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ABSTRACT (149/150 words) 61 

A better understanding of predisposition to transition to high-dose, long-term opioid therapy after 62 

initial opioid receipt could facilitate efforts to prevent opioid use disorder (OUD). We extracted data 63 

on 69,268 patients in the Veterans Aging Cohort Study who received any opioid prescription 64 

between 1998-2015. Using latent growth mixture modelling, we identified four distinguishable dose 65 

trajectories: low (53%), moderate (29%), escalating (13%), and rapidly escalating (5%). Compared 66 

to low dose trajectory, those in the rapidly escalating dose trajectory were proportionately more 67 

European-American (59% rapidly escalating vs. 38% low); had a higher prevalence of HIV (31% vs. 68 

29%) and hepatitis C (18% vs.12%); and during follow-up, had a higher incidence of OUD 69 

diagnoses (13% vs. 3%); were hospitalised more often (18.1/100 person-years [PY] vs. 12.5/100 70 

PY); and had higher all-cause mortality (4.7/100 PY vs. 1.8/100 PY, all p<0.0001). These measures 71 

can potentially be used in future prevention research, including genetic discovery. 72 

 73 

Keywords (5): opioids; pharmacoepidemiology; pharmacy fill data; phenotype; electronic health 74 

records  75 
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INTRODUCTION 76 

Globally, pain is highly prevalent and a major contributor to poor quality of life (1-3). 77 

Compounding the deleterious impact of pain per se, long-term opioid therapy—a mainstay of pain 78 

treatment for the past 25 years—carries a risk of opioid use disorder (OUD) and a variety of short- 79 

and long-term adverse effects and dose-dependent excess mortality (4-6). These risks, coupled 80 

with findings of modest or minimal benefit, have spurred efforts to shift chronic pain treatment to 81 

non-opioid and non-pharmacologic approaches (7, 8). Current opioid prescribing guidelines 82 

recommend weighing likely benefit against risk before initiating treatment and re-weighing that 83 

balance at frequent intervals during treatment. Recognizing the dose-dependent nature of most 84 

opioid therapy-related harms, the 2016 Guideline for Prescribing Opioids for Chronic Pain from the 85 

U.S. Centers for Disease Control and Prevention recommended extra caution when exceeding 50 86 

milligrams (mg) morphine equivalent daily dose (MEDD) and to avoid exceeding 90 mg MEDD (9). 87 

In the UK and Germany, prescribing guidelines recommend caution exceeding doses higher than 88 

120 mg MEDD (10, 11). Despite these guidelines, little is known about patterns of prescription 89 

opioid use over the course of therapy, including dose and duration, and which factors distinguish 90 

patients across clinically distinct categories of exposure. 91 

Prior studies of moderate- and high-dose opioid therapy have identified history of mental 92 

health and substance use disorder diagnoses as important risk factors for OUD, and have shown 93 

that African-Americans (AA) were consistently less likely to be prescribed high-dose opioid therapy 94 

than European-Americans (EA) (12, 13). Another striking and consistent finding is a relatively small 95 

proportion of patients consuming a high proportion of all prescribed opioids. For example, Edlund et 96 

al. found that 5% of a cohort of privately-insured patients received 70% of the opioids prescribed 97 

(14), suggesting the presence of a distinct predisposition for high-dose, long-term opioid use among 98 

some individuals. While risk gene identification is a critical step towards understanding the biology 99 

of inter-individual differences in drug response, only a few genome-wide association studies 100 

(GWAS) studies reporting significant results for opioid dependence (15-18) or dosing (19) have 101 

been published to date, all of which had relatively small sample sizes and varying definitions of 102 

opioid exposure. Better opioid exposure metrics could enhance efforts to identify patients with 103 
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distinct patterns of prescription opioid exposure (i.e. a phenotype) that place them at increased risk 104 

of developing OUD and other harms. Electronic health record (EHR) data are an underutilised 105 

source of information to develop such metrics of prescription opioid receipt.  106 

Understanding patterns of and risk factors for long-term opioid therapy is particularly 107 

important among patients with HIV. Prior studies have shown persons with HIV are more likely to 108 

receive both any (20) and long-term opioid therapy (21) and are at higher risk of death on long-term 109 

opioid therapy than individuals without HIV (22). Mounting evidence that long-term opioid therapy 110 

adversely impacts immune function leading to increased risk of pneumonia (23, 24) adds to the 111 

importance of this topic for patients with HIV and the physicians who treat them. Using a large, 112 

population-based sample, we sought to develop empirical, clinically-meaningful phenotypes of 113 

prescription opioid receipt among patients with and without HIV. Because high-dose, long-term 114 

prescription opioid use is a complex trait manifested through various interacting pharmacokinetic 115 

(e.g., metabolic), pharmacodynamic (e.g., receptor-mediated), and environmental factors, we 116 

explored a variety of measures that may ultimately be useful in elucidating different aspects of the 117 

pathophysiology of OUD.  118 

METHODS 119 

Study design and sample 120 

We used data from the Veterans Aging Cohort Study (VACS), described in detail elsewhere 121 

(25, 26). In brief, the VACS is a large, observational cohort based on data from the U.S. Department 122 

of Veterans Affairs (VA) EHR that includes all HIV-infected patients in VA care (>50,000 HIV+ 123 

subjects) and uninfected patients (>100,000), 1:2 matched on region, age, race/ethnicity, and sex. 124 

The development of VACS was approved by the Institutional Review Boards of the VA Connecticut 125 

Healthcare System and Yale School of Medicine, granted a waiver of informed consent, and 126 

deemed Health Insurance Portability and Accountability Act (HIPAA) compliant. 127 

We included all patients who were dispensed any opioid prescription of at least seven 128 

consecutive days between 1 January 1998 and 30 September 2015. We defined baseline date as 129 

the first dispensed opioid prescription during the study period. So as to accurately assess changes 130 

in dosing over time, we limited the sample to new prescription opioid users by excluding individuals 131 
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with baseline opioid receipt >90 mg MEDD.  A dose of this magnitude suggests a high likelihood of 132 

transfer into the VA system with previous opioid use (i.e., unlikely to be true opioid initiation), 133 

Further, we excluded individuals unlikely to have sufficient data to establish longitudinal exposure 134 

patterns such as those with less than six months of VA follow-up after baseline or high risk for 135 

mortality at baseline. Thus, we excluded those with a cancer diagnosis (except non-melanoma skin 136 

cancers) before or during follow-up, or a VACS Index score >100 at baseline, which indicates a 137 

20% one-year mortality risk and is a proxy for severe illness (27). The VACS Index is a measure of 138 

physiologic injury incorporating age, CD4 count, HIV-1 RNA, haemoglobin, a marker of liver fibrosis 139 

(FIB-4), estimated glomerular filtration rate (eGFR), and hepatitis C virus (HCV) status, and has 140 

been shown to predict AIDS and non-AIDS morbidity and mortality in multiple settings (28-33). 141 

Finally, we excluded individuals with diagnosis of OUD or evidence of OUD treatment at baseline 142 

recognising that prescription opioid usage patterns may differ in this subgroup. Thus, we excluded 143 

individuals with a past OUD diagnosis (defined by International Classification of Diseases, Ninth 144 

Revision [ICD-9] codes: 304.0, 304.7, or 305.5), opioid treatment program attendance (defined by 145 

VA stop code: 523), or buprenorphine receipt prior to baseline.  146 

Opioid metrics 147 

We followed patients from baseline to the end of their last opioid prescription fill (allowing for 148 

any gap length between fills), death, or last VA visit, up to 30 September 2015. All outpatient opioids 149 

in all formulations prescribed for any indication during follow-up were considered in the analysis. We 150 

transformed each opioid prescription dose into MEDD by multiplying the daily quantity by the 151 

strength of the prescription using standard procedures (20). We then constructed five continuous 152 

measures based on MEDD for each patient for the duration of their follow-up: mean, median, mode, 153 

maximum, and cumulative dose. Because hospitalised patients are likely to receive an opioid that 154 

replaces a concurrent outpatient prescription, any opioids dispensed during inpatient stays and days 155 

of inpatient stays were removed from the calculation of all measures as a way to avoid double count 156 

of exposure. We capped each of the five continuous measures at their raw distribution’s 99th 157 

percentile to remove undue influence by extreme outliers.  158 
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Next, we used latent growth mixture modelling (LGMM) to identify major classes of opioid 159 

dose trajectories (34). Models were implemented in SAS using PROC TRAJ (35, 36). The 160 

procedure calculates each individual’s probability of belonging to each trajectory and assigns them 161 

to the trajectory with the highest probability of membership. We used censored normal models and 162 

evaluated 1- to 7-group models. The optimal number of classes was determined by balancing three 163 

criteria: changes in the Bayesian Information Criterion (BIC, where smaller indicates a better fit), a 164 

sufficient average group membership probability (>70%), and a sufficient proportion of patients in 165 

each group to permit meaningful analysis (i.e., >1% or n>700) (37). We used number of 90-day 166 

intervals elapsed since baseline as the time scale (presented in figures as years since baseline for 167 

readability) and mean MEDD per interval as the dependent variable. Models were stratified by HIV 168 

status to look for potential differences in opioid dose trajectories. As a sensitivity analysis, we 169 

compared trajectory group assignment between the final model from the full sample with the same 170 

model limited to those with complete data at 4, 8, and 12 years.  171 

Sample characteristics 172 

We extracted demographic and clinical characteristics from the VA EHR. Demographic 173 

variables included age at baseline, sex, and self-reported race/ethnicity. Clinical characteristics 174 

included HIV status (defined by ICD-9 codes 042, 044 or V08), hepatitis C virus (HCV) infection 175 

ever (determined by any confirmatory HCV RNA test before or during the study period), VACS 176 

Index in the year prior to baseline, pain-related diagnoses (abdominal, back, chest, extremity, 177 

fractures, headaches, kidney stones, menstrual, neck, neuropathic, osteoarthritis, rheumatoid 178 

arthritis, temporomandibular, and other), and comorbid conditions (anxiety disorder, bipolar 179 

disorder, coronary artery disease, congestive heart failure, cirrhosis, chronic obstructive pulmonary 180 

disease, diabetes, drug-related diagnoses, hypertension, major depression, post-traumatic stress 181 

disorder, renal insufficiency, schizophrenia, and other psychoses). Pain-related diagnoses and 182 

comorbid conditions were defined by the presence of one inpatient or two outpatient ICD-9 codes 183 

(Supplementary Table I) assessed prior to baseline allowing for a 180-day lag after baseline (20). 184 

These characteristics were assessed at baseline to support future predictive models that would 185 

identify patients potentially at risk of transitioning to high-dose, long-term opioid therapy. We 186 
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extracted substance use and pain during follow-up because of shared associations across 187 

substances (e.g., opioids, alcohol, and nicotine) and their relationship with chronic pain (38). 188 

Smoking status (never vs. ever) was based on self-report. ICD-9 codes were used for alcohol use 189 

disorder (AUD) (303.X or 305-305.03) and incident OUD (304.0, 304.7, and 305.5), The numeric 190 

rating scale (NRS) pain score is a widely used screening instrument that queries patients on their 191 

pain intensity on a scale from 0 (“no pain”) to 10 (“worst pain”) (39, 40). Median NRS pain scores 192 

were used to identify moderate or severe pain (scores ≥4). Hospitalisation and all-cause mortality 193 

rates per 100 person-years (PY) were estimated to provide construct validity for the opioid metrics.  194 

Statistical analyses 195 

We compared patients in each of the identified trajectory groups by all extracted 196 

demographic and clinical characteristics at baseline and during follow-up using chi-square (c2) tests 197 

for categorical variables and non-parametric Kruskal-Wallis c2 tests for continuous variables. Given 198 

the large sample size effect on statistical significance, we considered an absolute difference of 5% 199 

in prevalence of pain-related diagnoses or comorbid conditions between any two trajectory groups 200 

clinically important. We also characterised all opioid prescriptions dispensed to patients in each of 201 

the trajectory groups by formulation and type of opioid. For each patient, we calculated the 202 

proportion of follow-up time exposed to prescription opioids as the total number of days prescribed 203 

opioids divided by the total number of days of follow-up during the study period. All statistical 204 

analyses were performed using SAS version 9.4 (SAS Institute Inc., Cary, NC, USA). 205 

RESULTS 206 

Sample characteristics 207 

Of the 163,743 patients in VACS, 105,812 (65%) received an opioid prescription for ≥7 208 

consecutive days during the study period. At baseline, 9,857 (9%) of the 105,812 opioid-exposed 209 

patients had a cancer diagnosis, 301 (0.3%) had a VACS Index score >100, 7,684 (7%) had an 210 

OUD diagnosis, 1,474 (1%) had attended an opioid treatment programme, 80 (0.1%) had received 211 

buprenorphine, 1,822 (2%) had an initial opioid prescription >90 mg MEDD, and 21,680 (20%) had 212 
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less than six months of follow-up. In total, 36,544 (35%) of the 105,812 patients who received an 213 

opioid prescription were excluded from this analysis (Figure 1). 214 

The 69,268 remaining patients had a mean baseline age of 49 years (standard deviation 215 

[SD]=10 years) and were predominately male (97%); 47% were AA and 42% were EA, and 28% 216 

were HIV+. Mean follow-up time was 8 years (SD=4 years). Baseline date ranged from April 1998 to 217 

August 2015 (median August 2003). Among the 2.3 million opioid prescriptions captured in this 218 

analysis, the vast majority (96%) were of tablet formulation with the remaining other oral or 219 

transdermal formulations (e.g., elixirs, patches). The most commonly prescribed opioids were 220 

hydrocodone (34%), oxycodone (20%), tramadol (17%), codeine (11%), and morphine (9%).  221 

Trajectory modelling 222 

In all models, all groups had an average group membership probability >80% and contained 223 

>3% (n~2,000) patients. We chose a 4-group trajectory model because there was little marginal 224 

benefit when increasing to a 5-, 6-, or 7-group model compared to when increasing from a 2- to 3- 225 

or 3- to 4-group model, as measured by BIC (Supplemental Figure 1). The four opioid dose 226 

trajectory groups were designated as low dose (n=36,490, 53%), moderate dose (n=20,226, 29%), 227 

escalating dose (n=8,759, 13%), and rapidly escalating dose (n=3,793, 5%) (Figure 2). Trajectory 228 

models were largely similar when stratified by HIV status (Supplemental Figure 2). Patients with 229 

HIV in the rapidly escalating dose trajectory reached higher doses than uninfected patients; 230 

however, the estimates had more variance than uninfected patients in the same dose trajectory. To 231 

maximize precision in dose trajectory estimates, we combined HIV+ and uninfected patients into a 232 

single model for the primary analysis and calculated HIV prevalence in each trajectory group. 233 

Agreement between trajectory group assignment using a combined model compared to models 234 

stratified by HIV status was high (98.2% for HIV+ and 99.4% for uninfected, Supplemental Table 235 

II). Compared to models limited to individuals with complete data at 4, 8, and 12 years, agreement 236 

of trajectory group assignment was 75.9% at four years, 88.0% at eight years, and 96.7% at 12 237 

years (Supplemental Table III). These findings suggest there may be fewer than four distinct 238 

trajectory groups when models are limited to shorter follow-up times. 239 

Characteristics by trajectory group 240 
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 Bivariate comparisons of demographic and clinical characteristics by trajectory groups were 241 

all statistically significant (p<0.001), except for temporomandibular pain (p=0.18) (Table I). While 242 

statistically significant, the differences in some baseline pain-related diagnoses (i.e., abdominal, 243 

fractures, headaches, kidney stones, menstrual, rheumatoid arthritis, and temporomandibular) and 244 

comorbid conditions (anxiety disorder, bipolar disorder, coronary artery disease, congestive heart 245 

failure, cirrhosis, chronic obstructive pulmonary disease, drug-related diagnoses, major depression, 246 

post-traumatic stress disorder, renal insufficiency, schizophrenia, and other psychoses) were not 247 

>5% between any two trajectory groups and thus the data are not otherwise shown.  248 

Compared to individuals in the low dose trajectory, those in the rapidly escalating dose 249 

trajectory were more likely to be EA (59% of rapidly escalating patients vs. 38% of low; c2=1059, 250 

p<0.0001), to have HIV (31% vs. 29%; c2=145, p<0.0001), and hepatitis C infection (18% vs.12%; 251 

c2=155, p<0.0001), and less likely to be AA (32% vs. 50%; c2=1059, p<0.0001) and to have 252 

diabetes at baseline (12% vs. 15%; c2=121, p<0.0001). All reported statistical tests in this and 253 

subsequent paragraphs are for the analyses of all four trajectory groups rather than directly 254 

comparing the two extreme trajectory groups. It should be noted the lowest or highest prevalence of 255 

demographic or clinical characteristics were not always found in the extreme trajectory groups. For 256 

example, prevalence of HIV infection was lowest in the moderate dose trajectory (25%). Full details 257 

can be found in Table I. 258 

The most common pain-related diagnoses were extremity (53%), back (50%), osteoarthritis 259 

(38%), and other pain (38%). Compared to individuals in the low dose trajectory, those in the rapidly 260 

escalating dose trajectory had higher baseline prevalence of back pain (62% of rapidly escalating 261 

patients vs. 43% of low; c2=1379, p<0.0001), neck pain (19% vs. 12%; c2=353, p<0.0001), 262 

neuropathic pain (17% vs. 9%; c2=349, p<0.0001), and osteoarthritis (44% vs 37%; c2=841, 263 

p<0.0001). Conversely, those in the highest dose trajectory had proportionately fewer chest pain 264 

diagnoses (21% of rapidly escalating patients vs. 24% of low; c2=64, p<0.0001) and other pain 265 

diagnoses (39% vs. 49%; c2=259, p<0.0001) at baseline than those in the low dose trajectory. 266 

Average baseline NRS pain scores increased linearly from 2.7 (SD=3) in the low opioid dose 267 



 

11 
 

trajectory to 4.4 (SD=3) in the rapidly escalating dose trajectory (c2=1281, p<0.0001). Similar 268 

averages were found when looking at average NRS pain scores during follow-up, with a more 269 

pronounced linear trend (c2=7602, p<0.0001). 270 

The proportion of follow-up time exposed to prescription opioids differed by dose trajectory 271 

group, increasing from 6% in the low dose trajectory to 32% in the moderate trajectory, 65% in the 272 

escalating trajectory, and 82% in the rapidly escalating trajectory (c2=50855, p<0.0001, Table II). 273 

Individuals in the low trajectory group had an average mean exposure of 20 mg MEDD (SD=11 mg), 274 

while those in the rapidly escalating trajectory group had an average mean exposure of 107 mg 275 

MEDD (SD=52 mg; c2=22161, p<0.0001). Median, mode, maximum, and cumulative measures 276 

were strongly correlated with increasing trajectory group. The most commonly prescribed type of 277 

opioids were hydrocodone (35%) and tramadol (24%) in the low dose trajectory compared with 278 

oxycodone (31%) and morphine (26%) in the rapidly escalating trajectory group. Compared to 279 

individuals in the low dose trajectory, those in the rapidly escalating dose trajectory were 280 

hospitalised more often (18.1/100 PY vs. 12.5/100 PY; c2=520, p<0.0001) and had higher all-cause 281 

mortality (4.7/100 PY vs. 1.8/100 PY; c2=1300, p<0.0001). 282 

Multi-substance use and self-reported pain were common in this sample of opioid-exposed 283 

patients. Overall, 70% of the sample reported smoking, 32% received an AUD diagnosis during 284 

follow-up, and 40% reported moderate to severe pain during follow-up (Figure 3). Compared to 285 

individuals in the low dose trajectory, those in the rapidly escalating trajectory were more likely to 286 

have an incident OUD diagnosis (13% of rapidly escalating patients vs. 3% of low; c2=917, 287 

p<0.0001), report smoking (76% vs. 68%; c2=671, p<0.0001), and report moderate (43% vs. 20%; 288 

c2=2644, p<0.0001) or severe pain (27% vs. 7%; c2=2346, p<0.0001) during follow-up. Patients 289 

were more likely to have an AUD diagnosis during follow-up in the moderate dose trajectory (33%) 290 

and escalating dose trajectory (35%) when compared to those in the low dose trajectory (31%; 291 

c2=43, p<0.0001). However, those in the rapidly escalating dose trajectory had proportionately 292 

fewer AUD diagnoses during follow-up (30%). 293 

DISCUSSION 294 
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In a large, national cohort of US Veterans with and without HIV, we identified and 295 

characterised EHR-derived trajectories of longitudinal prescription opioid exposure, wherein four 296 

clinically differentiable patterns of opioid receipt emerged and assigned approximately 20% of the 297 

sample to an escalating or rapidly escalating dose group. The trajectories were clinically 298 

distinguished by different incidences of OUD, types of pain-related diagnoses, pain scores, and 299 

prevalence of AUD and smoking, and were associated with distinct rates of hospitalisation and 300 

mortality. A key strength of the current analysis was the utilisation of a large, national sample of 301 

patients exposed to any prescription opioid. Although several papers have previously identified 302 

trajectories of opioid use over time (41-46), these were often obtained in small, sub-national 303 

samples, were limited to event- (e.g., post-operation) or disease-specific cohorts, or included only 304 

illegal or a few select prescription opioids. 305 

Approximately two-thirds of the VACS cohort received an outpatient opioid prescription for 306 

seven days or longer. While our study encompassed a period of time when increases in opioid 307 

prescribing within and outside the VA have been well described, the high prevalence of non-trivial 308 

opioid exposure in this sample means that these data can be useful for an exploration of genetic 309 

risk. Ideally, such analyses should distinguish between high levels of opioid exposure that result 310 

from the prescribing practices of providers versus patients’ experiences of pain and prescribing 311 

outcomes. Additionally, mean and median doses were higher than previously reported in VACS 312 

samples (21), which is likely because the present analysis extended five years beyond our prior 313 

work. Opioid doses were likely increasing due to cohort and period effects. This is a particularly 314 

important finding among patients with HIV as our prior work demonstrated a dose-dependent 315 

increased risk of all-cause mortality among individuals with HIV compared to uninfected (22). We 316 

also found that lower potency opioids were more prevalent in lower exposure groups and higher 317 

potency opioids were more prevalent in the rapidly escalating exposure group. While perhaps not 318 

surprising, these cross-sectional findings provide a compelling rationale to explore sequencing of 319 

opioid types over time or whether early exposure to certain types predicts more rapid escalation as 320 

has been shown in emergency department settings (47). 321 
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We identified a wide variety of demographic and clinical features associated with 322 

differentiable trajectories of prescription opioid receipt, some of which confirm the findings from 323 

earlier related studies and provide validation of the identified trajectories, while other findings were 324 

novel. The disproportionately high prevalence of EAs in the rapidly escalating trajectory group 325 

compared to AAs is consistent with several epidemiologic and clinical studies showing that AAs are 326 

less likely than EAs to be prescribed any high-dose, long-term opioid therapy. This finding may be 327 

explained by prescriber bias (48) or possibly that AAs are more forthcoming in disclosing opioid risk 328 

factors, though there are studies providing evidence for the former hypothesis (49) while the latter 329 

deserves more study. That HCV infection was also associated with rapidly escalating trajectory 330 

membership is likely explained by its known association with OUD, which we have previously shown 331 

is more common among patients receiving high opioid doses (50-52). Our finding that members of 332 

the higher trajectory groups had higher rates of hospitalisation and all-cause mortality than 333 

individuals in the lower trajectory groups deserves more detailed, risk-adjusted, time-updated 334 

analyses. Accrual of cumulative adverse effects of long-term opioid use may play a causal role or 335 

the observed relationships may be due to confounding by indication. 336 

While we excluded individuals who were likely to have initiated opioid therapy outside the VA 337 

healthcare system (i.e., those with initial exposure of >90 mg MEDD or evidence of OUD at 338 

baseline), we found that incidence of OUD diagnoses increased with increasing dose trajectory 339 

group. We hypothesise that access to and use of high-dose opioid therapy may lead to OUD more 340 

than low-dose exposures, or that individuals with initially unrecognized OUD may be more likely to 341 

seek and receive higher-dose therapy, or both. In addition, there could be a tendency towards 342 

misclassification by clinicians who may be more likely to assign a diagnosis of OUD to a patient on 343 

high-dose opioid therapy when they may actually mean “physiologic dependence.” Of note, specific 344 

OUD criteria of tolerance and withdrawal are “not considered to be met for those individuals taking 345 

opioids solely under appropriate medical supervision” (53). Moreover, the implementation of 346 

arbitrary or excessively rigid opioid control policies may result in withdrawal and other symptoms 347 

that could be characterized by other OUD diagnostic criteria (e.g., unsuccessful efforts to taper, or 348 

craving) (54). Further research is warranted to explore these hypotheses.  349 
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Other substance use during exposure to prescription opioids was common in this cohort. We 350 

observed an increased prevalence of baseline smoking and AUD with increasing prescription opioid 351 

dose trajectory except in the rapidly escalating group. Prevalence of smoking was lower in the 352 

rapidly escalating dose trajectory compared to the escalating dose trajectory. Prevalence of AUD 353 

was lower in the rapidly escalating dose trajectory compared to all other trajectory groups. While we 354 

can only speculate on the role of clinicians’ behaviour, it is possible that clinicians may have been 355 

less likely to continue prescribing high-dose therapy to patients with diagnosed AUD due to safety 356 

concerns. Alternatively, patients on sustained high-dose exposure observed in the rapidly escalating 357 

group may have greater difficulty tolerating alcohol in addition to opioids than those in lower dose 358 

trajectories. Moderate and severe self-reported pain was also common in this cohort. Approximately 359 

70% of patients in the rapidly escalating dose trajectory and 27% of those in the low dose trajectory 360 

reported moderate to severe pain during follow-up. Average baseline NRS pain scores linearly 361 

increased from 2.7 in the low opioid dose trajectory group to 4.4 in the rapidly escalating dose 362 

trajectory group. These averages were similar to those found during follow-up in a recent 363 

randomised trial (55). 364 

Our study had limitations. First, we assumed that dispensed opioid prescriptions were taken 365 

as directed, but we have no direct measure of MEDD actually consumed. Second, we could not 366 

account for opioids prescribed outside the VA, and thus some patients’ exposure to prescription 367 

opioids may have been underestimated. Third, VACS and therefore our sample was predominantly 368 

male military Veterans, so our findings may not generalize to women or a more general population. 369 

Despite these limitations, the study supports the utility of EHR data and provides important insights 370 

into the predominant patterns of opioid use in a large, U.S. national cohort. Future work should 371 

identify opioid dose trajectories using EHR data in other national samples, including North American 372 

and European cohorts.   373 

CONCLUSIONS 374 

We identified and characterised clinically differentiable, longitudinal, EHR-derived patterns of 375 

prescription opioid receipt in the Veterans Aging Cohort Study (VACS), wherein approximately 20% 376 

of all opioid-exposed patients had potentially deleterious escalating or rapidly escalating trajectories. 377 
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High-dose, long-term opioid exposure may play a causal role in the observed relationships between 378 

trajectory groups, or they may be due to confounding by indication. These empirically-validated 379 

measures deserve more detailed, risk-adjusted, time-updated epidemiologic analyses and genetic 380 

research to inform prevention interventions.   381 
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Table I. Baseline characteristics of 69,268 opioid-exposed patients in the Veterans Aging Cohort Study between 1998-2015, by opioid 
dose trajectory group 
  Trajectory group  

  Full sample Low Moderate Escalating Rapidly escalating χ2 
Sample size, n (%) 69,268 36,490 (53) 20,226 (29) 8,759 (13) 3,793 (5)  
Age, mean (SD) 49 (10) 48 (10) 50 (10) 49 (10) 48 (9) 394 
Male 66,972 (97) 35,084 (96) 19,588 (97) 8,584 (98) 3,716 (98) 102 
Race       

     African American 32,448 (47) 18,238 (50) 9,510 (47) 3,479 (40) 1,221 (32) 1,059 
     European American 29,299 (42) 13,997 (38) 8,519 (42) 4,527 (52) 2,256 (59)  
     Hispanic 5,593 (8) 3,279 (9) 1,604 (8) 504 (6) 206 (5)  
     Other 1,928 (3) 976 (3) 593 (3) 249 (3) 110 (3)  
HIV+ 19,308 (28) 10,709 (29) 5,099 (25) 2,307 (26) 1,193 (31) 145 
HCV+ 9,407 (14) 4,503 (12) 2,814 (14) 1,420 (16) 670 (18) 155 
VACS Index, mean (SD) 17.6 (18) 17.2 (17) 18.1 (18) 17.8 (18) 18.6 (19) 45 
NRS pain score, mean (SD) 3.1 (3) 2.7 (3) 3.3 (3) 3.8 (3) 4.4 (3) 1,281 
Pain-related diagnoses       

     Back 34,583 (50) 15,818 (43) 11,330 (56) 5,099 (58) 2,336 (62) 1,379 
     Chest 16,934 (24) 8,820 (24) 5,277 (26) 2,050 (23) 787 (21) 64 
     Extremity 42,186 (61) 21,248 (58) 13,309 (66) 5,413 (62) 2,216 (58) 326 
     Neck 10,238 (15) 4,530 (12) 3,478 (17) 1,504 (17) 726 (19) 353 
     Neuropathic 7,819 (11) 3,426 (9) 2,575 (13) 1,156 (13) 662 (17) 349 
     Osteoarthritis 28,843 (42) 13,337 (37) 9,630 (48) 4,205 (48) 1,671 (44) 841 
     Other 32,595 (47) 17,915 (49) 9,535 (47) 3,674 (42) 1,471 (39) 257 
Comorbid conditions       

     Diabetes 10,712 (15) 5,362 (15) 3,567 (18) 1,320 (15) 463 (12) 121 
     Hypertension 23,020 (33) 11,249 (31) 7,530 (37) 3,058 (35) 1,183 (31) 259 
Notes: categorical reported as n (%), continuous reported as mean (SD); significance tested using chi-square (χ2) or non-parametric 
Kruskal-Wallis χ2 tests comparing all four trajectory groups; mean probability of trajectory group membership was 0.94, 0.88, 0.92, and 
0.97 for the low, moderate, escalating, and rapidly escalating group, respectively; all p<0.0001 
Abbreviations: HIV - human immunodeficiency virus; HCV - hepatitis C virus; VACS - Veterans Aging Cohort Study; NRS - numeric rating 
scale; SD - standard deviation 

 



Table II. Follow-up characteristics of 69,268 opioid-exposed patients in the Veterans Aging Cohort Study between 1998-2015, by opioid dose trajectory 
group 
  Trajectory group  

  Full sample Low Moderate Escalating Rapidly escalating χ2 
Sample size, n (%) 69,268 36,490 (53) 20,226 (29) 8,759 (13) 3,793 (5)  
OUD 3,475 (5) 1,256 (3) 992 (5) 728 (8) 499 (13) 917 
AUD 22,283 (32) 11,472 (31) 6,629 (33) 3,033 (35) 1,149 (30) 43 
Smoking status       

     Ever 48,794 (70) 24,784 (68) 14,365 (71) 6,747 (77) 2,898 (76) 671 
     Never 19,292 (28) 11,317 (31) 5,530 (27) 1,794 (20) 651 (17)  
NRS pain score, mean (SD) 2.9 (3) 2.1 (3) 3.4 (3) 4.2 (3) 4.8 (3) 7,602 
NRS pain score category  

     
     Moderate pain, 4-6 19,220 (28) 7,264 (20) 6,809 (34) 3,527 (40) 1,620 (43) 2,644 
     Severe pain, 7-10 8,628 (12) 2,719 (7) 3,031 (15) 1,856 (21) 1,022 (27) 2,346 
Hospitalization rate, per 100 PY (95% CI) 13.8 (13.6-13.9) 12.5 (12.4-12.7) 14.7 (14.4-15.0) 15.8 (15.3-16.2) 18.1 (17.4-18.8) 520 
Mortality rate, per 100 PY (95% CI) 2.45 (2.41-2.49) 1.84 (1.79-1.88) 2.74 (2.66-2.82) 3.44 (3.31-3.58) 4.70 (4.46-4.95) 1,300 
Years of follow-up, mean (SD) 7.6 (4) 7.8 (4) 7.3 (4) 7.6 (4) 7.6 (4) 215 
Proportion of exposed follow-up time 0.25 0.06 0.32 0.65 0.82 50,855 
Continuous MEDD measures, mg (SD)       

     Mean 29 (30) 20 (11) 25 (18) 47 (34) 107 (52) 22,161 
     Median 26 (28) 18 (12) 22 (17) 41 (32) 98 (55) 20,162 
     Mode 25 (30) 16 (13) 22 (19) 40 (35) 95 (58) 18,087 
     Maximum 81 (85) 46 (39) 79 (67) 148 (103) 271 (103) 23,401 
     Cumulative 26,796 (49,041) 3,501 (5,491) 23,319 (25,366) 81,088 (62,324) 144,066 (73,402) 38,191 
Number of outpatient opioid prescriptions 2,297,421 332,937 763,197 709,161 492,126  
     Hydrocodone 34% 35% 40% 39% 16% 85,302 
     Oxycodone 20% 15% 14% 22% 31% 59,313 
     Tramadol 17% 24% 25% 13% 4% 117,800 
     Codeine 11% 20% 13% 8% 4% 69,919 
     Morphine 9% 1% 3% 9% 26% 219,588 
     Propoxyphene 4% 3% 4% 4% 4% 787 
     Methadone 3% <1% 1% 3% 10% 91,739 
     Fentanyl 1% <1% <1% 1% 5% 43,154 



     Othera <1% <1% <1% 1% 1% 5,150 
Notes: categorical reported as n (%), continuous reported as mean (SD); significance tested using chi-square (χ2) or non-parametric Kruskal-Wallis χ2 tests 
comparing all four trajectory groups; mean probability of trajectory group membership was 0.94, 0.88, 0.92, and 0.97 for the low, moderate, escalating, 
and rapidly escalating group, respectively; all p<0.0001 
Abbreviations: OUD - opioid use disorder; AUD - alcohol use disorder; NRS - numeric rating scale; SD - standard deviation; PY - person-years; CI - 
confidence interval; MEDD - morphine equivalent daily dose 
aIncludes hydromorphone, meperidine, pentazocine, tapentadol, levorphanol, buprenorphine, oxymorphone 

 







Supplementary Table I. ICD-9 codes for pain-related diagnoses and comorbid conditions                                                                                                
Category ICD-9 codes 
Pain-related diagnoses  

     Abdominal 533.90; 535.00/.50; 540.9; 541; 550.90/.92; 553.1/.3/.20/.21/.29; 
564.1; 577.0; 590.80; 789.0X 

     Back 

721.3/.42; 721.5-721.91; 
722.1/.10/.2/.30/.32/.52/.6/.70/.80/.83/.90/.93; 724; 
724.0/.00/.02/.09; 724.1-724.6; 724.8; 737.10/.30; 738.4/.5; 739.2-
739.4; 756.10/.11/.12/.13/.19; 805.4/.8; 839.2X/.42; 846.X; 
847.1/.2/.3/.9 

     Chest 413.9; 786.50/.59 

     Extremity 

274.0/.9; 354.0; 707.15; 717.2/.3/.4/.6/.9; 718.31; 719.40-719.47; 
719.49; 726.0/.10/.12/.19/.2/.31/.32/.33/.5/.60/.64/.65/.70/.71; 
727.03-727.06; 727.3/.41/.61; 728.71; 729.5/.82; 735.0/.4/.5; 
831.00; 836.0/.1/.2; 840.0/.4/.8/.9; 841.9; 842.00/.10; 843.8/.9; 
844.1/.2/.8/.9; 845.00/.09/.10; 848.5 

     Fractures 

733.13; 802.0; 805.2; 807.00/.01/.20; 808.8; 810.00; 
812.00/.09/.20/.40; 813.01/.05/.41/.81; 814.00/.01; 815.00; 
816.00/.02/.10; 820.8; 822.0; 823.00/.80/.81; 824.0/.2/.4/.6/.8; 
825.0/.20/.25; 826.0; 829.0; 831.04; 850.9; 873.0/.43; 879.8; 
881.00/.01; 882.0; 883.2; 886.0; 891.0; 892.0; 893.0; 910.0; 913.0; 
914.0; 916.0; 919.0; 920; 922.1/.2/.3/.31/.32; 
923.00/.10/.11/.20/.21/.3/.9; 924.00/.01/.10/.11/.20/.21/.3/.5/.8/.9; 
927.3; 959.01/.1/.2/.7/.9; E885.9;  E887; E888; E888.9; E906.0/.3 

     Headaches 307.81; 346/.00/.01/.1/.10/.11/.2/.20/.21/.8/.80/.81/.9/.90/.91; 
784/.0 

     Kidney stones 574.10/.20; 575.10; 592.0/.1/.9; 594.1 
     Menstrual 625.3/.9; 626.6/.8; 627.1/.2 
     Neck 721.0; 722.0/.4; 723.0/.1; 847.0 
     Neuropathic 053.13; 072.72; 337.0; 356.0/.2/.4/.9; 357/.2/.3; 723.4 
     Osteoarthritis 711.XX; 712.0; 715.XX; 716.1X/.2X/.3X/.4X/.5X/.6X/.9X; 727.0X  
     Rheumatoid arthritis 714.0X/.2X/.9X; 719.30; 720.0X 
     Temporomandibular 524.6/.60./61/.62/.63/.69  

     Other pain 
379.91; 380.22/.23; 381.81; 382.9; 388.70; 470; 522.4/.5; 525.9; 
565.1; 569.42; 604.90; 611.71/.79; 703.0; 706.2; 725; 728.85; 729.1; 
786.52; 848.3/.8/.9; 873.63; 996.4 

Comorbid conditions   
     Anxiety disorder 300; 300.01; 300.02; 300.09; 799.2 

     Bipolar disorder 296.0X/.1X/.4X/.5X/.6X/.7X; 296.8-296.82; 296.89; 296.9; 296.90; 
296.99; V11.1 

     Coronary artery disease 410.X-413.X; 414.00-414.01; 414.8/.9; 429.7; V45.81/.82 
     Congestive heart failure 402.01; 402.11/.91; 404.01/.03/.11/.13/.91/.93; 428.X 
     Cirrhosis 571.2/571.5/571.6 
     COPD 490-492.8; 496 
     Diabetes 250.X; 357.2 
     Drug-related diagnoses 292-292.2; 304.X; 305.2-305.9X 
     Hypertension 401.X-405.X; 437.2 
     Major depression 296.2X;296.3X 
     Other psychoses 293.X; 294.X; 298.X; 299.X 
     PTSD 309.81 



     Renal insufficiency  403.1/.11/.91; 404.02/.03/.12/.13/.92/.93; 580.X-581.89; 582.X-
583.89; 584.X-588.X; 792.5; V42.0; V45.1; V56.X 

     Schizophrenia 295-295.6X; 295.8-295.9X; V11.0 
Abbreviations: ICD-9 - The International Classification of Diseases, Ninth Revision;  COPD - chronic 
obstructive pulmonary disorder; PTSD - post-traumatic stress disorder 

 



Supplementary Table II. Agreement in trajectory group 
assignment by HIV status  

(a) HIV+ 
  Stratified model by HIV status 

  Group 1 Group 2 Group 3 Group 4 

Fu
ll 

m
od

el
 Group 1 10,692 17 0 0 

Group 2 89 4,982 28 0 
Group 3 0 91 2,216 0 
Group 4 0 0 122 1,071 

  Agreement: 18,961/19,308 = 98.2% 

      
(b) Uninfected 

  Stratified model by HIV status 

  Group 1 Group 2 Group 3 Group 4 

Fu
ll 

m
od

el
 Group 1 25,716 65 0 0 

Group 2 54 15,004 69 0 
Group 3 0 26 6,348 78 
Group 4 0 0 0 2,600 

  Agreement: 49,668/49,960 = 99.4% 
 



Supplementary Table III. Agreement in trajectory group assignment by level of completeness of 
data 

  (a) Complete data at 4 years 

  Group 1 Group 2 Group 3 Group 4 

Fu
ll 

sa
m

pl
e Group 1 26,493 2,075 16 - 

Group 2 5,078 8,527 996 61 
Group 3 671 2,278 3,295 311 
Group 4 21 140 1,028 1,573 

  Agreement: 39,888/52,563 = 75.9% 

      
  (b) Complete data at 8 years 

  Group 1 Group 2 Group 3 Group 4 

Fu
ll 

sa
m

pl
e Group 1 17,240 1,118 - - 

Group 2 1,125 7,814 683 - 
Group 3 36 702 3,488 205 
Group 4 - - 272 1,702 

  Agreement: 30,244/34,385 = 88.0% 

      
  (c) Complete data at 12 years 

  Group 1 Group 2 Group 3 Group 4 

Fu
ll 

sa
m

pl
e  Group 1 4,236 - - - 

Group 2 199 3,691 - - 
Group 3 - 173 2,139 - 
Group 4 - - 10 1,205 

  Agreement: 11,271/11,653 = 96.7% 
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