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Summary: 38 

During infection, increasing pathogen load stimulates both protective and harmful aspects of 39 

the host response. The dynamics of this interaction are hard to quantify in humans, but doing 40 

so could improve understanding of mechanisms of disease and protection. We sought to 41 

model the contributions of parasite multiplication rate and host response to observed parasite 42 

load in individual subjects with Plasmodium falciparum malaria, using only data obtained at 43 

the time of clinical presentation, and then to identify their mechanistic correlates. We 44 

predicted higher parasite multiplication rates and lower host responsiveness in severe malaria 45 

cases, with severe anemia being more insidious than cerebral malaria. We predicted that 46 

parasite growth-inhibition was associated with platelet consumption, lower expression of 47 

CXCL10 and type-1 interferon-associated genes, but increased cathepsin G and matrix 48 

metallopeptidase 9 expression. We found that cathepsin G and matrix metallopeptidase 9 49 

directly inhibit parasite invasion into erythrocytes. Parasite multiplication rate was associated 50 

with host iron availability and higher complement factor H levels, lower expression of 51 

gametocyte-associated genes but higher expression of translation-associated genes in the 52 

parasite. Our findings demonstrate the potential of using explicit modelling of pathogen load 53 

dynamics to deepen understanding of host-pathogen interactions and identify mechanistic 54 

correlates of protection. 55 
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Introduction: 56 

Improved methods are needed to identify mechanisms which protect against human 57 

infectious diseases in order to develop better vaccines and therapeutics1,2. Pathogen load is 58 

associated with the severity of many infections3, and is a consequence of how fast the 59 

pathogen can replicate, how long the infection has been ongoing, and the inhibition or killing 60 

of pathogen by the host response (Fig. 1a). The contribution of these factors varies within an 61 

individual over the course of infection, as well as between individuals. Identifying 62 

mechanistic correlates of the processes which determine pathogen load is likely to be more 63 

informative than identifying correlates of pathogen load per se. However, in humans the 64 

timing of infection is rarely known and treatment cannot usually be withheld to observe the 65 

natural dynamics of pathogen load and host response. Here we present an approach to 66 

estimate the latent determinants of parasite load dynamics. We use these estimates to better 67 

understand severe malaria phenotypes and to identify mechanisms inhibiting parasite growth 68 

and controlling parasite multiplication during Plasmodium falciparum malaria in Gambian 69 

children.  70 

 71 

Results: 72 

Estimating determinants of parasite load and host response dynamics in humans 73 

To estimate the determinants of parasite load dynamics in naturally-infected malaria patients 74 

we calibrated a statistical prediction model using outputs from a mechanistic simulation 75 

which combined information from two datasets. A historical dataset of the longitudinal 76 

course of untreated infection in 97 patients who were deliberately inoculated with P. 77 

falciparum as a treatment for neurosyphilis (malariatherapy dataset) (Supplementary Fig.1) 78 
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was used as a reference for changes in parasite load over time4. A dataset from 139 naturally 79 

infected Gambian children with malaria (Gambian dataset, Supplementary Table 1, 80 

Supplementary Dataset 1) was used for subsequent discovery of the determinants of parasite 81 

load dynamics. We used an existing mathematical model for the malariatherapy data (the 82 

Dietz model4), which estimated latent variables thought to determine changes in parasite load 83 

over time in each individual, and modified the model to better represent the features of the 84 

Gambian dataset. We used the modified model to simulate a large number of in-silico 85 

Gambian patients, with all latent variables and course of infection fully known, and then 86 

trained a statistical model to learn from these simulations the relationships between variables 87 

available in the real Gambian patient data and the unobservable, latent variables.  88 

In the models4, the increase in parasite load up to the first peak is determined by two 89 

individual-specific latent variables (Fig. 1b, see Methods): the within-host multiplication rate, 90 

m, which is the initial rate of increase in parasite load before any constraint by the host 91 

response; and the parasite load required to stimulate a host response that reduces parasite 92 

growth by 50%, Pc,
4. When m, Pc, and parasite load are known, parasite growth inhibition 93 

(PGI) by the host response can be calculated (see Methods). We allowed rescaling of Pc 94 

values between the malariatherapy and Gambian datasets, and incorporated plasma Tumour 95 

Necrosis Factors (TNF) concentrations as an indicator of the protective host response5,6, 96 

using a maximum-likelihood approach (see Methods and Supplementary Fig. 2). These 97 

modifications resulted in higher Pc values in the Gambian population than malariatherapy 98 

subjects, consistent with epidemiological data showing higher fever thresholds in P. 99 

falciparum infected children than in adults7. Other model assumptions and definitions are 100 

shown in Supplementary Table 2.   101 
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To test whether combination of a mechanistic simulation model with statistical learning of 102 

the relationships between latent and directly observable variables was better at predicting the 103 

determinants of parasite load than using observable variables alone, we simulated 2000 104 

Gambian children with malaria with known values of m, Pc, parasite biomass, duration of 105 

illness and plasma TNF (Fig. 1c and Supplementary Fig. 3) and then fit general additive 106 

models (GAMs) to predict values of m and Pc for individual children (Supplementary Table 107 

3). The resulting models produced more accurate predictions of of m and Pc than using 108 

individual variables alone (Fig. 1d).  109 

Next we used the GAMs to predict values of Pc and m for each of the 139 individuals in the 110 

Gambian dataset (Fig. 1e-k, Supplementary Fig. 4). Children with the most severe 111 

manifestations of malaria (SM2) had the highest parasite load, TNF, predicted m, and 112 

predicted Pc values, intermediate values were seen in those with prostration as the only 113 

manifestation of severe disease (SM1), and values were lowest in uncomplicated malaria 114 

(UM), whilst duration of illness did not differ significantly by clinical phenotype (Fig. 1e-i). 115 

These observations suggest that high parasite load and severe disease are most likely in 116 

individuals with either fast replicating parasites (high m) or less immune responsiveness (high 117 

Pc). 118 

Since age can be a major determinant of malaria severity and naturally acquired immunity8, 119 

we examined whether age was associated with m or Pc. Age was not significantly correlated 120 

with m but was significantly negatively correlated with Pc (Fig. 1j,k). This implies little age-121 

related acquisition of constitutive resistance (for example, naturally-acquired antibody-122 

mediated immunity) in these children, as might be expected from the relatively low malaria 123 

transmission in this region of The Gambia9. However, these data also indicate that a lower 124 
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parasite load would be needed to provoke an equivalent host response in older individuals 125 

without significant naturally acquired immunity.   126 

Predicting severe malaria phenotype from within-host dynamics 127 

We next asked whether individual estimates of m and Pc could be used to predict 128 

pathophysiological features malaria which had not been used in our model derivation. Severe 129 

malarial anemia (hemoglobin concentration <5g/dL), is most common in the youngest 130 

children in high transmission settings, but rare in lower transmission settings such as Greater 131 

Banjul region of The Gambia, where cerebral malaria was relatively more common10. Severe 132 

malarial anemia is characterised by a higher parasite biomass10-12, lower levels of both TNF 133 

and interleukin-10 (IL-10), but an elevated ratio of TNF:IL-1013,14 when compared to cerebral 134 

malaria. In our Gambian subjects, hemoglobin concentration could be predicted from 135 

estimated Pc, m and age; IL-10 concentration could be predicted from m and Pc 136 

(Supplementary Table 4, Fig. 2a-b). We simulated a population of Gambian infants, selected 137 

those predicted to have hemoglobin <5 g/dL, and compared their characteristics to real 138 

Gambian subjects with cerebral malaria. The simulated severe anemia cases had lower m but 139 

similar Pc, higher parasite biomass and longer duration of illness than the cerebral malaria 140 

patients (Fig 2c-f). Both TNF and IL-10 concentrations were predicted to be lower in severe 141 

anemia than in cerebral malaria (Fig 2g-h), whereas the TNF:IL-10 ratio was predicted to be 142 

higher in severe anemia (Fig 2i), supporting the biological plausibility of relationships 143 

defined in our model and illuminating a potential explanation for these distinct severe malaria 144 

phenotypes.   145 
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Estimating parasite growth inhibition reveals the protective effect of platelets 146 

The role of the host response in restricting parasite load is often unclear in human malaria 147 

because the strongest host responses are often seen in patients with the highest parasite loads 148 

and most severe disease15,16. For example platelets directly inhibit parasite growth16,17, and 149 

the reduction in platelet count typically seen in malaria is partly a consequence of the 150 

protective mechanism of platelet adhesion to infected red cells16. However the reduction in 151 

platelet count is greatest in individuals with the highest parasite load and most severe 152 

disease18, which seems counterintuitive if the low platelet counts indicate parasite killing. In 153 

Gambian children, estimated PGI did not differ significantly by clinical phenotype (Fig. 3a) 154 

indicating that the components of the host response which restrain parasite growth are 155 

similarly activated in severe and uncomplicated disease groups at the time of hospital 156 

presentation, but implying that this response developed too late to prevent high parasite load 157 

in the severe cases. Subjects with severe disease had the lowest platelet counts (Fig. 3b and 158 

Supplementary Table 1) and the highest parasite loads (Fig. 1d), but the protective role of 159 

platelets was evident through the significant (P=0.0001) correlation with PGI (Fig. 3c). Thus 160 

considering differences between individuals in observed parasite load and host response as 161 

part of a dynamic rather than static process can resolve counterintuitive associations.   162 

Predicting mechanistic correlates of parasite growth inhibition  163 

To determine whether our model-derived estimates could be used to discover aspects of host-164 

parasite interaction we sought to identify mechanistic correlates of protection and 165 

susceptibility. We analysed human whole blood gene expression, with gene signature-based 166 

deconvolution to adjust for leukocyte-mixture19, from samples of 24 children at the time of 167 

presentation (13 with UM, 11 with SM, Supplementary Table 5). Of 11702 detected human 168 

genes, 51 were significantly correlated (26 positively, 25 negatively) with estimated PGI after 169 
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adjustment for false discovery rate (Benjamini-Hochberg adjusted P<0.05, Fig. 4a, 170 

Supplementary Table 6). We reasoned that genes positively correlated with PGI should be 171 

enriched for effector mechanisms which act to reduce parasite load, whilst genes negatively 172 

correlated with PGI should be enriched for mechanisms which favour increase in parasite 173 

load. Eight of these genes were also correlated with parasite biomass and three with TNF 174 

(Supplementary Table 6).  175 

Genes positively correlated with PGI (Fig 4a) showed limited canonical pathway enrichments 176 

(Supplementary Table 7) but 16 (62%) were linked together in a network around extracellular 177 

signal-regulated kinases ERK1/2 and AKT serine/threonine kinase (Fig. 4b). These kinases 178 

integrate cellular inflammatory and metabolic responses to control innate defence 179 

mechanisms such as cytokine secretion, phagocytosis and degranulation20,21. The 25 genes 180 

negatively correlated with PGI were strongly enriched in immune response pathways 181 

(Supplementary Table 7). Network analysis showed 15 (60%) of the negatively correlated 182 

genes were linked through a network focussed around type 1 interferon (Fig. 4c), consistent 183 

with observations that sustained type 1 interferon signalling is associated with higher 184 

parasitemia in mice22-25  and potentially in humans22,26. C-X-C motif chemokine ligand 10 185 

(CXCL10, also known as IFN-γ-inducible protein of 10 kDa, IP-10) expression had the 186 

greatest log-fold change of the genes negatively correlated with PGI (Fig. 4c), consistent with 187 

findings that CXCL10 deletion and neutralisation decrease parasite load in mice27.  188 

We investigated whether associations with PGI were dependent on assumptions we made 189 

about the true severity rate in Gambian children, which we assumed to be 5% based on 190 

published data in other settings28,29. Varying this to credible extremes of 1% and 10% and 191 

repeating the process of calibration between datasets, fitting of models to predict m and Pc, 192 

and estimating new values for PGI, resulted in little difference in the genes identified as 193 
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significantly associated with PGI, or the significance of individual genes (Supplementary 194 

Table 8).    195 

Cathepsin G and MMP9 directly inhibit parasite growth 196 

The 26 genes positively correlated with PGI have not, to our knowledge, previously been 197 

described as having anti-parasitic effects so we sought direct biological evidence, focussing 198 

on two encoding secreted proteins as the best candidates: CTSG (cathepsin G) and MMP9 199 

(matrix metallopeptidase 9, also known as matrix metalloproteinase 9 and gelatinase B), 200 

which both encode neutrophil granule proteins30. We tested whether these proteases could 201 

inhibit parasite growth in vitro. Cathepsin G and MMP9 both inhibited growth of P. 202 

falciparum 3D7 strain (Fig. 5a). Addition of cathepsin G to schizont cultures produced a 203 

dramatic reduction in invasion of new erythrocytes, and pretreatment of erythrocytes with 204 

cathepsin G before adding them to schizont cultures produced a similar reduction in their 205 

invasion (Fig. 5b), indicating that cathepsin G acts primarily on the erythrocyte. Addition of 206 

MMP9 to schizont cultures produced a more modest reduction, whilst pretreatment of 207 

erythrocytes did not reduce invasion, implying that MMP9 likely acts against schizonts or 208 

free merozoites rather than preventing invasion at the erythrocyte surface (Fig. 5b).  209 

In order to identify biologically relevant concentrations of cathepsin G and MMP9 we 210 

measured their concentrations in whole blood from healthy donors, before and after 211 

stimulating degranulation, and in plasma from children with malaria at the time of clinical 212 

presentation (Fig. 5c). Local concentrations which might occur in vivo, adjacent to 213 

degranulating neutrophils, could be at least an order of magnitude higher31. MMP9 is also 214 

known to be released from other cell types in response to P. falciparum, including vascular 215 

endothelial cells32. MMP9 dose-dependently inhibited parasite growth over a physiological 216 

range of concentrations (Fig. 5d). Similarly, parasite invasion was dose-dependently inhibited 217 
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by cathepsin G pre-treatment of erythrocytes, with similar effects in each of four parasite 218 

strains with different invasion phenotypes33 (Fig. 5e). Combined treatment with low doses of 219 

MMP9 and cathepsin G – in the range detected in patient plasma – showed an additive effect 220 

(Fig. 5f).  221 

Cathepsin G has previously been reported to cleave red cell surface glycophorins34, therefore 222 

we asked whether it might also cleave other RBC surface proteins which are used as invasion 223 

receptors by P. falciparum35. Consistent with its broad inhibition of parasite invasion, 224 

cathepsin G dose-dependently cleaved the majority of P. falciparum invasion receptors 225 

including glycophorins A, B, and C, CD147 (basigin), CD108 (semaphorin 7A), and 226 

complement receptor 1 (CR1), but not CD55 (DAF) (Fig. 5g). MMP9 did not cleave any of 227 

these surface receptors (Supplementary Fig. 5). PMA stimulation of healthy donor whole 228 

blood recapitulated the loss of erythrocyte surface glycophorins A and B, CD108 and CD147 229 

in all donors, decreased glycophorin C expression in 6 of 8 healthy donors, but did not 230 

consistently reduce CR1 (Fig. 5h) (as might be expected from the dose-response curves, Fig 231 

5g). In samples from Gambian children on the day of presentation with P. falciparum 232 

malaria, the proportions of erythrocytes with detectable expression of glycophorins A and B 233 

and CD147 were significantly lower than in convalescent samples (28 days after treatment), 234 

and there was a trend to lower expression of CD108 and glycophorin C (Fig. 5i).  These 235 

results would be consistent with cleavage of these surface molecules in vivo during acute 236 

infection. The variable expression seen at day 28 (Fig. 5i) may indicate the persistence of 237 

modified erythrocytes in the circulation. The importance of glycophorins and basigin in RBC 238 

invasion and genetic susceptibility to severe malaria is well established36-38, and so it is 239 

highly likely that the cleavage of these erythrocyte receptors by cathepsin G would have a 240 

protective effect in vivo.  241 
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Host and parasite factors associated with parasite multiplication rate 242 

In our model, m is influenced by constitutive host and parasite factors but independent of any 243 

parasite load-dependent responses. We sought to confirm associations with two constitutive 244 

host factors known to influence parasite growth: iron39 and complement factor H (FH)40,41 245 

(Supplementary Dataset 1). Since we did not have premorbid blood samples we used 246 

convalescent blood as a proxy for pre-infection status, with samples collected 28 days after 247 

treatment when the host response was quiescent (median C-reactive protein 1.1mcg/mL (IQR 248 

0.5-5.1, n=70), similar to healthy West African population levels42).  249 

Iron deficiency is protective against malaria43 and reduces parasite multiplication in vitro39. 250 

Consistent with this, levels of hepcidin (a regulator of iron metabolism and marker of iron 251 

sufficiency or deficiency44) were significantly correlated with m (rs=0.21, P=0.049) in 92 252 

children who had not received blood transfusion.  253 

FH is a constitutive negative regulator of complement activation which protects host cells 254 

from complement mediated lysis45 but many pathogens including P. falciparum have evolved 255 

FH binding proteins to benefit from this protection40,41. FH protects blood-stage parasites 256 

from complement mediated killing in vitro40,41 and higher plasma levels are associated with 257 

susceptibility and severity of malaria46. In the 14 children with residual day 28 plasma 258 

available, FH correlated with m (rs=0.75, P=0.002), providing further support that the 259 

quantitative estimates from our model exhibit expected relationships with known 260 

determinants of parasite growth. 261 

We investigated whether we could identify any parasite processes associated with m, through 262 

correlation with parasite gene expression. Of 3704 parasite genes detected by RNA-Seq, 263 

adjusted for developmental stage distribution19, no individual genes passed the FDR adjusted 264 



13 

 

P-value threshold of <0.05. Therefore we used weighted gene correlation network analysis to 265 

reduce dimensionality47, generating 17 modules of co-expressed parasite genes. Module 266 

eigengene values19 of two modules correlated with m (unadjusted Spearman correlation 267 

P<0.05); their hub-genes were PF3D7_1136000 (a conserved Plasmodium protein of 268 

unknown function) and PF3D7_1238300 (putative pre-mRNA-splicing factor CWC22). The 269 

PF3D7_1136000 module was negatively correlated (rs=-0.5, P=0.01) with m and contained 270 

140 genes with greatest gene ontology enrichment in microtubule-based movement 271 

(Supplementary Tables 9 & 10). The PF3D7_1136000 module genes have high tolerance to 272 

insertional mutagenesis (Fig. 6a) and high parasite fitness following mutation (Fig. 6b), 273 

characteristics of winning mutants in competitive growth assays48, supporting the concept 274 

that lower expression of these genes may favour more rapid growth. 77 (55%) of the genes in 275 

this module exhibit greatest expression during gametocyte development49, consistent with the 276 

concept that increased sexual-stage commitment results in reduced asexual replication50. In 277 

contrast, the PF3D7_1238300 module was positively correlated with m (rs=0.46, P=0.03), 278 

and contained 45 genes enriched in translation functions (Supplementary Tables 9 & 10), 279 

plausible determinants of m, with mutagenesis tolerance typical of essential genes (Fig. 6a,b). 280 

Parasite genes differentially expressed between severe and uncomplicated malaria cases19 281 

were highly over-represented in this module (16 of 45 (36%), P=1.2x10-8, Fisher exact test). 282 

Discussion: 283 

Using a model-based approach to estimate the within-host dynamics of pathogen load and its 284 

determinants in human infection we could estimate the relative contributions of parasite 285 

multiplication and host response to parasite load measured at a single point in time, and we 286 

have used these predictions to identify mechanistic determinants of parasite load in malaria. 287 

Our approach is based on clearly defined assumptions, but as with any attempt to model 288 
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complex biology, alternative approaches are possible. We cannot, at present, propagate 289 

uncertainty throughout the sequential stages of the model fitting, prediction of parameter 290 

estimates in individual subjects, and association of these parameter estimates with real 291 

variables. However, estimating the dynamics of parasite load allows us to make inferences 292 

about disease biology and mechanisms associated with PGI which could not have been made 293 

using only direct measurements. Our mechanistic validation suggests that the relative 294 

estimates of latent variables are accurate enough to be useful, providing proof-of -principle 295 

that pathogen load dynamics can be estimated in humans. This approach could be refined and 296 

expanded to identify additional genetic and serological determinants of pathogen load 297 

dynamics. The latter should be identified prospectively, since use of convalescent samples 298 

may introduce confounding. 299 

Parasite load is only one of the factors associated with severe malaria and its interpretation is 300 

dependent on epidemiological context10,15,29. Variations in the host response, naturally 301 

acquired immunity, and the expression of  P. falciparum erythrocyte membrane protein 1 302 

(PfEMP1) variants are also important determinants of severity and of disease phenotype10,15. 303 

We have previously suggested that variation in the dynamics of parasite load may explain 304 

why cerebral malaria and severe anaemia occur with parasites expressing the same PfEMP1 305 

variants10, and our model-based approach predicted that slower growth and longer duration of 306 

illness may distinguish severe anemia from cerebral malaria.     307 

The importance of pathogen load and the dynamic nature of host-pathogen interactions are 308 

often omitted from studies of life-threatening infectious diseases in humans3. Much of our 309 

understanding of the host-pathogen interactions comes from comparisons between 310 

individuals at the point of clinical presentation, despite the fact that they may be at different 311 

stages in the dynamic process of infection. This can result in seemingly paradoxical 312 
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observations such as high levels of TNF or low levels of platelets associated with severe 313 

malaria15,16, whilst evidence also indicates that TNF and platelets mediate defense against 314 

malaria parasites5,6,15-17. Considering the dynamic nature of the host-parasite interaction may 315 

explain these paradoxes and identify protective mechanisms more efficiently.  316 

We identified several mechanisms which might be considered as prototypes for host-directed 317 

therapy in malaria. Inhibition of type-1 interferon or CXCL10 signalling with inhibitory 318 

antibodies or small molecules might be strategies to enhance control of parasite load. The 319 

therapeutic potentials of cathepsin G and MMP9 may be counterbalanced by risk of collateral 320 

tissue damage, but selective targeting of receptors on the erythrocyte surface may be a useful 321 

paradigm for both treatment and prevention of malaria. 322 

Our approach could be applied to some other infectious diseases in which pathogen load can 323 

be measured and for which we do not have effective treatments, including emerging viral 324 

infections like Ebola, and possibly highly resistant bacterial pathogens, for which host-325 

directed therapies may life-saving2.   326 
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METHODS 327 

Subjects and laboratory assays 328 

We used data from all of the malariatherapy patients reported by Dietz et al.4 and from all 329 

139 Gambian subjects reported in our previous studies11,51,52 who had all of the following 330 

data available: age, parasite biomass estimate, plasma TNF concentration, duration of illness 331 

and severity of illness. No subjects were excluded after this selection, and all available data 332 

was included in analyses, with the exception that one outlier was excluded from parasite gene 333 

expression analysis. As described previously11,51,52, Gambian children (<16 years old) were 334 

recruited with parental consent from three peri-urban health centres in the Greater Banjul 335 

region, from August 2007 through January 2011 as part of a study approved by the Gambia 336 

Government/MRC Laboratories Joint Ethics Committee, and the Ethics Committee of the 337 

London School of Hygiene and Tropical Medicine. P. falciparum malaria was defined by 338 

compatible clinical symptoms in the presence of ≥5000 asexual parasites/µL blood, and any 339 

children suspected or proven to have bacterial co-infection were excluded. Severe malaria 340 

was specifically defined by the presence of prostration (SM1) or any combination of three 341 

potentially overlapping syndromes (cerebral malaria (CM), severe anemia (SA, hemoglobin 342 

<5 g/dL), and hyperlactatemia (blood lactate >5 mmol/L) - collectively SM2)11,51-53. Clinical 343 

laboratory assays, measurements of plasma TNF and IL-10 by Luminex, measurements of 344 

gene expression by RT-PCR, and estimation of total parasite biomass from PfHRP2 ELISA 345 

have been previously described11,52. Subject-level data from these Gambian children is 346 

available as Supplementary Dataset 1. 347 

 348 

Statistical analyses 349 
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Statistical analyses were undertaken using the R statistical software54 and GraphPad Prism 350 

(GraphPad Software, Inc.). Directly measured continuous variables were compared between 351 

groups using unpaired or paired student’s t-test (when normally distributed) and the Mann-352 

Whitney or Wilcoxon matched pairs tests (when normal distribution could not be assumed), 353 

and ANOVA or Kruskal-Wallis test for comparison across multiple groups. Associations 354 

between measured variables and latent variables were assessed using generalised additive 355 

models (GAM55, with the R package “mgcv”); the generalised cross-validation score and 356 

explained variance were used to select the best GAM once all model terms had significant 357 

effects (P<0.05). It was not possible to propagate uncertainty estimates through all stages 358 

from model development, calibration to the Gambian data, and prediction of latent variables 359 

in individual subjects, and so statistical analyses of latent variable were undertaken using 360 

their predicted values without any measure of uncertainty, and using non-parametric 361 

methods. Correlations between predicted values of latent variables and measured variables 362 

were done using Spearman correlation.  363 

All hypothesis tests were two-sided with alpha = 0.05 unless specifically stated otherwise. 364 

One-sided testing was only used when justified by small sample size and a strong a priori 365 

hypothesis for the direction of effect. We did not adjust for multiple hypothesis testing, 366 

except in the case of gene expression analyses where false-discovery rate was controlled 367 

using the Benjamini-Hochberg method. Dose-response curves were fitted using asymmetrical 368 

sigmoidal five-parameter logistic equation in GraphPad Prism.  369 

 370 

Model relating parasite multiplication, host response and parasite load 371 
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A process-based, stochastic simulation model was devised to reproduce the clinical data 372 

collected from the Gambian children. This was achieved by combining the information in the 373 

Gambian data with a model describing the first wave of parasitemia in non-immune adults 374 

who were deliberately infected with P. falciparum malaria to treat neurosyphilis 375 

(“malariatherapy”)4. These malariatherapy data, from the pre-antibiotic era, are the main 376 

source of information on the within-host dynamics and between-host variation in the course 377 

of parasitemia in untreated malaria infections. The model of Dietz et al.4 was modified and 378 

extended in order to be applied to the Gambian data, and we made the assumption that the 379 

Gambian children presented to hospital prior to the first peak of parasitemia. 380 

 381 

Model of ascending parasitemia in malariatherapy subjects. The model relates parasite 382 

density after each 2-day asexual blood stage cycle (P(t+2)) to the parasite density at the end of 383 

the previous cycle (P(t)) by the following equation: 384 

𝑃(𝑡+2) = 𝑃(𝑡). 𝑚. 𝑆𝑐(𝑡) 385 

The host-specific parasite multiplication rate, m, is a property of both parasite and host, 386 

allowing for growth-inhibition by constitutive factors; the proportion of parasites that will 387 

survive the effects of the density-dependent host response in the present cycle is Sc: 388 

𝑆𝑐(𝑡) =
1

1 + (
𝑃(𝑡)
𝑃𝑐
)

 389 

 390 
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, where Pc is the host-specific parasite load threshold at which the host response is strong 391 

enough to inhibit 50% of parasite growth in that cycle. Parasite growth inhibition (PGI(t)) is 392 

defined as 1-Sc(t). 393 

Consistent with the original Dietz model, P(0) was set to 0.003 parasites/µl4. 394 

The original Dietz model included an additional parameter, Sm, to help describe the decline in 395 

parasitemia after the peak of the first wave. Sm is the proportion of isogenic parasites 396 

surviving an additional density- and time-dependent host response, which might represent 397 

adaptive immunity (4). Estimates of the range of values of Sm in the Dietz dataset and model 398 

were used when simulating data but since this parameter has little influence on parasite 399 

densities prior to the peak it was not used to make subsequent predictions of m and Pc in 400 

individual Gambian subjects.  401 

At the explicit request of Klaus Dietz and Louis Molineaux, we hereby communicate the 402 

following correction regarding their assertion that the malariatherapy patients had not 403 

received any treatment4: it was later found that 47 of these patients had indeed received 404 

subcurative treatment, and that those patients had significantly higher parasite densities. This 405 

is unlikely to influence our analysis, because treatment would only be provided when 406 

malariatherapy patients became very unwell, presumably at maximum parasitemia, whereas 407 

we assume that most patients with naturally acquired infection likely present prior to the peak 408 

parasitemia that might occur in the absence of treatment.  409 

Fitting of the malariatherapy model to data from Gambian children.  Individual-level 410 

parameter estimates for the malariatherapy dataset were kindly provided by Klaus Dietz. The 411 

logarithms of these 97 estimates of m and Pc were well described by a multivariate normal 412 

distribution, providing a quantitative description of inter-individual variation in the dynamics 413 
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of the first wave of parasitemia. In order to use the Dietz model to simulate the Gambian 414 

data, a number of modifications and extensions were made. Some of these required 415 

estimation of additional parameters by comparing the model simulations with the Gambian 416 

data. Dietz et al. provided a statistical description of the parasite density at which first fever 417 

occurred (the “fever threshold”) in the form of the distribution of the ratio of threshold 418 

density to peak parasitemia. The median density at first fever was at 1.4% of peak density. 419 

We introduced the assumption that the onset of fever occurs at a particular threshold value of 420 

Sc, because fever is dependent on the production of cytokines like interleukin-6 and TNF, 421 

both components of the host response. This constitutes a process-based model for the onset of 422 

fever rather than a purely statistical one. Because individuals differ in their response to 423 

parasite load (captured through variation in Pc), this results in variation of parasite densities at 424 

first fever but ignores any potential variation among individuals with respect to magnitude of 425 

host response necessary to generate fever. The host response threshold for the onset of fever 426 

Sc
f = 0.86 was determined as the value of Sc calculated at 1.4% of the peak density of a 427 

simulated individual with the median parameter values. This yielded a distribution of fever 428 

ratios similar to the one described by Dietz et al.4, albeit with less variation.  429 

To simulate the time between onset of fever and clinical presentation we made use of the self-430 

reported duration of symptoms in the Gambian data. The model which was most consistent 431 

with these values assumed a gamma-distributed duration of symptoms in non-severe cases, 432 

and a possibility to present earlier in the case of more severe disease. Since parasite biomass 433 

is related to likelihood of having severe malaria11,12,56 the probability of early presentation on 434 

any day after onset of fever was set proportional to the (density-dependent) probability of 435 

having severe disease on that day. Scale (ζ) and shape (κ) parameters of the gamma 436 

distribution as well as the factor (ξ) for determining the probability of early presentation were 437 

estimated from the Gambian data. 438 
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We assumed that TNF production τ(t) increases monotonically with density dependent host 439 

response (1-Sc) and represented this relationship using a heuristic function of the form 440 

𝜏(𝑡) = 𝑎 + 𝑏 

(

 
 
1 − 

1

1 + (
−log (𝑆𝑐(𝑡))

𝜆∗
)

𝛾

)

 
 

 441 

 442 

, with free parameters a, b, λ* and γ estimated from the Gambian data.  443 

The Gambian children had on average higher parasite densities than the malariatherapy 444 

patients, which led to a bad fit of the original model to the Gambian data. This was overcome 445 

by introducing the assumption that the Gambian children had a different range of values of Pc 446 

to the adult malariatherapy patients. A factor π was therefore estimated by which the ln Pc 447 

value from the Dietz model was multiplied. This led to overall higher parasite densities upon 448 

presentation. However, our model uses parasite biomass and its relationship with disease 449 

severity to predict day of presentation, and there is an interaction between the mean ln Pc and 450 

the variation in ln Pc, as well as the proportion of severe malaria in the simulated Gambian 451 

population. Based on the relatively low malaria transmission in the Banjul area of The 452 

Gambia, we assumed that severe cases (defined by the presence of any of: prostration, 453 

hyperlactatemia, severe anemia or cerebral malaria) were over-represented by hospital-based 454 

recruitment and that in an unselected population of children of similar age to those in our 455 

dataset only approximately 5% of all malaria infections would be severe28,29. Therefore we 456 

estimated a factor δ by which the variance of ln Pc should be multiplied such that both rate of 457 

severity as well as the distribution of parasite biomass matched well after fitting our 458 

simulation to the Gambian data. 459 
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The free parameters ζ , κ, ξ,  a, b, λ*, γ,  π and δ (Supplementary table 11), together 460 

summarized as θ, were estimated by fitting model simulations to the information on TNF, 461 

parasite density, and duration of symptoms, for any given candidate parameterization, a total 462 

of 139 clinically presenting individuals were simulated from the model, which corresponds to 463 

the size of the Gambian dataset. An objective function L(θ) was calculated, and a simulated 464 

annealing algorithm (provided by the “optim” function in R) determined the value for θ 465 

which maximizes this function. The log-likelihood L (θ) was comprised of three separate 466 

objectives. The first objective represented the log-probability that the frequency of severe 467 

cases in the simulation was equal to an assumed 5%, employing a binomial likelihood, given 468 

the actual number of severe cases sampled in 139 simulated individuals. The second objective 469 

considered the overlap between the bivariate distribution of ln parasite density vs. ln TNF 470 

concentration in the simulated data compared to the Gambian dataset. An approximate 471 

numerical value for this partial log-likelihood was obtained as the log probability of the 472 

Gambian data (density and TNF) given a two-dimensional kernel density estimate of the 473 

simulation output as a likelihood model. Kernel density estimates were obtained using the 474 

“kde2d” function in the “MASS” package in R. In this calculation, the TNF/density data 475 

points of severe or prostrated Gambian patients entered the partial likelihood with a weight of 476 

1/11, to account for the oversampling of severe cases in the Gambian data. The third 477 

objective concerned the two-dimensional distribution of log density and duration since first 478 

fever. This partial log-likelihood was obtained using the same kernel-based approach 479 

described above, with weights of 1/11 for severe and prostrated cases. The overall log-480 

likelihood L (θ) was calculated as a weighted sum of the three partial log-likelihoods, with 481 

the log-probability of having the desired true severity rate weighted with a factor of 68, which 482 

ensured similar magnitude of the three partial log-likelihoods at the optimum. 483 
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The results of the fitting algorithm were visually confirmed to yield a good overlap of the 484 

joint distributions of density and biomass, the duration of symptoms, TNF and biomass 485 

between simulation and the Gambian children. Approximate confidence intervals for the 486 

parameter estimates were determined by employing a 2nd degree polynomial to estimate the 487 

curvature of the maximum simulated likelihood surface in the vicinity of the parameter point 488 

estimate, assuming independence of parameters.  489 

As in the original model of Dietz et al.4, peripheral parasite densities were used to determine 490 

the dynamic changes in parasitemia, implying a correlation between peripheral densities and 491 

total parasite biomass. Total parasite biomass per kg was calculated from the predicted 492 

parasite density by the equation 70,000 x 1.09 x predicted parasite density in parasites/µL, as 493 

has been determined previously for uncomplicated malaria cases in the Gambian dataset11.  494 

Deterministic relationships between observable and latent variables. The range of values of 495 

m and ln Pc in a simulated population of 2000 patients were determined and each divided into 496 

50 equally spaced increments in order to generate 2500 possible combinations of m and ln Pc 497 

for which all model outcomes were determined in order to visualize their relationships. For 498 

the purpose of this analysis, the time-dependent adaptive immune response parameters 499 

(which comprise Sm) were set for all subjects at their respective population median values. 500 

The model of Dietz et al. makes use of discrete 2 day time intervals4, corresponding to the 501 

duration of the intraerythrocytic cycle in a highly synchronised infection. However, naturally 502 

acquired infections are rarely this synchronous and the time since infection of our Gambian 503 

patients is an unknown continuous variable. In order to cope with this we assumed that the 504 

relationship between predicted outcome variables (parasite biomass, duration of illness and 505 

TNF concentration) and explanatory variables (m and Pc) could be approximated by 506 

smoothed GAM. We used the GAM to estimate values of m, Pc and parasite growth 507 
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inhibition (PGI, 1-Sc) in the Gambian children, based on their known total parasite biomass, 508 

duration of symptoms and TNF concentration. 509 

Predicting severe anemia and IL-10 concentrations 510 

We used the data from the Gambian children to predict hemoglobin and IL-10 concentrations 511 

as continuous variables, using GLM with predicted Pc, predicted m, and age as explanatory 512 

variables. We then simulated a population of 50,000 1-year olds with malaria, allowing for 513 

normal variation in baseline hemoglobin concentration57, and adjusting Pc values according to 514 

a linear relationship between predicted ln Pc and age in the Gambian children. To predict the 515 

occurrence of severe anemia, we calculated the proportion of subjects estimated to have 516 

hemoglobin <5g/dL, and for these we calculated IL-10 concentrations as a continuous 517 

outcome. 518 

RNA-sequencing and data analysis 519 

We used RNA-sequencing data from all 24 subjects who were included in our previously 520 

reported study19 and had data to allow estimation of parasite growth inhibition and 521 

multiplication rate. RNA extraction, library preparation, sequencing and downstream 522 

analysis, including adjustment for leukocyte and parasite developmental stage mixture, have 523 

all been previously described19.    524 

The association of gene expression with m and PGI was determined using a generalized linear 525 

model approach in edgeR, allowing adjustment for leukocyte and parasite developmental 526 

stage mixture. Coefficients and P-values were calculated for the relationships between 527 

adjusted log gene expression and PGI for all detected genes. False discovery rate (FDR) was 528 

then computed using the Benjamini-Hochberg approach and FDR below 0.05 was considered 529 

to be significant in the initial analysis. FDRs between 0 and 0.1 were considered to indicate 530 
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consistent findings when comparing associations obtained under different model 531 

assumptions. Gene ontology (GO) terms were obtained from Bioconductor packages 532 

“org.Hs.eg.db” and “org.Pf.plasmo.db”. Fisher’s exact test was used to identify significantly 533 

over-represented GO terms from gene lists. The background gene sets consisted of all 534 

expressed genes detected in the data set. Enrichment analysis for biological process terms 535 

was carried out using the "goana()" function in edgeR. Using groups of genes significantly 536 

positively or negatively correlated with PGI, Ingenuity Pathway Analysis (Qiagen) was used 537 

to identify networks of genes functionally linked by regulators, interactions or downstream 538 

effects, which were visualized as radial plots centered around the most connected network 539 

member. The weighted gene co-expression network analysis (WGCNA) tool47 was used to 540 

construct modules of highly co-expressed parasite genes, based on analysis of 23 samples 541 

(sample HL_478 was removed as an outlier in parasite RNA-seq analysis) as described 542 

previously19. Module eigengene values for each subject were correlated with predicted m, 543 

using Spearman correlation.  544 

Parasite culture, growth and invasion assays 545 

P. falciparum 3D7 strain was used in continuous culture for all of the experiments unless 546 

otherwise stated. Asexual blood stage parasites were cultured in human blood group A red 547 

cells, obtained from the National Blood Service, at 1-5% hematocrit, 37°C, 5% CO2 and low 548 

oxygen (1% or 5%) as described previously58,59. Growth medium was RPMI-1640 (without 549 

L-glutamine, with HEPES) (Sigma) supplemented with 5 g/L Albumax II (Invitrogen), 147 550 

µM hypoxanthine, 2 mM L-glutamine, and 10 mM D-glucose. Parasite developmental stage 551 

synchronization was performed using 5% D-sorbitol to obtain ring stage parasites or Percoll 552 

gradients for schizont stage enrichment58,60. For growth assays, schizonts were mixed at <1% 553 

parasitemia with uninfected erythrocytes at 2% final hematocrit. Cathepsin G (Abcam) or 554 
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recombinant active MMP9 (Enzo) were added for 72 hour incubation to allow two replication 555 

cycles. Growth under each condition was calculated relative to the average growth in 556 

untreated samples. Invasion assays were performed by adding parasites synchronised at the 557 

schizont stage to target erythrocytes and incubating for 24 hours. Cathepsin G and MMP9 558 

were either pre-incubated with the target cells overnight followed by four washes with RPMI 559 

to completely remove them, or they were added directly to the culture of schizonts with target 560 

erythrocytes for 24 hours. The same protocol was followed for other P. falciparum strains 561 

except Dd2, for which magnetic purification was used to purify schizonts61. For combined 562 

treatments, cathepsin G was added to target erythrocytes and MMP9 was added at the same 563 

time as schizonts.  564 

Flow cytometry for parasitemia and erythrocyte surface receptor expression 565 

Flow cytometry was performed using a BD LSR Fortessa machine and analysis was 566 

conducted using FlowJo v10 (TreeStar Inc.), and gating strategies are show in Supplementary 567 

Figure 5. To assess parasitemia, 1µl of sample at 50% hematocrit was stained with Hoechst 568 

33342 (Sigma) and dihydroethidium (Sigma) and then fixed with 2% paraformaldehyde 569 

(PFA) before flow cytometry as previously described62. Erythrocyte surface receptor 570 

expression was assessed by median fluorescence intensity of erythrocytes labelled with 571 

monoclonal antibodies or by comparison with isotype control antibodies (Supplementary 572 

Table 12). Briefly, erythrocytes were washed twice before resuspending at 50% haematocrit, 573 

of which 1-2µl was stained in 100µl of antibody cocktail in FACS buffer (2% fetal bovine 574 

serum, 0.01% sodium azide in PBS) for 30 minutes in the dark on ice. Samples were washed 575 

twice in FACS buffer and then fixed in 300µl FACS buffer with 2% paraformaldehyde. 576 

Surface receptor loss was calculated from the difference between the treated and untreated 577 
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sample median fluorescent intensities after the isotype control antibody fluorescence had 578 

been subtracted. 579 

Whole blood stimulation and Cathepsin G and MMP9 ELISA 580 

Whole blood was collected from 8 healthy adult donors and plated at 25% hematocrit, and 581 

incubated overnight with or without 1µM PMA (Sigma). Supernatant was collected to 582 

perform Cathepsin G (CTSG ELISA Kit-Human, Aviva Systems Biology) and MMP9 583 

(Legend Max Human MMP-9, Biolegend) ELISAs, and erythrocytes were collected for 584 

assessment of surface receptor expression. The same ELISA kits were used to measure 585 

cathepsin G and MMP9 in acute (day 0) plasma samples from children with malaria. 586 

 587 

C-reactive protein, Hepcidin, and complement Factor H ELISA 588 

Using plasma samples collected 28 days after infection, CRP was measured using the human 589 

Simple Step ELISA kit (Abcam) and hepcidin concentration was measured in subjects who 590 

had not received blood transfusion using the Hepcidin-25 bioactive ELISA kit (DRG), both 591 

according to the manufacturer’s instructions, with duplicate measurements when sufficient 592 

plasma was available. Complement Factor H assays were performed using an in-house 593 

ELISA as described63. 594 

Data availability 595 

Estimates of parameters determining within-host dynamics in the malariatherapy dataset were 596 

obtained from reference 4, whose corresponding author may be contacted at klaus.dietz@uni-597 

tuebingen.de. RNA-seq data have been deposited in the ArrayExpress database at EMBL-EBI 598 

(www.ebi.ac.uk/arrayexpress) under accession number E-MTAB-6413. Individual subject-599 
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level data is available within the paper and its supplementary information files. All other data 600 

that support the findings of this study are available from the corresponding author upon 601 

reasonable request. 602 

Code availability 603 

The source code for the model simulating Gambian child subjects and examples of its use are 604 

presented as Supplementary Library File, Supplementary Example File.  605 
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FIGURE LEGENDS 606 

Fig 1. Estimating the dynamics of parasite load and host response in malaria.   607 

(a) Conceptual model of determinants of parasite load. (b) Schematic of relationships 608 

between parasite load, multiplication rate (m), Pc, and parasite growth inhibition (PGI) 609 

derived from the longitudinal malariatherapy dataset. (c) Correlation matrix for Pc, m, parasite 610 

biomass, duration of illness and TNF concentrations in 2000 simulated Gambian children 611 

(Spearman correlation, LOWESS fit lines). (d) Performance in simulated subjects of the best 612 

models to predict ln Pc and m, compared with predictions made using individual variables 613 

only. Boxes show median and interquartile range, whiskers extend 1.5-times the interquartile 614 

range or to limit of range, n=100 simulated datasets (each of 139 subjects). (e-i) Comparisons 615 

of parasite biomass (e), TNF (f), duration of illness (g), predicted m (h), predicted Pc (i), in 616 

139 Gambian children with uncomplicated (UM, n=64) or severe malaria (SM1, prostration, 617 

n=36; SM2, any combination of cerebral malaria, hyperlactatemia or severe anemia, n=39). 618 

Box and whiskers as in d; P for Kruskal-Wallis (above plots) and Mann-Whitney tests (UM 619 

vs SM2, within plot). (j, k) Correlation of predicted m (j) or Pc (k) with age, P for Spearman 620 

correlation, n=139.  621 



30 

 

Fig 2. Contribution of parasite load dynamics to severe malaria phenotype. (a, b) 622 

Comparison of predicted and actual hemoglobin (a, n=136) and IL-10 (b, n=139) 623 

concentrations in the Gambian children. Pearson correlation, shaded region, 95% CI of 624 

regression line. (c-i)  Comparisons of m, Pc, parasite biomass, days of illness, plasma TNF, 625 

plasma IL-10, and plasma TNF:IL-10 ratio, in Gambian children with cerebral malaria (CM, 626 

n=12) and simulated Gambian infants with severe anemia (SA, n=24). Boxes show median 627 

and interquartile range, whiskers extend 1.5-times the interquartile range or to limit of range.   628 
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Fig 3. The protective effect of platelets is revealed by estimating parasite growth 629 

inhibition. 630 

(a,b) Comparisons of PGI (a) and platelet count (b) in 139 Gambian children with 631 

uncomplicated (UM, n=64) or severe malaria (SM1, prostration, n=36; SM2, any 632 

combination of cerebral malaria, hyperlactatemia or severe anemia, n=39 (platelet data 633 

missing from 4 subjects)). (c) Correlation between platelet count and PGI (n=135) shows that 634 

low platelet count is associated with greater parasite growth inhibition. Boxes show median 635 

and interquartile range, whiskers extend 1.5-times the interquartile range or to limit of range; 636 

P for Kruskal-Wallis (above plots) test (a, b) and for Spearman correlation (c).  637 
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Fig. 4 Transcriptional correlates of parasite growth inhibition 638 

(a) Volcano plot showing association between gene expression and parasite growth inhibition 639 

after adjustment for leukocyte mixture in a linear model. Log fold change (log FC) is the 640 

coefficient of log adjusted gene expression vs. parasite growth inhibition. Positive log FC 641 

indicates that increasing gene expression is associated with increasing parasite growth 642 

inhibition. Negative log FC indicates that increasing gene expression is associated with 643 

decreasing parasite growth inhibition. P calculated using two-sided likelihood ratio test, 644 

adjusted for multiple testing using the Benjamini-Hochberg method: false discovery rate 645 

adjusted P <0.05 (FDR) is considered significant (above dashed line, colored circles). The 10 646 

significant genes with greatest positive and negative log FC are labelled. Analyses based on 647 

data from n=24 subjects. (b,c) Primary networks derived from the genes significantly 648 

associated with PGI, with positive (b, n=26) and negative (c, n=25) log FC.   649 
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Fig. 5 Effects of cathepsin G and MMP9 on parasite growth and expression of 650 

erythrocyte invasion receptors  651 

(a) Effect of cathepsin G (18µg/mL, n=5) and MMP9 (16µg/mL, n=3) or no treatment (n=8) 652 

on in vitro growth of P. falciparum 3D7 (n are biological replicates, results representative of 653 

two independent experiments). (b) Effect of cathepsin G (18µg/mL) and MMP9 (18µg/mL) 654 

on erythrocyte invasion of P. falciparum 3D7 when added directly to schizonts and donor red 655 

cells, or when pre-incubated (PT) with donor red cells before washing and adding to 656 

schizonts (n=3 biological replicates per condition, representative of two independent 657 

experiments). (a, b) Show mean (95% CI) and P for two-sided unpaired t-test. (c) Cathepsin 658 

G and MMP9 concentrations in plasma from healthy donor whole blood (n=8) unstimulated 659 

or stimulated with 1µM PMA, and from Gambian children with P. falciparum malaria 660 

(n=34). Bars show median, P for two-sided Wilcoxon matched pairs test. (d-e) Dose effects 661 

on growth inhibition by MMP9 against P. falciparum 3D7 (d), and invasion inhibition by 662 

cathepsin G pre-treatment against four parasite strains (e) (n=3 biological replicates per dose, 663 

mean (95% CI) and P for linear trend, each result representative of two independent 664 

experiments). (f) Additive effect of Cathepsin G 1µg/mL and MMP9 1µg/mL against P. 665 

falciparum 3D7 invasion (n=4 biological replicates per condition, mean (95% CI) and P for 666 

ANOVA, representative of three independent experiments). (g) Dose response for erythrocyte 667 

surface receptor cleavage by cathepsin G (n=3 biological replicates per dose, mean +/- 668 

standard error, asymmetric 5-parameter logistic regression fit lines, representative of two 669 

experiments). (h) Effect of PMA stimulation of healthy donor (n=8) whole blood on 670 

erythrocyte surface receptor expression assessed by fluorescence intensity (P for two-sided 671 

Wilcoxon matched pairs test). (i) Comparison of proportion of erythrocytes with detectable 672 

receptor expression in acute (day 0) and convalescent (day 28) samples from Gambian 673 

children with malaria (n=6, P for one-sided Wilcoxon matched pairs test).  674 
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Figure 6. Parasite gene expression modules associated with predicted multiplication 675 

rate. (a,b) Violin plots showing comparison of mutation insertion scores (a) and mutation 676 

fitness scores (b) between modules associated with predicted multiplication rate 677 

(PF3D7_1136000, n=138 genes; PF3D7_1238300  n=42 genes) and all other genes 678 

(n=3421). (Violin plots indicate distribution of data (kernel density estimates) and median 679 

(red circle); P for comparison between each module and all other genes using a two-sided 680 

Mann-Whitney test). 681 

  682 
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