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Abstract

The surveillance of antimicrobial-resistant isolates has proven to be one of the most valuable tools to understand the global

rise of multidrug-resistant bacterial pathogens. We report the first insights into the current situation in the Caribbean, where

a pilot project to monitor antimicrobial resistance (AMR) through phenotypic resistance measurements combined with

whole-genome sequencing was set up in collaboration with the Caribbean Public Health Agency (CARPHA). Our first study

focused on Klebsiella pneumoniae, a highly relevant organism amongst the Gram-negative opportunistic pathogens

worldwide causing hospital- and community-acquired infections. Our results show that not only carbapenem resistance, but

also hypervirulent strains, are circulating in patients in the Caribbean. Our current data does not allow us to infer their

prevalence in the population. We argue for the urgent need to further support AMR surveillance and stewardship in this

almost uncharted territory, which can make a significant impact on the reduction of antimicrobial usage. This article contains

data hosted by Microreact (https://microreact.org).

DATA SUMMARY

1. Raw sequencing data have been deposited at the sequence
read archive (SRA), and assemblies have been deposited at
GenBank, accession numbers for all are given in Table S1.

2. The data of measured resistance phenotypes (VITEK) is
provided in Table S1.

3. The tree file and associated metadata can be investigated
and downloaded through the free online platform Micro-
react (https://microreact.org/project/S1-a7KAkV).

4. Additional tree files and alignments have been deposited
in figshare, https://doi.org/10.6084/m9.figshare.7867760.v1.

INTRODUCTION

The increasing level of antimicrobial resistance (AMR) in
bacterial pathogens is one of the biggest worldwide threats
for public health [1]. The spread is amplified as mobile
resistance elements can cross both geographical and species
borders, and the Enterobacteriaceae are especially prone to

disseminating plasmids encoding AMR genes [2]. Monitor-
ing the spread of resistant strains and resistance elements is
further complicated as most of these bacteria are opportu-
nistic pathogens that can be carried asymptomatically as
part of the human microbiota. The mobility of people today,
thus, greatly contributes to their worldwide spread. The
phenomenon has been recognized by the major public-
health agencies, and several surveillance programmes have
been set in place to assess the prevalence of AMR in bacter-
ia. This facilitates more informed decisions for interven-
tions, guidelines for AMR practice and contributes to our
understanding of the mechanisms leading to dissemination
of AMR and the emergence of new resistances or high-risk
lineages [1].

The Caribbean is a setting with a highly mobile population.
The Caribbean Public Health Agency (CARPHA) incorpo-
rates 21 island states and 3 located in the Central and South
American mainland (http://carpha.org/Who-We-Are/
Member-States; Fig. 1a). This project was launched as part
of a longitudinal AMR surveillance strategy in the
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Caribbean, initiated with funding from the United States
Centers for Disease Control and Prevention (CDC) in 2016,
to provide insight into the current state of AMR and to
develop an antimicrobial stewardship programme. AMR
surveillance is essential to identify potentially problematic
clones and resistances, prevent future epidemics and recog-
nize on-going epidemics, set measures to prevent further
spread of high-risk clones, and better inform antimicrobial
usage for health-care workers. To be effective, AMR surveil-
lance needs to be established in combination with infection
control and antimicrobial stewardship.

Our pilot project targeted Klebsiella pneumoniae, a member
of the Enterobacteriaceae and recognized as one of the
greatest threats for public health amongst multi-resistant
Gram-negative opportunistic pathogens [3, 4]. A Carib-
bean-wide point prevalence survey (PPS) showed high usage
of b-lactam antibiotics, especially third-generation cephalo-
sporins, as well as quinolones, macrolides and a consider-
able degree of carbapenem usage (Figs 1b and S1, available
with the online version of this article). We report the results
of the first two surveys of isolates collected across the CAR-
PHA member states (CMS). The first batch of isolates were
collected in early 2017 with a second set of samples submit-
ted to CARPHA during first half of 2018. Unfortunately,
funding for this project has ceased along with CARPHA-
based AMR surveillance. We provide an important snapshot
of AMR across the Caribbean, including phenotypic and
genomic data, analysis of the virulence and antimicrobial
determinants, and the phylogenetic distribution of the
Caribbean isolates in the context of the global K. pneumo-
niae population structure [5].

METHODS

Antimicrobial usage data

The point prevalence survey (PPS) data were collected, as
part of the Caribbean antimicrobial stewardship training
programme, between March and May 2018. A World
Health Organization (WHO) 2017 draft data collection
form was used as a template, which was modified by the
pharmacists during the training programme to better suit
the Caribbean island hospitals, and was sent to pharmacist
teams, who collected the data. The sampling represents a
single collection time per hospital (one or a few days
depending on hospital size); an individual patient was
sampled only once. Twelve hospitals from nine states
(Anguilla, Antigua, Bermuda, Dominica, Grenada,
Jamaica, Nevis, Trinidad, Turks and Caicos Islands) sub-
mitted data in time for analysis in June 2018. A total of
1248 patients were reviewed, of which 681 patients had
been prescribed 1136 antibiotics.

Sample collection

Isolates were submitted by hospitals from the CMS: Anti-
gua, Barbados, Belize, Bermuda, Cayman Islands, Domin-
ica, Grenada, Haiti, Saint Kitts, Saint Lucia, Saint Vincent
and Trinidad. Contributing CMS were encoded to

anonymise the hospitals and states. The isolates were not
selected for submission in a formal or structured fashion,
and submission was dependent on the availability of trans-
port media and staff. The isolates were mainly from the
bloodstream, wounds and urine samples, but also from a
wide range of other sources, including cerebrospinal fluid
(CSF); further details on the specimens, as well as all
accession numbers and sequencing details, are given in
Table S1. Phenotypes and antimicrobial susceptibilities
were determined using the VITEK 2 compact system (bio-
M�erieux) within the CARPHA Laboratory, Port of Spain,
Trinidad.

Sequencing and typing analyses

DNA was isolated using a QIAamp DNA mini kit, fol-
lowing manufacturer’s instructions, within the CARPHA
Laboratory; Illumina sequencing libraries with a 450 bp
insert size were prepared according to the manufacturer’s
protocols and sequenced on an Illumina HiSeq2000 with
paired-end reads with a length of 100 bp; accession num-
bers of all samples are given in Table S1. The data was
de novo assembled using the pipeline as described by
Page et al. [6], and annotated with Prokka v1.5 using
the -genus Klebsiella option [7]. Multiple locus sequence
types (STs) were predicted as described previously [8].
Capsule (K-) and O-antigen (O-) types were predicted
using Kaptive [9] [scripts and databases were retrieved
from Kaptive (https://github.com/katholt/Kaptive, down-
loaded 15. 04. 2018)].

SIGNIFICANCE AS A BIORESOURCE TO THE

COMMUNITY

This BioResource contains the whole-genome sequence

data of 270 Klebsiella pneumoniae isolates, information

about encoded resistance genes and the phylogeny of

the isolates, their distribution in the global K. pneumoniae

population and their resistance phenotype data as deter-

mined by the VITEK 2 compact system. The isolates are

recent (2017 through 2018) and represent clinically rele-

vant patient isolates from 15 different sites in 13 Carib-

bean states. These data will be of interest for

researchers working on K. pneumoniae and other oppor-

tunistic pathogens, as well as those interested in mobile

genetic elements carrying antimicrobial-resistance

(AMR) cassettes. Our data is the only recent survey of

antimicrobial-resistant opportunistic pathogens from

multiple sites within the Caribbean, and is of high signifi-

cance for the global surveillance of K. pneumoniae and

AMR elements. This BioResource is made available

through data provided with this article, as well deposition

of the raw data in the relevant archives, and an interac-

tive platform (Microreact) to enquire and download anal-

yses (phylogenetic tree, metadata).
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AMR and virulence prediction

The presence of AMR genes and plasmid replicons was pre-
dicted using the srst2-argannot version as available for ariba
[10–12] and plasmid replicons [13], respectively. Klebsiella-
specific virulence determinants were investigated using Kle-
borate (https://github.com/katholt/Kleborate), which also
provides known SNP-based resistance determinants for flu-
oroquinolone resistance (gyrA, parC) and colistin (none
detected in this study). Boxplots and testing for significant
differences between AMR determinants per ST were calcu-
lated using the ggplot2 boxplot function with the stats_com-
pare_means function from the ggpubr package with the
standard settings comparing indicated pairwise groups as
well as a global comparison (https://rpkgs.datanovia.com/
ggpubr/index.html, http://www.sthda.com/english/rpkgs/
ggpubr) [14].

Pan-genome and core gene analyses

The pan-genome was determined and core gene align-
ments were generated using Roary v3.7.0 [15] with the
default conditions using MAFFT v7.205 [16]; SNPs were first
extracted using snp-sites v2.3.2 using only ATGC columns

(-c) [17], and then a maximum-likelihood tree was calcu-
lated with RAxML v8.2.8 with the general time-reversible
(GTR) substitution matrix and gamma model of rate het-
erogeneity (-m GTRGAMMA), the rapid hill-climbing tree
search (-f d) and 100 bootstrap replicates for support val-
ues [18]. The data were visualized with the ggtree and
ggplot2 packages in R [14, 19]. As some of the publicly
available strains were only available as reads for the core
gene analysis of ST86, all isolate data used in the analyses
was assembled using Shovill v1.0.1 (https://github.com/
tseemann/shovill) with Spades as implemented and an
expected genome size of 5.8Mb, and annotated using
Prokka as above. The pan-genomes of these smaller selec-
tions were generated using Roary as described above but
disabling paralogue splitting (-s).

Core genome phylogenies

The mapping and core genome alignment preparation was
performed using snippy v4.3.3 (https://github.com/tsee-
mann/snippy) with reads if available or otherwise with the
snippy -contigs input option to shred assemblies. Recombi-
nation was removed with gubbins v1.4.10 ([20]; FastML 2

Fig. 1. Comparing PPS data with phenotypic resistance profiles of the bacterial isolates. (a) Map showing the CMS (white), highlighting

the countries contributing data to the PPS (blue), contributing bacterial isolates (red) and contributing to both (magenta). (b) Percentage

of the total prescribed antibiotics during the PPS grouped into the main classes. AGly, aminoglycosides; FQ, fluoroquinolones; ML, mac-

rolides; TMT, trimethoprim-sulfobactam; TetCy, tetracyclines. b-Lactams are further split into penicillins, cephalosporins (C1, first gen-

eration; C2, second generation; C3, third generation), b-lactam-b-lactamase-inhibitor combinations (BlaInh) and carbapenems (CP).

(c) Phenotypic resistance data from the VITEK screening, showing the total number of strains, the main antimicrobial classes are indi-

cated as in (b).
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with Jukes Cantor model) after removing special characters
with the snippy-clean_full_aln script provided with Snippy,
and ACGT-only SNPs were extracted from the recombina-
tion-free alignment using snp-sites with the -c option as
above. The resulting alignment was used for tree calculation
with iqtree v1.6.5 [21] with the GTR model and gamma cor-
rection using ASC (ascertainment bias correction) for
SNPs-only alignments (-m GTR+G+ASC) and 100 boot-
strap replicates (-bb 100). Pairwise SNP distances were cal-
culated using the dist.gene() function from the ape package
for R [22], and visualized using ggplot2, ggtree and gheat-
map [14, 19]. The mapping for the main STs (11, 15, 307,
405) was performed against closed reference genomes of the
same or related STs [ST11, CP025951.1; ST15, CP008929.1;
ST307, NCTN01000001 (not a closed chromosome, but rep-
resenting an >5 kb contig); ST405, CP008929.1], and an out-
group from closely related STs was included (for ST11,
AMR0203; ST15, AMR0417; ST307, AMR0163 and
ERS2489012; ST405, AMR0445 and CP008929.1 used as a
reference but also removed for the visualization as no ST405
reference was available). The consensus trees retrieved from
iqtree were rooted on the outgroup lineages in FigTree
(http://tree.bio.ed.ac.uk/software/figtree/); for visualization
only, the outgroup branch was removed after using it to
root the tree. The original alignments and trees can all be
found on figshare (https://doi.org/10.6084/m9.figshare.
7867760.v1). The mapping and pairwise SNP distances for
Klebsiella quasipneumoniae subsp. quasipneumoniae,
K. pneumoniae sensu stricto and ST86 were calculated as
described above, using CP029597.1, AP006725.1 and
CP006648.1 as references, respectively, and no outgroups
were included.

RESULTS

Antimicrobial usage in the region

A first initiative included the PPS of antimicrobial usage in
the region. As this represents the pilot of setting up surveil-
lance in the region and relied on voluntarily submitted data
and capacity, the hospitals providing data for the PPS do
not fully overlap with the hospitals providing the isolates
described below, but cover the catchment area and give a
broad overview of local usage (Fig. 1a). The PPS shows that
b-lactams were by far the most used intravenous antimicro-
bials (ceftriaxone 22.5%, amoxicillin-clavulanic acid 13.3%,
cefuroxime 10.4%, piperacillin-tazobactam 7.6%) with the
exception of comparable high usage of metronidazole
(17.8%; Figs 1b and S1). Quinolones and macrolides were
the predominant orally prescribed antimicrobials (20.3 and
21%, respectively), as well as high levels of amoxicillin-clav-
ulanic acid and cefuroxime usage (13.8 and 11.2%). In total,
60.6% of all used antimicrobials were b-lactams, with 4.2%
of the total carbapenems.

Phenotypic description

The isolates included in this study were submitted by a
total of 15 different hospitals in 12 CMS following two
calls for isolates (Fig. 1a). Although the majority were

isolated from urine or blood samples, others included iso-
lates from wound infections, invasive isolates from
abscesses and a CSF isolate from one fatal case of meningi-
tis. A significant proportion of the isolates included in this
study were resistant to fluoroquinolones, trimethoprim
and b-lactams, which represent the major classes of anti-
microbials used against Gram-negative infections (Fig. 1c).
We note high carbapenem usage but low resistance in our
isolates (Fig. 1b, c), and no usage or resistance could be
seen for tigecycline (Figs 1 and S1). Phenotypic screening
confirmed a high level of extended-spectrum b-lactamase
(ESBL) presence (31.5 % resistant to ceftriaxone) and, to a
similar extent, reduced susceptibility to other antimicrobial
classes such as aminoglycosides (gentamicin 27% resistant
and 0.4% intermediate) and fluoroquinolones (ciprofloxa-
cin 26.7% resistant); whereas only a small proportion
(1.1% resistant, 0.74% intermediate) of the isolates were
phenotypically carbapenem resistant. We also note a rela-
tively low proportion of amikacin (0.74% resistant, 9.3 %
intermediate) and piperacillin-tazobactam (10% resistant,
10.7% intermediate) resistance, the latter representing a
key alternative to carbapenems in treating ESBL-positive
organisms (Fig. 1c).

Sampled K. pneumoniae population structure

Using whole-genome sequences, the Caribbean isolates
were compared to a global collection designed to capture
the K. pneumoniae species complex population diversity
[5]. The K. pneumoniae population in the Caribbean shows
similar diversity when considering the O-antigen or capsule
loci, as well as the range of multilocus STs present in this
region (Fig. 2a), meaning that they are not comprised of
only one or few widespread lineages in the Caribbean, but
are representative of a genetically diverse established popu-
lation. What is commonly summarized as K. pneumoniae
represents a species complex, comprising K. pneumoniae
sensu stricto, K. quasipneumoniae with its subspecies quasip-
neumoniae and similipneumoniae, and Klebsiella variicola
[5, 23]. The latter was recently further classified as new sub-
species were recognized (variicola and tropicalensis) [24],
and an additional species, Klebsiella africanensis, was also
identified only recently [24]. Our data shows a high diver-
sity of isolates including three species of the sequence com-
plex (K. pneumoniae, K. quasipneumoniae, K. variicola;
Fig. 2b), and we note a high number of closely related mem-
bers of K. quasipneumoniae subsp. similipneumoniae. Thir-
teen isolates of ST1605 were identified with no SNPs in the
core genome compared to a reference genome of the sub-
species (K. quasipneumoniae subsp. similipneumoniae strain
ATCC 700603 CP029597.1 [25]; Fig. S2) and no clearly
identifiable gene differences other than uncertainty through
short-read sequencing, indicating one circulating lineage
and possibly direct transmission events [26, 27]. K. quasip-
neumoniae subsp. similipneumoniae has recently been rec-
ognized as an important contributor to hospital infections
[28–32]. We also notice higher numbers of K. quasipneumo-
niae subsp. quasipneumoniae, whereas K. variicola seems
underrepresented, when compared to the broad
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K. pneumoniae diversity as established by Holt et al. in 2015
(Fig. 2c) [5].

AMR determinants

There is little recent information available about how
widespread AMR is in the region apart from single coun-
try reports [33–35], and no CMS are enrolled in the
Global Antimicrobial Resistance Surveillance System
(GLASS). However, the Caribbean is located between two
hotspots of carbapenem-resistant K. pneumoniae, which
are a recognized high risk in the USA (https://www.cdc.
gov/hai/organisms/cre/index.html) and South America

with levels of ESBL-mediated resistance over 80% and
carbapenem resistance over 25% in several
countries (https://www.paho.org/hq/dmdocuments/2017/
2014-cha-informe-anual-relavra.pdf). Our analysis of the
genomic data shows a high number of acquired-drug-
resistance genes present in the genomes of a considerable
number of isolates and STs (Figs 3a, b and S3), and a
high diversity including ESBL genes (blaCTX-M-14, blaCTX-
M-15, blaSHV100, blaSHV101, blaSHV27, blaSHV38, blaSHV70,
blaSHV98, blaSHV99), AmpC-type b-lactamases (blaDHA1)
and two carbapenemases (blaKPC2 and blaKPC3) (Fig. S3).
The genotypic predictions of resistance largely match with

Fig. 2. The Caribbean data in a global context. (a) Comparison of the diversity based on capsule (K), O-antigen (O) and STs compared

with the global population study of Holt et al. from 2015 [5]. (b) Comparison of the three different species between the global collection

and this study. (c) Phylogenetic analysis of the retrieved isolates demonstrates that they represent the global K. pneumoniae population

as established by Holt et al. in 2015.
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Fig. 3. Whole-genome sequencing analysis reveals several high-risk clones with high AMR and hypervirulent lineages. The guidance

tree is based on the core gene alignment as obtained by roary, and the colour strips represent, from the left, the major STs as deter-

mined by multilocus sequence typing (MLST), the country-code of isolation and the specimen from which the isolate was obtained, and

whether these were delivered in the first or second batch (early/late 2017). The heat maps represent the measured resistance

Heinz et al., Microbial Genomics 2019;5

6



their phenotypic resistance profiles; of 85 ceftriaxone-
resistant strains, 83 encode an ESBL and/or carbapene-
mase (80 blaCTX-M-15, 1 blaCTX-M-14, 1 blaCTX-M-15 and
blaKPC2, 1 blaKPC3) and of 3 carbapenem-resistant strains,
2 encode a carbapenemase (Fig. 3). The majority of
observed resistant isolates, however, are clustered in sev-
eral STs; including globally recognized high-risk clones
ST11, ST15, ST307 and ST405 [4, 36] (Fig. 3b). Also
present at low numbers, even in our limited number of
samples, are high-risk clones such as ST258 [37];
although this isolate did not carry a carbapenemase gene.
To gain further insights into the high-risk STs and the
level of diversity amongst isolates of the same ST, we per-
formed several high-resolution analyses within these and
in context with publicly available data.

Major antimicrobial STs

Our first experiment addressed the diversity of the different,
at first sight seemingly clonal, STs. We, therefore, performed
a core-genome analysis of all isolates belonging to K. pneu-
moniae sensu stricto against the same reference
(AP006725.1), and compared the pairwise SNP distances
(Fig. 4). The tree (Fig. 4a) clearly shows the deep branches

between different STs, as reflected in the SNP distances
when comparing the pairwise distances within the main STs
to all other pairwise hits (Fig. 4b). We also observed differ-
ences within the main STs, where ST15 shows high and
ST11 visible diversity on this very large scale (Fig. 4b),
focusing on the smaller scale highlights that even within the
seemingly clonal STs, clear differences can be observed
(Fig. 4c).

To get insights into the diversity within these STs beyond
their AMR and virulence determinants, we performed
core genome SNP analyses, using a reference sequence of
the same or related STs to increase coverage of the highly
diverse Klebsiella genome (Fig. S4, Table S2; details in Meth-
ods). We furthermore included published data from several
studies, adding both data from local outbreaks, as well as
longitudinal surveillance or sporadic isolates unrelated to
the related outbreaks, to bring our isolates into context of
clonal lineages as well as circulating diversity [5, 32, 37–54].
This matches the varying patterns of AMR determinants we
see (Figs 3, S3 and S4), with ST15, ST307 and ST405 repre-
senting several clearly distinct, diverse lineages circulating
in the Caribbean, whereas ST11 is, with one exception, a

phenotype as determined by VITEK (green, sensitive; yellow, intermediate; violet, resistant), and the predicted resistance genes as

well as chromosomal mutations known to confer resistance (gyrase and topoisomerase mutations conferring fluoroquinolone resis-

tance). (b) Number of resistance determinants per strain, comparing the main STs with the background population. AGly, Aminoglyco-

sides; FQ, fluoroquinolones; TMT, trimethoprim-sulfobactam.

Fig. 4. The diversity of K. pneumoniae sensu stricto isolates. (a) Phylogenetic tree based on the core genome alignment, mapping all K.

pneumoniae sensu stricto strains from this study (reference used: AP006725.1) and removing recombination. The tips are coloured

according to the main STs as indicated in the legend or shown in dark grey for all other STs. (b) Pairwise SNP comparison, grouping

within-ST pairs for the main STs, and others (within less prevalent STs and not within STs). (c) Subset of (b) showing only the main

STs to give a higher resolution in the low value range.
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Fig. 5. Virulence factors and their distribution compared to AMR and plasmid replicons. Guidance tree as in Fig. 3; the virulence deter-

minants are shown as predicted by Kleborate. The panels show the summarized number of virulence determinants, AMR genes and

plasmid replicons (left to right) as indicated. Details of all AMR alleles and plasmid replicon types are given in Fig. S3 and in the Micro-

react files.
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monophyletic group (Fig. S4). The comparison with
included data from local outbreaks (ST15 outbreak in Nepal
[39], ST405 in Spain [48], ST11 in PR China [55]) clearly
indicates a high diversity circulating; with occasional likely
direct transmission networks within the area or hospitals
leading to small groups of almost-identical isolates (Fig. S4).
This is also indicated by the SNP distances; whereas the iso-
lates from this study differ by >100 SNPs in ST15 and
ST405 and do not branch as one monophyletic lineage,
ST11 and ST307 isolates differ by <10 SNPs and branch off
as monophyletic lineages (Fig. S4). Although this of course
depends largely on the available data, the close SNP distan-
ces seem to indicate a transmission network within the
island region that is likely underestimated given our incom-
plete sampling.

(Hyper)virulence factors

K. pneumoniae is increasingly recognized as causing severe,
community-acquired invasive disease including liver
abscess, pneumonia or meningitis, which are commonly
associated with different clonal groups than the highly
drug-resistant isolates [56]. The main factors associated
with hypervirulence are the hypermucoid phenotype
through the capsule regulator gene rmpA/rmpA2, the side-
rophore aerobactin, and the capsule types K1 or K2, with
the two former encoded on a virulence plasmid character-
istic for invasive strains [56] (Fig. 5). In addition to the
main high-risk clones with respect to AMR, we noticed
isolates belonging to lineages known to harbour hyperviru-
lent isolates [56]: one ST23 isolate (AMR0157; urine iso-
late), two isolates belonging to ST65 (AMR0288 and
AMR0296; unknown isolation source) and three to ST86
(17–02612, AMR0062, AMR0879; CSF, respiratory, urine

isolates; Figs 3 and 5) [57–61]. Additional virulence factors
are further siderophore systems, encoding salmochelin,
yersiniabactin and colibactin. The ST86 isolate 17–02612
was derived from fatal case of community-acquired menin-
gitis, which affected a previously healthy patient. A com-
parison of our isolates with other publicly available ST86
isolates included a meningitis case in geographical proxim-
ity ([61]; Fig. S5). Whilst these two meningitis cases are
both typed as ST86, it seems unlikely they were derived
from one circulating lineage as they show 405 SNPs differ-
ence whilst having been isolated only 2 years apart (Fig.
S5). However, we notice that the meningitis cases encode
the full potential of virulence factors associated with hyper-
virulent K. pneumoniae, importantly the hypermucoidy
regulator rmpA/rmpA2, as well as aerobactin and salmo-
chelin (Figs 5 and S5). All ST86 isolates encode capsule
type K2, which is often associated with invasive K. pneu-
moniae isolates (Figs 5 and S6). The ST23 isolate and one
of the ST65 isolates (AMR0288) also encode the genes for
aerobactin, yersiniabactin, salmochelin and colibactin as
well as the rmpA hypermucoidity regulator gene, indicating
a diverse reservoir of hypervirulent strains circulating in
the region (Fig. 5).

Highly diverse pool of high-risk clones carrying
resistance and virulence plasmids circulating in
the Caribbean

Comparing the number of resistance and virulence determi-
nants shows the typical split distribution with highly viru-
lent and highly resistant strains (Fig. 5), but the
convergence between virulence and resistance cannot be
observed in our limited sampling data, although all ingre-
dients are present in the local gene pool. Whilst our

Fig. 6. Bloodstream isolates are highly resistant but not enriched in virulence factors. Isolates are stratified by sample specimen,

showing (a) the number of resistant or intermediate readouts on the VITEK system, (b) the number of predicted resistance determi-

nants and (c) the number of predicted virulence determinants.
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sampling call was targeted at AMR surveillance and we,
thus, see a high number of blood and urine isolates with
high-resistance profiles but no (bloodstream isolates) or few
(urine isolates) with an enriched number of virulence deter-
minants (Fig. 6). The origins of strains with several viru-
lence determinants includes sterile sites such as CSF and
abscesses indicative of causing invasive disease as seen in
the fatal meningitis case (Figs S5 and S6) [62].

DISCUSSION

This study aimed to establish a genomic surveillance net-
work across the Caribbean. Although this study was prema-
turely terminated, it has provided important data. We show
that several high-risk multidrug-resistant bacterial clones
are present in clinical samples collected across the Carib-
bean. For K. pneumoniae, these include STs ST258, ST11,
ST15, ST307 and ST405. The diversity of the high-risk
clones highlights that the risks from AMR are not limited to
or described by the spread of a single high-risk lineage
across different states or islands. Neither do we see indica-
tions for a single plasmid or genetic island moving between
relevant pathogens causing disease, but a large pool of
diverse K. pneumoniae lineages and resistance genes distrib-
uted across the region.

Given the limitations and the lack of a structured surveil-
lance framework, we cannot conclude whether our data
accurately reflects the true prevalence or the full extent of
spread of these bacteria across this region. However, even
given our limited sampling, there is a significant risk of
rapid spread or ongoing, unnoticed epidemics of some of
these high-risk clones, the presence and circulation of which
will be hidden from view without using highly accurate
approaches such as whole-genome sequencing.

Descriptions of infections caused by hypervirulent K. pneu-
moniae strains in the Caribbean are so far rare [61, 63], but
given the lack of surveillance, these observations might only
represent the tip of the iceberg. The presence of high-risk
multidrug resistant and hypervirulent strains, most of which
are carried on mobile elements, also bears the further threat
of the convergence to a multidrug-resistant hypervirulent
strain. This has been reported recently for ESBL-positive
ST29 [64], KPC (K. pneumoniae carbapenemase)-positive
ST11 acquiring hypervirulence features [47, 59], and hyper-
virulent ST23 acquiring AmpC DAC-1 and ESBL enzymes
[65]. All these components are part of the K. pneumoniae
pool circulating in the Caribbean. We argue that it is of cru-
cial importance to continue the building of a systematic sur-
veillance framework in the Caribbean, to fully assess the
situation, provide informed guidelines for antimicrobial use
and update these, as well as monitor high-risk clones and
prevent outbreaks at their start.
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