches to deal with the correlated
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structure of observations such as these: fitting models that explicitly acknowledge the hierarchical 

structure of the data or using a robust approach to the estimation of the precision of the estimates 

obtained ignoring it. Only the first approach will be considered in this thesis.

The hierarchical models suitable for handling these data differ according to whether the data can 

be classified as balanced or unbalanced, a concept that concerns the study design. When analysing 

repeated growth measurements data can be defined as balanced if the time points at which the an

thropometric measures are planned to be observed are the same for each study-subject. Conversely, 

when the repeated observations are not taken at the same time for each individual the resulting lon

gitudinal growth data are unbalanced. Unbalanced growth data can be analysed using random effects 

models, also called mixed effects or multilevel models (Goldstein, 2010), under the assumption that 

the irregularity of the observations is not guided by the actual values of the anthropometric variable. 

An introduction to this class of models and to generalization of this approach particularly relevant for 

this Ph.D. is provided below.

R an dom  effects m odels

Random effects models explicitly incorporate the hierarchical structure of the data into the modelling 

process, i.e. the correlations among the observations on the same child. They also allow to investigate 

the influence of predictors on the growth trajectories. Using a random effects approach all subjects 

with at least one growth measure can theoretically be included in the analyses, as this method borrows 

information across individuals to estimate individual parameters.

Formally, let ytj be the anthropometric measurement made for subject j ,  j  =  1 , . . . ,  J, at times ttj, 

i — 1, . . .  ,rij and nj =  N  (that is N  is the total number of measurements), where the subjects 

represent the clusters (level-2) and the time points represent the elementary units (level-1). Note that 

if data are balanced n3 — n and tjj =  ti for every j .  Also note that the anthropometric measure y 

could be transformed (e.g. log-transformed) to meet the distributional assumptions of the model.

The simplest random effects model in this class is called the random  intercept linear model in 

which the variation in individual trajectories is modelled via random intercepts. When there are no
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explanatory variables apart from time, this is given by

Vij -  (n +  u0j) +  Ptij + eij (5.7)

where u0j  represent random variables with mean 0 and variance (the between-subjects variance) 

and etj also are random variables with mean 0 and variance c l  (the within-subjects variance). It is 

generally assumed that u0j ~  N(0,(tIq) and etJ ~  N(0,a(),  independent of each other and of the 

explanatory variables (in this case ty). Observations from two different subjects are thus independent, 

while a within-subject correlation is allowed from this model. Given that

Cov(yij,y2j) =  Var(u0j, u0j) =  <r*0 (5 .8 )

and

Var(yij ) =  Var{y2j) = crl0 +  al (5 .9)

the within-subject correlation (also called intra-class correlation (ICC)) is given by:

P =
a 2

uO

Ju0 + v (5.10)

representing the proportion of total variance explained by the variation between subjects.

In the linear model (5.7) the parameters n and 0  are referred to as fixed effects, while the U(y as 

random effects. The marginal regression, given by E(yy|ty ) =  p +  0Uj, represents the population 

average relationship between the anthropometric dimension and time. According to this model, the 

individual intercepts are allowed to vary around a mean value but the slope, 0  (i.e. the effect of time), 

is forced to be the same for every subject.

A more appropriate model for longitudinal growth data is the random  Intercept and s lop e  model 

(also known more generally as random coefficient model), which is a natural extension o f the previous

one, allowing both the slopes and the intercepts to be subject-specific:

VH = (ß + UQj) +  (0  + uijìtij +  Cy (5.11)
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where here both uoj and u\j are considered as random effects. These variables have the following 

assumptions:

UOj

U i j

~  N (0 , Eu), Eu

dj ~  N(0,al)

•u  o

O’uOl (5.12)

It follows that now the ievel-2 residuals, the u‘s, are allowed to be correlated. As before the level-2 

residuals are assumed to be independent of the level-1 residuals, etJ, and all the residuals are assumed 

to be independent of the model’s explanatory variables (ti:j in this case). It follows that, as before, 

measurements from different subjects are still uncorrelated, but for observations within the same

subject:

Cov(yij,y2j )  -  Cov(uoj +  +  e ij,u 0j  +  ul}t2j +  e2j) =  a2u0 +  +  (TuUiitij +  t2j) (5.13)

Their covariance thus depends on the times of measurement, that is a non constant covariance between 

observations in the same individual is allowed. Moreover the model implies that the variance varies 

with time too and it is given by:

Var,!'-i> =  + 2»„o.(i«) (514)

It should be noticed that, if the time interval elapsing between measurements on a subject is very 

short, the assumption o f independence o f the within-individual residuals (tevel-1) may not hold and 

thus the error structure in longitudinal data may be more complex than this (Goldstein et al„ 1991). 

Finally random effects models can be extended to allow for additional predictors to have random effects, 

to allow for more than 2 hierarchical levels or to allow for nonlinear relationships (for example adding 

a quadratic term for the time variable). In general random effects models have a common function of 

time (i.e. linear or quadratic) to describe the overage growth pattern of all the studysubjocts from 

which each departs «cording to the distribution o f the level-2 errors. However different subjects may
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follow very different growth trajectories over time, and growth patterns are often more complex than 

those described by linear or curvilinear functions. Although random slopes for both the linear and 

the quadratic term can be included to allow for subjects with different growth trajectories, imposing 

such rigid algebraic form to the growth curves may result in a poor fit to the data. An alternative is 

to consider more flexible random effects models, such as random effects specification of the biological 

parametric models described above, or to use spline methods, which can also be implemented within 

a random effects model framework. A brief introduction to these approaches is given below.

Random effects specification of biological models

As discussed above, the models specifically developed to described human growth were conceived to 

be fitted separately on each child, with population estimates of the model's parameters derived by 

summarizing the individual ones (using their means and standard deviations for example). However, 

this approach suffers from some limitations. In particular individual curves can be fitted only to those 

subjects for whom a minimum number of measurements is available, depending on the number of 

parameters to be estimated. Moreover if growth measurements for each subject are available only for a 

limited number o f occasions the variability o f the resulting parameter estimates could be very large. In

order to overcome these problems distributional assumptions for the subject-specific parameters could 

be added to define an overall model for all children and therefore extending them to have a random 

effects model specification. As stated above, using a random effects approach all subjects with at least 

one growth measure can theoretically be included in the analyses. As a consequence the variability of 

the random effects is expected to be much lower than that o f the corresponding fixed effects, obtained 

by fitting individual curves. Moreover allowing to fit one single model for all children instead of fitting 

one model for each child separately this approach significantly reduces the computational burden.

For example, using the same notation as in equation (5.1), the child-specific parameters of the Jenss-
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Bayley model can be specified as follow:

«1 j  =  Qio +  £*Uj

a2j =  «20 +  «21 j
(5.15)

a H  =  « 3 0  +  « 3 1 2  

« 4  j =  « 4 0  +  « 4 1 j

where «m  represents the fixed effect and a n ,  the child-specific random effect for the parameter Q y , 

with similar definition for the components of a 27, o 3,  and a4j. As observed for the random intercept 

and slope model, described in equations (5.11) and (5.12), the child-specific ran,lorn effects « Uj,  « 21„  

« 3ii and a 4ij would be assumed to be drawn from a multivariate normal distribution with mean 0  and 

covariance matrix S  and are assumed to be independent of the level-1 errors (ey  in equation (5.1)). 

Similar specification could be applied to the other biological models described above.

This is the approach used in Research Paper III for the Jenss-Bayley and the 4-parameters version of 

the Berkey-Reed model.

Spline models

Splines methods are used to handle non-linear relationships between an outcome variable and an 

explanatory variable, with the objective of achieving a good balance between a good fit to the data 

and a smoothed curve (Green and Silverman, 1994; Ruppert et al., 2003). In order to apply these 

methods it is important to clarify which are the different types of splines available and what are the 

alternative options each o f them offers. In this context we are concerned with the relationship between 

an anthropometric variable of interest ytJ for subject j ,  j  =  1,. J aiuj age t j — i 

Generally, the problem is to define a function g{t), the so called spline function, such as

Vij =  9{Uj) +  ei:i ( 5 1 6 )

Formally, a spline is a piecewise-polynomial function o f  the explanatory variable (e.g. age) on an
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interval [a, 6] composed of K  subintervals, with the order of the polynomial defining the degree of the 

spline p and with the subintervals joined at points called knots. Usually the values of this function 

and the first p -  1 derivatives are continuous at the knots. This property guarantees the smoothness 

o f the spline curve but also imposes some constraints in its flexibility.

Let ff(tij) be the smooth curve to be used when fitting a model for the growth data for subject j, 

splines are defined by selecting a basis, that is a set o f known functions that determine a family of 

transformations to be applied to the original variable (tij) (Schimek, 2009). Let Da{ttJ) be the sth 
basis function then g{tij) can be represented by

5

=  (5.17)S= i

where S is the basis dimension and the ¡3a are the unknown coefficients to be estimated. The basis 

dimension depends on the number of knots K, the type of basis function and the degree p of the spline.

Three basic choices need to be made when applying splines (Ruppert et al, 2003): (i) the spline model; 
(ii) the basis function; and (in) the estimation method.

The spline model

(i) The spline model is specified in term of the degree of the polynomial used -  with cubic splines 

being the most frequent choice the number of knots and their location, and the imposition of the 

boundary constraints. The latter refers to the constraint that the spline is linear in the tails beyond 

the boundary knots. Splines with this constraint are named “natural splines” . Automatic procedure to 

select the knots are available, and often knots are selected to be placed at equally-spaced quantiles of 

the observed distribution of the explanatory variable, in this case age. Choice of the number o f knots, 

rather than their location, has been shown to be crucial to the fit (Ruppert et al, 2003; Schimek,

2009). An alternative is to place the knots at specific points, where significant changes in the curve of 
interest are expected.

The basis function

(ii) The simplest basis is that generated applying the truncated power function. Defining (t -  k)+ as 

the function which takes value 0  to the left of k and value (t — k) from k onwards, the truncated power
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basis for a spline with degree p and K  knots is:

1 , t, t 2. . . , ( t  - k : )p+ ,.

The corresponding pth degree spline model is:

(5.18)

giUj) - A, + pltii + + ...fiptP + £ m .. _  Kk)P+ (51g)
k= 1

These bases have the drawback of not being orthogonal, often leading to numerical instability/less 

accuracy of the fit, especially when the number of knots is large and no or small penalty is applied. 

The most common alternative is the B-spline basis (for which there is not a straightforward equation), 

which has more stable numerical properties. Other alternatives, such as radial bases, exist (R.uppert 

et ai, 2003).

The estimation method

(Hi) Two broader classes o f splines exist: fully-parametric splines, which parameters are estimated 

via standard approaches (e.g. ordinary least squares or maximum likelihood), and penalized splines, 

which use a penalized likelihood approach. With the former the degree of smoothness of the curve 

is entirely specified through the number and position of the knots, making these choices crucial to 

the fit. Penalized splines are a more flexible approach which overcomes this limitation, as it provides 

automatic procedures to select the degree of the smoothness. In order to deal with fits to the data 

which are too rough, which is usually due to including too many knots, either the number of knots 

has to be reduced or all the knots are retained but their influence is constrained. This is the general 

concept that lies behind the so called penalized splines (Ruppert et al, 2003). The aim is to avoid 

unconstrained estimations of the coefficients of the K  knots which could lead to a wiggly fit: instead 

o f  removing some knots, which is equivalent to set to 0 their corresponding coefficients while leaving 

the remaining ones unconstrained, all coefficients of the spline basis are shrunken towards zero. A 

roughness penalty term is thus introduced -  with the amount of smoothing controlled by a smoothing 

parameter -  to penalize fits which are too rough. A general definition o f penalized splines is 3 Ti?(<i j ),
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where f3 is the minimiser of

Y1 {yii ~ PTB{tij)}2 +  afiTD@ (5.20)
•=i

with a  >  0 being the smoothing parameter, apTDp representing the roughness penalty and D, a 

symmetric positive semidefinite matrix, the penalty matrix (Ruppert et al, 2003). Once the basis 

function and the penalty have been chosen, the penalty matrix D is automatically determined. The 

main advantage is that, with this spline, knots selection problem can be overcome, as automatic 

procedures to select the smoothing parameter exist. It has been shown that, provided the knots cover 

all the range of the observation points, their number and location does not affect much the result, 

while the choice of the smoothing parameter a  is more relevant (Gurrin et al., 2005; Ruppert et al., 
2003).

A  particular type of spline is the smoothing spline. This is the spline obtained by minimizing the 

penalized sum of squares

^2 {Vij ~ g (tij) } 2 +  6 J  g"{t)2dt (521)

where the roughness of the fitted curve is quantified by a penalty of the integrated squared second 

derivative of the curve g(t) while the goodness of fit is measured by the residual sum of squares. 

Therefore, similarly to the penalised spline, a roughness penalty approach is used with S being the 

smoothing parameter used to compromise between a good fit and a a smoothed curve: as 6 gets smaller 

g(tij) will tend to follow the curves of the observed data more closely. It has been shown that the 

minimiser o f this function is a natural cubic spline with knots placed at each discrete value of the 

explanatory variable. Penalized splines are however usually preferred to smoothing splines, as a much 

lower number of knots is needed to obtain the same amount of smoothness while strongly reducing the 

computational burden (Ruppert et al., 2003; Schimek, 2009).

A particularly useful application o f these spline techniques is their implementation within a random 

effects model framework (Ruppert et al.. 2003). Splines can be extended with the inclusion o f subject- 

specific random effects, which capture the departure o f a given iudividuaPs cu n *  from the average
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(population-level) pattern. As discussed above, this will allow to define an overall model for all subjects. 

Shape-invariant random  effects m odel

Among the applications of spline methods within a random effects model framework, of relevance for 

this Ph.D., is the shape-invariant model with random effects introduced by Death (Death, 2007) to 

describe infant weight growth and by Cole (Cole et a/., 2010) to analyse pubertal growth in height. 

Cole used a slightly modified parametrization, which is the one adopted here, and named the model 

Superimposition by Translation And flotation (SITAR.). In this model a common spline function for 

all subjects is modified by shifting and scaling the two axes to adapt the common function to the 

individual curves (more details are included in Research Papers III and IV). In these applications a 

natural cubic spline with D-spline basis is used to fit the data by using a non-linear random effects 

model, with the parameters of the spline treated as fixed effects whereas the coefficients of the shape 

invariant model are treated as random. Let, again, ytj be the anthropometric measurement made for 

subject j ,  j  =  1, • • •, J, at times t,j, i =  1 ,rij, then the SITAR model is specified as:

y i j  = a j + h  ( — — ¿ ' j  +  f i j  (5 .22)

where h(z) is the natural cubic spline curve of the growth variable regressed on £ (the transformed age) 

and otj =  oo +  a i j  (size) is a subject-specific coefficient with ao representing the fixed effect and Qtj 

the random effect, with similar definitions for the other two parameters fa (tempo) and 7j  (velocity). 

It should be acknowledged that shape-invariant modelling has been applied before to summarize mech

anisms that are common to most human being. In particular, shape-invariant models using the logistic

or the Gompertz models as shape functions have been used to study the pubertal growth spurt (Hauspie 

and Molinari, 2004).

In Research Paper III SITAR is described and its fitting and interpretability discussed in comparison 

with the Jenss-Dayley and Derkey-Reed models, while in Research Paper IV SITAR is extended to 

include multiple time-fixed explanatory variables and used to investigate the association between sev

eral maternal prenatal exposures and size, velocity and tempo of infant growth of children belonging 

to the three cohorts available for this Ph.D.
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Abstract

There is broad recognition that early life growth trajectories can contribute to 
tire study o f  the onset and development o f  several health outcom es. In this paper 
we review the random eifects specifications o f  two models purposely developed to 
describe anthropometric data and a shape invariant random effects model recently 
proposed in the statistical literature. They are com pared in terms o f their ability 
to  extract salient and biologically meaningful features o f  growth in infancy and 
also to  validly represent, the data. W e discuss advantages and limitations in 
choosing and interpreting ear'll o f  the models using longitudinal weight data taken 
from 0 to  4 years from three contem porary birth cohorts.
K e y w o rd s : Growth curve; Jenss-Bayley; Random  effects; R eid ; SITAR; Splines; 
Weight.

1 Introduction

Much interest in modelling growth data conies from research in life course epidemi
ology, Barker (1998); Huxley et al. (2000); Kuh and Ben-Shlomo (2004); Baird et al. 
(2005), where summary growth parameters are used as explanatory variables for the 
onset of a later outcome. In such settings analyses consist of two stages: the first 
focussed on modelling the growth data, and the second aimed at relating parameters 
from the growth model, e.g. the age at peak weight velocity (APW V), to distal health 
outcomes, e.g. cardiovascular disease later in life. This field of research has been 
enriched by several new European (CHICOS (2010)) and worldwide (Richter et al. 
(2011); Brown et al. (2007)) birth cohorts established to study early life influences 
on the onset and development of a wide range of later diseases. As a consequence, a 
large body of longitudinal growth data, collected in different populations and periods

'A ddress for correspondence: Costanza Pizzi, University o f  Turin, Cancer Epidemiology Unit, Via 
Santena 7, 10126, Turin, Italy. E-mail: costanza.pizzi«iIslitiu.ar.uk
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and with different approaches and levels of detail, is available. There is therefore 
an increasing need for understanding and applying modelling strategies that properly 
exploit these data, also taking into account both the pattern and the quality of the 
growth measurements.

The traditional approach of analysing anthropometric data consists of finding a 
parametric curve which is suitable for the variable and the age range of interest, while 
fitting it separately to each child. For example the Jenss-Baylcy (JB) model was 
suggested in 1937, Jenss and Bayley (1937), to describe weight or height growth from 
birth to age six years. It is a fully parametric model that includes a linear and a 
nonlinear (exponential) part. Another model widely used with early life height and 
weight, is the four, or five, parameter Reed model, Berkey and Reed (1987), where 
different parametrizations can be used to model postnatal growth deceleration. Typi
cally these and other anthropometric models are either specific to a particular growth 
measurement or age range and therefore are not widely applicable, and, most impor
tantly, their parameters do not have an intrinsic biological interpretation. Moreover 
their fitting of separate individual curves is inefficient. An alternative approach that 
partly overcomes the latter problem consists o f fitting whatever model is selected not 
separately to each child but simultaneously, using random effects (i.e. mixed) models, 
Verbeke and Malenberghs (2000). Within this framework child-specific parameters are 
assumed to be drawn from some distribution. Applications include a random effects 
specification of the JB model used to study the height trajectories of children with 
and without Turner syndrome, van Dommelen et al. (2005), and two specifications 
of the Reed model used to analyze growth in weight during the first years of life in 
an Ethiopian and a Finnish birth cohort, Asefa et al. (1996); Tzoulaki et al. (2010). 
General specifications of random effects models have also been used to analyse growth 
data, Verbeke and Malenberghs (2000). Linear and higher degree polynomial func
tions of time are specified within this framework, dos Santos Silva et al. (2002); Yang 
et al. (2011), with random effects generally included only for some of the parameters 
because of identification constraints, Goldstein (2011). However these models can 
only produce a limited range of possible shapes, which are not usually sufficient to 
describe infant growth. Furthermore growth patterns may not all cluster around a 
single population average polynomial curve, therefore leading to poor fit to the data.

For this reason the implementation of spline-based models within the mixed effects 
framework has raised considerable interest because of their flexibility in fitting different 
anthropometric variables over different age ranges and the possibility to achieve a 
satisfactory balance between goodness of fit and smoothness o f the growth curve by 
choosing the number of knots, Ruppert et al. (2003). Among these models, the shape 
invariant random effects model proposed by Beath in 2007 is particularly relevant, 
Beath (2007). It was originally used to model infant growth in weight, Beath (2007), 
but has been used by Cole to analyse height growth during puberty, Cole et al. (2010), 
and more recently by Hui et al. (Hui et al. (2010)) and Johnson et al. (Johnson et al. 
(2011)) to study factors influencing infant growth. In this model a common spline 
function is modified by shifting of the two axes and scaling of the x-axis to fit the 
individual data. The scaling and shifting identify how each child departs from the 
common spline function and are captured by parameters which have a direct biological
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interpretation, Beath (2007); Cole et al. (2010), unlike any of the methods mentioned 
above. The application o f the shape invariant random effects model however requires 
fairly advanced computing skills. Its interpretation also requires carefid understanding 
o f the parameterization.

The aim of this paper is to compare the two models purposely developed for an
thropometric data, JB and Reed, both specified within a random effects framework, 
with the shape invariant random effects model in terms of their ability to extract 
salient and biologically meaningful features of growth in infancy and also in their 
ability to validly represent the data. Comparisons will be carried out using longitu
dinal weight data from three recent birth cohort studies. The information available 
from these cohorts differs in term of age range and number and timing of follow-up 
observations (regular/irregular), and therefore illustrates a variety of settings likely 
to be encountered in practice.

2 Data

We have analysed data from three contemporary birth cohorts: the Southern Eu
ropean web-based “Nascita e INFanzia gli Effetti dell’Ambiente” (NINFEA) and 
“Geracâo XXI” (GXXI) birth cohort studies, and the “Growth and Obesity Chilean 
Cohort Study” (GOCS).

2.1 Nascita e INFanzia gli Effetti dell’Ambiente

The NINFEA study is an Italian web-based cohort study which started in 2005 and 
aimed to recruit pregnant women via the Internet and follow up their children. The 
study is still ongoing and targets pregnant women, who have access to the Internet and 
sufficient knowledge of the Italian language to understand the questionnaires. They 
are recruited via a wide range of advertising campaigns (for more details see Richiardi 
et al. (2007)). Registration is carried out at the study website (www.progettoninfea.it) 
where participants complete the first questionnaire (Q l). The cohort is then actively 
followed-up via other online questionnaires administered at around 6 (Q2), IS (Q3) 
and 48 (Q4) months of age of the child.

Revisions of the questionnaires were undertaken after enrollment of the first 1,500 
participants, thus the available data vary with year of recruitment. In particular, 
women who enrolled until November 2008 were asked to report the child’s weight at 
birth, 3 and 6 months at the time of the second questionnaire (Q2), while at Q3 they 
were asked to report the weight of the baby at 12 and 18 months. When the Q2 and 
Q3 questionnaires were updated, a new question was introduced regarding the child’s 
weight at the actual time of completion of these questionnaires. In contrast Q4 was 
set up from the outset to include questions on anthropometric measures both at 4 
years of age and at the time of completion of the questionnaire.

Because of these variations in questionnaire design the data used for these anal
yses include all singleton children who, at the time of the data download (November 
2011), were eligible for completion of Q4. These are the children for whom growth
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measurements are available at fixed time points only (0, 3, 6 , 12, 18 and 48 months). 
This sample includes 845 children.

2.2 Geracao XXI

The GXXI study is the first Portuguese birth cohort, established in 2005 in the Porto 
region. All live children born of women resident in one of the six regional Districts, 
admitted in one of the five hospitals of Porto for delivery with a gestational age at birth 
greater than 24 weeks, were eligible to participate. The recruitment period lasted from 
the end of April 2005 until August 2006. Women were enrolled during an appointment 
a few days before their due date and, for the majority, baseline questionnaires were 
completed between 24 and 72 hours after delivery. In total the baseline data consist 
of 8,311 singleton children. Children were actively followed-up through interviewer- 
administered questionnaires planned at 3, 6 , 12/15 and 24 months. Due to logistic 
and financial limitations it was not possible to interview every participant at each 
follow-up visit. Therefore a restricted time period was allocated for each follow-up 
occasion. At the 2 years follow-up visit growth data from the child's health records 
card, with measures obtained prospectively by health professional, were gathered from 
the parents for entry into the database.

The data used for this analyses consist of the information from the baseline and the 
2-years follow-up, available for 783 singleton babies. These include anthropometric 
measures reported in the child’s health record and referring to measures taken at 
about 1, 2, 4, 6 , 9, 12, 15, 18 and 24 months of age, together with the actual dates 
of measurement. The values at 24 months were obtained directly by the interviewers. 
Up to 6  additional measurements and dates reported in the health records were also 
entered into the database. There are therefore up to 16 weight measurements per 
child, taken from birth to (about) 24 months.

2.3 Growth and Obesity Chilean Cohort Study

GOCS is an ongoing Chilean cohort aiming to study the association of early growth 
with children’s maturation, adiposity and associated metabolic complications. The 
study was initiated in 2006 when all children aged 2.6-4 years attending public nursery 
schools in six counties of Santiago were invited to participate if they: (i) were singleton 
births with a gestational age at birth between 37 and 42 weeks, (ii) had a birth weight 
between 2500 and 4500 grams, and (iii) had no physical and psychological conditions 
that could affect growth (6  children excluded due to these conditions). Among the 
1,498 children eligible to participate, 1,195 accepted (80%). For almost all subjects, 
weight and height measurements from birth up to 36 months of life were retrospectively 
gathered from health records, and they were prospectively measured every year after 
recruitment by a dietitian who visited the nursery school.

For these analyses we only used growth data up to around age 4 years for direct 
comparison with the NINFEA cohort. This leads to including a maximum of 11 
measurements per child. After exclusion of subjects with missing growth data, the 
sample used in these analyses consists of 1,149 children.
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3 Methods

In this paper we compare two classes of anthropometric random effects models, the 
JB model and the four-parameter Reed model, and the shape invariant random effect 
model. Below we define these models and the specific issues arising from fitting them 
to the data.

3.1 The Jenss-Bayley m odel 

The original specification

The JB model, Jenss and Bayley (1937), has been widely applied (see van Dommelen 
et al. (2005); Deming and Washburn (1963); Manwani and Agarwal (1973); Berkey 
(1982)) to describe childhood growth during the first six years of life in term of both 
height and weight. According to this model, the observed growth variable y{{t) of 
child i at age t, for i =  1,..., n and t =  1,..., T,, can be expressed as

Vi{t) =  Ci -(- dfi -  e°i+M +  Eit (1)

where ai, bi, c; and d, are unknown parameters to be estimated separately for 
each child and eit is the error term at age t specific to child i, that is assumed to be 
normally distributed with mean zero and variance o f .  Equation ( 1) defines y , ( t )  as a 
negatively accelerated exponential curve in t, whose asymptote is a positive straight 
line. Hence the model accounts for the rapid decelerating growth rate usually observed 
during infancy via the exponential component ea'+bit, while Cj and d, represent the 
intercept and the slope of the asymptote, respectively. From equation (1) it follows 
that the predicted size at birth for child i is (c,- - e a').

The random effects specification

Instead of modelling each child separately, we can add some distributional assumptions 
for the child-specific parameters, and to their relation with the residual errors eit, in 
order to define an overall model for all children. Using the same notation as in equation 
(1) we now specify the child-specific parameters as

at =  do +  fflq 
bi =  bo 4- bn 
Ci ~  Co -f- C\i 

di =  do +  dn

where ao represents the fixed effect and on the child-specific random effect, with 
similar definitions for the components of bi, c, and d,. We also assume that an, bn, Cu 
and du are drawn from a multivariate normal distribution with mean 0  and covari
ance matrix $  and that the errors £,t are independent normally distributed random 
variables with mean zero and constant variance o'1, which are independent of the
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child-specific random effects. The curve implied by the model when all random effects 
are set to 0  (the “population-level curve” , Pinheiro and Bates (2000)) is therefore 
Co -t- dot — e°o+M. Note that this model does not allow for an inflection point (max- 
imum/minimum in the weight velocity curve), and therefore no APWV, because its 
second derivative with respect to t is an exponential function in t.

3.2 The Reed model 

The original specification

The Reed model was suggested by Berkey and Reed (Berkey and Reed (1987)), as an 
extension to an earlier model suggested by Count (Count (1943)). It has two versions, 
with 4 and 5 parameters, respectively. For comparison with the JB model we focus on 
the 4-parameter version, which has been shown not to be inferior in term of goodness 
of fit to the 5-parameter one, Simondon et al. (1992). The 4-parameter specification 
o f the Reed model is

yi(t) =  a' +  b'f +  c[ln(t) +  J  + e'it (2 )

where again, j/;(t) is the ith child’s growth variable at age t, and a', c[ and 
d[ are the child-specific parameters and e'it is the child- and age-specific error term, 
assumed to be normal with mean zero and variance <r(2. This specification, unlike 
that for the JB model, is linear in its parameters and can accommodate one inflection 
point. From equation (2) it follows that c' and d' are deceleration terms moderating 
the original increase captured by bj.

The random effects specification

As for the JB, we can specify the Reed model using a random effects approach. Again 
we define the child-specific parameters as

a’i =  <2q +  a'u
b[ = b'0 + b'u

ci ~ co "F cii 
d-i =  + d'n

with, a'0 representing the fixed effect and a’u the child-specific random effects, and 
similarly for the other parameters. The parameters a'u, b'H, c'u and d'u are assumed to 
be drawn from a multivariate normal distribution with mean 0  and covariance matrix

As before the error terms e'it are assumed to be independent normally distributed 
random variables with mean zero, constant variance an, and to be independent of the 
random effects. This model can have an inflection point and therefore the APVVV can 
be derived by differentiating the weight velocity curve (first derivative of the fitted 
curve) and setting it to zero.
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3.3 The shape invariant random effects model

The shape invariant random effects model was introduced by Beath (Death (2007)) 
to describe infant weight growth and by Cole (Cole et al. (2010)) to analyse pubertal 
growth in height. Cole used a slightly modified parametrization, which is the one 
adopted here, and named the model “Superimposition by Translation And Rotation” 
(SITAR). It is a model where a common spline function for all subjects is modified 
by shifting the two axes and scaling the x-axis in order to adapt it to the individual 
trajectories. This model is not specific to an age range or to an anthropometric 
dimension. The use of a spline function allows this model to deal naturally with non
linearity and therefore to identify inflection points. In this application a natural cubic 
spline with a B-spline basis matrix is used to fit the data using a non linear random 
effects model, where the coefficients of the spline function are treated as fixed effects 
while the parameters of the shape invariant model are treated as random. Formally, 
let y;(t) be again the growth dimension of the ith child at age t, then the SITAR 
model is specified as:

where h(z) is the natural cubic spline curve of the growth variable regressed on 
z (the transformed age) and a, =  oo + Qii is a subject-specific coefficient with ao 
representing the fixed effect and an the random effect, with similar definitions for the 
other two parameters. The three random effects an, ¡3u and 7 n are assumed to be 
drawn from a multivariate normal distribution with mean 0 and covariance matrix 
A. As before the error terms r]u are assumed to be independent normally distributed 
random variables with mean zero, constant variance r2, and to be independent of the 
random effects. Weight velocity curves can easily be derived by differentiating the 
spline curve, and, from these, the APWV can be derived.

The specific random effects an, du and 7 u for subject i correspond to the shift 
parameter for the y-axis (measure), and the shift and the scale parameter for the 
x-axis (age), respectively. Cole (Cole et al. (2010)) refers to these three parameters 
as size, tempo and velocity, where the effect of the first two lead to a translation 
(in measure and age), while that of 7  to a rotation. Size is expressed in the units 
of the y variable, tempo in the units of the t variable, while velocity is a multiplier, 
and therefore is scale-free. Therefore, from a biological perspective, when analysing 
weight in infancy » 1, captures differences in size (greater for heavier children), fin 
the timing of growth (negative for babies with an earlier APWV) and 7 u the growth 
rate (positive for children with steeper growth). When these subject-specific random 
effects are set equal to 0 , again the “population-level curve” is obtained.

3.4 G row th m odels for weight in early life

We fitted the random effects specifications of the JB and Reed models and of the 
SITAR model to the weight data from the three cohorts described above, initially 
separately by sex. We used all the available data (for ages 0 -4  years in NINFEA

(3)
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and GOCS, and for ages 0-2 years in GXXI) as well as the NINFEA and GOCS 
data restricted to ages 0-2 years for comparison with GXXI. In each set of analyses 
all subjects with at least one observation were included under the assumption that 
missing visits occurred at random, Rubin (1976).

The JB and Reed models were both originally conceived for an untransformed 
growth measure. Despite this, natural logarithmic transformations of the observed 
weight measures were considered when fitting all models and results compared with 
those obtained when weight was not transformed.

A transformation of the time scale was needed for the Reed model because our 
data include measures at birth, i.e. at time 0. One option, suggested by Berkey and 
Reed themselves, is to replace age since birth (in months) i, with f* where t’ — Ijp, 
so that t* =  0  at around conception and t* =  1 at birth. With this transformation 
the size at birth for child i predicted by the Reed model is a ' + b[ +  d\. The same 
transformation was also considered when fitting the SITAR model when investigating 
its best specification for the data.

The SITAR model was fitted using a natural cubic spline with B-spline basis 
matrix, placing the internal knots of the spline h(t) at the quantiles of the age distri
bution, as in Cole at al. (Cole et al. (2010)), according to the number of degrees of 
freedom specified. Degrees of freedom were chosen according to the richness of avail
able weight measurements over the age time scale. Because of identification issues, 
alternative constraints on the values of the fixed effects /30 and 70 were considered. In 
particular we considered either fixing both 0O and 70 , or just 0O or just 70 to be equal 
to zero. To aid interpretation, models were also refitted with the males and females 
combined.

Estimation of all models was carried out by maximum likelihood estimation im
plemented in the nlme function in R, Lindstrom and Bates (1990). The cubic spline 
function with B-spline basis matrix was fitted using the ns function also in R.

3.5 Comparison of alternative models

Specifications of the SITAR model with different weight and age scales first, and then 
with alternative constraints on the fixed and random effects, were fitted on the data 
from all three cohorts, and then compared in terms of Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC). Plots of predicted population-level 
curves, and of individual growth and growth velocity curves for a selection of children 
were also examined to assess their closeness with the observed data. Specifications of 
the random effect JB model obtained with/without log-transformation of the weight 
scale were compared using the same criteria; likewise for the random effects Reed 
model. When the weight scale was transformed, adjusted deviance was calculated, 
Box and Cox (1964), and corrected AIC and BIC derived.

For each dataset the goodness of fit of the best specifications of each model were 
then compared again using the same criteria. Moreover, child-specific APWVs were 
estimated, when possible, and their averages compared with published data, Tzoulaki 
et al. (2010); Johnson et al. (2011).
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For every model and every dataset, the distribution of the estimated error terms 
was examined graphically using normal quantile plots.

Only a selection of the comparisons and of the plots described above are reported 
below.

4 Results

4.1 Data description

Table 1 summarizes the baseline characteristics of the children included in the anal
yses, by cohort. It also includes descriptors of weight and weight change at selected 
ages. GXXI is the richest cohort in terms of weight measurements gathered, with 
a median of 10 observations per child within the first 2 years of life, compared to 
medians of 8 in GOCS and of 5 in NINFEA where growth measures were reported at 
exactly 0, 3, 6, 12, 18 and 48 months. Mean/median birth weight, as well as weight at 
two and six months, are slightly higher in GOCS compared to the other two cohorts 
possibly because of its exclusion of preterm births (gestational age < 37 weeks). This 
is also reflected by the average weight change in the first months of life, which is again 
slightly higher in GOCS (1.0 kg/month) than in GXXI (0.9 kg/month) and NINFEA 
(0.8 kg/month, in the first three months). The lower rates in the European cohorts 
are probably due to pre-term children not having yet completed their catch-up period 
by 2/3 months, as opposed to the term children of GOCS. Indeed the rates in weight 
change are identical across the three cohorts when evaluated from birth to six months. 
Mean weight and corresponding SD at 18 months are similar across the three cohorts, 
while GOCS children at 4 years are on average slightly heavier than those in NINFEA 
(we have no GXXI measures at 4 years). All o f these comparisons are however based 
on different subsets of children at each time point because not all children in each 
cohort have measures at all times considered.

Plots of weight trajectories for a random selection of children (dark lines for males 
and lighter lines for females), superimposed over the scatter of data for their full co
hort, are shown in Figure 1 (where the cohort differences in terms of frequency and tim
ing of the observations is also evidenced). Each child selected from each cohort repre
sents one of six strata, defined by gender and birth weight category (low/middle/high, 
defined with cut-off points at 2.5 and 3.8 kg). These plots clearly show how weight 
growth is faster during the first 3-6 months of life, and then starts to decelerate, es
pecially after the first year of birth. As expected males are generally slightly heavier 
than females in each birth weight category. This figure highlights specific growth pro
files: (i) children with a low weight at birth who remain small (relatively to the other 
same-sex children); (ii) children with a low weight at birth who experience a high 
postnatal rate of growth (e.g the low birth weight male in GXXI); (iii) those with a 
high birth weight who remain constantly heavier compared to the others (e.g the high 
birth weight male in GOCS); (iv) those with an average weight at each observational 
time point (e.g the medium birth weight male in GXXI); and finally (v) children with 
a high birth weight who experience a greater deceleration after the first months of life 
and thus return to an average weight (e.g the high birth weight male in NINFEA).
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G X X I (n—783) G O C S (n=l,149) N IN PEA  (n=845)
N Range M edian M ean SD N Range M edian M ean SD N Range Median M ean SD

A g e  range
N u m b e r  o f  m ea su res per child 783 M G

0-2 years 
10 9.4 1.9 1,149

0 -4  years
2-11 8 7.6 1.9 845

0 -4  years
1-6 5 5.0 1.2

G e sta tio n a l a g e  (weeks) 748 28-43 39.5 39.2 1.6 959 37-42 39.5 39.6 1.3 837 26-43 39.9 39.7 1.7
P re te r m  b irth s  (< 3 T  weeks) 61 8.27c - - - 0 0.0% - - - 40 4.8% - - -

Fem ale 373 49.3% - - - 579 5 0 .4 7 - - - 399 47.3% - - -

B irth  w eigh t (kg) 756 0.6-4.7 3.2 3.2 0.5 1,148 2.S-4.8 3.4 3.4 0.4 793 0.8-4.8 3.2 3.2 0.5
W e ig h t a t 2 / 3  m o n th s1 (kg) 573 2.5-8.1 5.0 5.0 0.7 800 3.4 -7 .9 5.4 5.4 0.6 662 2 .3 -8 J 5.7 5.7 0.8
W e ig h t a t 6  m o n th s  (kg) 522 4.2-12.8 7.6 7.6 0.9 747 5.5-11.2 7.8 7.9 0 .9 664 4.6-11.5 7.6 7.6 1.0
G ro w th  r a te  0 - 2 /3  m onths* (kg/month) 553 0.3-1.8 0.9 0.9 0.2 799 0 .1 -2 .0 1.0 1.0 0.3 658 0.1-1.8 0.8 0.8 0.2
G ro w th  ra te  0 -6  m o n th s (kg/month) 506 0.4-1.4 0.7 0.7 0.1 746 0.3 -1 .3 0.7 0.7 0.1 661 0.3-1.4 0.7 0.7 0.1

W e ig h t a t  1 8  m onths* (kg) 291 7.9-15.7 11.3 11.2 1.3 729 7.5-16.2 11.1 11.3 1.3 752 8.0-16.0 11.2 11.4 1.3
W e ig h t a t 4 8  months** (kg) - - - - - 136 12.7-31.3 17.2 17.5 2.6 620 11.0-30.0 16.0 16.5 2.3

• W eight data around 2  m onths a n  available fo r  G O G S  and G X X f, whits weight data at J  m onths a n  available fo r  f i fS F E A  

$ F o r  G O C S  and G X X !  studies, children itnth weight measures collected between 17 .5  and 1 2 .5  m onths are metuded 

5 F or  G O G S  study, children with weight m easures collected between f 7  and f 9  m onths a n  included

Table 1: Baseline characteristics and weight and weight changes at selected ages, by cohort
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: Observed weight growth curves of a stratified random selection of children by cohort. 
>sed on the observed data (by gender and birth weight category)
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4.2 Grow th modelling 

Jenss-Bayley and Reed models

Log-transforming the weight scale did not generally improve the fit of the two an
thropometric models according to the fit criteria. Therefore only results obtained on 
the original scale are reported in Table 2, separately by age, gender and cohort The 
JB model failed when fitted on the NINFEA 0-2 years data; this is probably due to 
the small number of measurement times available (see Figure 1), the restricted age 
range analysed (since the JB model was suggested to describe growth between birth 
and six years) and the measurement error that may be affecting the NINFEA recalled 
measurements more than those from the other cohorts.

The estimates of the JB fixed effects were quite stable across cohorts, age and gen
der, with ao and Co slightly lower in females than males. These estimated parameters 
were also slightly lower in both GOCS males and females than in the other cohorts, 
as were the estimates of 60. The corresponding SDs of the random effects were similar 
across cohorts and gender, and lower for the 0-4 years data compared to the 0-2.

In agreement with the JB model, the Reed fixed effect estimates differed in GOCS, 
with all a0, b0, c0 and d0 considerably larger in absolute terms compared to NINFEA 
and GXXI. The random effects SDs for this model were extremely large because of 
their high correlations (see below). However they were lower when estimated on the 
0-4 years data, as were the random effects correlations.

SITAR models

As described in the methods section, we compared alternative specifications o f the 
SITAR model, by allowing different scales for the dependent variable, weight, and the 
age time scale, different numbers of knots for the spline function, and by including 
constraints on the values of the fixed effects.

Models with log-transformed weight always performed better in terms of AIC and 
BIC than those with untransformed weight; therefore only results from the former 
are reported. Instead models with log-transformed age performed better only in some 
settings and hence both sets of results (models with age and log-trasformed age) are 
reported. Four internal knots were used when analysing the GXXI and GOCS studies 
and three when analysing the NINFEA cohort, because of its fewer time occasions. 
Results were not affected when the number of internal knots for GXXI and GOCS 
was increased to 5 or 6. Alternative constraints on the fixed effects were examined to 
address identification issues. Among the various combinations fixing either 0q and 70 
(Model 1), or just ¡3q (Model 2), to be equal to zero led to the best fitting models.

The results are shown in Table 3. According to AIC and BIC, Model 2 performed 
slightly better than Model 1 in most of the combinations; moreover the estimates of 
the APVVV were more stable when obtained from Model 2. As regards the choice of 
the age scale, the models fitted best on the untransformed age scale in most cases.

The estimated SDs of the three random effects a y , 0u and 7 q, did not vary 
substantially across genders, nor across cohorts and age ranges with the exception of
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J e n ss -B a y le y  R e e d
Fixed effcx-ts Random effects (SD) Fix(xl eff<x-ts Random effects (SD)

ao ho Co do an bu Cl, du a'o *6 co do “ i . h'n ci. d'u
0 -2  y ea rs  

GXXI Male 1.70 -0.19 8.88 0.17 0.37 0.00 2.08 0.07 12.52 0.85 -0.08* -10.25 9.78 3.65 14.81 13.08
Female 1.59 -0.17 8.19 0.18 0.42 0.07 1.84 0.08 9.72 0.79 1.33* -7.49 9.48 3.84 14.74 12.89

GOCS Male 1.52 -0.27 8.11 0.20 0.30 0.11 1.81 0.07 19.80 3.29 -10.47 -19.74 11.19 4.10 16.57 14.92
Female 1.45 -0.22 7.70 0.19 0.30 0.08 1.01 0.07 10.87 3.20 -8.90 -10.77 10.66 3.80 15.58 14.12

NINFEA Male 10.95 0.66* 1.48* -8.28 13.85 5.79 22.28 19.22
Female 0.70 -0.41* 5.87 -3.22 11.80 5.55 20.57 16.90

0 -4  y e a rs
GOCS Male 1.55 -0.25 8.18 0.20 0.26 0.07 1.35 0.05 18.38 2.(¡9 -8.15 -17.71 6.65 1.52 7.54 7.80

Female 1.40 -0.24 7.49 0.21 0.29 0.08 1.27 0.05 15.40 2.63 -6.66 -14.71 6.03 1.55 7.50 7.88

NINFEA Male 1.70 -0.17 9.33 o .ie 0.32 0.00 1.94 0.07 11.39 0.91 0.61* -8.97 8.34 2.02 9.98 10.04
Female 1.50 -0.18 7.98 0.17 0.33 0.05 1.58 0.00 9.24 0.96 1.08* -7.08 6.21 1.03 7.60 7.4G

* N o t s ta tis tic a lly  sign ifica n t a t  th e  5 %  fe te /

T a b le  2 : Estim ated fixed effects and standard deviations o f  the random effects o f  the Jenss-Bayley 
and Reed m odels fitted on the original weight scale and stratified by cohort, gender and age range



S c a l e s  u s e d  f o r  y  a n d  i lo g (K g )  n m l m o n th I " « | K k ) n in i l o g i t ' ) —

R a n d o m  e ffe c ts  (S D ) A P W V A l e h u  ■ R aiid m i r ife r ì v 1 SI ) ) A P W V T i c m e
« 1 7 (m onth) a ß 7 (m onth)

M A L E S
0 - 2  y e a r s

G X X ! M o d e l 1 0 .1 8 0 .7 2 0 .3 2 1.53 5 3 3 2 5 4 0 7 0  23 0 .0 9 0 .2 9 1.16 55 03 5577
M o d e l 2 0.18 0.71 0 .3 2 1.65 53 3 3 5414 0 .2 2 0 ,0 9 0 .2 8 1 5 0 54 79 55 00

GOCS M o d e l 1 0 .1 7 0 .6 3 0 .3 5 0 .7 8 6 1 2 0 6 1 9 3 0 .1 9 0 ,0 8 0 .2 2 0 .7 3 (1277 63 50
M o d e l 2 0. Hi 0 .6 0 0 .3 0 1.29 6 1 0 2 6 1 8 2 0 .1 2 0 .0 6 0 .1 5 1.10 0 0 5 4 0 1 3 1

NINFEA M o d e l 1 0.14 0 .7 0 0 .2 6 •2.58 41 17 1178 0 .2 2 0 .1 0 0.31 1.51 1129 IHN)
M o d e l 2 0 .1 5 0 .7 3 0 .3 0 1.98 4 0 4 4 4 1 1 0 0 .1 6 0(1 8 0.21 1.97 42 0 3 42 70

0 - 4  y e a r s
GOCS M o d e l 1 0 .1 8 0 .7 0 0 .3 4 1.98 9 3 0 0 93 83 0 .1 3 0 .0 6 0 .1 0 1 01 9051 91 27

M o d e l 2 0 .1 5 0.64 0 .2 6 1 10 9 0 3 1 9 1 1 4 0 .1 4 0 .0 6 0 .1 0 0 .9 5 90 3 0 91 22

NINFEA M o d e l 1 0 .1 5 0 .7 2 0.31 2.64 53 98 54 60 0 .2 2 0.11 0  25 1 47 53 94 51 50
M o d e l 2 0.17 0.77 0 .3 6 1.83 5 3 0 4 5 3 7 2 0 ,1 2 0 .0 7 0.11 1.75 5 4 5 8 55 26

F E M A L E S
0 - 2  y e a r s

G X X I M o d e l 1 0.18 0 .7 2 0 .3 5 1.62 47 1(1 4 7 9 0 0 .2 1 0 .1 0 0 .2 9 1.29 1833 1907
M o d e l 2 0.18 0.71 0 ,3 4 1 4M) 1717 47 97 0 .2 3 0 .1 0 0.31 1.62 1791 4871

GOCS M o d e l l 0 .1 9 0.74 0 .3 7 0 .7 2 6 0 2 9 6 1 0 3 0.24 0 .1 0 0 .2 5 0 .5 5 iiixir. 61 39
M o d e l 2 0.17 0 .7 0 0 .3 2 1.29 5 8 1 3 5 8 9 3 0 .1 3 0 .0 7 0 .1 5 1.28 5 9 3 6 (Mil 7

NINFEA M o d e l 1 0.14 0.74 0 .2 4 2.61 3 3 7 2 3 4 3 2 0  17 0 ,0 8 0  25 1.66 3 3 2 2 3 3 8 2
M o d e l 2 0 .1 5 0 .7 7 0 .2 8 2.04 3 3 6 0 3 4 2 5 0 .1 5 0 0 7 0 .2 3 1.96 3 3 7 5 3111

0 - 4  y e a r s
GOCS M o d e l 1 0 .1 8 0.74 0 .3 0 1.87 9 2 5 2 93 29 0 .1 2 0 .0 6 0 0 9 0 .9 3 H963 0 0 4 0

M o d e l 2 0 .1 3 0 .6 0 0 .2 0 0.94 9 0 7 5 91 59 0 .1 3 0 .0 0 0 .0 9 0 .8 » 8 0 5 7 9 0 4 0

NINFEA M o d e l 1 0 .1 7 0 .8 0 0.31 2.64 1627 4 6 8 9 0 .2 2 0.1 1 0 .2 2 I I I 1660 1722
M o d e l 2 0 .1 9 0 .8 9 0 .3 4 2.11 4 5 3 0 4 0 0 3 0 .2 3 0.11 0 .2 1 0 .9 8 1681 1751

SO: Standard Deviation; APWV = Average agi at peak weight velocity; A l t ' ;  A kalke Infunimi Ion •rltnrlnn; lilt llayinlmi Infortuni Inn i 'll W li in
Model I : rio - 0  and 70 - 0: Model 2: rio - 0
Wil-hin «neh stra tum  definivi by study, gender and a gè ranno ilio low*wt AlC ami UIC are riporteli In l».ld
I t~ (m on lh+ 9)/9

T a b le  3 : Results from alternative speritieations o f the SITAR mo<lel st rat ¡lied by cohort, gender and 
age range

the estimated SD of 0u, that was generally lower in GOCS than in the other cohorts, 
probably because of its inclusion criteria (Table 3).

4 .3  M o d e l s  c o m p a r is o n  

Goodness of f it

Results from the specification of the SITAR model which best fitted each dataset were 
compared with those obtained from the JB and Reed models in term of AIC and BIG 
(Table 4). The two information criteria were always in agreement and show that the 
Reed model fit the data best, especially among females. The JB model gave the worse 
fit and failed when fitted on 0-2 years NINFEA.

Examinations of the normal quantile plots of the residual errors estimated for each 
model showed that the assumption of normality appeared to be better satisfied by the 
SITAR model than the two anthropometric models (data not shown). This was seen 
for each dataset, although even the SI 1AR estimated residuals showed some kurtosis 
(also reported by Beath at al. (Beath (2007))).
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Jenss-Bayley Rend SITAR
AIC DIC AIC Die AIC DIC

M A L E S
0-2 years

GXXI ' 5400 5499 5217 5310 53.32 5407
GOCS * 6047 6139 5889 5981 6054 6134
NINFEA5 3869 3952 4044 4110

0-4 years
GOCS s 864!) !H)45 8813 8908 9031 9114
NINFEAs r.484 5570 5143 5228 5304 5.372

F E M A L E S
0-2 years

GXXI * 4020 5022 4592 4685 4716 4790
GOCS * 5914 6007 5681 5774 581.3 5893
NINFEAs§ 3253 3335 3322 3382

0-4 years
GOCS * 9124 9220 8846 8942 8957 9040
NINFEAs 4569 4654 4486 4571 4536 4603
A I C =  A kaike in form ation  criterion ; B IC — B ayesian in form a tion  criterion  
t S I T A R :  M o d e l  1. l o g ( K g )  a n d  m o n th  s c a le s  

t S I T A R :  M o d e l  2 , l o g ( K g )  a n d  l o g ( t )  s c a le s  

$ S I T A R :  M o d e l  2 , l o g ( K g )  a n d  m o n th  s c a le s  

§§ S I T A R :  M o d e l  1, l o g ( K g )  a n d  l o g ( t )  s c a le s

T a b le  4 : Goodness o f  fit o f  the best specification of the three models by cohort, gender and age range 

Population-level predicted curves

The population-level predicted curves from the best specification of the three models 
fitted on the GXXI data (0-2 years) are shown in Figure 2, stratified by gender. Note 
that in all figures curves predicted by the SITAR models fitted on the log-weight 
scale have been back-transformed so that weights are shown on the same scale for all 
the three models. As expected the predicted curves for males lie above those for the 
females, regardless of the models used, with the difference increasing from birth till 
about 1 year and becoming approximately constant after that. The curve predicted 
by the JB model differs from those of the other two models, especially during the 
first months. In contrast the curves predicted by the Reed and the SITAR models 
overlap up to about 12-15 months before diverging slightly. These differences do 
not necessarily reflect differences in goodness of fit, but rather in the shape of their 
respective predicted curves when all random effects are set at zero. For this reason 
the curves predicted by the three models for the randomly selected GXXI females 
of Figure I are compared in Figure 3. They show how the Reed and SITAR model 
most closely interpolate the original data in line with the results from the information 
criteria.

Further comparisons were made across the three cohorts. Figure 1 shows the 
predicted population curves and predicted weight velocities obtained by the Reed and 
SITAR models on the 0-2 years males data of the three cohorts (with t he SITAR model 
fitted using Model 2 specification on the log weight and age scales; we do not show the 
results for JB because it failed on the 0-2 years NINFEA data). Note that, even if the
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GXXI

F ig u re  2: P op u la tion  p red icted  weight curves from  t he best, specification  o f  the three m odels  fitted 
on  the 0-2  years G XX I d a ta  by  gender

GXXI

Age (month)

F ig u re  3: Predicted weight growth curves o f  a stratified random selection o f G X X I females, super
imposed on the observed data
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Reed SITAR

F ig u re  4 : Population predicted weight, and velocity growth curves from the Heed and the SITAR 
M odel 2 log-weight and age models fitted on (1-2 years males from the three cohorts

4-parameter Reed model in general allows for an inflection point, our transformation 
of the time scale, which we used to include measures taken at hirth, did not lead to 
an estimation of a maximum for the growth velocities. According to both models, 
the typical trajectory of GOCS males (i.e. the trajectory of a child with zero random 
effects) is predicted to be slightly heavier than those from the other cohorts especially 
during the first year of life, possibly reflecting again the inclusion criteria used in this 
study. This is also seen in the velocity curves obtained from the SITAR model, with 
that for GOCS boys having their peak at a slightly earlier age compared to the rest 
(see also the predicted APW V' reported in Table 3), and reaching a much higher size 
at that peak. The predicted APVVV for NINFEA are larger compared to those of the 
other cohorts, but may be biased upwards because its growth data are collected only 
at birth, 3 and 6 months. To validate this we refitted the SITAR model on GXXI 
males after excluding all observations in the period 0.1-2.9 months to resemble the 
data in NINFEA: the new predictions of APWV were 2.17 months in males (instead of 
1.65) and 2.13 months in females (instead of 1.90), becoming similar to those obtained 
in NINFEA (1.98 in males and 2.04 in females, see Table 3).

Random effects

Table 5 reports the SDs and correlations of the random effects from the three models 
when fitted on GOCS males (SITAR: Model 2 on log weight and age scales). The 
results obtained from the other cohorts and for females are similar and are not reported 
for simplicity. The table shows that the correlations of the JB and Reed random effects 
are extremely high (especially for the Reed model) while those of the SITAR model 
are substantially lower.
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SD
Je n ss-

C<
•Bayloy
^relations SD

R e e d
Correlations SI)

S1TAH
Corrclat inns

0-2 y ears
a (a 1) (a ) 0.30 a h c 11.18 a' b' d 0.10 a 3
b (6') (3) o.n 0.91 4 . 1 0.91 0.00 0.76
c (c1) (7 ) 1.81 0.99 0.90 16.57 -0.90 -0.98 0.30 -0.77 -0.70
d (d!) 0.07 -0.73 -0.74 -0.00 14.92 -0.99 -0.95 0.99

0-4 y ears
a (o') (a ) 0.26 a h c 0.05 a' y  y 0.15 a 3
b (b’ ) (3 ) 0.07 0.82 1.52 0.85 0.04 0 .7 4

c ( c ')  (7 ) 1.35 0.98 0.70 7.54 -0.95 -0.95 0.20 -0.73 -0.00

“ W _____ 0.05 -0.49 -0.52 -0.40 7.80 -0.99 -0.90 0.98

T a b le  5 : Standard  deviations (SD ) and correlations of the random effects estim ated by the three1 
m odels fitted on G O C S males by age range

4 .4  M o d e l  in t e r p r e t a t io n  

Random effects

To aid the interpretation of the parameters of the three models, we re-fitted t hem on 
the combined males and females data, separately by cohort, and then compared the 
gender-specific distributions of their predicted random effects (BLUPs, Pinheiro and 
Bates (2000)). In Table 6 we report only the descriptive results obtained on the 0-2 
years data separately by cohort. In each cohort the mean of the .IB predicted random 
effects Cii and ok, corresponding to the intercept of the asymptote and the intercept 
for the exponential term respectively, were higher in males than females. However 
bu  and d u  were not different. The Reed model random effects that most differed in 
terms of gender were a'u , which was on average higher among males, and Cj, and d \ ,, 
the two deceleration terms, on average higher among females.

Results from the SITAR model varied across cohorts: while on average the pre
dicted growth velocity (Tit) were higher among males in each cohort, size (o u) was 
higher in males in NINFEA and GOCS but not in GXXI, and tempo (/in) was higher 
in females only in GXXI (and to a lesser extent in NINFEA), in agreement with the 
corresponding differences in predicted APWV (see Table 2 ).

The SITAR model parameters

Both Beath (Beath (2(107)) and Cole (Cole et al. (2010)) stress that a biological 
interpretation could be attached to the coefficients derived from the SITAR model. 
To clarify this we examined the model predicted trajectories and random effects for 
a selection of children and compared them to their respective population predicted 
curve. Here we report the findings for a GOCS male who had a very high birth weight 
(4.55 kg) and who was still considerably overweight at 24 months. His predicted 
random coefficients are dij = 0.44 (the maximum of the distribution of d |,) , ¡3u 0.88
(~95th percentile of the distribution of /3U) and 77  j  -0.51 (~5th percentile of the 
7 ji distribution). While we expected the values of the first two predicted random
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M

M e a n

F

M e a n

G X X I J e n s s -B a y le y 0.05 -0 .0 5 0 .0 0 0 .00 0 .3 0 -0 .27 0 .00 0(H)
R e e d 0.95 -1 .1 9 -0 .0 5 -0 .03 -0 .2 5 0 .57 -0 .85 1.10

S I T A R 0.00 0 .0 0 -0 .0 5 0 .00 0 .00 -0 .07

G O C S . le n s s -B a y le y 0.05 -0 .0 5 0 .00 0 .00 0 .24 -0 .2 3 0 .00 0 .00
R e e d 1.17 -1 .1 5 0 .08 -0 .0 7 -0 .0 0 0 .05 -1 .20 1.19

S I T A R 0.01 -0 .0 2 -0 .0 4 -0 .0 4 0 .04 -0 .02

N I N F E A J e n s s - B a y le y
R e e d 1.24 -1 .5 8 0 .23 -0 .2 5 -0 .9 8 1.00 -1 .3 9 1.53

S I T A R 0.02 -0 .0 3 -0 .0 4 0 .0 2 0.04 -0 .04

M Males; F Female«

T a b le  6: Mean o f the predicted random effects by gender, model and cohort (0-2 years data)

effects to be high, the negative value for 7 ij was somewhat surprising, due to the 
large size of this child, observed at all ages. However Figure 5 clarifies how this 
happens as it shows that the child-specific predicted curve (dark dotted line) is first 
shifted downward when his departure from the population average size, due to his 
larger weight, Aij, is removed (solid thin line), and then shifted to the left when 
his departure from the population tempo, due to his late APWV (estimated to be 
at around 3 months), P ij, is removed (solid medium thick line). Because of these 
realignments the curve is less steep than the predicted population curve, explaining 
the negative value of 7 y. When the contribution of 7 ij is also removed the individual 
predicted curve and the population predicted curve, as expected, overlap (solid thick 
line).

This example illustrates how to attribute biological meanings to random effects 
predicted from a SITAR model. They also highlight their close inter-relationships 
and the care needed for their interpretation: the value of each parameter is strongly 
influenced by the values of the other two. This was also evidenced by the correlations 
shown in Table 5. Estimated correlations between <v,j and (i^ are positive, suggesting 
that children with lower weight are also those with an earlier tempo of growth (and 
earlier APWV). Estimated correlations between n ¡¡ and jn  and between (in and 
7 n are instead of similar strength but negative, suggesting that smaller children, or 
children with an earlier, i.e. negative, tempo, experience greater growth velocities.

These observations lead to the conclusion that examination of the SITAR ran
dom effects parameters, even if biologically interpretable, requires consideration of 
their conditional distributions. In this light we examined the marginal associations 
between the gender of the child and each of size, tem po  and veloc ity  and also the 
same associations but conditional on the other random effects (Table 7). In GXXI 
and in NINFEA the condit ional effects differ from the marginal ones, with males hav
ing larger size when difference in the other two dimensions are accounted for. The 
latter means that comparing the growth curve of a female with that of a male with 
similar velocity and tempo, the male curve will lie above the female one or, in other
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F ig u re  5: Predicted individual growth curve o f  a selected G O C S male and new curves created after 
progressively removing the three random effects from the SITAR model (fitted on the G O C S males 
ag(d 0-2 year on the log weight and age scale)

words, that the mean of the size coefficient, stratified by - for example - quartiles 
of the velocity and tempo distributions is expected to be greater in males than in 
females. In NINFEA the condit ional effects of gender on tem po  and v elo c ity  are also 
stronger than the corresponding marginal effects. In contrast in GOCS there is no 
evidence of a difference in tem po  by gender, writh the differences in size and veloc ity  
only marginally increased by adjustment. Given that GOCS children are selected to 
be more similar in terms of gestational age and birth weight than those from the other 
cohorts, this indicates that the degree of variation in gestational age and birth weight 
both contribute to the random effects correlations.

Effort o f  gender (M nìc vu Foniti lo)
C.XXI C.OCS NINFEA

D e p e n d e n t  v a r i a b l e M a r g i n a l

C o e f f ic ie n t  ( S E )

A d ju s te d *  

C o e f f ic ie n t  ( S E )

M a r g i n a l  

C o e f f i c i e n t  ( S E )
A d ju s te d *  

C o e f f ic ie n t  ( S E )
M u rg itu i l  

( 'o e f f i n e n t  ( S E )
A d ju s te d *

( 'o c f f ic tc n t  ( S E )

S i z e  (ft|t) -0.001 ( 0 .0 1 2 ) 0 .0 4 9  (Ö .00K ) o.oao (O.OOH) 0.039 (0.005) OH IT» (0.008) 0.008 (0.00(1)
T e m p o  i) -0.112 (0.048) -0.0!If) (0.041 ) -0.0001 ( 0 .0 3 4 ) - 0 .0 0 3  ( 0 .0 1 9 ) •0.056 (0.042) -0.129 (0.038)
V e l o c i t y  ( - , i , ) 0.132 (0.021) 0 .1 2 9  ( 0 .0 1 5 ) 0.003 (o.o ir») 0 .0 7 H  ( 0 .0 0 9 ) 0 .0 7 1  ( 0 .0 1 6 ) 0.1 Mi (0.009)
SE -  Standard Error
I A,touted for Iti, otti, r SITA R random effect»

T a b le  7 : Marginal and mutually adjusted effects o f  gender on estimated size, tempo and velocity, by 
cohort (fitted on the 0-2 years data)

The influence of gestational age

Several results, as observed above, identified differences between estimates obtained 
when analysing children in the GOCS cohort as opposed to the other cohorts. The
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most likely explanation is that participation in GOCS was restricted to the term 
babies. Indeed it is well known that gestational age has a very strong influence not 
just on size at birth but also on the growth trajectory after birth, Sullivan et al. (2008). 
To examine whether such heterogeneity had an impact on the estimated parameters 
and therefore on the individual growth curves predicted by the SITAIi model, we 
compared the original results obtained when analysing the GXXI data with results 
obtained when either, (a) pre-term babies were excluded, or (b) the age scale was 
re-defined as time since conception (i.e. age + gestational age, both measured in 
weeks).

Excluding pre-term babies (61 children) did not lead to any changes in the pre
dicted population curves, while some changes were found in the estimated measures 
of variation: the SD of P i, and its correlation with the other two random effects were 
smaller, becoming more similar to the values found in GOCS. In contrast the aver
age APWVs were practically unchanged: 1.66 in males and 1.95 months in females 
(instead of 1.65 and 1.90, respectively). When we re-examined the conditional as
sociations between the gender of the child and each of size., tem po  and velocity , we 
observed that the effect on p  decreased from -0.095 (SE 0.011) to -0.066 (SE 0.033), 
while the effects on the others two parameters were substantially unchanged.

Population predicted curve
----- Individual predicted curve
......  Removing effect of jj only

o, = -0 07 

P( = 1 77 months 

=0 02

-*r~ —i—

Age (month) Weeks from conception

Figure 6: Growth curve for a selected child (GXXI cohort) predicted when fitted on the age time 
scale (left) or on the weeks since conception time scale (right)

When analyses were re-run on the new age scale of time since conception (in 
weeks), part of the information held in the tem po  parameter, P u , appeared to have 
been removed by the new time scale. Figure 6 illustrates this. The left hand side panel 
shows the predicted growth curve for a male from the GXXI cohort whose gestational 
age was 32 weeks and whose weight at birth was 1.86Kg. On the right hand side panel 
the growth curve of the same child is shown when predicted by the model fitted on 
time since conception. The respective predicted population curves are also shown. The 
estimated child-specific parameters from the two models are a n  — -0.07, 0 u  1.77, 
7 i i  =  0.02, when fitted on the original age scale and du  = -0.04, 0 u  = 1.29 (in 
weeks, which corresponds to about 0.3 months), 7 u -0.05, for the time since
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conception scale (centered at about 39 weeks). Hence tempo is reduced to about a 
sixth when gestational age is accounted for. Indeed when the effect of dii is removed 
from the predicted individual curve on the left panel, the shape of the derived curve 
(dotted line) resembles the predicted individual curve on the right panel (dashed line). 
Removing only the effect of an from the latter curve (weeks from conception scale) 
was indeed sufficient to reach a near superimposition with the predicted population 
curve (solid line in the right panel of Figure 6).

5 Discussion

In this exploration of models for infant weight data we have used three recently estab
lished birth cohorts to compare three models where individual variations in growth 
are accounted for by specific random effects parameters. Our main finding is that the 
choice of which model to adopt varies with the aim of the study and, less crucially, 
on the richness of the available data. If interest focuses on describing individual early 
weight growth trajectories and/or typical profiles then all the three models consid
ered in this paper are suitable. Among them the 4-parameter Reed model performed 
best in terms of standard fit criteria and, unlike the other two models, is linear in its 
parameters and is therefore easier to estimate. However, if the focus is on extracting 
salient features of the growth trajectories in order to include them in further analy
ses where growth is either the exposure or the outcome, then the SITAR model may 
be the preferred option because of the biological interpretability of its parameters. 
However several other factors should be considered before a choice is made.

The range and frequency of observations over time

We have shown that including measures taken at birth requires the transformation of 
the time scale when fitting the Reed model because it contains a logarithmic and an 
inverse function of age. We have adopted one particular transformation that gives a 
value o f 1 to time of birth (and a value of 0 to nine months before birt h, i.e. roughly 
at ‘conception’). An alternative transformation had been suggested in the literature 
that adds a value of 1 to time only to the terms that involve the logarithmic and 
the inverse function of time. This hybrid solution was, in our view, unsatisfactory 
and indeed performed slightly worse in terms of goodness of fit than the one we have 
adopted. A drawback of the latter however is that, when applied to our data, the 
model’s derivative (i.e. the weight velocity curve) did not present a maximum and 
therefore did not allow the identification of an APWV, if such peak was actually 
present. This was not an issue with the SITAR model even when a transformation 
was required to meet the distributional assumptions, because the peak in the weight 
velocity curve was still identifiable. Hence, if APWV is of interest, and if data include 
measurements at birth, the SITAR model, fitted on the appropriate growth and time 
scale to meet the assumptions, should be preferred.

Range, frequency and regularity of the observations over time are other important 
aspects to consider. Spline functions such as the one used by the SITAR model are
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necessarily influenced by data points that are isolated and this was the case with the 
analyses of the N1NFEA 0-4 years data.

Interpretation of the child-specific parameters

By comparing the distribution of random effects predicted for males and females by 
the three models, when fitted on the combined data, we aimed to examine the discrim
inatory values of these parameters. Those predicted from the JB and Reed models 
that correspond to their intercepts (cii, and a'u), or correction to the intercept (an), 
did show differences between the genders. However on their own the.se parameters are 
unlikely to discriminate the growth trajectories of subgroups defined by weaker predic
tors of growth than gender (for more discussion of this see the Appendix). In contrast 
each of the three SITAR random effects appeared to have distinct means and distri
butions between the genders, especially when their inter-correlations were taken into 
account (note that accounting for correlations among the parametric models random 
effects was not possible because o f extreme collfnearity).

The interpretability of the SITAR model however requires additional care. In 
particular the interpretation of the tempo parameter, which represents the shift on 
the time axis necessary to synchronize the curves which are centred on the tempo 
milestone (the APWV in this setting), depends on the time scale used and the setting 
analysed. When changed by setting the time origin at conception, we found that 
gender differences with respect to tempo were slightly reduced. Thus this parameter 
represents an adjustment necessary to better proxy true biological age (hence measur
ing growth adjusted for niaturation/developmental status). This is in line with results 
obtained for the cohort including only term babies with birth weight between 2500 
and 4500 grams (GOCS), for which we observed that estimate of tempo did not vary 
across genders when using chronological age as time scale, and it is also in line with 
the fact that gender effect on tempo decreased when estimated using only term babies 
in GXXI compared to using the whole cohort. Note that in other settings, with dif
ferent growth variables and especially, with different age ranges, the tempo parameter 
represents adjustments of the time scale by other factors, such as hormonal levels in 
puberty, Cole et al. (2010).

A final note of caution with regards to the interpretability of the SITAR parameters 
derives from its extreme flexibility. Unlike the JB and Reed models, SITAR is not 
restricted to an age range, however the wider the range of ages included in a SITAR 
model, the less clear will be the interpretation of its parameters. This would affect 
the tempo and velocity parameters in particular because individual trajectories over 
longer age ranges may include several inflection points, leading to multifile changes in 
velocity and therefore to the parameters representing a complex average of several, and 
possibly very different, departures from the population time scale. This would happen 
for example if SITAR were used to model body mass index (BMI) (weight/height2) 
from age 0 to 10 years, say. During this time children would experience both a 
peak velocity at around 1 year and a minimum (negative) velocity at about 5 years, 
Rolland-Cachera et al. (1987). Moreover, a single parameter tempo would represent 
an average of the child’s departure from possibly two separate biological time scales:
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the one linked to the infancy BMI peak and the one linked to the childhood BMI 
rebound.

Issues related to life course epidemiology

Much interest in modelling growth data conies from research in life course epidemiol
ogy, Kuh and Ben-Shlomo (2004), where summary growth parameters such as those 
described in this paper are used as explanatory variables for the onset of a later out
come. Thus analyses consist of two components, carried out in stages: a first stage 
focussed on modelling the growth data, and a second stage aimed at relating parame
ters from the growth model to the distal health outcome. For such analyses to succeed 
it is crucial that salient features of growth are estimated for all children in the study 
and that the statistical uncertainties of the parameters extracted in the first stage are 
properly accounted for, Molinari and Gasser (2004). The former may not be possible 
if parameters used to summarise the growth data are not available for all children 
(e.g. see Silverwood et al. (2009)), with the second stage analyses consequently being 
affected by selection bias. Adopting the SITAR modelling approach, and using the 
three random parameters of size, tempo and velocity as explanatory variables would 
not suffer from this. Moreover, using all the three SITAR parameters instead of a sin
gle growth indicator, such as APVVV, would lead to a more comprehensive summary 
of the individual growth patterns.

The additional statistical uncertainties arising from using estimated growth param
eters in the second stage of the analyses is rarely addressed in applications. However 
it can be dealt with, at least approximately, by correcting the standard errors of the 
second stage estimates using the bootstrap, Efron and Tibshirani (1993), or weighting 
the second stage according to the amount of child-specific information available in the 
first stage (e.g. the number of observations, see Tzoulaki et al. (2010)). The former 
approach would be quite cumbersome given the complexities o f estimating these mod
els. A one-step estimation of the two model components, growth and distal outcome 
modelling, would not require such inferential adjustments. This is where specifying 
the growth model using random effects polynomial curves would be advantageous as 
they could be estimated jointly with the distal outcome model using structural equa
tion models, De Stavola et al. (2006). This approach however would suffer from lack 
of biological interpretability of the random effects parameters. Moreover it is not eas
ily implemented when fitting more complex growth models, at least using standard 
software.

Another aspect of growth modelling relevant to life course epidemiology is that 
focussed on identifying factors that influence childhood growth. Again such analyses 
could be carried out in two stages, where some growth parameters are first estimated 
and then modelled in terms of exposures of interest (as we did in section 4.4). Alter
natively models could be specified so that estimation is carried out in a single step. 
This is easily achieved within the framework of random effects polynomial models 
(e.g. see dos Santos Silva et al. (2002)). Of the models reviewed here, however, only 
the SITAR model has been generalised to include explanatory factors, Beath (2007); 
Hui et al. (2010); Johnson et al. (2011), although such specification allows only the
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inclusion of explanatory variables for size and for the shifted and re-sealed time scale 
(denoted by Beath as the “growth rate” ). Thus the interpretation of estimated ef
fects of explanatory variables for the SITAR growth parameters needs particular care. 
Moreover, given the non-linearity of the SITAR model, the explanatory variable pa
rameters should not be used to infer population-average effects, Fitznmurice et al. 
(2009).

Finally in this field, there is much interest in comparing and summarising evidence 
from different studies. However, not one but several study-specific parameters for 
each growth dimension would need to be compared, i.e. size, tempo and velocity. 
Simultaneous analysis of all parameters could be carried out by fitting multivariate 
meta-regression models that account for the covariance structure of the parameters 
estimated within each study, van Houwelingen et al. (2002).

Conclusions

In this paper we have examined alternative modelling approaches to the estimation 
of the salient features of growth in weight in tufaiicy/early childhood and discussed 
the difficulties, advantages and disadvantages of choosing each model. Our conclusion 
is that there is a range of options available to researchers but that each necessitates 
careful understanding of assumptions and parameterization». Of the three models 
discussed, the SITAR model is certainly the most flexible and the most useful for life 
course enquiries, as it allows the identification of important features of the children’s 
growth trajectories. Its application however requires careful selection and substantive 
understanding of the model parametrization. This is true for the other models too 
but possibly to a lesser extent. However, the potential for extracting the mast salient 
features of the growth patterns will depend on the richness and quality of the data, 
and this is where researchers should make the greatest investment.
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Appendix: extreme growth trajectories

Another interesting comparison of the three growth models concerns how well they 
perform in predicting unusual trajectories. In the main text (Section 4.4) we have 
already discussed the estimated SITAR random effects for the child depicted in Figure 
5. This child has a birth weight of 4.55 kg and weighed 17.4 kg at 2 years. The SITAR 
predicted random coefficients for this child were the maximum of the distribution 
of size (due to his large weight), the ~95th percentile of the distribution of tempo 
(due to his delayed pick weight velocity, occurring at about 3 months of age), and 
the c^5th percentile of the distribution of velocity (due to his relative slow growth 
rate). The predicted random effects for the same child derived from the JB model 
corresponded to the ~5th percentile of the distribution of au, the ~25th percentile of 
the distribution of bu, the ~95th percentile of the distribution of cjj, and the ~5th 
percentile of the distribution of du, with cu and du - the intercept and the slope of 
the asymptote respectively (see Section 3.1 of the main text) - capturing the large 
weight of the child and his slow growth rate. The corresponding figures for the Reed 
model were approximately the median of the distribution of a'u, the ~85th percentile 
of the distribution of b'u, the ~85th percentile of the distribution of c'u, and about the 
median of the distribution of d'u. Reed parameters were close to the centre of their 
distribution and therefore not very informative.

The same comparisons was also drawn for a boy weighting 5.3 kg at 2 years and
2.3 kg at birth who clearly experienced severe growth problems after birth (Appendix 
Figure 1). His predicted SITAR random effects were, for size and tempo, the mini
mum values of their predicted distributions (capturing his low weight and his delayed 
developmental status), while for velocity it was above the 75th percentile of its dis
tribution. The predicted random effects for this child derived from the JB model 
were, for an and bu, about the 75th percentile of their distributions, while for cu and 
du they corresponded to about the 85th and 95th of their distributions respectively, 
suggesting that none of the JB parameters captures the salient features of the weight 
trajectory of this child. Finally, the predicted Reed random coefficients were again not 
informative corresponding, for a'^, to the c=25th percentile of its distribution, while 
for b'u, c'j, and d'u to approximately the median of their distributions.

These examples (plus other that we do not report here) show that the SITAR pa
rameters consistently identify outlying growth patterns via extreme predicted random 
effects. In contrast those derived by the JB and Reed models for the same children 
were less informative.
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A p p e n d ix  F ig u re  1 Predicted individual growth curve o f a selected (¡X X I male and new curves 
created after progressively removing the three random clhvts from the SITAH model (fitted on the 
G X X I males aged 0-2 year on the log weight and age scale)
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Example codes for fitting the three growth models

Pizzi C. et al. "On modelling early life weight trajectories".

RELEVANT PROGRAMS:
Three programs, produced with R version 2.11.1, are included as 
supplements to this paper. These include example codes for fitting the 
three growth models compared in the paper.
Note that in each program, wt indicates weight in kg, month indicates age 
since birth (in months), while data is the name of the data frame that 
holds these variables.

1. jb.R
This includes the example code for fitting the Jenss-Bayley random 
effects model.

2. reed.R
This includes the example code for fitting the Reed random effects model.

3. sitar.R
This includes the example code for fitting the SITAR shape invariant 
random effects model. In this example the SITAR model is fitted on the 
log-kg and month scales, including fixed effects for the size and 
velocity parameters, and with a spline function with 4 knots.
NOTE: Please note that the following code, based on that published by 
Beath (Beath K. J. 2007, Stat Med 26(12),2547-64), is a simplified 
version of the actual function used in the paper. The latter is available 
on request from Professor Tim Cole, who is currently developing a 
dedicated R library (tim.cole@ucl.ac.uk).

NOTE ABOUT THE DATA: None of the three datasets analyzed for this paper 
can be made directly accessible to the Journal's readership because of 
confidentiality restrictions. Data from each cohort study are available 
on direct request to the study coordinators.
Interested readers should use these auxiliary programs to understand how 
the analyses in the paper were conducted.

Costanza Pizzi 
Cancer Epidemiology Unit, 
Department of Medical Sciences 
University of Turin

Italy
E-mail:
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Jenss-Bayley model

# This is an example of the R program used to fit the Jenss-Bayley (JB)
# random effects model examined in the JRSS-A Paper "On modelling early
# life weight trajectories".

# Author: Costanza Pizzi (costanza.pizzi@lshtm.ac.uk)
# Date: February 14, 2013.

fRead the data
data <- read.table("data", header*TRUE, sep=”\t",na.strings-c(""))

((Load the nlme library 
library(nlme)

#The starting values for the JB random effects model(aO, bO, cO, dO) 
fare obtained by fitting models without random effects using the nls 
ffunction

jb.nls <- nls(wt - c+d*month-exp(a+b*month), 
data” data,
start” c( a”l,b=-0.2,c=8,d”0.1), 
trace” T 
)

#JB random effects model
jb <- nlme(wt ~ c+d*month-exp(a+b*month), 

data” data, 
fixed= a+b+c+d ~ 1, 
random” a+b+c+d ~ 1 I id, 
start” c(a=aO,b=bO,c=cO,d=dO), 
correlation” NULL, 
weights” NULL, 
na.action* na.fail,
)
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Reed model

# This is an example of the R program used to fit the Reed random effects
# model examined in the JRSS-A Paper "On modelling early life weight
# trajectories”.

# Author: Costanza Pizzi (costanza.pizzi@lshtm.ac.uk)
# Date: February 14, 2013.

#Read the data
data <- read.table("data”, header-TRUE, sep-"\t"fna.strings-c<""))

#Load the nlme library 
library(nlme)

#Age since birth (month) was rescaled so that the new age (month.r) is 0 
#at conception (assumed occurring 9 months before delivery) and is 1 at 
#birth.

data<- transform(data, month.r=(month+9)/9)

#The starting values for the Reed random effects model (aO, bO, cO, dO) 
#are obtained by fitting models without random effects using the nls 
♦function

reed.nls <- nls(wt ~ a+b*month.r+(c*log(month.r))+(d/(month.r)), 
data= data,
start” c(a=10,b=l,c=-4,d=-10), 
trace” T 
)

#Reed random effects model
reed <- nlmefwt ~ a+b*month.r+(c*log(month.r)) + (d/(month.r)), 

data” data, 
fixed” a+b+c+d ~ 1, 
random” a+b+c+d ~ 1 I id, 
start” c(a”aO,b”bO,c=cO,d=dO), 
correlation” NULL, 
weights” NULL, 
na.action” na.fail,
)
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SITAR model

# This is an example of the R program used to fit the SITAR model
# examined in the JRSS-A Paper "On modelling early life weight
# trajectories".

# Author: Costanza Pizzi (costanza.pizzi@lshtm.ac.uk)
# Date: February 14, 2013.

#Read the data
data <- read, table ("data", header=TRUE, sep="\t", na.strings-c ('"') )

♦ Load the libraries 
library(splines) 
library(nlme)

#The starting values for the spline function (sOl,s02,s03,s04) and for 
#the size parameter (aO) are obtained by fitting a linear regression of 
#the log-weight variable on the age variable, the latter transformed via 
#a natural cubic spline. The starting value for the velocity parameter 
# (c) is set at 0. The internal knots of the spline (kn) are placed at the 
#quartiles of the age distributions (as in this example the spline 
♦function has 4 knots), while the boundary knots (bou) are placed at 
♦points defined as the minimum (and maximum)
#of the age distribution minus (plus) 4% of the total range, 

kn <- quantile(data$month, (l:3)/4)
bou <- range(data$month) + 0.04 * c (—1,1) * diff(range(dataSmonth)) 
lm(log(data$wt) ~ ns(data$month, knots=kn, Boundary.knots=bou))

♦Create the function for a spline with 4 knots 
model <- function(time, sl,s2,s3,s4, sa,sb,sc) ( 

splcoef <- as.matrix(cbind(si,s2,s3,s4)) 
as.vector(sa+t(matrix(rep(l,4), ncol=4) %*% 
t(splcoef*as.matrix(ns((time-sb)/exp(-sc), knots=kn, 
Boundary.knots=bou)) ) ))
)

♦Apply the function "model" to the data on log-kg and month scales, 
♦including fixed effects for the size and velocity parameters and random 
♦effects for all the 3 parameters

sit <- nlme(log(wt)~ model(month, si,s2,s3,s4,a,b,c), 
data=data,
fixed=sl+s2+s3+s4+a+c ~ 1, 
random=a+b+c ~1 lid, 
start=c(sOl,s02,s03,s04,aO,0), 
na.action=na.fail, 
correlation = NULL, 
weights = NULL,
control=nlmeControl(returnObject=TRUE)
)

191

mailto:costanza.pizzi@lshtm.ac.uk


Another interesting comparison of the three growth models concerns how well they perform in pre

dicting the weight values across different age intervals. In order to address this issue the observed and 

expected mean weight values (in kg), where the latter are the individual-level predictions, as well as 

the mean and SD of the difference between the observed and expected values were compared across 

a-priori defined age groups. Results are shown in Table 5.1 for the models fitted on the 0-2 years male 

data and in Table 5.2 for the models fitted on the 0-4 years male data (thus only for the GOCS and 

NINFEA studies). The results obtained for females are similar and are not reported for simplicity. 

SITAR appears to perform better than the two biological models both at birth and within the first three 

months of life, when the non-linearity of the weight trajectories is expected to be larger. In contrast 

SITAR performs slightly worse than the JB and Reed models beyond 12 months of life, especially when 

fitted on the NINFEA data -  probably due to the small and isolated number of measurement times 

available for this cohort -  and on the 0-4 years data. In particular the SDs increase for the oldest age 

intervals, especially when modelling the data up to 4 years of age.

As already discussed in Research Paper III, the JB and Reed models perform much better when fitted 

on the 0-4 years data compared with the 0-2 years data. In particular the SD of of the difference 

between the observed and expected weight is considerably lower in Table 5.2 than in Table 5.1 across 

all age intervals. Both approaches perform clearly better when fitted on the GXXI study compared 

to those derived from the other two cohorts (Table 5.1), probably reflecting the fact that GXXI is the 

richest cohort in terms of weight measurements gathered.

5.2.1 Addendum to Research Paper III
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J e n s s -B a y le y R e e d SITAR

O bserved Expected^ O bserved-E xpected} Expected} O bserved-E xpected} Expected} O bserved-Expected}

0 -2  y e a rs
G X X I

Birth 3.23 3.1 0.13 (0.24) 3.12 0.11 (0.21) 3.19 0.04 (0.11)
0.1- 3 months 4.64 4.71 -0.06 (0.29) 4.74 -0.09 (0.27) 4.64 0.01 (0.20)
3.1 - 6 m onths 6.94 6.90 0.04 (0.28) 6.89 0.05 (0.25) 6.94 -0.01 (0.27)
6.1 - 12 months 8.77 8.77 -0.004 (0.32) 8.74 0.02 (0.31) 8.79 -0.03 (0.34)
12.1+  m onths 11.41 11.41 0.003 (0.29) 11.42 -0.01 (0.26) 11.39 0.03 (0.39)

G O C S
Birth 3.44 3.28 0.16 (0.28) 3.36 0.09 (0.27) 3.43 0.01 (0.15)
0.1- 3 m onths 4.99 5.02 -0.02 (0.67) 5.11 -0.11 (0.71) 4.98 0.02 (0.18)
3 . 1 - 6  months 7.45 7.29 0.16 (0.80) 7.37 0.07 (0.86) 7.49 -0.04 (0.34)
6 . 1 - 1 2  m onths 9.23 9.13 0.10 (1.36) 9.2 0.02 (1.36) 9.14 0.09 (0.39)
12.1+  m onths 11.84 11.81 0.03 (1.65) 11.85 -0.01 (1.65) 11.85 -0.01 (0.43)

N I N F E A
Birth 3.34 - - 3.33 0.01 (0.23) 3.32 0.02 (0.09)
0.1- 3 m onths 5.98 - - 6.04 -0.07 (0.68) 5.93 0.05 (0.25)
3.1 - 6 m onths 7.95 - - 7.86 0.09 (0.78) 8.04 -0.09 (0.36)
6.1 -  12 m onths 10.15 - - 10.19 -0.04 (0.99) 10.17 -0.03 (0.36)
12 .1+  m onths 11.82 - - 11.8 0.01 (1.15) 11.72 0.09 (0.46)

* A verage o f  the child-specific predictions

* M ean (S D )

Table 5.1: Observed and expected mean weight values (kg) from the best specification of the three models fitted on the 0-2 years male data 
by cohort and age range



J e n s s -B a y le y R e e d SITAR

O bserved Expected* O bserved-E xpected! E xp ected ! O bserved-E xpected! E xp ected ! O bserved- E xpected!

0 -4  yea rs
G O C S

Birth 3.44 3.35 0.10 (0.33) 3.37 0.07 (0.28) 3.41 0.04 (0.15)
0.1- 3 months 4.99 5.08 -0.09 (0.32) 5.09 -0.10 (0.33) 4.99 0.01 (0.25)
3 . 1 - 6  m onths 7.45 7.38 0.06 (0.33) 7.36 0.09 (0.30) 7.46 -0.01 (0.37)
6 . 1 - 1 2  m onths 9.23 9.22 0.001 (0.33) 9.2 0.02 (0.32) 9.24 -0.02 (0.40)
12.1 -  24 m onths 11.61 11.63 -0.03 (0.38) 11.63 -0.03 (0.36) 11.6 0.01 (0.45)
24.1 +  m onths 16.37 16.37 0.004 (0.41) 16.36 0.01 (0.34) 16.32 0.05 (0.79)

N I N F E A
Birth 3.34 3.27 0.07 (0.37) 3.33 0.01 (0.40) 3.31 0.03 (0.09)
0.1- 3 m onths 5.98 6.01 -0.03 (0.41) 6.05 -0.07 (0.36) 5.97 0.01 (0.26)
3 . 1 - 6  m onths 7.95 7.87 0.08 (0.40) 7.86 0.09 (0.35) 7.98 -0.03 (0.39)
6.1 -  12 m onths 10.15 10.16 -0.02 (0.47) 10.18 -0.04 (0.39) 10.18 -0.03 (0.45)
12.1 -  24 m onths 11.82 11.68 0.13 (0.43) 11.81 0.01 (0.29) 11.73 0.09 (0.51)
2 4 .1 +  m onths 16.88 16.89 -0.01 (0.13) 16.88 0.001 (0.12) 16.84 0.04 (0.99)

* A verage o f  the child-specific predictions

* M ea n  ( S D )

Table 5.2: Observed and expected mean weight values (kg) from the best specification o f the three models fitted on the 0-4 years male data 
by cohort and age range
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Abstract

Background: Studying prenatal influences o f  early life growth is relevant to life-course 

epidemiology as some o f  its features have been linked to the onset o f  later diseases. Methods: 

We studied the association between prenatal maternal characteristics (height, age, parity, 

education, pre-pregnancy body mass index (BM1), smoking, gestational diabetes and 

hypertension) and offspring weight trajectories in infancy using Superimposition by Translation 

And Rotation (SITAR) models, which parameterize growth in terms o f  three biologically 

interpretable parameters: size, velocity and tempo. We used data from three contemporary 

cohorts based in Portugal (GXXI, n=738), Italy (NINFEA, n=2,925), and Chile (GOCS, n=959). 

Results: Estimates were generally consistent across the cohorts for maternal height, age, parity 

and pre-pregnancy overweight/obesity. Some exposures only affected one growth parameter (e.g. 

maternal height (per cm): 0.4% increase in size (95% confidence interval (CI):0.3; 0.5)), others 

were either found to affect size and velocity (e.g. pre-pregnancy underweight vs normal weight: 

smaller size (-4.9%, 95% Cl:-6.5;-3.3), greater velocity (5.9%, 95% Cl: 1.9; 10.0)), or to 

additionally influence tempo (e.g. pre-pregnancy overweight/obesity vs normal weight: increased 

size (7.9%, 95% CI:4.9;10.8), delayed tempo (0.26 months, 95% CI:0.11;0.41), decreased 

velocity (-4.9%, 95% CI:-10.8;0.9)). Conclusions: By disentangling the growth parameters o f  

size, velocity and tempo, we found that prenatal maternal characteristics, especially maternal 

smoking, pre-pregnancy overweight and underweight, parity and gestational hypertension, are 

associated with different aspects o f  infant weight growth. These results may offer insights into 

the mechanisms governing infant growth.
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Birth size and early life growth trajectories have been found to be important predictors for the 

onset and development o f  a wide range o f  later diseases, 1' 6 with early postnatal weight gains 

becoming the focus o f  research into the development o f  overweight and obesity later in 

childhood and adulthood.7 11 As a consequence there is also growing interest in prenatal 

predictors o f  rapid weight gain in infancy12,13 and overweight and obesity later life. 14' 17 

A  wide-ranging literature exists on the association o f  prenatal exposures - such as maternal, 

environmental and social factors, pregnancy conditions, parental age, health status and life-style 

- with birth outcomes, mainly birth size and gestational age. 18'22 More recently, the association o f  

these prenatal exposures with early life growth trajectories has also been investigated, 13,23' 25 

particularly with reference to features o f  postnatal rapid weight gain. 12,26,27 A limitation o f  most 

o f  these analyses is that they focus on relatively simple aspects o f  growth, such as differences in 

size at pre-specified age intervals. In addition such comparisons can only be performed when 

growth data are available at fixed time points and therefore may involve only a subset, often 

unrepresentative, o f  the original cohort. 12

In this paper we examine the association between several prenatal maternal exposures with 

weight trajectories o f  infants (0 -2  years) from three recent cohorts based in countries with 

diverse socio-economic backgrounds (Portugal, Italy and Chile) using the shape-invariant 

random effects model called Superimposition by Translation And Rotation (SITAR ) .23,28 This 

approach allows the capture o f  individual trajectories, from irregularly spaced observations, 

through three parameters that have a direct biological interpretation - size, velocity and tempo. 

SITAR has been used before to model individual growth data,22'30 and is extended here to 

include multiple explanatory variables for each o f  its three parameters. The focus is on infant 

growth because o f  its relevance in life-course epidemiology research, while the inclusion o f  data
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from different cohorts is aimed at evaluating the robustness o f  the results, given the expected 

differences across the three source populations in distribution o f  the exposures (as well as their 

correlations with potential confounders).

MATERIAL AND METHODS 

The cohort studies

GXXI. GXXI was established in 2005 in the Porto region o f  Portugal. All children bom o f 

women resident in the region and admitted to one o f  its five public hospitals for delivery, with a 

gestational age at birth greater than 24 weeks, were eligible to participate. Recruitment lasted 

from April 2005 to August 2006. Women were enrolled few days before their due date and, in 

the majority, completed baseline questionnaires between 24 and 72 hours afler delivery. In total 

the baseline data consist o f  8,311 singleton children. Children were actively followed-up through 

interviewer-administered questionnaires planned at 3, 6 , 12/15 and 24 months o f  age. Due to 

logistic and financial constraints a restricted time window was allocated for each follow-up 

occasion. The present analyses are based on the information collected at baseline and at the 2- 

years follow-up, which is available for 738 singleton babies o f  likely Portuguese origin with 

known gestational age at birth, and consists o f  growth data from the child’s health records, 

obtained prospectively by health professionals. These include anthropometric measures taken at 

about 1, 2, 4, 6 , 9, 12, 15, 18 and 24 months o f  age, together with the actual dates o f  

measurement. Up to 6  additional measurements and dates reported in the health records were 

also entered into the database. The median number o f  measurements per child is 10.

NINFEA. NINFEA is an on-going Italian web-based cohort study which started in 2005 and 

aims to recruit pregnant women via the Internet and follow up their children (more details in
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3I'32). Enrolment is carried out at the study website (www.progettoninfea.it) where women 

complete the first questionnaire (Q 1) at any time during their pregnancy. Active follow up is via 

online questionnaires administered at around 6  (Q2), 18 (Q3), 48 (Q4) months and 7 years (Q5) 

o f  age o f  the child. For these analyses we used the database version 12.03 (downloaded in March 

2012) which includes 2,925 singleton children with available data on gestational age at birth and 

whose mothers were bom in Italy. At Q2 women were asked to report the child's anthropometric 

measurements at birth, 3 and 6  months, while at Q3 they were asked to report the measures at 12 

and 18 months. Revisions o f  these questionnaires, undertaken after approximately the first 1,500 

mothers enrolled, led to inclusion o f  additional questions on the child's measures at the time o f  

their completion. The present analyses involve growth data up to around age 2 years, resulting in 

a median o f  4 (range 1-7) measurements per child.

GOCS. GOCS is an on-going Chilean cohort aiming to study the association o f  early growth 

with children's maturation, adiposity and associated metabolic complications (more details in 33). 

The study was initiated in 2006 when all children aged 2.6-4 years attending public nursery 

schools in six counties o f  Santiago were invited to participate if  they were singleton births with a 

gestational age at birth between 37 and 42 weeks, and birth weight between 2500 and 4500 

grams. Among the 1,498 eligible children 1,195 (80%) accepted the invitation. The present 

analyses includes all 959 children o f  non-indigenous origin without missing growth and exact 

gestational age data. Weight and height measurements from birth up to 36 months o f  life were 

extracted from routinely-completed health records; from the time o f  recruitment onwards, 

children were measured yearly at their nursery by a dietician. For these analyses only growth 

data up to around age 2  years were used, yielding a median o f  6  (range 1-8 ) measurements per 

child.

2 0 0
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Prenatal exposures

The following background maternal exposures were studied in relation to weight trajectories 

over the first 2  years o f  life: height, age, educational level and parity at the time o f  birth o f  the 

child. Pre-pregnancy body mass index (BMI), smoking status during pregnancy and pregnancy 

complications, namely gestational diabetes and pregnancy hypertension/eclampsia, were instead 

considered intermediate exposures as their values are likely to be affected by the background 

variables above. Data on prenatal variables were derived from questionnaires administered 

during pregnancy in NINFEA, at birth in GXXI, and when the children were approximately 3-4 

years old in GOCS. Coding and further details are given in Table 1. Because o f  missing values a 

core dataset for each cohort was defined as the subset o f  records with complete information on 

the following core exposure variables: maternal height, age, education, parity, pre-pregnancy 

BMI and smoking status during pregnancy.

Statistical methods

SITAR model. The observed weight trajectories were modelled using a recently developed 

shape invariant random effects model. It was introduced by C o le 28 to study height trajectories in 

puberty, following the model proposed by Beath to analyse weight growth in infancy.23 Let y*, be 

the weight o f  child i at age t, then SITAR is specified as:
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where h(z) is a natural cubic spline o f  transformed age z, ait $  and y, are subject-specific growth 

parameters, and £jt is the residual error term assumed to have mean zero and constant variance. 

The three parameters correspond respectively to the size, tempo and velocity o f  growth specific 

to each child: a, represents the shift in the weight axis, while /?, and 7/ represent the change in 

location and scale to be applied to the age scale, respectively, in order for all children to share the 

same shape (mean spline curve h(z)). Size is expressed in units o f  weight, tempo in units o f  age, 

while velocity is a multiplier, and therefore is scale-free and reported as a percentage. Pizzi et al34 

discuss in detail how these parameters are to be interpreted given their close correlations. In brief 

they can be parameterized as follows: let a,= an + an, where an is a fixed parameter, representing 

the size o f  a reference child, and an a random, normally distributed variable with mean zero and 

constant variance, and let similar specifications for $  and y„ then estimation can be carried out 

by maximum likelihood as for any (non-linear) mixed effects model.35 Irregular observations can 

be handled under the assumption o f  missing at random.36 From a biological perspective an will 

be positive for heavier children, while fin is related to the timing o f  maximum growth velocity 

and therefore will be negative for children whose growth is more advanced at earlier ages (earlier 

velocity peak), and yn will be positive for children with faster growth.28 

A  covariate X  with observed value Xi on subject i can be included in the model by specifying the 

three growth parameters as follow:

a , = a ,  + Saxt + au

P i~  Pt + Sp x i + Pli
Y i = fr f  + 7ii
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where Sa, SpandSy represent the contribution o f the covariate to a child’ s size, tempo and velocity, 

respectively. Generali2ation o f  equation (2) to multiple covariates is straightforward. This is a 

slightly different parameterization from the one adopted by Beath.23

Analyses. Weight was log-transformed to aid meeting the distributional assumptions o f  the 

model. As a consequence 8a is to be interpreted as percentage changes in size relative to the 

reference child.37 Age was measured in months, hence Sp is also expressed in months. The spline 

function h(z) was defined by placing the internal knots at quantiles o f  the age distribution, 

appropriate for each cohort because o f  varying richness and spread o f  the available weight 

measurements (four knots were used for analyses o f  GXX1 and GOCS data and three for 

analyses o f  NINFEA). The complexity o f  the SITAR model relatively to the available data led to 

imposing constraints on its parameters, namely that the tempo o f  the standard child, /?«, was zero. 

Furthermore to be able to compare the three cohorts, Sp, the contribution o f  each covariate on a 

child’ s tempo, was also constrained to be zero. These constraints were relaxed in analyses 

specific to GXX1 as it had more weight growth measurements.

Models were initially fitted separately by study. W e first included one explanatory variable at a 

time, with adjustment by gender and gestational age (we will refer to the latter results as 

“ minimally-adjusted estimates” ). We used all available data and also just the core datasets to 

allow comparisons between unadjusted and adjusted estimates for each o f  these variables. Fully- 

adjusted estimates were obtained by fitting two separate models to the core datasets: (i) the 

background explanatory variables were mutually adjusted, as well as adjusted for gestational age 

and gender; (ii) the intermediate explanatory variables were mutually adjusted, as well as 

adjusted for the background variables, gestational age and gender.
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Models were also refitted on the pooled data from the three cohorts, assessing evidence o f  

heterogeneity via significance tests o f  the interaction between each covariate and the study 

indicators (one covariate at a time, using the Wald test).

RESULTS 

Descriptive results

There is considerable variation in the distribution o f  the prenatal exposures across the three birth 

cohorts (Table 1); in particular, Chilean and Portuguese mothers are on average 8  and 3 cm 

shorter, and 6  and 3 years younger at birth, respectively, than their Italian counterparts. Despite 

being on average younger, the proportion o f  multiparous mothers is higher among GOCS 

participants. Educational level strongly differs across cohorts, with only 5% o f  the N1NFEA 

mothers being in the lowest educational category as opposed to 36% in GOCS and almost 50% 

in GXXI, and with almost 60% highly educated women in NINFEA compared to 27% and 20% 

in GXXI and GOCS, respectively. Because o f  the study design, education is a strong predictor o f  

participation into NINFEA,32 and this explains many o f  the differences observed. The prevalence 

o f  overweight/obese women is much lower in NINFEA, while prevalence o f  underweight is 

slightly higher. Approximately 20% o f  GXXI women smoked during pregnancy with the 

corresponding figure in the other two populations lower than 10%. Gestational diabetes was less 

frequently diagnosed in GOCS, while gestational hypertension/eclampsia was less frequently 

diagnosed in GXXI.

Cohort-specific analyses

204



Table 2 presents the estimated minimally-adjusted and fully-adjusted covariate-specific 

parameters (i.e. the relevant Sa and Sy), by cohort, obtained from models fitted to the core 

datasets. The minimally-adjusted estimates obtained when fitting the models to each whole 

cohort are reported in the eTable 1: they are generally close to the minimally-adjusted estimates 

reported in Table 2 indicating that the core datasets are likely to be representative o f  the 

corresponding whole cohorts. The minimally-adjusted and fully-adjusted estimates reported in 

Table 2 are very similar, indicating little reciprocal confounding among these variables. Despite 

some between-cohort differences, the findings overall are consistent with size being positively 

associated with maternal height (N1NFEA, fully-adjusted: S„=0.4%; similarly in the other 

cohorts), pre-pregnancy overweight/obesity (NINFEA: 80=2.1%; similarly in the other cohorts) 

and parity (GXXI: 50=4.5%; similarly in NINFEA), but negatively associated with smoking 

during pregnancy (8a=-3% in GXXI and NINFEA) and maternal pre-pregnancy underweight 

(5a~-4% in each cohort). Post-natal growth velocity was positively associated with maternal 

smoking (GXXI: 5y=13.2%; NINFEA: 5r=6.5%), and possibly maternal underweight (N1NFEA: 

5t=4.4%), but negatively associated with parity (GXXI: Sy—6.1%; similarly in NINFEA). The 

results for education were quite heterogeneous: while in GXXI medium/highly educated women 

have bigger children who tend to have slower growth velocity, and in GOCS the children from 

less educated mothers have slower growth rate compared to those in the reference group, in 

NINFEA no association was found.

The model that examined pregnancy complications showed that, when fully adjusted for the 

other characteristics, gestational diabetes was not associated with infant weight growth (Table 3). 

In contrast, children from mothers with gestational hypertension were smaller and with a steeper
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growth curve (GXXI: 5a—6.4%, 8r-12.8% ; similarly in NINFEA), although this pattern was not 

present in GOCS.

Pooled analyses

Pooled analyses o f  the three cohorts show significant heterogeneity o f  effects for some 

covariates (smoking, gestational hypertension and gestational diabetes), with the differences 

arising from GOCS, unsurprisingly given the results o f  Tables 2-3, the retrospective collection o f  

its prenatal data and its inclusion criteria. As there was no evidence o f  heterogeneity between 

GXXI and NINFEA, their data were pooled with results reported in Table 4. The estimated 

coefficients for pre-pregnancy BMI confirm that babies from underweight mothers are smaller 

but with a greater postnatal growth rate (i.e. velocity), while children from overweight/obese 

women have a bigger size without evidence o f  decreased postnatal growth rate. Results for 

maternal education show that less educated mothers have smaller children that however have the 

same growth velocity as children o f  more educated mothers (Table 4).

In order to examine whether the observed heterogeneities across the cohorts were due to 

differences in entry criteria, we replicated cohort-specific analyses on the subset o f  GXXI and 

NINFEA children who were bom at term and with a birth weight o f  2500-4500 grams, using the 

same entry criteria as GOCS. The results pointed to much more similar effects across the 

cohorts.

Explanatory variables for tempo

Finally we rerun the analyses allowing for covariate effects on tempo, restricting them to the 

GXXI cohort because o f  its rich number o f  repeated weight observations (similar analyses for the

2 0 6



other cohorts did not lead to estimation convergence). The results are reported in Table 5. There 

is no evidence o f  an effect o f  maternal height, age, pre-pregnancy underweight or smoking on 

tempo, and therefore no change in the estimated effects on size or velocity. I lowever parity, pre

pregnancy overweight/obesity, and hypertension do influence tempo o f  growth. Infants o f  parous 

mothers have relatively earlier growth spurts by about 5 days (5P= -0.17 months, 95% Cl -0.34; - 

0.01). Allowing for this association explains away’ some o f  the earlier associations found 

between parity and size and velocity (both are substantially reduced; see Table 2 and Table 5). In 

contrast infants have delayed tempo by about 8  days (dp=0.26, 95% Cl 0.11; 0.41) if their mother 

is overweight/obese. As for parity, given the correlations among the three growth parameters, 

including maternal overweight/obesity in the specification o f  tempo changes its association with 

size and velocity. In particular that for velocity becomes negative (8y=-4.9, 95% Cl -10.8; 0.9) 

implying that infants o f  overweight/obese mothers not only have a later peak, but also have 

slower velocity than that o f  a reference child. For hypertension too the association with size and 

velocity is reduced when an association with tempo is allowed. The latter is found to be positive 

(5p=0.31,95%  Cl 0.08; 0.53) indicating a delay in peak velocity o f  almost 10 days (Table 5).

DISCUSSION

In this paper we have investigated prenatal influences on weight growth in infancy in order to 

contribute to the understanding o f  its role in the development o f  a wide range o f  later diseases. 

We have used data on children belonging to three contemporary cohorts based in Portugal, Italy 

and Chile in order to compare effects across socio-economically and geographically diverse 

populations and gain a more robust understanding o f  these associations, while accounting for 

potentially different confounding patterns. The individual weight trajectories were modelled
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using SITAR ,28 a model that provides biologically interpretable growth parameters, extended 

here to include multiple explanatory variables.

Our analyses indicate that prenatal exposures affect different dimensions o f  the weight 

trajectories. In all cohorts, size was positively associated with maternal height, parity and pre

pregnancy overweight/obesity, and negatively with pre-pregnancy underweight. Additionally in 

all cohorts parity negatively affected velocity. In contrast, only for infants from the two European 

studies, maternal smoking and gestational hypertension were associated with reduced size and 

increased velocity, while pre-pregnancy underweight was positively associated with velocity. 

Maternal education was only a moderate predictor o f  size in the European cohorts and o f  velocity 

in the Chilean cohort. When tempo was modeled in terms o f  covariates in analyses restricted to 

GXXI, we found that part o f  the impact on size and velocity observed for parity, maternal 

overweight /obesity and hypertension was captured by their influence on the tempo dimension. In 

particular, infants o f  parous mothers were found to have an earlier timing o f  growth, while those 

o f  overweight/obese or gestational hypertensive mothers to have it delayed. We found instead no 

evidence o f  an effect o f  maternal height, age, or smoking on tempo.

While some o f  these results are not new - e.g. the relation between parity13,24,26 and smoking13,14 

with infant size and weight velocity, the positive association between maternal 

overweight/obesity with increased size (which corroborates the existing evidence on an 

intergenerational transmission o f  obesity17) - other findings are o f  interest, in particular the 

association between gestational hypertension and reduced size, delayed tempo and increased 

velocity, and the effect o f  maternal underweight on size and velocity. The former is consistent 

with current evidence o f  an association o f  hypertension with fetal growth retardation.38 For the 

latter, while the consequences o f  maternal obesity have been extensively investigated, less
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evidence is currently available on the effect o f  maternal pre-pregnancy underweight, especially 

on postnatal growth rate in economically developed countries. What we found in the European 

cohorts is that maternal underweight was associated with reduced size and increased velocity, 

while in the Chilean cohort only an effect on size was observed. We also found only a weak 

association between gestational diabetes and size in GXXI and N1NFEA, despite previous 

findings linking it with increased birth weight and adiposity later in life. 17'39 This is possibly due 

to the self-reported and coarse (i.e. no distinction in severity) nature o f  the information available 

in all three cohorts.

A  strength o f  these combined results is that they are derived from modelling the joint association 

o f  multiple exposures on multiple growth parameters simultaneously. Another strength o f  the 

approach adopted in this paper is that we used all the available growth data (assuming that the 

frequency and timing o f  the observations do not depend on the values that are not observed, i.e. 

that data are missing at random, MAR36). This is in contrast to the most common approach used 

in the epidemiological literature to analyse growth data which consists o f  comparing 

anthropometric measures taken at two fixed time points across subgroups o f  children (e.g. those 

defined by maternal characteristics). Such comparisons can only be performed for participants 

with observations at both occasions, therefore involving only a subset o f  the original cohort 

which leads to unbiased results only if  missingness is completely at random. 12 Specifications o f  

mixed effects models other than S1TAR have been used to study growth data that are irregularly 

spaced, such as linear splines models.40 Similarly to SITAR they require M AR .36 However, they 

are not as flexible in modelling non-linear growth (linear mixed models) or not as interpretable 

(linear splines models) as SITAR. More specifically, the advantage o f  SITAR is the ability to 

naturally deal with the non-linear shape o f the weight trajectories - via the use o f  a cubic spline -
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and to summarize the growth process via three biologically meaningful parameters, two o f  which 

- velocity and tempo - separate the growth rate into specific components when trajectories are 

non-linear. This has given us insights into what governs the timing o f  peak growth velocity in 

infancy when we were able to fit the expanded model with explanatory variables for tempo, as 

well as size and velocity. Moreover our study showed that SITAR can be successfully fitted to 

dataset with relatively sparse data, such as NINFEA, providing results consistent with those 

obtained with richer dataset. However, when examining the association between prenatal factors 

and growth, we had to impose some constraints allowing for an effect on size and velocity only, 

as the model also including a tempo effect failed when fitted to the NINFEA and GOCS data. 

This is likely to be due to lack o f  heterogeneity in GOCS, which only include term children, and 

to lack o f  sufficient growth observations in NINFEA. The fully specified model was instead 

successfully fitted to the GXXI cohort, which has the greater number o f  weight growth 

measurements.

As expected given the different source populations, we found some heterogeneities across the 

three cohorts, mainly in relation to the effect o f  maternal smoking and hypertension. Some o f  

these variations were shown to be partly due to differences in inclusion criteria and could also 

derive from differences in quality and coarseness o f  the available data in particular in relation to 

pregnancy complications. An additional limitation could be that we have not investigated to what 

extent the associations found for the prenatal exposures could be explained by relevant early 

postnatal factors, such as feeding. However this is beyond the scope o f  this paper,

In summary, our findings are that growth trajectories in contemporary infants from economically 

and geographically diverse countries such as Portugal, Italy and Chile share some common 

features, in particular with respect to the effect o f  maternal height, maternal overweight/obesity
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and parity. In the two European cohorts we also found interestingly separate effects o f  maternal 

underweight, smoking and hypertension on the child’s size and velocity, and when growth data 

were rich and the effect on tempo could also be examined, we found that parity, maternal 

overweight/obesity and gestational hypertension had important effects on the timing o f  growth. 

Our analytical approach therefore succeeded in separating the relationships between prenatal 

maternal characteristics and infant growth into different components, and may inform new 

biological insights into the mechanisms governing infant growth.
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t * r t p  i  Descriptive Statistics o f the Main Variables by Cohorts__________________________
±i±£i±-^ -------- >—------  ‘  c x X l  N I N F E A G O C S

(N = 7 3 8 )  ( N = 2 , 9 2 5 )  ( N = 9 5 9 )

N ‘ % N ' % N ' %
C h ild  c h a r a c te r i s t ic s

M ean  gesta tio n a l ag e  (weeks ±  SD) 738 39.1 ±1.6 2,925 39.6 ±1.6 959 39.6 ±1.3

G en d e r

Female 365 49.5 1,441 49.3 487 49.2

Male 373 50.5 1,484 50.7 472 50.8

M a te r n a l  c h a r a c te r is t ic s

M e an  h e ig h t (cm ±  SD) 629 161.5 ±5.9 2,836 164.7 ±6.1 903 156.9 ±5.8

M e an  a g e  (years ±SD) 737 30.3 ±5.1 2,925 33.5 ±4.1 888 27.0 ±6.9

P arity  b

NulUparous 462 62.9 2,105 74.1 373 58.1

Parous 272 37.1 737 25.9 517 41.9

E d u ca tio n a l l e v e lc

L ow 362 49.7 147 5.1 323 36.3

Medium 172 23.6 1,053 36.4 383 43.0

High 194 26.7 1,690 58.5 184 20.7

P re -p reg n an cy  B M I

< 18.5 30 4.9 235 8.3 34 5.1
18.5-24.99 376 60.7 2,060 72.8 395 59.8

25+ 213 34.4 533 18.9 232 35.1

S m o k e  d u r in g  p reg n an cy  d

No 574 79.5 2,632 91.6 809 91.0

Up to 1st trimester 53 7.3 51 1.8 80 9.0

After 1st trimester 95 13.2 190 6.6 - -

P re g n a n c y  c o m p lic a tio n s  *

G e s ta tio n a l d iab e tes

No 560 92.3 2,506 92.0 913 95.2

Yes 47 7.7 218 8.0 46 4.8

H y p erten sio n /ec lam p sia

No 576 95.2 2,498 91.8 878 91.6

Yes 29 4.8 222 8.2 81 8.4
• Total N might vary across variables due to missing values 
*> [n GOCS child order is used as a proxy for parity
c G X X I: Low=<9 years, Medium=9-12 years, High=Degree or more; NINFEA : Low=None/Primary/Secondary 
school, Medium=High school, High=Degree or more; G O C S ; Low=None/Primary/Secondary school, Medium=Vligh 
school, High=High School + technical education or more 
d In GOCS smoking during pregnancy is categorized as No/Rarely vs Frequently
• Mothers suffering from these diseases before pregnancy (information available only in G X XI and NINFEA) 
classified as ” No”
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T A B L E  2. E stim a ted  C o e f f i c ie n t s  and  9 5 %  C o n f id e n c e  Interval fo r  the  A s s o c ia t io n  B e tw e e n  C o v a r ia te s  and  S iz e  and  V e lo c it y  P aram eters b y  C o h o r ts

G X X I  (N =  605) N I N F E A  ( N  =  2 , 7 3 4 ) G O C S  (N =  659)
M i n i m a l l y - a d j u s t e d a F u l l y - a d j u s t e d  h M i n i m a l l y - a d j u s t e d a F u l l y - a d j u s t e d  b M i n i m a l l y - a d j u s t e d  a  F u l l y - a d j u s t e d  b

Size Velocity Size Velocity Size Velocity Size Velocity Size Velocity Size Velocity
% 95% Cl % 95%CI % 95V«Cl % 95%CI % 95%CI % 95%C1 % 95%CI % 95VaCI % 95%CI % 95%C! % 95%C1 % 95%C!

Background

M a t e r n a l  h e i g h t 0 . 4 0 . 2 ;  0 .5 0 .2 - 0 .2 ;  0 . 6 0 .3 0 . 2 ;  0 .5 0 . 2 - 0 .2 ;  0 .6 0 .4 0 . 3 ;  0 .5 0 0 2 - 0 .2 ;  0 .2 0 .4 0  3 ;  0 .5 0 .1 - 0 .1 ;  0 .2 0 .4 0 . 2 ;  0 .5 - 0 .0 3 - 0 .6 ;  0 .1 0 .4 0 . 2 :  0 .5 - 0 .3 - 0 .7 ;  0 .0 2

M a t e r n a l  a g e 0  1 - 0 .1 ;  0 . 3 0 . 2 - 0 .3 ;  0 .7 -0 .1 - 0 .3 ;  0 .1 0 .5 0 .0 ;  1 .0 0 .1 - 0 .0 3 ;  0 .2 - 0 .2 - 0 .5 ;  0 .1 0 .0 2 -0 .1  ;  0 .1 - 0 .1 - 0 .3 ;  0 .2 0 .1 0 .0 1 ;  0 .2 - 0 .2 - 0 .4 ;  - 0 . 1 0 .1 0 . 0 ;  0 .3 -0 .1 - 0 .4 ;  0 .3

M a t e r n a l  p a r i t y c

Nulliparous

Parous 3 .4 1 . 2 : 5 5 - 3 .5 - 8 .4 ;  1 .5 4 .5 2 . 2 ;  6 .8 -6 .1 - 1 1 .6 ;  - 0 .6 3 .0 2 . 0 ;  4 .0 - 5 .6 - 8 .2 ; - 3 .1 2 .8 1 .8 ;  3 . 9 -5 .8 - 8 .4 ;  - 3 .2 2 .0 0 .3 ;  3 .6 - 3 .7 - 7 .4 ;  0 .3 1 .0 - 1 .0 ;  2 .9 -2 .1 - 6 .7 ;  2 . 6

M a t e r n a l  e d u c a t i o n  d

L o w - - - - - - - 1 .5 - 3 . 7 ;  0 .8 2 .9 - 2 .7 ;  8 .6 - 0 .4 - 2 .5 ;  1 .7 2 .8 - 2 .6 ;  8 .1 0 .7 - 1 .1 ;  2 .5 - 5 .7 - 1 0 . 0 ; - 1 . 4 0 .6 - 1 .2 :  2 .4 - 5 .5 - 9 . 9 ; - 1 . 1

Medium 3 .3 0 . 7 ;  5 . 9 - 0 .4 - 6 .4 ;  5 .6 3 .3 0 . 8 ;  5 .9 -u - 7 .3 ;  4 .8 - - - - - -

High 2 .3 - 0 . 1 ;  4 . 8 - 2 .4 - 8 .1 ;  3 .2 2 .9 0 .4 ;  5 .5 - 5 .4 - 1 1 .4 ;  0 .6 0 . 6 - 1 .6 ;  0 .4 -0 .6 - 3 .0 ;  1 9 - 0 .8 - 1 . 7 ;  0 . 2 - 0 .7 - 3 .0 ;  1 .6 - 0 .7 - 2 .8 ;  1 .5 - 0 .9 - 5 .9 ;  4 .2 - 1 .2 - 3 . 3 : 0 . 9 -0 .5 - 5 .6 ;  4 . 6

Intermediate

P r e - p r e g n a n c y  B M I

<18.5 - 4 .4 - 9 .2 ;  0 . 4 2 .5 - 8 .7 ;  1 3 .6 - 4 .2 - 8 .9 ;  0 .5 - 0 .7 - 1 1 .8 ;  1 0 .4 - 4 .4 - 6 .0 ;  - 2 .8 5  2 1 .2 ;  9 .2 -4 .1 - 5 .7 ;  - 2 .6 4 .4 0 .4 ;  8 .3 - 3 .6 - 7 .2 ;  0 .1 - 5 .9 - 1 4  6 ;  2 .9 - 4 .3 - 7 .8 ;  -0 .1 -4 .5 - 1 3 .4 ;  4 .3

18.5-24.99 - - - - - - - - - - - - - - - - - - - - - - -

2 5 + 3 .4 1 .2 ;  5 .6 0 . 9 - 4 .1 ;  5 . 9 4 0 1 .8 ;  6  1 0 .7 - 4 .3 ;  5 .8 2 . 0 0 . 9 ;  3 .1 - 1 .6 - 4 .4 ;  12 2 .1 0 . 9 ;  3 .2 -2 .1 - 4 .9 ;  0 .7 1 .7 - 0 . 0 1 : 3 . 4 - 1 .4 - 5 .4 ;  2 .6 1 .8 0  0 4 ;  3 .5 - 0 .3 - 4 .5 ;  3 .9

M a t e r n a l  s m o k i n g  c

No - - - - - - - - - - " - - - - " - - “ - - - -

< l a trimester 

> / *  trimester

- 2 .8  

- 3  8

- 6 .9 ;  1 .3  

- 6  8 ;  - 0 .7

6 .6

1 2 .8

- 2 .7 ;  15  9  

5 . 8 ;  1 9  8

- 1 .4

- 2 .9

- 5 .3 ;  2 .5  

- 5 .8 ;  0  1

6 . 6

1 3 J2

- 2 .7 ;  1 5  9  

6  .1 ;  2 0  3

0 . 7

- 3 .2

- 2 .9 ;  4 2 

- 5  1 : - 1 .3

4  1

8 .4

- 4 .7 :  1 2 .8  

3 6 :  1 3  2

0 .2

- 2 .6

- 3 .1 ;  3 .5  

- 4 .3 :  - 0  9

4 6

6 5

- 3 .7 ;  1 2  9  

2 .0 ;  1 0 .9

12 - 1 .7 ;  4 .1 - 7 .4 - 1 4 . 1 ;  - 0 .7 0 6 - 2 .2 ;  3 .5 -5 .1 - 1 2 .0 :  1 8

4 L s t i m a t e s  d e r i v e d  f r o m  m o d e l  a d j u s t e d  f o r  g e n d e r  a n d  g e s t a t i o n a l  a g e  f i t t e d  o n  t h e  s a m p l e  o f  d a t a  w i t h  n o  m i s s i n g  v  a l u e s  f o r  t h e  f o l l o w i n g  m a t e r n a l  v a r i a b l e s :  h e i g h t ,  a g e .  p a r i t y ,  e d u c a t i o n a l  le v  e l  p r e - p r e g n a n c y  B M I  a n d  s m o k i n g  d u r i n g

v a r i a b l e s  a r e  m u t u a l l y  a d j u s t e d  a n d  f u r t h e r  a d j u s t e d  f o r  g e n d e r  a n d  g e s t a t i o n a l  a g e :  i n t e r m e d i a l e  v a r i a b l e s  a r e  m u t u a l l y  a d j u s t e d  a n d  f u r t h e r  a d j u s t e d  f o r  b a c k g r o u n d  v a r i a b l e s ,  g e n d e r  a n d  g e s t a t i o n a l  a g e  

'  I n  G O C S  c h i l d  o r d e r  w a s  u s e d  a s  a  p r o x y  f o r  p a r i t y

d G X X I :  L o w - < 9  y e a r s ,  M c d i u m = < l 2  y e a r s ,  H i g h = D e g r c c  o r  h i g h e r ;  N I N F E A  : L o w =  < S e c o n d a r y  s c h o o l .  M e d i u m ^ H i g h  s c h o o l ,  H i g h = D e g r c c  o r  h i g h e r  :  G O C S  : L o w =  N o n e  P r i m a r y  S e c o n d a r y  s c h o o l .  M e d i u m = H i g h  s c h o o l ,  H i g h = H i g h  

S c h o o l  +  t e c h n i c a l  e d u c a t i o n  o r  h i g h e r

‘ I n  G O C S  s m o k i n g  d u r i n g  p r e g n a n c y  w a s  c a t e g o r i z e d  a s  N o  R a r e l y  v s  F r e q u e n t l y

p r e g n a n c y .  

b B a c k g r o u n d



T A B L E  3: Estimated C oe ffic ie n ts  and 9 5 %  C on fid en ce  Interval for the A ssociation  B etw een Pregnancy C om plications and Size and V e loc ity  Parameters by  C ohorts
GXX1 (N = 492) NINFEA (N = 2,523 ) COCS(N = 659) *

M i n i m a l l y - a d j u s t e d  a F u l l y - a d j u s t e d  b M i n i m a l l y - a d j u s t e d a F u l l y - a d j u s t e d  h M i n i m a l l y - a d j u s t e d  a F u l l y - a d j u s t e d  h

Si/e Velocity Size Velocity Size Velocity Size Velocity Size Velocity Size Velocity

% 0 5 H C 7 % 95% C'I % V5% CI % 95% CI % 95% CI • / . 95% C l * 95% C I % 95% C I % 95%C1 % 95% CI % 95% CI - 95% CI

D i a b e t e s 0 . 8 - 3 . 8 ; 5 . 3 4 . 6 - 5 . 9 ;  1 5 .0 0 .6 - 3 .8 ;  4 .9 5 .7 - 4 .5 ;  1 6 .0 2 .0 0 . 3 ;  3 .7 -5 .1 - 9 .3 ;  - 0  9 1 .5 - 0 .3 ;  3 .3 -3 .1 - 7 .6 ;  1 .3 0 . 6 - 3 . 1 ; 4 . 3 4 .1 - 4 .7 ;  1 2 .8 - 0 .6 - 4 .2 ;  3 .1 7 .0 - 1 .8 ;  1 5 .8

H y p e r t e n s i o n - 4 .9 - 1 0 .6 ;  5 .5 1 2 .3 - 0 . 6 ;  2 5 .2 - 6 .4 - 1 1 .7 ;  - 1 .0 1 2 .8 0 . 3 ;  2 5 .3 - 3 .8 - 5 .5 ;  - 2 .0 8 .7 4 .4 ;  1 3 .0 -4 .5 - 6 .2 ;  - 2 .7 9 .0 4 . 7 ;  1 3 .4 2 .2 - 0 .7 ;  5 .1 - 3 .8 - 1 0 .6 ;  3 .0 1 .3 - 1 .4 ;  4 .2 - 4 .0 - 1 0 .9 ;  2 .9

* E s t i m a t e s  d e r i v e d  f r o m  m o d e l  a d j u s t e d  f o r  g e n d e r  a n d  g e s t a t i o n a l  a g e  f i t t e d  o n  t h e  s a m p l e  o f  d a t a  w i t h  n o  m i s s i n g  v  a l u e s  f o r  t h e  f o l l o w i n g  m a t e r n a l  v a r i a b l e s :  h e i g h t ,  a g e ,  p a r i t y ,  e d u c a t i o n a l  l e v e l ,  p r e - p r e g n a n c y  B M 1 ,  s m o k i n g  d u r i n g  

p r e g n a n c y ,  g e s t a t i o n a l  d i a b e t e s  a n d  g e s t a t i o n a l  h y p e r t e n s i o n .

b  A d j u s t e d  b y  s e x ,  g e s t a t i o n a l  a g e  a n d  m a t e r n a l  h e i g h t ,  a g e ,  p a r i t y ,  e d u c a t i o n a l  l e v e l ,  p r e - p r e g n a n c y  B M I  a n d  s m o k i n g  d u r i n g  p r e g n a n c y .



T A B L E  4 . F u lly -A d ju s te d  E stim ated  C o e f f ic ie n t s  a n d  9 5 %  C o n f id e n c e
Interval fo r  the A s s o c ia t io n  B etw een  C o v a r ia te s  and  S iz e  and V e lo c it y
P aram eters o n  the P o o le d  G X X 1  &  N IN F E A  D atasets

G X X I + M N F E A  (N =  3 .3 3 9 )  *
Sire Velocity

% 95°/uCl % 95%C!
B a ck grou n d  "

Maternal height 0.4 0.3; 0.5 0.1 -0.1; 0.2

Maternal age 0.02 -0.1; 0.1 0.02 -0.2; 0.3

Maternal parity

Nulliparous -- - - -
Parous 3.1 2.1 ; 4.1 -5.5 -8.0; -3.0

Maternal education1

Low -2.2 -3.7; -0.6 2.4 -1.4; 6.2
Medium - - - -

High -0.9 -1.8; 0.1 -0.7 -3.0; 1 .(>

In term ed iate  6
Pre-pregnancy BMI

<¡8.5 -4.9 -6.5; -3.3 5.9 1.9; 10.0

18.5-24.99 - - -- -

25+ 2.4 1.4; 3.5 -0.5 -3.1;2.1

Maternal smoking

No - - -- -

< / s' trimester -0.9 -3.4; 1.7 5.9 -0.5; 12.3

> I st trimester -3.3 -4.8; -1.7 10.2 6.3; 14.3

Gestational diabetes l.l

(N

-0.6; 2.7

= 3,015)*

-0.8 -5.0; 3.3

Gestational hypertension -5.2 -6.9;-3.5 10.6 6.4; 14.8

h e i g h t ,  a g e ,  p a r i t y ,  e d u c a t i o n a l  l e v e l ,  p r e - p r e g n a n c y  B M I  a n d  s m o k i n g  d u r i n g  p r e g n a n c y  

h  B a c k g r o u n d  v a r i a b l e s  a r c  m u t u a l l y  a d j u s t e d  a n d  f u r t h e r  a d j u s t e d  f o r  g e n d e r  a n d  g e s t a t i o n a l  a g e  

c  G X X I :  l . o w = < 9  y e a r s ,  M c d i u m = < l 2  y e a r s ,  H i g h - D e g r e e  o r  h i g h e r ;  N I N F E A  : L o w  < S c c o n d a r y  

s c h o o l ,  M c d i u m = H i g h  s c h o o l ,  H i g h = D c g r e c  o r  h i g h e r

d  I n t e r m e d i a t e  v a r i a b l e s  a r c  m u t u a l l y  a d j u s t e d  a n d  f u r t h e r  a d j u s t e d  f o r  b a c k g r o u n d  v a r i a b l e s ,  g e n d e r  

a n d  g e s t a t i o n a l  a g e

* Model fitted on the sample of data with no missing values for the maternal variables: height, age, 
parity, educational level, pre-pregnancy BMI, smoking during pregnancy, gestational diabetes and 
gestational hypertension

2 1 7



TABLE 5. Fully-Adjusted Estimated Coefficients and 95% Confidence Interval for the 
Association Between Covariates and Size, Tempo and Velocity Parameters on the 
GXXI Data

G X X I  (N  = 6 0 5 ) “
Size Tempo Velocity

% 95%C1 II" W ,fl °» 95%C!
B a c k g ro u n d  c

Maternal height 0.5 0.2; 0.7 0.01 -0.01; 0.02 -0.05 -0.5; 0.4

Maternal age -0.1 -0.4; 0.2 -0.01 -0.02; 0.01 0.6 0.01; 1.2

Maternal parity

Nulliparous ~ - “ - - -
Parous 1.0 -2.2; 4.3 -0.17 -0.34; -0.01 - i . i -7.4; 5.2

Maternal education"1

L o w - - - - - -

Medium 3.6 0.1; 7.2 0.003 -0.18; 0.19 -2.2 -9.2; 4.7

High 3.6 0.1; 7.1 0.08 -0.11; 0.26 -7.0 -13.9; -0.1

In te rm e d ia te  e

Pre-pregnancy BMI

<18.5 -5.9 -12.3; 0.5 -0.09 -0.41; 0.23 2.6 -10.2; 15.4

18.5-24.99 - - - - - -

25+ 7.9 4.9; 10.8 0.26 0.11; 0.41 -4.9 -10.8; 0.9

Maternal smoking

No - - - - - -

</" trimester -0.9 -6.4; 4.5 -0.02 -0.29; 0.25 6.2 -4.6; 169

> I s1 trimester -2.8 -6.9; 1.3 -0.08 -0.28; 0.12 14.0 5.8; 22.2

Gestational diabetes 3.1 -3.9; 10.1

(N

0.06

-  492)*'

-0.13; 0.24 0.7 -12.7; 14.2

Gestational hypertension -3.5 -12.2; 5.3 0.31 0.08; 0.53 8.7 -7.9; 25.3

* Model fitted on the sample o f data with no missing values for the following maternal variables: height, age. 
parity, educational level, pre-pregnancy BMI and smoking dunng pregnancy 
" Model is on the log-weight and age scales, thus the effect on tempo is on the age unit (months).
' Background variables arc mutually adjusted and further adjusted for gender and gestational age 
J GXXI: Low=<9 years. M edium"il 2 years. Uigh=Dcgrcc or higher
«  I n t e r m e d i a t e  v a r i a b l e s  a r c  m u t u a l l y  a d j u s t e d  a n d  f u r t h e r  a d j u s t e d  f o r  t h e  b a c k g r o u n d  v a r i a b l e s ,  g e n d e r  a n d  

g e s t a t i o n a l  a g e

11 Model fitted on the sample of data with no missing values for the following maternal variables: height, age. 
parity, educational level, and pre-pregnancy BMI; smoking dunng pregnancy, gestational diabetes and 
gestational hypertension

2 1 8



cT A B L E  1. "M in im a lly -A d ju sted ”  Estimated C oeffic ien ts  and 9 5 %  C on fiden ce  Interval for the A ssociation  B etw een Covariates and S ize and V elocity  Parameters by Cohorts

C X X I  (n = 738) N IN F E A  (n = 2.925) C O C S  ( n = 959)

Adjusted for gender
Adjusted for gender & 

gestational age Adjusted by gender
Adjusted for gender & 

gestational age Adjusted for gender
Adjusted for gender & 

gestational age
Size Velocity Size Velocity Size Velocity Size Velocity Size Velocity Size Velocity

% 95%CI % 95%C1 % 95%C1 °/o 95%C1 % 95%C1 % 95%CI °/o V5%C1 % 95%C1 % 95%CI % 95%C1 % 95%C1 % 95%C1
Background
M a t e r n a l  h e i g h t 0 .4 0 . 2 ;  0 . 6 0 . 0 2 - 0 .4 ;  0 .4 0 .4 0 . 2 ;  0 .5 0 .1 - 0 .3 ;  0 .5 0 . 4 0 .4 .  0 .5 0 .1 - 0 .2 ;  0 .1 0 .4 0 .3 ;  0 .5 0 .0 2 - 0 .2 ;  0 .2 0 .3 0 . 2 ;  0 .4 -0 .1 - 0 .4 ;  0 .2 0 .3 0 .2 ;  0 .4 -0 .1 - 0 .4 ;  0 .2

M a t e r n a l  a g e  

M a t e r n a l  p a r i t y a

- 0 .0 1 - 0 .2 ;  0 . 2 0 .3 - 0 . 1 ;  0 .8 0 .1 - 0 .1 ;  0 .2 0 .2 - 0 .2 ;  0 .6 -0 .1 - 0 .2 ;  0 .1 0 .1 - 0 .2 ;  0 .3 0 .1 - 0 .0 2 ;  0 .2 -0 .2 - 0 .5 ;  0  0 4 0 .1 0 .0 0 ;  0 .2 - 0 .2 - 0 .5 ;  0 .0 4 0 .2 0 .1 ;  0 .3 -0 .3 - 0  6 : - 0 . 1

Sulliparous - - - - - - - - - - - - - - - - - - - - - - - -

Parous 3 .5 1 .2 ;  5 .7 - 2 .9 - 7 . 9 ;  1 .9 3 .2 1 .2 ;  5 .1 - 2 .4 - 6 .9 ;  2 . 0 1 .2 0 .0 2 ;  2 .3 - 1 .6 - 4 .4 ;  1 .1 3 .0 2 .0 ;  4 .0 - 5 .7 - 8 .2 ;  - 3 .2 1 .6 0 . 2 ;  3 .1 - 3 .6 - 7 .1 ;  -0 .1 2 .3 0 .9 ;  3 .7 4 . 9 - 8  3 ; - 1 . 6

M a t e r n a l  e d u c a t i o n  h

L o w - - - - - - - - 0 .9 - 1 5 :  3 .3 -1.6 - 7 . 1 ; 4 . 0 -1 .3 - 3 .5 ;  0 .9 2 .5 - 3 .0 ;  7 .9 0 .4 - 1 -2 ;  2 .1 4 . 2 - 8 .1 ;  - 0 .2 0  3 - 1 .3 ;  1 .9 - 3 .7 - 7 .4 ;  0 .0 8

Medium 2 . 7 0 .0 ;  5 .5 - 1 .9 - 7 . 9 ;  4 .1 3 .4 1 .0 ;  5 .7 - 2 .7 - 8 .1 ;  2 .7 - - - - - - - - - - - - - -

High 0 . 2 - 2 .4 ;  2 .8 - 0 .8 - 6 . 6 ;  4 . 9 1 .8 - 0 . 5 ;  4 .1 - 3 .8 - 8 .9 ;  1 .4 - 0 .2 - 1 .2 ;  0 .9 -1 .4 - 3 .9 ;  1 .0 - 0 .4 - 1 .4 ;  0 .6 -1 .1 - 3 .5 ;  1 .3 - 0 .7 - 2 .7 ;  1 .2 - 0 .9 - 5 .6 ;  3 .8 -0 .9 - 2 .7 ;  1 .0 - 0 .6 - 5 .0 ;  3 .9

Intermediate
P r e - p r e g n a n c y  B M 1

<18.5 - 7 .6 - 1 3 . 2 ;  - 2 .1 8 . 8 - 3 . 5 ;  2 1 .1 - 4 .4 - 9 .2 ;  0 .5 2 .5 - 8 .6 :  1 3 .6 - 4 .6 - 6 .4 ;  - 2 .8 5 .3 1 .0 ;  9 . 6 - 5 .2 - 6 .9 ;  - 3 .6 6  8 2 .6 ;  1 0 .9 4 . 1 -7  9 :  - 0 .3 4 . 8 - 1 3 .9 ;  4 .4 - 3 .6 - 7 .2 ;  1 .0 - 5 .9 - 1 4 .7 ;  2 .8

18.5-24.99 - - - - - - - - - - - - - - - - - - - - - - -

2 5 + 4 .3 1 .8 ;  6 .8 - 0 .3 - 5 . 8 ;  5 .2 3 .4 1 . 2 : 5 6 1.1 - 3 .8 ;  6 .1 2 .5 1 .2 ;  3 .8 - 3 .0 - 6 0 ;  0  0 1 2 .1 0 .9 ;  3 .2 - 1 .9 4 . 9 ;  0 .9 1 .6 - 0 .1 ;  3 .4 - 0 .7 - 5 .0 ;  3 .5 1.8 0 .1 ;  3 .5 - 1 .4 - 5 .4 ;  2 .6

M a t e r n a l  S m o k i n g  c

S o

< la trimester -4 .1 - 8 . 3 ;  0  1 5  9 - 3 . 3 ;  1 5 .1 - 3 .1 - 6 .7 ;  0  5 4 .1 - 4 . 1 ;  1 2 .3 0 . 6 - 3 2 : 4 .4 4 .1 - 4  8 ;  1 3  0 0 8 - 2 .7 ;  4  3 3 .4 -52: 1 2  0 - 1 .7 4 . 2 ;  0 . 9 - 0 .5 - 6 .5 ;  5 .6 -0 .9 - 3 J ;  1 .5 -3 .1 - 8 .9 :  2 .7

>  1 “  t r i m e s t e r
- 3 .3 - 6 .5 .  - 0  0 4 1 1 .6 4 . 4 ;  1 8 .7 -4 .1 - 6 .8 .  - 1 .3 1 2 8 6 . 4 ;  19 .1 -2 .1 -4 .1  - 0  1 6 .1 1 .3 ;  1 0 .9 - 2 .9 - 4 .8 ;  - |  | 8 .2 3 .6 ;  1 2 .9

G e s t a t i o n a l  d i a b e t e s

S o

Y e s 1 .4 - 2 . 9 ;  5  8 - 0 .8 - 1 0 . 5 ;  8 .9 0 . 9 - 3 .0 ;  4 .7 0 .5 - 8 .2 ;  9 .3 0 .4 - 1 5 :  2 J - 1 .9 - 6 .2 ;  2  5 1 .3 - 0 .4 ;  3 .1 - 3 .7 - 8  0 :  0 .5 2 .4 -0 .9 1  5 .7 - 1 .9 - 9 .9 ;  5  9 3 .1 - 0 .1 ;  6 .2 - 3 .7 -1 1  3 : 3  4

G e s t a t i o n a l

h y p e r t e n s i o n

S o

Y e s
- 8  3 - 1 3  7 ;  - 2 .9 1 9 4 7 . 6 :  3 1 .3 - 3 0 - 7 .8 ;  1 9 9 . 7 - 1 .2 ;  2 0  6 - 5 .4 - 7 .3 ;  - 3 .6 1 2  4 8 .1 ;  1 6  7 -3 .1 - 4 .7 ;  - 1 .5 8 2 4 J ;  1 2 4 0 .7 - 1 .8 ;  3 2 0 6 - 5  3 . 6  5 1.5 - 0 .8 ;  3 .9 -12 - 6 .9 .  4 .4

* In GOCS child order was used as a proxy for panry
b GXXI: Low=<9 years. Mcdium^<12 >cars. High-Degree or higher. NINFLA : Low= <Secondary school. Mcdium=High school. High-Degree or higher ; GOCS : L ow - None Primary Secondary school. Medium-High school. High=High School + 
technical education or higher
* In GOCS smoking during pregnancy was categorized as N o  Rarely vs. Frequently



5.3.1 Addendum to Research Paper IV

In order to  display m ore clearly the effect sizes associated with the exposure variable's in Table’s 2 and 5 

o f  Research Paper IV , graphs showing the predicted trajectories for children with different com binations 

o f  the covariates are presented below. In particular one graph is drawn for each exposure o f  interest, 

showing the predicted weight curves for different values o f that exposure, keeping all other covariates 

at their reference values, and using the estimates derived from  the m odels o f  Table 5 (therefore only 

results obtained for the G X X I study are shown). These are the models which allow for the association 

between the exposures and the three parameters, size, tem po and velocity. In order to  assess whether 

the inclusion o f  an effect on the tem po dimension (Table 5 o f  Research Paper IV ) results in different 

predicted curves com pared with those derived when an effect on the size and velocity parameters only 

is allowed for (Table 2 o f  Research Paper IV ), the same graphs are drawn using the estimates derived 

from  the m odels o f  Table 2 for those exposures for which a significant association with tem po was 

found. These covariates are: parity, pre-pregnancy B M I and gestational hypertension,

T h e  following reference values/categories were used to  draw the graphs: mean maternal height (161 

cm ), mean maternal age (30 years), low maternal education, no maternal smoking during pregnancy, 

no gestational diabetes, nulliparity, pre-pregnancy B M I between 18.5 and 24.99 and no gestational 

hypertension.

Figures 5.1 to  5.7 show the predicted weight trajectories associated with the effect sites displayed in 

Table 5 o f  Research Paper IV  for those variable, for which „ o  association with the , c , „ p „  

was observed. Namely Figure 5 .f  shows the predicted curves for different levels o f  maternal height 

(161 cm vs  166 cm ), with the predicted curve for a maternal height o f  10G cm  lying slightly above the 

other one. This is in line with the result reported in Research Paper IV , where maternal height , »  

found to  affect on ly  the size dimension ( ¿ .= 0 .5 %  in Table 5 ). N o evidence o f  an effect o f  maternal 

age on  the weight growth dimensions was found and this is confirm ed by the predicted trajectories o f  

Figure 5.2, which overlap.

Figures 5.3 and 5.4 display the effects associated with maternal education. In Research Paper IV  

it was observed that both medium and highly educated women have bigger children (Sa=3.6% for 

both  categories in Table 5) w ho tend to  have slower growth velocity, with the latter result being
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F 't ire 5 1' Predicted weight curves for different values of maternal height from the model allowing for the 
association between the covariates and size, tem p o  and v e locity  parameters fitted on the GXXI data.

A g e  (month)

F  a i i r e  5 2‘ P r e d i c t e d  w e ig h t  c u r v e s  fo r  d i f fe r e n t  v a lu e s  o f  m a t e r n a l  a g e  f r o m  the m o d e l  a l l o w in g  fo r  t h e

a s s o c ia t i o n  b e t w e e n  t h e  c o v a r ia t e s  a n d  size, tempo and velocity parameters fitted o n  the (¡XXI d a t a .
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Figure 5 3' Predicted weight curves for different categories of maternal education from the model allowing for 
the association between the covariates and size, tem p o  and ve locity  parameters fitted on the GXXI data.

A g e  (month)

F i g u r e  5  4: P r e d i c t e d  w e ig h t  c u r v e s  fo r  d i f fe r e n t  c a t e g o r i e s  o f  m a t e r n a l  e d u c a t i o n  f r o m  t h e  m o d e l  a l lo w in g  fo r

th e  a s s o c ia t i o n  b e t w e e n  t h e  c o v a r ia t e s  a n d  size, tempo and velocity p a r a m e t e r s  f i t t e d  o n  t h e  GXXI d a t a .
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Figure 5 5: Predicted weight curves for different categories of maternal smoking from the model allowing for 
the association between the covariates and size, tem p o  and ve locity  parameters fitted on the (¡XXI data.

A g e  (month)

F i g u r e  5 .6 :  P r e d i c t e d  w e ig h t  c u r v e s  fo r  d i f fe r e n t  c a t e g o r i e s  o f  m a t e r n a l  s m o k in g  f r o m  t h e  m o d e l  a l lo w in g  fo r
t h e  a s s o c ia t io n  b e t w e e n  t h e  c o v a r ia t e s  a n d  size, tempo and velocity p a r a m e t e r s  f i t t e d  o n  t h e  (¡XXI d a t a .
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A g e  (month)

F'o- ■ > r) 7' Predicted weight curves for different categories of gestational diabetes from the model allowing ba
the association between the covariates and size, tem p o  and ve locity  parameters fitted on the GXXI data.

greater among the highly educated women (¿-,= -7 .0%  for highly educated vs ¿-,= -2 .2%  for medium 

educated see Table 5). The result concerning the slower growth rate o f the children with an highly 

educated m other becom es evident when com paring Figure 5.4 and Figure 5.3: tin* difference between 

the predicted curves for the highly educated women vs the low educated women is clearly reduced 

■ifter 6 months o f life com pared with the difference between the trajectories for the medium educated 

wom en vs the low educated women.

Maternal smoking was associated with reduced size and increased velocity, with these effects being 

much stronger for those women who kept on smoking after the first trimester o f  the pregnancy. Again, 

these findings are in line with the trajectories reported in Figures 5.5 and 5.6, which show how the 

predicted curve for children exposed to maternal smoking during pregnancy lies below that o f  those not 

exposed for the first months o f life, but then lies above after 4 /5  months o f  lift' due to their increased

velocity.

Finally Figure 5.7 displays the effects associated with gestational diabetes. The predicted weight curve 

for children exposed to gestational diabetes lies above the other one, likely reflecting the association 

that was observed, albeit being not significant, between gestational diabetes and size (¿ „= 3 .1 %  in

Table 5).
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Figures 5.8 to 5.15 concern those exposures for which an association with tempo was observed: parity, 

pre-pregnancy BMI and gestational hypertension. For each o f these exposures two graphs are drawn: 

one showing the predicted weight curves derived from the models of Table 2 of Research Paper IV -  

which are those allowing for a covariates effect on the size and velocity parameters only -  and one 

showing the predicted trajectories corresponding to the estimates of Table 5, where a covariates effect 

on all the three SITAR parameters was allowed for.

In Research Paper IV parity was associated with increased size and reduced velocity (Table 2), but 

when tempo was modeled in terms of covariates it was found that most part of the impact on size 

and velocity was captured by its influence on the tempo dimension. In particular, infants of parous 

mothers were found to have an earlier timing of growth (Table 5 of Research Paper IV). This is reflected 

in Figure 5.8 (corresponding to estimates reported in Table 2) and in Figure 5.9 (corresponding to 

estimates reported in Table 5): while in the first graph the curve related to the children with a parous 

mother lies slightly above the other one (nulliparous mother) soon after birth, with the two curves 

overlaping and diverging after about 5 months of life due to their decreased velocity (Figure 5.8), in 

the second graph the predicted curve for the children with a parous mother is slightly shifted to the 

left of the curve for the nulliparous mother over the full age range analyzed (Figure 5.9), reflecting the

negative tempo effect.

Mother with a pre-pregnancy BMI below 18.5 were found to have children with a reduced size and no 

effect on the velocity dimension (<5a=-4.2% in Table 2), and similar results when tempo was included 

in the model (5a=-5.9% in Table 5). As a consequence, the predicted curves of Figures 5.10 and 5.11 

are almost identical. In contrast, Figures 5.12 and 5.13 slightly diverge. This is because infants of 

overweight/obese mothers were found to have a significantly delayed tempo compared with infants of 

mothers with a pre-pregnancy BMI between 18.5 and 25. In particular while in Table 2 of Research 

Paper IV maternal overweight/obesity was observed to affect only the size dimension (<Sa=4.0%), 

estimates of Table 5 showed an association with all the three dimensions (<5Q=7.9%, 8/}= 0.2G months 

and <5 = -4 .9%)- The two models lead to a slightly different prediction especially after the first year of

life.
Finally Figures 5.14 and 5.15 displays the effects associated with gestational hypertension. As observed
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Figure 5 8: Predicted weight curves for different categories of maternal parity from the model allowing for the 
association between the covariates and size and velocity parameters fitted on the GXXI data.

Age (month)
F i g u r e  5  9 :  P r e d i c t e d  w e ig h t  c u r v e s  fo r  d i f fe r e n t  c a t e g o r i e s  o f  m a t e r n a l  p a r i t y  f r o m  t h e  m o d e l  a l lo w in g  fo r  t h e
a s s o c ia t i o n  b e t w e e n  t h e  c o v a r ia t e s  a n d  size, tempo and velocity p a r a m e t e r s  f i t t e d  o n  t h e  GXXI d a t a .
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Figure 5.10: Predicted weight curves for different categories o f maternal pre-pregnancy BMI from the model 
allowing for the association between the covariates and size and velocity parameters fitted on the GXXI

data.

Age (month)

GXXI data.

F i g u r e  5  1 1 : P r e d i c t e d  w e ig h t  c u r v e s  f o r  d i f fe r e n t  c a t e g o r i e s  o f  m a t e r n a l  p r e - p r e g n a n c y  B M 1  f r o m  t h e  m o d e l
a l lo w in g  fo r  t h e  a s s o c ia t i o n  b e t w e e n  t h e  c o v a r ia t e s  a n d  size, tempo and velocity p a r a m e t e r s  f i t t e d  o n  th e
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Figure 5.12: Predicted weight curves for different categories o f maternal pre-pregnancy BMI from the model 
allowing for the association between the covariates and size and velocity parameters fitted on 111«' GXXI
data.

Age (month)

GXXI data.

F i g u r e  5.13: P r e d ic t e d  w e ig h t  c u r v e s  fo r  d i f fe r e n t  c a t e g o r i e s  o f  m a t e r n a l  p r e - p r e g n a n c y  BMI f r o m  t h e  m o d e l
a l l o w in g  fo r  t h e  a s s o c ia t io n  b e t w e e n  t h e  c o v a r ia t e s  a n d  size, tempo and velocity p a r a m e t e r s  l i f t e d  o n  t h e
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Figure 5.14: Predicted weight curves for different categories o f gestational hypertension from the model 
allowing for the association between the covariates and size and v e locity  parameters fitted on the GXXI
data.

Age (month)

F i g u r e  5 .1 5 :  P r e d i c t e d  w e ig h t  c u r v e s  fo r  d i f fe r e n t  c a t e g o r i e s  o f  g e s t a t i o n a l  h y p e r t e n s io n  d e r iv e d  f r o m  t h e
m o d e l  a l l o w in g  fo r  a n  a s s o c ia t io n  b e t w e e n  t h e  c o v a r ia t e s  a n d  s i z e ,  tempo and v e l o c i t y  p a r a m e t e r s  f i t te d  o n

t h e  G X X I  d a t a .
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for parity, most part of the impact of gestational hypertension on the size and velocity parameters 

observed in Table 2 of Research Paper IV (<5Q=-6.4% and ¿7 =12.8%) was captured by its influence on 

the tempo dimension when tempo was modeled in terms o f covariates (¿ „= -3 .5%, ¿0 = 0.31 months and 

<S7 =8.7%, see Table 5). Again this is translated into slightly different predicted trajectories, especially 

after the first 6 months of life.

Overall these graphs show that the effect sizes reported in Tables 2 and 5 of R ('search Paper IV 

correspond to relatively small differences in population predicted trajectories. They also show that 

the inclusion of an effect on the tempo dimension might result in slightly different predicted curves 

compared with those derived when an effect on the size and velocity parameters only is allowed for. 

As some covariates were found to significantly affect the tempo dimension, the graphs corresponding 

to the more complex models are the more informative. Hence when feasible it is always advisible to 

include the covariates effect on all the three parameters so that the growth process can be separated 

into three biologically meaningful dimensions, which lead to a more comprehensive summary of the 

mechanisms governing the growth patterns.
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Part III

Discussion
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Chapter 6

Final Comments

In section 6.1 of this chapter some concluding comments on the overall findings from the two main 

components of this work will be presented, followed by an evaluation of the main contribution (section 

6.2) and limitations of this thesis (section 6.3). In section 6.4 a discussion of possible areas of future 

work is then provided.

The specific results of each component of this thesis as well as their comparison with the existing litera

ture have been reviewed both in the publications included in Chapters 4 and 5 and in the introductions 

to these chapters. Therefore these will not be included here.

6.1 Overall Findings of the Thesis

This Ph.D. addressed two main methodological challenges that may arise in the design and analysis of 

life course studies of infant growth: the potential bias that may arise due to selection at recruitment 

of cohort study participants and the modelling of individual growth trajectories. A brief summary of 

the overall findings from these two separated strands of research is presented below.
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6.1.1 Selection bias

The first objective of this thesis was to examine inclusion mechanisms into cohort studies and assess 

their influence on the structure of the available data and consequently on the estimate of the exposure- 

outcome effect of interest. The main results relating to this objective were presented in Research Paper 

I and were based on a selection of simulated settings. The results showed that the selection process 

must depend upon the exposure of interest and one or more unmeasured or unknown risk factors for 

the outcome in order to introduce bias. Under the scenario in which the exposure of interest and an 

unmeasured or unknown risk factor for the outcome were independent in the general population but 

became associated because of the restriction of the source population, the bias in the estimated crude 

exposure-outcome association (expressed in terms of hazard ratio (HR)) resulted to be generally weak, 

with a maximum bias for the true log(HR) of ±0.15. This corresponds to an estimated HR,, when the 

true HR is equal to 1, of 0.86 or 1.16. This maximum bias derived from scenarios involving reasonably 

large associations in the selection and outcome mechanisms (e.g. exposure-selection odds ratio (OR), 

risk factor-selection OR and risk factor-outcome HR of 4.0 or 0.25) and a prevalence of the risk factor 

of about 50%. The maximum bias dropped to just ±0.02 when these associations were decreased to 

values more commonly seen in epidemiological studies (e.g. ORs and HRs of 2 or 0.5).

The second objective o f this Ph.D. was to investigate how selection into the web-based NINFEA birth 

cohort affects the confounding patterns present in the source population. This was addressed by 

comparing results from the NINFEA birth cohort (1,105 singleton births occurred within December 

2008 in the municipality of Turin) with those from its source population, the Piedmont Birth Registry 

(PBR). The main findings were presented in Research Paper II and were also discussed, with reference 

to web-based studies, in the Book Chapter (Chapter 4), and in the Commentary (Chapter 4) where 

criticisms against the use of non-representative studies are rebuffed. The NINFEA participants differed 

substantially from the source population because low parity, high educational level, and non-smoking 

during pregnancy were the strongest predictors of participation. Participating mothers were also more 

likely to take folic acid, drink alcohol during pregnancy, and to be older at delivery. However the 

estimates of the association between some prenatal exposures and low birth weight and occurrence of 

caesarean section obtained in the sub-group of NINFEA participants did not differ considerably from
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those from PBR, with relative ORs (that is, the ratios of the NINFEA-based OR over the PBR-based 

OR) ranging between 0.74 and 1.03. These results were analyzed in the light of the potential effect of 

changes in the confounding patterns due to the sample selection. The main potential confounders to 

be controlled for identified for the whole PBR were not the most important for analyses involving the 

NINFEA participants, suggesting that each population -  including a selected study population -  has 

its specific confounding pattern. Similar reasoning would apply to the role of unknown confounders. 

It was therefore concluded that it is not possible to predict whether the selected cohort would be more 

or less affected by unmeasured confounding than the equivalent population-based cohort, unless it is 

known whether the exposure and the potential unmeasured confounder are already associated in the 

source population or become associated in the selected sample. In the latter situation the selected 

cohort would be more affected by confounding, while in the former situation -  exposure of interest and 

risk factor already associated in the source population -  the analysis of the selected sample may be 

affected from increased but also from reduced unmeasured confounding, depending on the magnitude 

and direction of the exposure-risk factor association present in the source population and of their 

associations with the selection process.

Further comparisons of the data on birth weight and gestational age collected in NINFEA by self- 

reported questionnaires with those held in the registry showed that they were not affected by systematic 

measurement errors (see Chapter 3).

6.1.2 Growth modelling

The other objectives of this thesis were related to the modelling of individual growth trajectories.

In particular the third and fourth objectives of this Ph.D. were to compare the ability of alternative 

growth modelling approaches to fit weight trajectories in infancy identifying biologically meaningful 

features and to assess whether the results of fitting these models are affected by the type of available 

data (age range, number and timing of follow-up). These objectives were addressed comparing the 

random effects specifications of two models purposely developed to describe anthropometric data -  the 

Jenss-Bayley (JB) and the four-parameters version of the Berkey-Reed model (Reed) -  and a shape 

invariant random effects model (SITAR) recently proposed in the statistical literature, using data from

2 3 4



the three cohorts available for this thesis: 845 singleton NINFEA children (only growth data at fixed 

time points were included in this paper), 783 singleton GXXI children and 1,149 singleton GOCS 

children. In order to address the fourth objective, data up to 4 years of age were included for the 

NINFEA and GOCS studies as well as the NINFEA and GOCS data restricted to ages 0-2 years for 

comparison with GXXI. The main findings were presented in Research Paper III. It was concluded that 

the choice of which model to adopt varies with the aim of the study and, less crucially, on the richness 

of the available data. The Reed model performed best in terms of standard fit criteria and, being linear 

in its parameters, was easier to estimate. However, if the focus is on extracting salient features of the 

growth trajectories to be used for life course enquiries SITAR should be preferred because it allowed, 

unlike the other two models, the identification of important aspects of the individual growth patterns, 

such as the age at peak weight velocity (APW V), and because of the biological interpretability of its 

three parameters (size, tempo and velocity). In the data analyzed the SITAR predicted random effects 

were also observed to consistently identify outlying growth patterns unlike those derived by the JB 

and Reed models. Moreover correlations of the JB and Reed predicted child-specific random effects 

were extremely high while those among the SITAR predicted random effects were substantially lower. 

The interpretability of the SITAR parameters however required additional consideration. In particular 

the interpretation of the tempo parameter resulted to depend on the time scale used and the setting 

analysed. When the time scale was changed by setting the time origin to be at conception (instead 

of birth), part of the information held in the tempo parameter appeared to have been removed by 

this new time scale, suggesting that tempo represents an adjustment necessary to better proxy true 

biological age (hence measuring growth adjusted for maturation/developmental status).

The standard deviations of both the JB and Reed random effects were lower when derived from the 

model fitted to the 0-4 years data compared to those derived when fitted to the 0-2 years age range, 

and the JB model indeed failed when fitted on the NINFEA 0-2 years data, probably due to the small 

number of measurement times available in this cohort.

Due to its complex parametrization the SITAR models included in the analyses of this thesis required 

imposing some constraints on the values of the fixed effects, with fixing the tempo effect to zero leading 

to the best fitting models. SITAR was successfully fitted on each subsets (by cohort, gender and age

235



range) considered, however results were influenced by data points that were isolated, as in the case of 

the analyses of the NINFEA 0-4 years data.

The last objective of this thesis was to study the prenatal influences of weight trajectories in infancy 

and to compare them across the different cohorts. This was achieved by fitting a SITAR model, that 

was extended to include multiple explanatory variables for each of its three parameters, to the 0-2 years 

data from the three cohorts available for this thesis: 2,925 singleton NINFEA children (growth data at 

both fixed and varying time points were included in this paper), 738 singleton GXXI babies, and 959 

singleton GOCS children. The main results related to this objective were presented in Research Paper 

IV. It was found that growth trajectories in contemporary infants from economically and geographically 

diverse countries such as Portugal, Italy and Chile share some common features, in particular with 

respect to the effect of maternal height, pre-pregnancy overweight/obesity and parity. In the two 

European cohorts opposite effects of maternal underweight, smoking and hypertension on the child’s 

size and velocity were observed, and when growth data were rich and the effect on tempo could also be 

examined, parity, pre-pregnancy overweight/obesity and gestational hypertension were found to also 

affect the timing of growth.

An advantage of adopting the SITAR modelling approach was to separate the individual growth process 

into three specific components -  size, velocity and tempo - , thus providing insights into the mecha

nisms governing infant growth. In particular the tempo dimension allowed to examine what governs 

the timing of peak growth velocity in infancy. However, due to its complex parametrization, it was 

not always possible to successfully model the association of multiple exposures with the three SITAR, 

parameters simultaneously. In particular, the model including an effect on each of the three dimensions 

failed when fitted to the NINFEA dataset, due to its limited number of time points available. Con

vergence failures were also observed when allowing for effects on tempo in the GOCS data, probably 

because of lack of heterogeneity, as this study only includes term children. The fully specified model 

was instead successfully fitted to the GXXI cohort, which has the greater number of growth measure

ments. Nevertheless these results showed that the version of SITAR including fewer parameters (i.e. 

not allowing for the tempo effect) could be successfully fitted to dataset with relatively sparse data, 

such as NINFEA, providing results consistent with those obtained with richer datasets.
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6.2 Main Contributions of the Thesis

6.2.1 Selection bias

This thesis contributes to the recently revived debate on potential biases that may arise from selection 

of study participants in cohort studies, with particular focus on web-based designs.

Specifically it provides the first simulation study which quantifies the likely extent of the bias in 

the exposure-outcome association (expressed in terms of crude hazard ratios) due to restrictions of the 

source population. A simulation study (Whitcomb et al., 2009) published at the time of the submission 

of Research Paper I also focused on the quantification of bias due to collider-stratification, that is the 

bias induced by the same causal structure investigated in this thesis (see section 4.1.1). The authors 

analyzed the phenomenon known in the literature as “birthweight paradox” . In this setting birth 

weight, which was treated as a continuous variable, acts as a collider and also as an intermediate 

variable in the relationship between a risk factor and neonatal mortality. Therefore the scenario 

investigated by Whitcomb et al. (Whitcomb et al., 2009) differs substantially from the one analyzed in 

this thesis. The results obtained in Research Paper I are in agreement with those of Greenland, who 

studied the same setting analyzed in Research Paper I and used an analytical approach to quantify 

the maximum extent of the bias in the crude OR for the exposure-outcome association of interest 

(Greenland, 2003). Greenland investigated however only settings where the outcome prevalence was 

rare so that the analysis of cohort data could be performed using logistic regression. The simulation 

study used for Research Paper I added further insights as a wide range of outcome and selection 

parameters were examined, including prevalence and effects o f exposure and risk factor on both the 

selection and outcome process, baseline incidence rate of the outcome and sample size, which allowed 

to underline their roles in influencing the extent of the bias.

Previous studies aiming at examining the representativeness of the study sample either compared the 

characteristics of participants with those of non-participants (Clarisse et al., 2007; Goldberg et al., 

2001; Heilbrun et al., 1991) or compared the estimates of exposure-outcome associations of interest 

obtained in the selected cohort with that obtained in the source population (Nilsen et al., 2009; Nohr 

et al., 2006). In contrast the research included in this thesis focused on the role of the confounding
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patterns for the association of interest. As a consequence, it has been possible to specifically investigate 

the potential mechanisms through which this bias may be induced by the sample selection process. 

In the Commentary the mechanisms investigated have been also extended to consider the scenario, 

which has been less debated, in which a mediator (that is a variable that is on the pathway from the 

exposure to the outcome) or a cause of the mediator is associated with the probability of selection. 

Moreover this Ph.D. provides insights into the use of the internet in epidemiological research, with 

particular attention given to web-based cohort studies. It has been shown that the main concerns 

raised against the use of non-representative samples, namely lack of exposure heterogeneity among the 

study participants and the potential for introducing bias in the estimate of interest due to the selection 

criteria (self-selection and restriction of the source population to internet users), are often not valid (see 

Commentary included in Chapter 4) and are sometime outweighed by the benefits of this approach. 

Indeed the use of the internet offers several advantages, including decreased costs, the possibility to 

reach “hidden” populations and to tailor the questionnaires to the participants’ characteristics, the 

possibility to study rare exposures through “ad hoc” selection of the study members, and instantaneous 

checks to identify data inconsistencies as well as to reduce data entry errors (if transcribed). Moreover 

any propensity o f bias arising from using non-representative samples needs to be balanced against 

that arising from targeting representative samples but resulting in low response rates at follow-up, 

as selection of the study participants is likely to create a group of more motivated persons. In this 

perspective in this thesis it is argued that restriction of the source population -  including to internet 

users -  does not usually hamper scientific inference, and may often enhance it.

The idea of using the internet in epidemiological research often receives skeptical reactions. Although 

there is the need to further investigate the impact of baseline selection in internet-based cohort studies, 

combining a methodological study with an application to real data (i.e. the NINFEA cohort) this thesis 

has generated findings that can help to overcome a-priori formed opinions on whether internet-based 

cohort studies are valid or not.
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6.2.2 Growth modelling

This thesis also contributes to the literature on biological and statistical methods for modelling growth 

in early life, with particular focus on weight trajectories.

Specifically this study provides researchers with insights into the parametrization of three models, two 

of which belong to the family of “Biological models” described in Chapter 5. These were applied to 

three datasets, which differ in term of age range and number and timing of follow-up observations 

(regular/irregular), and therefore illustrates a variety of settings likely to be encountered in practice. 

In particular Research Papers III provides details on the parametrization of a novel statistical methods 

(SITAR), which use is rapidly increasing (Cole et al., 2010; Gault et al., 2011; Johnson et al., 2011; 

Jones-Smith et al., 2013; Prentice et al., 2012; Warrington et al., 2013). Special attention has been 

given to the interpretation of its predicted random effects, and among them, to the meaning of the 

tempo dimension, which represents the most innovative aspect of this model. Moreover the sensitivity 

o f the three models to the varying quality of the growth data and to outlying growth patterns was 

compared. These findings thus contribute to guiding researchers in their application of models that 

properly exploit the growth data available, taking into account both the pattern and the quality of the 

measurements.

Research Paper IV extended this work by including multiple explanatory variables for each of the three 

SITAR parameters to study the influence of several maternal prenatal characteristics on the weight 

trajectories during infancy. Adopting the SITAR modelling approach, it has been possible to study the 

effect of these exposures on three different components o f the growth pattern (size, tempo and velocity) 

instead of studying their effect on single growth indicator, such as APW V or standard growth rate. The 

thesis therefore provides a more comprehensive summary of the factors and mechanisms governing the 

infant growth process. In particular it provides the first study in which the effect of several maternal 

characteristics is allowed to affect the tempo dimension, as well as the size and velocity parameters. 

Moreover with this work it has been shown that SITAR can be used to carry out pooled analyses of 

studies with different number and timing of growth measurements. The latter result is particularly 

relevant as the increasing number of projects aimed at developing an integrated strategy for mother- 

child cohort research, such as the CHICOS (CHICOS, 2010) and the ENRIECO (ENRIECO, 2009)
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projects, poses the question on how to combine and properly analyze these data, including those 

concerning growth. Finally this thesis provides new epidemiological evidence on the effect of several 

prenatal characteristics on infant weight trajectories, based on data from three contemporary cohorts 

from Portugal, Italy and Chile. Comparing their results allowed to evaluate their robustness, given 

the differences across the three source populations in distribution of the exposures as well as the 

expected differences in their confounding patterns. In particular the results on the effects of maternal 

parity, pre-pregnancy underweight and overweight/obesity, and of smoking and hypertension during 

pregnancy on the child’s size, tempo and velocity are of interest.

6.3 Limitations

Some of the limitations of this thesis have been reported in the relevant Research Papers. Additional 

points are discussed below.

6.3.1 Selection bias

The scenario investigated in Research Paper I is limited to the DAG depicted in Figure 4.5 (Chapters 4). 

In this situation a binary exposure of interest and one unmeasured binary outcome risk factor, which 

are independent in the source population, affect the selection process and become associated in the 

selected sample. Examples of settings that this thesis did not examine include considering multiple 

risk factors; considering continuous exposure, risk factor and outcome; or considering more complex 

settings, such as the one in which the exposure and the risk factor are already associated in the source 

population (as described in Research Paper II and in the Book Chapter) or the scenario in which a 

mediator of the association of interest also affects the selection (as described in the Commentary).

Some of the limitations just described also apply to the analyses of Research Paper II. In particular the 

dichotomization of exposures (more detailed categories could have been used for parity and maternal 

education) and potential confounding variables (e.g. maternal age, weight gain during pregnancy) 

might have led to disadvantages. These include loss of statistical efficiency, residual confounding, 

and differential misclassification (Royston et al, 2006). Moreover the dichotomization of the outcome
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variable birth weight, which was thus modelled using logistic regression, could have induced some 

additional loss of statistical efficiency. Another limitation of this study is that some of the predictors 

of participations into NINFEA could be mediators of the exposure-outcome associations estimated 

in Research Paper II. For example maternal education could influence low birth weight (one of the 

outcome considered) partially via maternal smoking behaviour during pregnancy, with both maternal 

education and smoking during pregnancy being strong predictors of participation into the NINFEA 

study (Pizzi et al, 2012). Under this scenario, the education-outcome association estimated adjusting 

for smoking (and for the other potential confounders) would be biased in both the registry and NINFEA 

populations. Moreover, due to the altered association between education and smoking induced by the 

restriction, the crude association estimated in the NINFEA sample would be biased.

6.3.2 Growth modelling

The comparison of alternative growth models to describe weight trajectories in early life involved 

fitting the random effects specification of two biological models, the JB and Reed models, and the 

SITAR model. As discussed above, the JB random effects model failed when fitted to the NINFEA 

0-2 years data (Research Paper III). One of the advantages of adopting a random effects approach, as 

described in the introduction of Chapter 5, is that all subjects with at least one growth measure can 

be included in the analyses (under the assumption that observations are missing at random (Rubin, 

1976)). However the decision to include in the analyses all subjects with at least one growth measure 

might be -  at least in part -  the reason for this failure. NINFEA children included in the analyses 

of Research Paper III had a median of 5 observations per child within the first 4 years of life, with a 

maximum of 6 observations per child. Additional sensitivity analyses could have thus been conducted 

to inform on the performance of the random effects specifications of the JB and Reed models when 

imposing a constraint on the minimum number of observations required to be included in the growth 

analyses. Also this thesis did not examine algorithms for the estimation of parameters from non-linear 

mixed models alternative to the one used by the nlme function in R, which is based on likelihood 

linearization (Lindstrom and Bates, 1990). Asymptotic convergence has not been proved for methods 

based on likelihood linearization (Samson et a/., 2007), and this might in part explain the convergence
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failure experienced when fitting the JB model for the analyses of Research Paper III. An alternative 

would have been to use the Stochastic Approximation Expectation-Maximization (SAEM) algorithm, 

for which theoretical convergence properties have been illustrated (Samson et al., 2007). Another 

limitation of this thesis is that, because of extreme correlations existing between the random effects 

parameters derived from the biological models, it was not possible to compare the marginal and 

the conditional associations between the gender of the child and the JB and Reed random effects 

parameters, as it was done for the SITAR model. These extreme correlations suggest the models were 

possibly overparameterised.

While the availability of three datasets with different number and timing of follow-up observations 

(regular/irregular) as well as different inclusion criteria (as GOCS includes only children with a ges

tational age at birth between 37 and 42 weeks and birth weight between 2500 and 4500 grams) was a 

strength in Research Paper III, part of the difference existing between these three cohorts generated 

some limitations in the analyses of Research Paper IV. Specifically, some of the effects estimated in 

GOCS differed from those obtained among the other two cohorts (particularly for gestational hyper

tension and smoking during pregnancy). Although sensitivity analyses were carried out replicating 

cohort-specific analyses on the subset of GXXI and NINFEA children who were born at term and 

with a birth weight of 2500-4500 grams (thus using the same entry criteria as GOCS), it was not 

possible to completely distinguish whether the observed heterogeneities across the cohorts were solely 

due to differences in entry criteria or not. Moreover the lack of heterogeneity in GOCS induced by 

the inclusion of term births only did not allow to estimate the effects of the covariates on the tempo 

dimension in this cohort. The lack of sufficient growth observations in NINFEA also led to convergence 

failure when attempting to estimate the effects of the exposures on the tempo parameter. Therefore it 

was not possible to compare this specific result (i.e. the tempo effect) across the cohorts as estimates 

were obtained only for the GXXI cohort. Finally differences in quality and coarseness of the available 

data in relation to pregnancy complications (e.g. gestational hypertension and diabetes) did not allow 

to examine the effect of the severity of these complications on the growth pattern. In particular it 

would have been interesting to distinguish between “simple” gestational hypertension, preeclampsia 

and eclampsia.
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6.4 Areas of Future Research

This thesis identified a number o f areas for further investigation. These are discussed below.

Mediators affecting the baseline selection mechanisms in cohort studies

The Commentary included in Chapter 4 has drawn attention on the role of mediators of an association 

of interest in the selection process of cohort studies. In that publication some relatively simple scenarios 

were considered, where -  in the case baseline selection takes place before the mediator is manifest (see 

Figure 1 of the Commentary) -  either a cause of the mediator or a confounder of the exposure-mediator 

relationship affects the selection mechanisms. Based on these DAGs, it was concluded that there is 

no reason to expect that non-representative cohorts have a larger exposure-mediator confounding 

than representative cohorts as in some of these settings the exposure-mediator association would be 

biased while in other the selection would decrease the exposure-mediator confounding. The scenario 

in which the mediator itself affects the probability of selection -  when baseline selection occurs after 

the mediator becomes manifest (see Figure 2 of the Commentary) -  was also evaluated. Although 

in the Commentary it was suggested that to minimize the probability of bias researchers should plan 

to carry out the enrolment of the participants before the mediator or its early signs could become 

manifest, future work on this issue is needed. In particular more complex settings, such as the one in 

which the selection could be affected both by the mediator and by the participant’s reaction to the 

mediator, need to be investigated. Monte Carlo simulations could be carried out to mimic scenarios 

involving mediators in the selection mechanisms and assess whether the extent of the maximum bias 

in the association of interest is larger compared to the settings examined in Research Paper I.

Lost to follow-up in the web-based NINFEA birth cohort

In most of the publications included in Chapter 4 (Research Paper I, Book Chapter and Commentary) 

it has been stated that one of the main advantages of conducting cohort studies using restricted source 

populations is to increase the completeness of follow-up. This is because restriction to particular 

subgroups and baseline self-selection are likely to create a group of more motivated participants for 

longitudinal studies. In particular it has been argued that follow-up participation rates could be higher
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in web-based cohort studies compared to “traditional” designs also because researchers have access to 

participants’ email addresses as well as to standard contact information (e.g. mail addresses) and can 

keep constant contact with the study participants using social networks (see Book Chapter). Further 

research is therefore required on this topic. In particular determinants of completeness of follow-up in 

web-based cohorts could be evaluated using the data of the NINFEA birth cohort and compared with 

evidence gathered from traditional cohort studies (Barchielli and Balzi, 2002; Goldberg et at, 2001; 

Howe et al., 2013).

Growth modelling

Individual growth models evaluated in this Ph.D. have focused only on weight measurements in in

fancy. As stated in the introduction (section 1.2.2), this choice has been driven both by issues of data 

availability (as NINFEA length measures were affected by missingness and measurement errors, see 

Chapter 3) and by the fact that during infancy weight has been suggested to be more useful than 

length to assess poor growth, as well as to identify children experiencing a catch-up growth (Cole, 

2002). However in order to understand the role of early life growth in life course epidemiology several 

other aspects could be examined. In particular, SITAR could be used to model linear growth and 

growth in BMI and to study how their potential predictors influence the size, tempo and velocity 

components of these growth processes.

Moreover evaluation of the performance of SITAR to model growth for longer age ranges (e.g. growth 

during the first 7/10 years of life) is of interest. The latter would be particularly relevant when 

investigating growth in BMI. As argued in the discussion of Research Paper III, interpretation of 

the SITAR parameters might become less straightforward when a wider range of ages is analyzed, as 

individual trajectories may include several inflection points, leading to multiple changes in velocity 

This in turn would lead the parameters representing a complex average of several departures from 

the reference time scale. This is expected to affect both the SITAR velocity and, most of all, tempo 

parameters. When studying growth in BMI from age 0 to 10 years, both a peak velocity at around 1 

year and a minimum velocity (known as adiposity rebound) at about 5 years occur (Rolland-Cachera 

et al., 1987). Age at BMI peak has been positively associated with higher level of BMI later in life
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(Silverwood et al., 2009b), while age at adiposity rebound has been negatively associated with increased 

risk o f later obesity (e.g. the earlier the adiposity rebound the higher the risk o f obesity) (Ohlsson et a/., 

2012; Rolland-Cachera, 1998; Williams and Goulding, 2012). This suggests that possibly two separate 

biological time scales exist: one linked to infancy BMI peak and one linked to childhood BMI rebound. 

Further research is therefore required to evaluate how the SITAR parameters would capture these 

patterns and to assess whether the tempo effect would represent an average of the child’s departure 

from possibly two separate biological time scales. This analysis will be carried out using the GOCS 

data, for which growth measurements up to age 10-11 are now available. BMI growth of NINFEA 

children will be also modelled, as their growth measurements, up to age 5, will be retrospectively 

gathered from child health records and additional measurements, up to age 7, will be gathered via the 

7 -year follow-up questionnaire.

Pre and postnatal factors influencing childhood obesity

Early life growth, and in particular rapid postnatal weight gain, has become the focus of research 

into the development of overweight and obesity later in childhood and adulthood (Baird et al., 2005; 

Monteiro and Victora, 2005; Ong and Loos, 2006; Tzoulaki et al., 2010). The motivation for this 

research arises from the extensive evidence that the prevalence of childhood obesity is very high 

worldwide (GRUPPO-OKkio, 2010; Ogden and Carroll, 2010). It has been suggested that the roots of 

this epidemic can be tracked back to fetal life (Fall, 2011), supporting a relevant role for maternal life

style and nutrition prior to and during pregnancy. In particular childhood obesity has been associated 

with maternal pre-pregnancy obesity, gestational diabetes and smoking during pregnancy (Monasta 

et al., 2010). It is also recognized that early postnatal factors such as feeding type and rapid postnatal 

weight gain, as discussed above, play an important role in the development of this disease (Monasta 

et al., 2010). However it would be relevant to better understand how these prenatal exposures interplay 

with postanatal factors in inducing obesity.

This thesis has drawn attention to a model, SITAR, particularly useful to provide a comprehensive 

summary of the individual early life weight trajectories, as it allows to specify the growth process 

in terms of three different biologically interpretable components: size, tempo and velocity of growth.
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Future work will therefore include application of this model to the infancy weight data of different 

birth cohorts, including NINFEA, to identify children who experienced an extremely rapid postnatal 

weight gain, where the latter could be defined from the predicted child-specific velocity coefficients, 

conditional on size and tempo. In particular children with a velocity parameter above a pre-specified 

cutoff (e.g. the 90th percentile of the internally standardized distribution) could be defined as exposed 

to a rapid postnatal weight gain. The resulting variable (experience of a rapid postnatal weight gain) 

could then be treated as a mediator of the effect of selected prenatal exposures on childhood obesity, 

where the latter can be defined from BMI data at a given age (e.g. 4 or 7 years). The indirect effects 

o f prenatal exposures on the prevalence of obesity at a certain age mediated via such a variable could 

then be defined -  and estimated -  within the framework of causal mediation analysis (Vansteelandt, 

2012). These analyses will thus provides a better understanding of which prenatal factors act mainly 

via postnatal growth pattern and which factors act through other pathways.

6.5 Conclusion

This Ph.D. aimed at modelling individual infant weight trajectories using data from three contemporary 

cohort studies, with special consideration given to issues of selection bias because members of one of 

the studies are volunteers who participate only via a web-based system. The interest in infant weight 

trajectories arose from the broad and consistent evidence in the literature that fetal and early life 

growth are important predictors for the onset and development of a wide range of later diseases.

This thesis found that using a restricted source population to design cohort study will, under a range of 

sensible scenarios, produce only relatively weak bias in estimates of the exposure-outcome associations. 

It also showed that restriction may either increase or decrease the amount of confounding in the data 

and thus the resulting bias in the estimates of interest. With regards to the modelling of individual 

growth trajectories this study found that the choice of which model to adopt varies with the aim of 

the study and, less crucially, with the richness of the available data. Of the models examined SITAR 

was found to be the most flexible and the most useful for life course enquiries because of the biological 

interpretability of its parameters.

The thesis thus provides a set of results that contributes to the interpretation of findings from se
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lected cohort studies, including internet-based cohorts, and to the implementation of advanced growth 

modelling approaches for life course research.

2 4 7



Bibliography

(2012) Children’s Study Row. Nature,

483.

Agostoni, C., Grandi, F., Gianni, M. L., Silano, M., Torcoletti, M., Giovannini, M. and Riva, E. (1999) Growth 
patterns o f breast fed and formula fed infants in the first 12 months o f life: an italian study. Arch Dis Child, 
81(5), 395-9.

Baird, J., Fisher, D., Lucas, P., Kleijnen, J., Roberts, H. and Law, C. (2005) Being big or growing fast: 
systematic review of size and growth in infancy and later obesity. BMJ, 331(7522), 929.

Barchielli, A. and Balzi, D. (2002) Nine-year follow-up of a survey on smoking habits in Florence (Italy): higher 
mortality among non-responders. International journal of epidemiology, 31(5), 1038-1042.

Barker, D. J. P. (1998) Mothers, Babies and Health in Later Life. Edinburgh: Churchill Livingstone.

Batista, R. F., Silva, A. A., Barbieri, M. A., Simoes, V . M. and Bettiol, H. (2012) Factors associated with 
height catch-up and catch-down growth among schoolchildren. PLoS One, 7(3), e32903.

Baulon, E., Fraser, W . D., Piedboeuf, B., Buekens, P. and Xiong, X. (2005) Pregnancy-induced hypertension 
and infant growth at 28 and 42 days postpartum. BMC Pregnancy Childbirth, 5, 10.

Beath, K. J. (2007) Infant growth modelling using a shape invariant model with random effects. Stat Med, 
26(12), 2547-64.

Ben-Shlomo, Y. and Kuh, D. (2002) A life course approach to chronic disease epidemiology: conceptual models, 
empirical challenges and interdisciplinary perspectives. Int J Epidemiol, 31(2), 285-93.

Ben-Shlomo, Y ., McCarthy, A., Hughes, R., Tilling, K., Davies, D. and Smith, G. D. (2008) Immediate 
postnatal growth is associated with blood pressure in young adulthood the barry Caerphilly growth study. 
Hypertension, 52(4), 638-644.

Benn, R. T. (1971) Some mathematical properties of weight-for-height indices used as measures o f adiposity. 
Br J Prev Soc Med, 25(1), 42-50.

Berkey, C. S. (1982) Comparison o f two longitudinal growth models for preschool children. Biometrics, 38(1), 
221-34.

2 4 8



Berkey, C. S. and Reed, R. B. (1987) A model for describing normal and abnormal growth in early childhood. 
Hum Biol, 59(6), 973-87.

Betoko, A., Charles, M. A., Hankard, R., Forhan, A., Bonet, M., Regnault, N., Botton, J., Saurel-Cubizolles, 
M. J., de Lauzon-Guillain, B. and the, E. M.-C. C. S. G. (2012) Determinants of infant formula use and 
relation with growth in the first 4 months. Matern Child Nutr, [E pub ahead o f  print],

Betoko, A., Charles, M. A., Hankard, R., Forhan, A., Bonet, M., Saurel-Cubizolles, M. J., Heude, B. and 
de Lauzon-Guillain, B. (2013) Infant feeding patterns over the first year of life: influence of family charac
teristics. Eur J Clin Nutr, [Epub ahead o f  print],

Binns, C. (1998) Infant-feeding and growth. In The Cambridge Encyclopedia of Human Growth and Develop
ment (Eds S. Ulijaszek, F. Johnston and M. A. Preece). Cambridge: Cambridge University Press.

Blair, P. S., Drewett, R. F., Emmett, P. M., Ness, A. and Emond, A. M. (2004) Family, socioeconomic and 
prenatal factors associated with failure to thrive in the Avon Longitudinal Study of Parents and Children 
(ALSPAC). Int J Epidemiol, 33(4), 839-47.

Bocca-Tjeertes, I. F., Kerstjens, J. M., Reijneveld, S. A., de Winter, A. F. and Bos, A. F. (2011) Growth 
and predictors o f growth restraint in moderately preterm children aged 0 to 4 years. Pediatrics, 128(5), 
el 187-94.

Bogin, B. (1998) Patterns of human growth. In The Cambridge Encyclopedia of Human Growth and Develop
ment (Eds S. Ulijaszek, F. Johnston and M. A. Preece). Cambridge: Cambridge University Press.

Borja, J. B. and Adair, L. S. (2003) Assessing the net effect o f young maternal age on birthweight. American 
journal of human biology, 15(6), 733-740.

Botton, J., Heude, B., Maccario, J., Ducimetiere, P. and Charles, M. A. (2008) Postnatal weight and height 
growth velocities at different ages between birth and 5 y and body composition in adolescent boys and girls. 
Am J Clin Nutr, 87(6), 1760-8.

Botton, J., Heude, B., Maccario, J., Borys, J. M., Lommez, A., Ducimetiere, P., Charles, M. A. and group, 
F. s. (2010) Parental body size and early weight and height growth velocities in their offspring. Early Hum 
Dev, 86(7), 445-50.

Bouthoorn, S. H., van Lenthe, F. J., Hokken-Koelega, A. C., Moll, H. A., Tiemeier, H., Hofman, A., Macken- 
bach, J. P., Jaddoe, V. W. and Raat, H. (2012) Head circumference o f infants born to mothers with different 
educational levels; the generation r study. PloS one, 7(6), e39798.

Britton, G. R., James, G. D., Collier, R., Sprague, L. M. and Brinthaupt, J. (2013) The effects o f smoking ces
sation and a programme intervention on birth and other perinatal outcomes among rural pregnant smokers. 
Annals of human biology, [E pub ahead o f  print],

Brooke, O. G., Anderson, H. R., Bland, J. M., Peacock, J. L. and Stewart, C. M. (1989) Effects on birth weight 
o f smoking, alcohol, caffeine, socioeconomic factors, and psychosocial stress. BMJ, 298(6676), 795-801.

2 4 9



Bulk-Bunschoten, A. M., van Bodegom, S., Reerink, J. D., de Jong, P. C. and de Groot, C. J. (2002) Weight 
and weight gain at 4 months (The Netherlands 1998): influences o f nutritional practices, socio-economic and 
ethnic factors. Paediatr Perinat Epidemiol, 16(4), 361-9.

Cameron, N. (1998) Measurement and assessment. In The Cambridge Encyclopedia of Human Growth and 
Development (Eds S. Ulijaszek, F. Johnston and M. A. Preece). Cambridge: Cambridge University Press.

Campbell, M. K., Cartier, S., Xie, B., Kouniakis, G., Huang, W . and Han, V. (2012) Determinants of small 
for gestational age birth at term. Paediatr Perinat Epidemiol, 26(6), 525-33.

Carter, R. C., Jacobson, S. W ., Molteno, C. D. and Jacobson, J. L. (2007) Fetal alcohol exposure, iron-deficiency 
anemia, and infant growth. Pediatrics, 120(3), 559-67.

Carter, R. C., Jacobson, J. L., Sokol, R. J., Avison, M. J. and Jacobson, S. W . (2013) Fetal alcohol-related 
growth restriction from birth through young adulthood and moderating effects o f maternal prepregnancy 
weight. Alcohol Clin Exp Res, 37, 452-62.

Catalano, P. M., McIntyre, H. D., Cruickshank, J. K., McCance, D. R., Dyer, A. R., Metzger, B. E., Lowe, 
L. P., Trimble, E. R., Coustan, D. R., Hadden, D. R. et al. (2012) The hyperglycemia and adverse pregnancy 
outcome study associations o f gdm and obesity with pregnancy outcomes. Diabetes care, 35(4), 780-786.

Chen, A., Pennell, M. L., Klebanoff, M. A., Rogan, W . J. and Longnecker, M. P. (2006) Maternal smoking 
during pregnancy in relation to child overweight: follow-up to age 8 years. Int J Epidemiol, 35(1), 121-30.

CHICOS (2010) CHICOS: Developing a Child Cohort Research Strategy for Europe.

Clarisse, B., Nikasinovic, L., Poinsard, R., Just, J. and Momas, I. (2007) The paris prospective birth cohort 
study: which design and who participates? European journal of epidemiology, 22(3), 203-210.

Cole, T. J. (1986) Weight/heightp compared to weight/height2 for assessing adiposity in childhood: influence 
o f age and bone age on p during puberty. Ann Hum Biol, 13(5), 433-51.

Cole, T. J. (2000) Secular trends in growth. Proc Nutr Soc, 59(2), 317-24.

Cole, T. J. (2002) Assessment of growth. Best Pract Res Clin Endocrinol Metab, 16(3), 383-98.

Cole, T . J. and Green, P. J. (1992) Smoothing reference centile curves: the LMS method and penalized 
likelihood. Stat Med, 11(10), 1305-19.

Cole, T . J., Donaldson, M. D. and Ben-Shlomo, Y . (2010) SITAR-a useful instrument for growth curve analysis. 
Int J Epidemiol, 39(6), 1558-66.

Corvalan, C., Uauy, R., Stein, A. D., Kain, J. and Martorell, R. (2009) Effect o f growth on cardiometabolic 
status at 4 y of age. The American journal of clinical nutrition, 90(3), 547-555.

Count, E. W . (1943) Growth patterns o f the human physique: an approach to kinetic anthropometry. Hum 
Biol, 15, 1-32.

250



Crump, C., Sundquist, K., Winkleby, M. A. and Sundquist, J. (2013) Early-term birth (37-38 weeks) and 
mortality in young adulthood. Epidemiology, 24(2), 270-276.

DAloisio, A. A., DeRoo, L. A., Baird, D. D., Weinberg, C. R. and Sandler, D. P. (2013) Prenatal and infant 
exposures and age at menarche. Epidemiology, 24(2), 277-284.

Daniel, R. M., Kenward, M. G., Cousens, S. N. and De Stavola, B. L. (2012) Using causal diagrams to guide 
analysis in missing data problems. Statistical Methods in Medical Research, 21(3), 243-256.

De Stavola, B. L., dos Santos Silva, I., McCormack, V., Hardy, R. J., Kuh, D. J. and Wadsworth, M. E. (2004) 
Childhood growth and breast cancer. Am J Epidemiol, 159(7), 671-82.

De Stavola, B. L., Leon, D. A. and Koupil, I. (2011) Intergenerational correlations in size at birth and the 
contribution of environmental factors the uppsala birth cohort multigenerational study, Sweden, 1915-2002. 
American journal of epidemiology, 174(1), 52-62.

Deardorff, J., Berry-Millett, R., Rehkopf, D., Luecke, E., Lahiff, M. and Abrams, B. (2012) Maternal pre
pregnancy bmi, gestational weight gain, and age at menarche in daughters. Maternal and child health 
journal, [E pub ahead o f  print].

Deierlein, A. L., Siega-Riz, A. M., Adair, L. S. and Herring, A. H. (2011) Effects o f pre-pregnancy body mass 
index and gestational weight gain on infant anthropometric outcomes. The Journal of pediatrics, 158(2), 
221-226.

Dewey, K. G. (2001) Nutrition, growth, and complementary feeding of the breastfed infant. Pediatr Clin North 
Am, 48(1), 87-104.

Dietz, P. M., Callaghan, W . M., Cogswell, M. E., Morrow, B., Ferre, C. and Schieve, L. A. (2006) Combined 
effects of prepregnancy body mass index and weight gain during pregnancy on the risk of preterm delivery. 
Epidemiology, 17(2), 170-7.

Dietz, W . H. (1994) Critical periods in childhood for the development of obesity. Am J Clin Nutr, 59(5), 
955-9.

Doll, R., Peto, R., Boreham, J. and Sutherland, I. (2004) Mortality in relation to smoking: 50 years’ observa
tions on male British doctors. BMJ, 328(7455), 1519.

Dubois, L. and Girard, M. (2006) Early determinants o f overweight at 4.5 years in a population-based longi
tudinal study. Int J Obes (Lond), 30(4), 610-7.

ENRIECO (2009) Enrieco Project: Environmental Health Risks in European Birth Cohorts.

Erickson, A. C. and Arbour, L. T. (2012) Heavy smoking during pregnancy as a marker for other risk factors of 
adverse birth outcomes: a population-based study in british Columbia, Canada. BMC Public Health, 12(1), 
102.

251



Eriksson, J. G. (2011) Early growth and coronary heart disease and type 2 diabetes: findings from the helsinki 
birth cohort study (hbcs). Am J Clin Nutr, 94(6 Suppl), 1799S-1802S.

Fall, C. (2011) Evidence for the intra-uterine programming of adiposity in later life. Annals of human biology, 
38(4), 410-428.

Fawzi, W . W ., Herrera, M. G., Nestel, P., el Amin, A. and Mohamed, K. A. (1998) A longitudinal study of 
prolonged breastfeeding in relation to child undernutrition. Int J Epidemiol, 27(2), 255-60.

Feldman, H. S., Jones, K. L., Lindsay, S., Slymen, D., Klonoff-Cohen, II., Kao, K., Rao, S. and Chambers, 
C. (2012) Prenatal alcohol exposure patterns and alcohol-related birth defects and growth deficiencies: a 
prospective study. Alcohol Clin Exp Res, 36(4), 670-6.

Gamborg, M., Andersen, P. K., Baker, J. L., Budtz-Jorgensen, E., Jorgensen, T., Jensen, G. and Sorensen, 
T. I. (2009) Life course path analysis of birth weight, childhood growth, and adult systolic blood pressure. 
Am J Epidemiol, 169(10), 1167-78.

Gartside, P. S., Dine, M. S. and Glueck, C. J. (1984) Relative velocity of accretion of weight and height using 
the Benn index in the first nine years o f life. Pediatr Res, 18(7), 627-30.

Gault, E. J., Perry, R. J., Cole, T . J., Casey, S., Paterson, W . F., Hindmarsh, P. C., Betts, P., Dunger, D. B. 
and Donaldson, M. D. (2011) Effect o f oxandrolone and timing o f pubertal induction on final height in 
turners syndrome: randomised, double blind, placebo controlled trial. BMJ: British Medical Journal, 342.

Gluckman, P. D. and Hanson, M. A. (2004) Maternal constraint o f fetal growth and its consequences. Semin 
Fetal Neonatal Med, 9(5), 419-25.

Gluckman, P. D., Hanson, M. A. and Mitchell, M. D. (2010) Developmental origins of health and disease: 
reducing the burden of chronic disease in the next generation. Genome Med, 2(2), 14.

Glymour, M. (2006) Using causal diagrams to understand common problems in social epidemiology. In Methods 
in social epidemiology (Eds M. Oakes and J. Kaufman). San Francisco: Jossey-Bass.

Godfrey, K. M., Gluckman, P. D. and Hanson, M. A. (2010) Developmental origins o f metabolic disease: life 
course and intergenerational perspectives. JYends in Endocrinology & Metabolism, 21(4), 199-205.

Goldberg, G. (1998) Alcohol consumption and pregnancy outcome. In The Cambridge Encyclopedia of Hu
man Growth and Development (Eds S. Ulijaszek, F. Johnston and M. A. Preece). Cambridge: Cambridge 
University Press.

Goldberg, M., Chastang, J. F., Leclerc, A., Zins, M., Bonenfant, S., Bugel, I., Kaniewski, N., Schmaus, 
A., Niedhammer, I., Piciotti, M. et al. (2001) Socioeconomic, demographic, occupational, and health factors 
associated with participation in a long-term epidemiologic survey: a prospective study of the French GAZEL 
cohort and its target population. American journal of epidemiology, 154(4), 373-384.

Goldenberg, R. L. and Cliver, S. P. (1997) Small for gestational age and intrauterine growth restriction: 
definitions and standards. Clin Obstet Gynecol, 40(4), 704-14.

252

I



Goldstein, H. (2010) Multilevel statistical models, Fourth Edition. London: Wiley.

Goldstein, H., Healy, M. J. and Rasbash, J. (1994) Multilevel time series models with applications to repeated 
measures data. Stat Med, 13(16), 1643-55.

Green, P. J. and Silverman, B. W . (1994) Nonparametric Regression and Generalized Linear Models: A rough
ness penalty approach. Chapman and Hall/CRC.

Greenland, S. (2003) Quantifying biases in causal models: classical confounding vs collider-stratification bias. 
Epidemiology, 14(3), 300-6.

Greenland, S., Pearl, J. and Robins, J. M. (1999) Causal diagrams for epidemiologic research. Epidemiology, 
10(1), 37-48.

Griffiths, L. J., Dezateux, C. and Cole, T . J. (2007) Differential parental weight and height contributions to 
offspring birthweight and weight gain in infancy. Int J Epidemiol, 36(1), 104-7.

GRUPPO-OKkio (2010) OKkio alia SALUTE: sintesi dei risultati 2010.

van der Gugten, A. C., Koopman, M., Evelein, A. M., Verheij, T. J., Uiterwaal, C. S. and van der Ent, C. K. 
(2012) Rapid early weight gain is associated with wheeze and reduced lung function in childhood. Eur Respir 
J, 39(2), 403-10.

Gurrin, L. C., Scurrah, K. J. and Hazelton, M. L. (2005) Tutorial in biostatistics: spline smoothing with linear 
mixed models. Statistics in medicine, 24(21), 3361-3381.

Haschke, F. and van’t Hof, M. A. (2000) Euro-Growth references for breast-fed boys and girls: influence of 
breast-feeding and solids on growth until 36 months o f age. Euro-Growth Study Group. J Pediatr Gastroen
terol Nutr, 31 S uppl 1, S60-71.

Hauspie, R. C. Cameron, N. and Molinari, L. (eds) (2004) Methods in Human Growth Research. Cambridge 
University Press.

Hauspie, R. (1998) Curve-fitting. In The Cambridge Encyclopedia of Human Growth and Development (Eds 
S. Ulijaszek, F. Johnston and M. A. Preece). Cambridge: Cambridge University Press.

Hediger, M. L., Overpeck, M. D., Ruan, W . J. and Troendle, J. F. (2000) Early infant feeding and growth 
status of US-born infants and children aged 4-71 mo: analyses from the third National Health and Nutrition 
Examination Survey, 1988-1994. Am J Clin Nutr, 72(1), 159-67.

Heilbrun, L. K., Ross, P. D., Wasnich, R. D., Yano, K. and Vogel, J. M. (1991) Characteristics of respondents 
and nonrespondents in a prospective study of osteoporosis. Journal of clinical epidemiology, 44(3), 233-239.

Hermanussen, M., Staub, K., Assmann, C. and van Buuren, S. (2012) Dilemmas in choosing and using growth 
charts. Pediatric Endocrinology Reviews (PER), 9(3), 650.

Hernan, M. and Robins, J. M. (2012) Causal inference.

2 5 3



Hernán, M. A., Hernandez-Diaz, S. and Robins, J. M. (2004) A structural approach to selection bias. Epi
demiology, 15(5), 615-25.

Hindmarsh, P. C., Geary, M. P., Rodeck, C. H., Kingdom, J. C. and Cole, T. J. (2008) Factors predicting ante- 
and postnatal growth. Pediatr Res, 63(1), 99-102.

de Hoog, M. L., van Eijsden, M., Stronks, K., Gemke, R. J. and Vrijkotte, T. G. (2011) The role o f infant 
feeding practices in the explanation for ethnic differences in infant growth: the amsterdam born children 
and their development study. Br J Nutr, 106(10), 1592-601.

van den Hooven, E. H., Pierik, F. H., de Kluizenaar, Y ., Willemsen, S. P., Hofman, A., van Ratingen, S. W ., 
Zandveld, P. Y ., Mackenbach, J. P., Steegers, E. A., Miedema, II. M. et al. (2012) Air pollution exposure 
during pregnancy, ultrasound measures of fetal growth, and adverse birth outcomes: a prospective cohort 
study. Environmental health perspectives, 120(1), 150.

Hoover, R. N., Hyer, M., Pfeiffer, R. M., Adam, E., Bond, B., Cheville, A. L., Colton, T., Hartge, P., Hatch, 
E. E., Herbst, A. L. ef al. (2011) Adverse health outcomes in women exposed in útero to diethylstilbestrol. 
New England Journal of Medicine, 365(14), 1304-1314.

Howe, L. D., Tilling, K., Galobardes, B., Smith, G. D., Ness, A. R. and Lawlor, D. A. (2011) Socioeconomic 
disparities in trajectories of adiposity across childhood. International Journal of Pediatric Obesity, 6(2Part2), 
el44-el53.

Howe, L. D., Tilling, K., Galobardes, B., Smith, G. D., Gunnell, D. and Lawlor, D. A. (2012) Socioeco
nomic differences in childhood growth trajectories: at what age do height inequalities emerge? Journal of 
epidemiology and community health, 66(2), 143-148.

Howe, L. D., Tilling, K., Galobardes, B. and Lawlor, D. A. (2013) Loss to follow-up in cohort studies: bias in 
estimates o f socioeconomic inequalities. Epidemiology, 24(1), 1-9.

Hui, L. L., Leung, G. M., Cowling, B. J., Lam, T. H. and Schooling, C. M. (2010) Determinants of infant 
growth: Evidence from Hong Kong’s ’’ Children o f 1997” birth cohort. Ann Epidemiol, 20(11), 827-35.

Hui, L. L., Leung, G. M., Wong, M. Y., Lam, T. II. and Schooling, C. M. (2012) Small for gestational age 
and age at puberty: evidence from hong kong’s ’’ children o f 1997” birth cohort. Am J Epidemiol, 176(9), 
785-93.

Huxley, R. R., Shiell, A. W . and Law, C. M. (2000) The role of size at birth and postnatal catch-up growth in 
determining systolic blood pressure: a systematic review of the literature. J Hypertens, 18(7), 815-31.

Jacobsen, T. N., Nohr, E. A. and Frydenberg, M. (2010) Selection by socioeconomic factors into the danish 
national birth cohort. European journal of epidemiology, 25(5), 349-355.

Jacquemyn, Y., Osmanovic, F. and Martens, G. (2006) Preeclampsia and birthweight by gestational age in 
singleton pregnancies in flanders, belgium: a prospective study. Clinical and experimental obstétrico & 
gynecology, 33(2), 96-98.

2 5 4



Jansen, P. W ., Tiemeier, H., Looman, C. W ., Jaddoe, V. W ., Hofman, A., Moll, H. A., Steegers, E. A., 
Verhulst, F. C., Mackenbach, J. P. and Raat, H. (2009) Explaining educational inequalities in birthweight: 
the generation r study. Paediatr Perinat Epidemiol, 23(3), 216-28.

Jenss, R. M. and Bayley, N. (1937) A mathematical method for studying the growth of a child. Human Biology, 
9(4), 556-563.

Jeric, M., Roje, D., Medic, N., Strinic, T., Mestrovic, Z. and Vulic, M. (2013) Maternal pre-pregnancy under
weight and fetal growth in relation to institute o f medicine recommendations for gestational weight gain. 
Early Human Development, 89, 277-81.

Johnson, L., Llewellyn, C. H., van Jaarsveld, C. H., Cole, T. J. and Wardle, J. (2011) Genetic and environmental 
influences on infant growth: prospective analysis o f the Gemini twin birth cohort. PLoS One, 6(5), el9918.

Jolicoeur, P., Pontier, J., Pernin, M. O. and Sempe, M. (1988) A lifetime asymptotic growth curve for human 
height. Biometrics, 44(4), 995-1003.

Jones-Smith, J., Neufeld, L., Laraia, B., Ramakrishnan, U., Garcia-Guerra, A. and Fernald, L. (2013) Early 
life growth trajectories and future risk for overweight. Nutrition & diabetes, 3(2), e60.

de Jong, F., Monuteaux, M. C., van Elburg, R. M., Gillman, M. W. and Belfort, M. B. (2012) Systematic 
review and meta-analysis of preterm birth and later systolic blood pressure. Hypertension, 59(2), 226-34.

Jung, T . and Wickrama, K. (2008) An introduction to latent class growth analysis and growth mixture mod
eling. Social and Personality Psychology Compass, 2(1), 302-317.

Kang Sim, D. E., Cappiello, M., Castillo, M., Lozoff, B., Martinez, S., Blanco, E. and Gahagan, S. (2012) 
Postnatal growth patterns in a Chilean cohort: The role o f ses and family environment. Int J Pediatr, 2012, 
354060.

Karlberg, J. (1987) On the modelling of human growth. Stat Med, 6(2), 185-92.

Karlberg, J. (1989) A biologically-oriented mathematical model (ICP) for human growth. Acta Paediatr Scand 
Suppl, 350, 70-94.

Karlberg, J. (1998) The human growth curve. In The Cambridge Encyclopedia of Human Growth and Devel
opment (Eds S. Ulijaszek, F. Johnston and M. A. Preece). Cambridge: Cambridge University Press.

Kenny, L. C., Lavender, T ., McNamee, R., ONeill, S. M., Mills, T . and Khashan, A. S. (2013) Advanced 
maternal age and adverse pregnancy outcome: Evidence from a large contemporary cohort. PLoS ONE, 
8(2).

Kim, J. and Peterson, K. E. (2008) Association of infant child care with infant feeding practices and weight 
gain among US infants. Arch Pediatr Adolesc Med, 162(7), 627-33.

Kirchengast, S. and Hartmann, B. (2003) Impact o f maternal age and maternal somatic characteristics on 
newborn size. American Journal of Human Biology, 15(2), 220-228.

2 5 5



Knight, B., Shields, B. M., Turner, M., Powell, R. J., Yajnik, C. S. and Hattersley, A. T. (2005) Evidence of 
genetic regulation o f fetal longitudinal growth. Early Hum Dev, 81(10), 823 -31.

Koo, Y.-J., Ryu, H.-M., Yang, J.-H., Lim, J.-H., Lee, J.-E., Kim, M.-Y. and Chung, J.-II. (2012) Pregnancy 
outcomes according to increasing maternal age. Taiwanese Journal of Obstetrics and Gynecology, 51(1), 
60-65.

Kramer, M. S. (1987) Intrauterine growth and gestational duration determinants. Pediatrics, 80(4), 502-11.

Kramer, M. S. and Kakuma, R. (2012) Optimal duration o f exclusive breastfeeding. Cochrane Database Syst 
Rev, 8, CD003517.

Kramer, M. S., Guo, T., Platt, R. W ., Shapiro, S., Collet, J. P., Chalmers, B., Hodnett, E., Sevkovskaya, Z., 
Dzikovich, I. and Vanilovich, I. (2002) Breastfeeding and infant growth: biology or bias? Pediatrics, 110(2 
Pt 1), 343-7.

Kramer, M. S., Guo, T., Platt, R. W ., Vanilovich, I., Sevkovskaya, Z., Dzikovich, I., Michaelsen, K. F. and 
Dewey, K. (2004) Feeding effects on growth during infancy. J Pediatr, 145(5), 600-5.

Kramer, M. S., Moodie, E. E., Dahhou, M. and Platt, R. W. (2011) Breastfeeding and infant size: evidence of 
reverse causality. Am J Epidemiol, 173(9), 978-83.

Kramer, M. S., Moodie, E. E. and Platt, R. W . (2012) Infant feeding and growth: Can we answer the causal 
question? Epidemiology, 23(6), 790-794.

Kuh, D. and Ben-Shlomo, Y . (2004) A Life Course Approach to Chronic Disease Epidemiology. Oxford 
University Press, USA.

Laurent, O., Wu, J., Li, L., Chung, J. and Bartell, S. (2013) Investigating the association between birth weight 
and complementary air pollution metrics: a cohort study. Environmental Health, 12(1), 18.

Lazarus, R., Baur, L., Webb, K. and Blyth, F. (1996) Adiposity and body mass indices in children: Benn’s 
index and other weight for height indices as measures of relative adiposity. Int J Obes Relat Metab Disord, 
20(5), 406-12.

Leunissen, R. W ., Kerkhof, G. F., Stijnen, T. and Hokken-Koelega, A. (2009) Timing and tempo of first-year 
rapid growth in relation to cardiovascular and metabolic risk profile in early adulthood. JAMA: the journal 
of the American Medical Association, 301(21), 2234-2242.

Leunissen, R. W ., Kerkhof, G. F., Stijnen, T. and Hokken-Koelega, A. C. (2012) Effect of birth size and 
catch-up growth on adult blood pressure and carotid intima-media thickness. Horrn Res Paediatr, 77(6), 
394-401.

Linabery, A. M., Nahhas, R. W ., Johnson, W ., Choh, A. C., Towne, B., Odegaard, A. O., Czerwinski, S. A. and 
Demerath, E. W . (2012) Stronger influence o f maternal than paternal obesity on infant and early childhood 
body mass index: the fels longitudinal study. Pediatr Obes, [E pub ahead o f  print].

256



Lindstrom, M. J. and Bates, D. M. (1990) Nonlinear mixed effects models for repeated measures data. Bio
metrics, pp. 673-687.

Lourenco, B. H., Villamor, E., Augusto, R. A. and Cardoso, M. A. (2012) Determinants of linear growth from 
infancy to school-aged years: a population-based follow-up study in urban amazonian children. BMC Public 
Health, 12, 265.

Maisonet, M., Correa, A., Misra, D. and Jaakkola, J. J. (2004) A review o f the literature on the effects of 
ambient air pollution on fetal growth. Environmental Research, 95(1), 106-115.

Malabarey, O. T., Balayla, J., Klam, S. L., Shrim, A. and Abenhaim, II. A. (2012) Pregnancies in young 
adolescent mothers: a population-based study on 37 million births. Journal of Pediatric and Adolescent 
Gynecology, 25, 98-102.

Malina, R. (1998) Post-natal growth and maturation. In The Cambridge Encyclopedia of Human Growth and 
Development (Eds S. Ulijaszek, F. Johnston and M. A. Preece). Cambridge: Cambridge University Press.

Mamun, A. A., Callaway, L. K., O ’Callaghan, M. J., Williams, G. M., Najman, J. M., Alati, R., Clavarino, 
A. and Lawlor, D. A. (2011) Associations of maternal pre-pregnancy obesity and excess pregnancy weight 
gains with adverse pregnancy outcomes and length o f hospital stay. BMC pregnancy and childbirth, 11(1), 
62.

Martin, R. M., Smith, G. D., Frankel, S. and Gunnell, D. (2004) Parents’ growth in childhood and the birth 
weight o f their offspring. Epidemiology, 15(3), 308-16.

Martin Bland, J. and Altman, D. (1986) Statistical methods for assessing agreement between two methods of 
clinical measurement. The lancet, 327(8476), 307-310.

Matijasevich, A., Howe, L. D., Tilling, K., Santos, I. S., Barros, A. J. and Lawlor, D. A. (2012) Maternal 
education inequalities in height growth rates in early childhood: 2004 pelotas birth cohort study. Paediatric 
and Perinatal Epidemiology, 26, 236-49.

Mehta, A., Hindmarsh, P. C., Stanhope, R. G., Turton, J. P., Cole, T . J., Preece, M. A. and Dattani, M. T. 
(2005) The role o f growth hormone in determining birth size and early postnatal growth, using congenital 
growth hormone deficiency (GHD) as a model. Clin Endocrinol (Oxf), 63(2), 223-31.

Metzger, B. E., Lowe, L. P., Dyer, A. R., Trimble, E. R., Chaovarindr, U., Coustan, D. R., Hadden, D. R., 
McCance, D. R., Hod, M., McIntyre, H. D., Oats, J. J., Persson, B., Rogers, M. S. and Sacks, D. A. (2008) 
Hyperglycemia and adverse pregnancy outcomes. N Engl J Med, 358(19), 1991-2002.

Mihrshahi, S., Battistutta, D., Magarey, A. and Daniels, L. A. (2011) Determinants o f rapid weight gain during 
infancy: baseline results from the NOURISH randomised controlled trial. BMC Pediatr, 11, 99.

Modi, N., Murgasova, D., Ruager-Martin, R., Thomas, E. L., Hyde, M. J., Gale, C., Santhakumaran, S., Dore, 
C. J., Alavi, A. and Bell, J. D. (2011) The influence of maternal body mass index on infant adiposity and 
hepatic lipid content. Pediatric research, 70(3), 287-291.

2 5 7



Monasta, L., Batty, G. D., Cattaneo, A., Lutje, V., Ronfani, L., Van Lenthe, F. J. and Brug, J. (2010) Early-life 
determinants of overweight and obesity: a review of systematic reviews. Obes Rev, 11(10), 695-708.

Monteiro, P. O. and Victora, C. G. (2005) Rapid growth in infancy and childhood and obesity in later life-a 
systematic review. Obes Rev, 6(2), 143-54.

Nafstad, P., Jaakkola, J. J., Hagen, J. A., Pedersen, B. S., Qvigstad, E., Botten, G. and Kongerud, J. (1997) 
Weight gain during the first year o f life in relation to maternal smoking and breast feeding in Norway. J 
Epidemiol Community Health, 51(3), 261-5.

Nilsen, R. M., Vollset, S. E., Gjessing, H. K., Skjaerven, R., Melve, K. K., Schreuder, P., Alsaker, E. R., Haug, 
K., Daltveit, A. K. and Magnus, P. (2009) Self-selection and bias in a large prospective pregnancy cohort in 
Norway. Paediatric and perinatal epidemiology, 23(6), 597-608.

Nobile, C. G., Raffaele, G., Altoinare, C. and Pavia, M. (2007) Influence o f maternal and social factors as 
predictors of low birth weight in Italy. BMC Public Health, 7, 192.

Nohr, E. A., Frydenberg, M., Henriksen, T. B. and Olsen, J. (2006) Does low participation in cohort studies 
induce bias? Epidemiology, 17(4), 413-8.

Ogden, C. and Carroll, M. (2010) Nchs health e-stat: prevalence o f obesity among children and adoles- 
centsunited states, trends 1963-1965 through 2007-2008.

Ohlsson, C., Lorentzon, M., Norjavaara, E. and Kindblom, J. M. (2012) Age at adiposity rebound is associated 
with fat mass in young adult malesthe good study. PloS one, 7(11), e49404.

Olsson, D., Mogren, I. and Forsberg, B. (2013) Air pollution exposure in early pregnancy and adverse pregnancy 
outcomes: a register-based cohort study. BMJ open, 3(2).

Ong, K. K. (2007) Catch-up growth in small for gestational age babies: good or bad? Current Opinion in 
Endocrinology, Diabetes and Obesity, 14(1), 30-34.

Ong, K. K. (2010) Early determinants o f obesity. Endocr Dev, 19, 53-61.

Ong, K. K. and Loos, R. J. (2006) Rapid infancy weight gain and subsequent obesity: systematic reviews and 
hopeful suggestions. Acta Paediatr, 95(8), 904-8.

Ong, K. K., Ahmed, M. L., Emmett, P. M., Preece, M. A. and Dunger, D. B. (2000) Association between 
postnatal catch-up growth and obesity in childhood: prospective cohort study. BMJ, 320(7240), 967-71.

Ong, K. K., Preece, M. A., Emmett, P. M., Ahmed, M. L., Dunger, D. B. and Team, A. S. (2002) Size at birth 
and early childhood growth in relation to maternal smoking, parity and infant breast-feeding: longitudinal 
birth cohort study and analysis. Pediatr Res, 52(6), 863-7.

Ong, K. K., Bann, D., Wills, A. K., Ward, K., Adams, J. E., Hardy, R., Kuh, D., National Survey of, II., 
Development, S. and Data Collection, T. (2012) Timing of voice breaking in males associated with growth 
and weight gain across the life course. J Clin Endocrinol Metab, 97(8), 2844-52.

2 5 8



Ouyang, F., Parker, M., Cerda, S., Pearson, C., Fu, L., Gillman, M. W ., Zuckerman, B. and Wang, X. (2012) 
Placental weight mediates the effects o f prenatal factors on fetal growth: the extent differs by preterm status. 
Obesity (Silver Spring), [E pub ahead  o f  print],

Padula, A. M., Mortimer, K., Hubbard, A., Lurmann, F., Jerrett, M. and Tager, I. B. (2012) Exposure to 
traffic-related air pollution during pregnancy and term low birth weight: Estimation of causal associations 
in a semiparametric model. American journal of epidemiology, 176(9), 815-824.

Pearl, J. (1995) Causal diagrams for empirical research. Biometrika, 82(4), 609-688.

Pearl, J. (2000) Causality: Models, Reasoning, and Inference. Cambridge, UK: Cambridge University Press.

Pizzi, C., De Stavola, B., Merletti, F., Bellocco, R., dos Santos Silva, I., Pearce, N. and Richiardi, L. (2011) 
Sample selection and validity of exposure-disease association estimates in cohort studies. Journal of epi
demiology and community health, 65(5), 407-411.

Pizzi, C., De Stavola, B. L., Pearce, N., Lazzarato, F., Ghiotti, P., Merletti, F. and Richiardi, L. (2012) 
Selection bias and patterns of confounding in cohort studies: the case of the ninfea web-based birth cohort. 
Journal of Epidemiology and Community Health, 66(11), 976-81.

Power, C., Li, L., Manor, O. and Smith, G. D. (2003) Combination o f low birth weight and high adult body 
mass index: at what age is it established and what are its determinants? Journal of epidemiology and 
community health, 57(12), 969-973.

Preece, M. A. and Baines, M. J. (1978) A new family o f mathematical models describing the human growth 
curve. Ann Hum Biol, 5(1), 1-24.

Prentice, A., Dibba, B., Sawo, Y . and Cole, T . J. (2012) The effect of prepubertal calcium carbonate sup
plementation on the age of peak height velocity in Gambian adolescents. The American journal of clinical 
nutrition, 96(5), 1042-1050.

Prentice, P. and Viner, R. (2012) Pubertal timing and adult obesity and cardiometabolic risk in women and 
men: a systematic review and meta-analysis. International Journal of Obesity, [E pub ahead o f  print].

Raikkonen, K., Forsen, T ., Henriksson, M., Kajantie, E., Ileinonen, K., Pesonen, A. K., Leskinen, J. T., 
Laaksonen, I., Osmond, C., Barker, D. J. and Eriksson, J. G. (2009) Growth trajectories and intellectual 
abilities in young adulthood: The helsinki birth cohort study. Am J Epidemiol, 170(4), 447-55.

Regnault, N., Botton, J., Forhan, A., Hankard, R., Thiebaugeorges, O., Hillier, T. A., Kaminski, M., Heude, 
B. and Charles, M. A. (2010) Determinants o f early ponderal and statural growth in full-term infants in the 
eden mother-child cohort study. Am J Clin Nutr, 92(3), 594-602.

Richiardi, L., Baussano, I., Vizzini, L., Douwes, J., Pearce, N. and Merletti, F. (2007) Feasibility o f recruiting 
a birth cohort through the Internet: the experience o f the NINFEA cohort. Eur J Epidemiol, 22(12), 831-7.

Risnes, K. R., Vatten, L. J., Baker, J. L., Jameson, K., Sovio, U., Kajantie, E., Osier, M., Morley, R., Jokela, 
M., Painter, R. C. et al. (2011) Birthweight and mortality in adulthood: a systematic review and meta
analysis. International journal of epidemiology, 40(3), 647-661.

2 5 9



Roggero, P., Gianni, M., Garbarino, F. and Mosca, F. (2013) Consequences o f prematurity on adult morbidities. 
European journal of internal medicine, [E pub ahead o f  print],

Roland, M. C. P., Friis, C. M., Voldner, N., Godang, K., Bollerslev, J., Haugen, G. and Henriksen, T. (2012) 
Fetal growth versus birthweight: The role of placenta versus other determinants. PloS one, 7(6), e39324.

Rolland-Cachera, M. F. (1998) Adiposity rebound and prediction of adult fatness. In The Cambridge Ency
clopedia of Human Growth and Development (Eds S. Ulijaszek, F. Johnston and M. A. Preece). Cambridge 
University Press.

Rolland-Cachera, M. F., Deheeger, M., Guilloud-Bataille, M., Avons, P., Patois, E. and Sempe, M. (1987) 
Tracking the development of adiposity from one month of age to adulthood. Ann Hum Biol, 14(3), 219-29.

Rothman, K., Greenland, S. and Lash, T . J. (2008) Distinguishing selection bias from confounding. In Modem 
Epidemiology, pp. 136-137. Philadelphia: Lippincott Williams & Wilkins.

Royston, P. and Altman, D. G. (1994) Regression using fractional polynomials o f continuous covariates: par
simonious parametric modelling. Applied Statistics, pp. 429-467.

Royston, P., Altman, D. G. and Sauerbrei, W . (2006) Dichotomizing continuous predictors in multiple regres
sion: a bad idea. Statistics in medicine, 25(1), 127-141.

Rubin, D. (1976) Inference and missing data. Biometrika, 63, 581-592.

Ruppert, D., Wand, M. P. and Carroll, R. J. (2003) Semiparametric regression. Cambridge University Press.

Salafia, C. M., Zhang, J., Charles, A. K., Bresnahan, M., Shrout, P., Sun, W . and Maas, E. M. (2008) Placental 
characteristics and birthweight. Paediatr Perinat Epidemiol, 22(3), 229-39.

Salomon, L. J., Pizzi, C., Gasparrini, A., Bernard, J.-P. and Ville, Y. (2010) Prediction of the date of de
livery based on first trimester ultrasound measurements: an independent method from estimated date of 
conception. Journal of Maternal-Fetal and Neonatal Medicine, 23(1), 1-9.

Samson, A., Lavielle, M. and Mentre, F. (2007) The SAEM algorithm for group comparison tests in longitudinal 
data analysis based on non-linear mixed-effects model. Statistics in medicine, 26(27), 4860-4875.

Schell, L. (1998) Smoking. In The Cambridge Encyclopedia of Human Growth and Development (Eds S. Uli
jaszek, F. Johnston and M. A. Preece). Cambridge: Cambridge University Press.

Schimek, M. G. (2009) Semiparametric penalized generalized additive models for environmental research and 
epidemiology. Environmetrics, 20(6), 699-717.

Scholl, T. (1998) Teenage pregnancy. In The Cambridge Encyclopedia of Human Growth and Development 
(Eds S. Ulijaszek, F. Johnston and M. A. Preece). Cambridge: Cambridge University Press.

Selling, K. E., Carstensen, J., Finnstrom, O. and Sydsjo, G. (2006) Intergenerational effects o f preterm birth 
and reduced intrauterine growth: a population-based study of Swedish mother-offspring pairs. BJOG: An 
International Journal of Obstetrics & Gynaecology, 113(4), 430-440.

2 6 0



Shah, P. S. (2010) Paternal factors and low birthweight, preterm, and small for gestational age births: a 
systematic review. American journal of obstetrics and gynecology, 202(2), 103-123.

Silva, L. M., van Rossem, L., Jansen, P. W ., Hokken-Koelega, A. C., Moll, H. A., Ilofman, A., Mackenbach, 
J. P., Jaddoe, V. W . and Raat, H. (2012) Children of low socioeconomic status show accelerated linear 
growth in early childhood; results from the generation r study. PLoS One, 7(5), e37356.

Silverwood, R., Leon, D. and B.L., D. S. (2009a) Long-term trends in BMI: are contemporary childhood BMI 
growth references appropriate when looking at historical datasets? Longitudinal and Life Course Studies, 
1, 27-44.

Silverwood, R. J., De Stavola, B. L., Cole, T . J. and Leon, D. A. (2009b) BMI peak in infancy as a predictor 
for later BMI in the Uppsala Family Study. Int J Obes (Lond), 33(8), 929-37.

Spiegler, J., Stichtenoth, G., Weichert, J., Konig, I. R., Schlaud, M., A, V. D. W., Olbertz, D., Gurth, H., 
Schiffmann, J. H., Bohnhorst, B., Gortner, L., Herting, E., Gopel, W . and The German Neonatal Network, 
G. N. N. (2013) Pregnancy risk factors for very premature delivery: what role do hypertension, obesity and 
diabetes play? Arch Gynecol Obstet.

Strobino, D. M., Ensminger, M. E., Kim, Y. J. and Nanda, J. (1995) Mechanisms for maternal age differences 
in birth weight. American Journal of Epidemiology, 142(5), 504-514.

Tanner, J. (1962) Growth at adolescence, volume 2. Blackwell Scientific Publications Oxford.

Tanner, J. M. (1986) Growth as a target-seeking functions:catch-up and catch-down growth. In Human growth: 
a comprehensice treatise (Ed. F. Falkner). New York: Plenum.

Tanner, J. M. (1989) Foetus into Man. Ware: Castlemand Publications.

Touwslager, R. N., Gielen, M., Derom, C., Mulder, A. L., Gerver, W . J., Zimmermann, L. J., Houben, A. J., 
Stehouwer, C. D., Vlietinck, R., Loos, R. J. and Zeegers, M. P. (2011) Determinants of infant growth in four 
age windows: a twin study. J Pediatr, 158(4), 566-572 e2.

Traviss, G. D., West, R. M. and House, A. O. (2012) Maternal mental health and its association with infant 
growth at 6 months in ethnic groups: results from the born-in-bradford birth cohort study. PLoS One, 7(2), 
e30707.

Tzoulaki, I., Sovio, U., Pillas, D., Hartikainen, A. L., Pouta, A., Laitinen, J., Tammelin, T. IL, Jarvelin, M. R. 
and Elliott, P. (2010) Relation of immediate postnatal growth with obesity and related metabolic risk factors 
in adulthood: the northern Finland birth cohort 1966 study. Am J Epidemiol, 171(9), 989-98.

Vansteelandt, S. (2012) Estimation of direct and indirect effects, In Causality: Statistical Perspectives and 
Applications. London: Wiley.

Victora, C. G., Morris, S. S., Barros, F. C., Horta, B. L., Weiderpass, E. and Tomasi, E. (1998) Breast-feeding 
and growth in Brazilian infants. Am J Clin Nutr, 67(3), 452-8.

261



Vohr, B. R., McGarvey, S. T. and Tucker, R. (1999) Effects o f maternal gestational diabetes on offspring 
adiposity at 4-7 years o f age. Diabetes Care, 22(8), 1284-1291.

Warner, M. and Ozanne, S. (2010) Mechanisms involved in the developmental programming o f adulthood 
disease. Biochem. J, 427, 333-347.

Warrington, N. M., Wu, Y. Y ., Pennell, C. E., Marsh, J. A., Beilin, L. J., Palmer, L. J., Lye, S. J. and Briollais, 
L. (2013) Modelling BMI Trajectories in Children for Genetic Association Studies. PloS one, 8(1), e53897.

Weaver, L. T. (2006) Rapid growth in infancy: balancing the interests o f the child. J Pediatr Gastroenterol 
Nutr, 43(4), 428-32.

Wehkalampi, K., Hovi, P., Dunkel, L., Strang-Karlsson, S., Jarvenpaa, A. L., Eriksson, J. G., Andersson, S. 
and Kajantie, E. (2011) Advanced pubertal growth spurt in subjects born preterm: the helsinki study of 
very low birth weight adults. J Clin Endocrinol Metab, 96(2), 525-33.

Wells, J. C., Hallal, P. C., Reichert, F. F., Dumith, S. C., Menezes, A. M. and Victora, C. G. (2011) Associations 
o f birth order with early growth and adolescent height, body composition, and blood pressure: prospective 
birth cohort from brazil. American journal of epidemiology, 174(9), 1028-1035.

Whincup, P. H., Kaye, S. J., Owen, C. G., Huxley, R., Cook, D. G., Anazawa, S., Barrett-Connor, E., Bhargava, 
S. K., Birgisdottir, B. E., Carlsson, S. et al. (2008) Birth weight and risk o f type 2 diabetes: a systematic 
review. JAMA, 300(24), 2886-2897.

Whitcomb, B. W ., Schisterman, E. F., Perkins, N. J. and Platt, R. W . (2009) Quantification o f collider- 
stratification bias and the birthweight paradox. Paediatric and perinatal epidemiology, 23(5), 394-402.

Wijlaars, L. P., Johnson, L., van Jaarsveld, C. II. and Wardle, J. (2011) Socioeconomic status and weight gain 
in early infancy. International Journal of Obesity, 35(7), 963 -970.

Williams, S. M. and Goulding, A. (2012) Early adiposity rebound is an important predictor o f later obesity. 
Obesity, 17(7), 1310-1310.

Woo, J. G., Guerrero, M. L., Ruiz-Palacios, G. M., Peng, Y. M., Berbers, P. M., Yao, W ., Ortega, H., Davidson, 
B. S., McMahon, R. J. and Morrow, A. L. (2013) Specific infant feeding practices do not consistently explain 
variation in anthropometry at age 1 year in urban united states, mexico, and china cohorts. J Nutr, 143(2), 
166-74.

Wright, C. M., Parkinson, K. and Scott, J. (2006) Breast-feeding in a UK urban context: who breast-feeds, 
for how long and does it matter? Public Health Nutr, 9(6), 686-91.

Xiong, X., Demianczuk, N. N., Saunders, L. D., Wang, F.-L. and Fraser, W . D. (2002) Impact o f preeclampsia 
and gestational hypertension on birth weight by gestational age. American journal of epidemiology, 155(3), 
203-209.

Yang, S., Tilling, K., Martin, R., Davies, N., Ben-Shlomo, Y. and Kramer, M. S. (2011) Pre-natal and post-natal 
growth trajectories and childhood cognitive ability and mental health. Int J Epidemiol, 40(5), 1215-26.

262



Zhang, J., Jiang, J., Himes, J. H., Liu, G., Huang, X ., Guo, Y ., Shi, J. and Shi, S. (2012) Determinants of 
high weight gain and high bmi status in the first three months in urban Chinese infants. Am J Hum Biol, 
24(5), 633-9.

2 6 3


