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Abstract

As polio-endemic countries move towards elimination, infrequent first infections

and incomplete surveillance make it difficult to determine when the virus has

been eliminated from the population. Eichner and Dietz [American Journal

of Epidemiology, 143, 8 (1996)] proposed a model to estimate the probability

of silent polio circulation depending upon when the last paralytic case was de-

tected. Using the same kind of stochastic model they did, we additionally model

waning polio immunity in the context of isolated, small, and unvaccinated pop-

ulations. We compare using the Eichner and Dietz assumption of an initial case

at the start of the simulation to a more accurate determination that observes

the first case. The former estimates a higher probability of silent circulation in

small populations, but this effect diminishes with increasing model population.

We also show that stopping the simulation after a specific time estimates a lower

probability of silent circulation than when all replicates are run to extinction,

though this has limited impact on small populations. Our extensions to the

Eichner and Dietz work improve the basis for decisions concerning the proba-

∗Corresponding author
1PSC : probability of silent circulation, EE: endemic equilibrium, MS: mostly susceptible,

ICA: initial case assumption, NICA: no initial case assumption
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bility of silent circulation. Further model realism will be needed for accurate

silent circulation risk assessment.

Keywords: silent circulation, silent circulation statistic, polio

1. Introduction

Poliovirus remains endemic in Pakistan, Nigeria, and Afghanistan Nnadi

et al. (2017). There is evidence that unvaccinated sub-populations within well-

vaccinated regions are enabling continued circulation in these areas Nnadi et al.

(2017); Mbaeyi et al. (2017). As such regions progress towards eradication, these5

populations become increasingly hard to detect: intermittent paralytic cases (in-

dicating infrequent first infections) coupled with poor surveillance Nnadi et al.

(2017); Mbaeyi et al. (2017) diminishes our ability to reliably detect polio trans-

mission. This potential transmission reservoir could defeat eradication efforts,

and by definition defies observation, but model-based approaches can supple-10

ment our knowledge. Those efforts should focus on providing decision-oriented

measures, most critically the risk of prolonged, undetected circulation. Such

modeling work must be able to use the limited data available, such as detected

paralytic cases, and be as insensitive as possible to missing data by accounting

for censoring that may be introduced by the observation process.15

The probability of silent circulation given the time since the last detected

paralytic case has been widely considered using various models and methods:

from models calibrated to specific regions McCarthy et al. (2016), to general

statistical Famulare (2015) and transmission models Eichner & Dietz (1996);

Houy (2015); Kalkowska et al. (2012). The transmission model and accompa-20

nying estimation of the probability of silent circulation (PSC) as a function of

time since the last detected paralytic case, hereafter referred to as the silent cir-

culation statistic given in Eichner & Dietz (1996) provides the ground work for

directly addressing operational requirements used by real public health organi-

zations: as a part WHO′s criteria to declare a region polio-free, a paralytic case25

can not have occurred for at least three years Henderson (1989). This decision
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criterion′s false positive rate (i.e., incorrectly declaring a region polio free) is

PSC at the relevant time. Considering different scenarios via simulation allows

us to assess how that false positive rate responds to different situations, and to

assess our confidence applying the criteria. A false positive rate that is suffi-30

ciently high would lend further support to using other methods of surveillance

for polio circulation, such as environmental surveillance Brouwer et al. (2018),

in a more sophisticated manner.

Estimating the silent circulation statistic from models, while tractable, comes

with caveats: the statistic may be sensitive to model assumptions and param-35

eters that in the real world vary with the population of interest. Furthermore,

since the silent circulation statistic does not discern the validity of the model–

and models may be difficult to validate because of the poor availability of polio

data–it is important to analyze its sensitivity to varying model parameters and

model forms. In this paper, we extend the results of Kalkowska et al. (2018) by40

examining the silent circulation statistic in detail, including assumptions that

are inherent to its use. In Kalkowska et al. (2018), Kalkowoska et al. correctly

reproduced the results in Vallejo et al. (2017) as well as applied the silent cir-

culation statistic to the model output. The goal of this analysis is to create

a basis for better evaluation of the robustness of inferences about the state of45

polio circulation using the silent circulation statistic.

2. Methods

We calculate the silent circulation statistic for a discrete host, continuous-

time stochastic model of polio transmission and vital dynamics, without vacci-

nation, described in Vallejo et al. (2017) (with an adjustment described below)50

and summarized here. Individuals in the model transition through the following

states: S (naive susceptible), I1 (individuals experiencing their first infection),

R (recovered and fully immune from infection), P (partially susceptible to in-

fection), and Ir (individuals experiencing a repeat infection). The I1 and Ir

compartments are treated differently: individuals suffering a repeat infection55
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Figure 1: A schematic diagram of the model used in this paper. The compartments of

the model are: S (naive susceptible), I1 (individuals experiencing their first infection), R

(recovered and fully immune from infection), P (partially susceptible to infection), and Ir

(individuals experiencing a repeat infection). The diagram was reproduced from Vallejo et al.

(2017).
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have a reduced transmission rate (by a factor of κ < 1) and recover at a faster

rate (γκ ) than I1 individuals. Additionally, P individuals have a reduced rate

of becoming infected (κβ < β). When considering observed cases, we assume

that repeat infections do not generate paralytic cases and, therefore, are not

detectable Koopman et al. (2017). See Figure 1 for a diagram of the model and60

Table 1 for the model parameter values.

To maintain a constant population, the model we present here departs from

Vallejo et al. (2017) by having a turnover event (combined birth and death),

rather than independent births and deaths. We considered three waning immu-

nity scenarios which are described in detail in Koopman et al. (2017). Briefly re-65

viewing the shorthand labels for those scenarios: fast-shallow (immunity wanes

quickly, but to a shallow depth [small κ and large ω]), slow-deep (immunity

wanes slowly, but to a deep depth [large κ and small ω]), and intermediate (in

between fast and slow both in speed and depth [moderate κ and ω]). However,

previous work found that varying waning immunity scenarios had minimal im-70

pact on dynamics Vallejo et al. (2017). We confirmed these results (see Figs. 7

and 8). Because paralytic case reporting rate substantively influences observed

inter-case periods, we also examine the sensitivity of the silent circulation statis-

tic to reporting.
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Table 1: These are the parameter values used in the model analysis.

Parameter Parameter Value Parameter Description

N 5,000; 10,000; 15,000;

20,000; 25,000

Total population

β Varies Infection rate (effective con-

tacts/individual/year)

γ 13 Recovery rate ((year)−1)

ω 0.2 (0.02) [0.04] Fast (slow) [intermediate] waning rate

((year)−1)

κ 0.4179 (0.8434) [0.6383] Shallow (deep) [intermediate] waning

depth

µ 0.02 Natural death rate ((year)−1)

PIR 0.005 Serotype 1 paralysis to infection ratio
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When determining the silent circulation statistic, we initialized the popula-75

tion near the endemic equilibrium (EE), after Eichner & Dietz (1996), unless

otherwise specified. This assumption is likely reasonable for populations with

an extended history of polio transmission, but not for largely susceptible popu-

lations with a recent polio introduction. To determine the effect of initializing

at the endemic equilibrium on the silent circulation statistic, we compared it to80

the probability of circulation when the population was initialized at a mostly

susceptible (MS) state. Specifically, simulations begin with one individual in the

I1 compartment and the remaining individuals (N - 1) in the naive susceptible

compartment (S). To reproduce the initialization conditions described in Eich-

ner & Dietz (1996) (EE), we approximated an extended transmission history by85

calculating the endemic equilibrium of an infinite population, and used those

compartment sizes to sample from a multinomial distribution to determine the

starting conditions for each realization of the model.

After Eichner & Dietz (1996), we assumed that a paralytic case occurred

at the onset of simulation (referred to as the initial case assumption), although90

we also investigate relaxing this assumption. The authors in Eichner & Dietz

(1996) do not state a rationale for the initial case assumption, but a plausible

justification is that the occurrence of cases is approximated by a Poisson process

and, thus, memoryless. After Eichner & Dietz (1996), we ran each simulation

for 10 years. To assess the error potential of the 10-year time horizon, we also95

ran all simulations until extinction.

During the simulation, we recorded the time intervals between detected par-

alytic cases and when polio, stochastically, was eliminated in the population.

We define a circulation interval to be a time period during which polio is

circulating without detected paralytic cases. Circulation intervals are further100

subdivided into extinction intervals, or intervals of time that end in extinc-

tion of the virus; and intercase intervals, which end in a paralytic case. By

definition, all circulation intervals begin with a detected paralytic case, either

explicitly simulated or assumed under the initial case assumption. We calcu-

lated the silent circulation statistic (PSC) using the following formula. The105
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probability of circulation after ∆t years without a detected paralytic case is the

fraction of intervals that had continued circulation of the virus after ∆t years

without a detected paralytic case. To construct the numerator of the fraction,

we considered the number of intervals that had continued circulation during

∆t. Continued circulation during the ∆t interval can either occur during an110

interval that will end in extinction after ∆t (extinction interval ≥ ∆t) or during

an interval that will end in a detected paralytic case sometime after ∆t (inter-

case interval ≥ ∆t). Thus, the number of intervals with continued circulation

beyond ∆t are the number of circulation intervals ≥ ∆t. The denominator of

the fraction is composed of the number of intervals that have continued circu-115

lation beyond ∆t and the number of intervals that have gone extinct during

∆t (number of extinction intervals < ∆t). Thus, the denominator is given by:

number of extinction intervals < ∆t + number of extinction intervals ≥ ∆t +

number of intercase intervals ≥ ∆t. This simplifies to: number of extinction

intervals + number of intercase intervals ≥ ∆t. This gives the probability of120

silent circulation after ∆t years without a detected paralytic case (PSC(∆t)) to

be:

PSC(∆t) =
number of circulation intervals ≥ ∆t

(number of extinction intervals + number of intercase intervals ≥ ∆t)
(1)

The numerator represents how frequently silent circulation longer than ∆t oc-

curred in the model. The denominator represents the set of intervals that are125

consistent with not observing a case for ∆t years. The probability of elimination

after ∆t years without a detected paralytic case is PE(∆t) = 1 − PSC(∆t).

Evaluating the silent circulation statistic as is done in Eichner & Dietz (1996)

implies several assumptions. We reviewed these in the context of the initial case

assumption (abbreviated as ICA) and right censoring. First, the assumption130

that a paralytic case had occurred upon starting the simulation may not hold.

Populations at the endemic equilibrium are less likely to produce paralytic cases

than populations with an above-equilibrium number of infected individuals, ei-

ther due to dynamics or chance fluctuations. We described the sensitivity of
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the silent circulation statistic with and without the initial case assumption to135

varying population sizes, paralytic case detection rates, β values, and waning

immunity scenarios. To investigate the ICA, we ran a first set of simulations

as described above and in Vallejo et al. (2017), and a second set of simulations

where intervals were only considered if they began with an explicitly simulated

paralytic case. Replicates that did not have at least one explicitly simulated140

paralytic case were removed; in the real world, these circulation events would

be undetected. Simulations were run until there were 10,000 replicates for com-

parison in both cases.

Second, by truncating the observation window to ten years and not at elim-

ination, right censoring may occur if the virus was not eliminated from the145

population within the ten year time horizon. To address the effect of right cen-

soring on the silent circulation statistic, we ran two sets of simulations, each

with 10,000 replicates: the first set was run for 10 years or until elimination,

whichever occurred first, and the second set was run until elimination. Elimi-

nation is defined as the absence of infected individuals in the population. Ad-150

ditionally, we show that left censoring has no impact on the silent circulation

statistic given the specific structure of the model under consideration because

the time between paralytic cases is exponentially distributed and is, thus, mem-

oryless.

We will refer to the following simulation set-up throughout the paper. Unless155

otherwise stated, all simulations were run to elimination for 10,000 replicates

assuming a fast-shallow waning immunity scenario with the contact rate (β)

fixed at 135 individuals/year, and a detection probability of 1. In most cases,

population sizes of 5,000 and 20,000 were used. This is to show how the effect

of the assumption under consideration varies with population size. All simula-160

tions were initialized using a multinomial distribution with success probabilities

determined using the endemic equilibrium solution of the related differential

equations model. For succinctness, this initialization scheme will be referred to

as the endemic equilibrium regime or EE. In S5.1, we considered the effect of

initializing with a mostly susceptible (MS) regime.165
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3. Results

3.1. Initial Case Assumption

Under the initial case assumption (ICA) made in Eichner & Dietz (1996), a

paralytic case is assumed to have occurred at the start of the simulation. As this170

may not accurately reflect the circumstances in the real world, we considered

the effect of modifying this assumption on the probability of circulation with

varying population size, paralytic case detection rates, contact rates, and waning

immunity scenarios.

Figure 2: Effect of population size on the silent circulation statistic. The top panels are the

silent circulation statistic under NICA (no initial case assumption). The silent circulation

statistic under ICA (initial case assumption) is omitted for clarity. The bottom panels are

the differential probability of circulation (NICA - ICA) for each population size considered.

The right column contains the graphs from the left column restricted between years 3 and 4

to highlight the behavior around the three year threshold. For all plots, the x-axis is the time

since the last detected paralytic case (a ∆t interval of time).
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3.1.1. Population Size175

The population distribution at the endemic equilibrium (EE) is not consis-

tent with the expected distribution at the time a paralytic case has been detected

(see Figures S3 and S4). Thus, the initial case assumption (ICA) is incongruous

with the EE initialization scheme. To determine the effect of this assump-

tion on the statistic, we explored relaxing it by simulating 10,000 replicates,180

all with explicitly simulated paralytic cases (NICA). To make comparisons, we

used the differential risk of circulation, defined as the difference between NICA

and ICA (NICA minus ICA). A positive differential risk of circulation implies

NICA > ICA (i.e. NICA predicts a higher probability of circulation) and a

negative differential risk of circulation implies ICA > NICA (i.e. ICA predicts185

a higher probability of circulation). We found that assuming a paralytic case

happened at the start of the simulation (initial case assumption; ICA) affects

the silent circulation statistic (Figure 2). In the smallest population size con-

sidered (N = 5,000), the differential risk of circulation (NICA minus ICA) was

positive for short intervals (less than one year), but negative for longer inter-190

vals. In this case, in the short term, the NICA estimate was selecting against

simulations that died out quickly by requiring that at least one paralytic case

had occurred. As the population size increased up to 25,000, the ICA estimate

generally predicted a higher probability of circulation (negative differential risk

of circulation) as compared to the NICA estimate, particularly in the range of 1195

to 3 years after a detected case. This was as a result of the dynamics associated

with the occurrence of at least one paralytic case. By definition, NICA requires

that at least one paralytic case occurs and is detected during the replicate.

A paralytic case is more likely to occur with frequent infections. A sufficiently

large short-term increase in infections results in a correspondingly large decrease200

in the susceptible population; the subsequent lull in transmission that follows

is when stochastic elimination is most likely. If stochastic elimination does not

occur, the period likely becomes a long interval of silent circulation, as low

transmission in a population that has disproportionately few fully susceptible

10
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people leads to cases being rare. The large discrepancies we observe between205

NICA and ICA within the first few years ultimately wane: the more time that

passes, the less important the initial conditions are to the state of the system.

Since the simulations are initialized at the EE, and paralytic cases are more

likely to occur when the population distribution has shifted away from the EE

and towards one with more first infections, it is not appropriate to make the210

initial case assumption. For sufficiently large populations, infections, and thus

cases, occur frequently. Therefore, the ICA will not affect the statistic because

a negligible (if not zero) proportion of these simulations will not have a detected

paralytic case. However, for smaller populations that have a higher probability

of not having a detected paralytic case during the simulation, we have shown215

that the ICA affects the outcome of the silent circulation statistic. In these

cases, one implication of using the ICA is that the silent circulation statistic

predicts a higher probability of circulation for long intervals of time since a

detected paralytic case. Thus, although there is a bias associated with this as-

sumption, it is one that produces more conservative elimination probabilities.220

3.1.2. Paralytic Case Detection Rate

To consider the effect of the paralytic case detection rate on the silent cir-

culation statistic (both with and without the initial case assumption), we set

up the simulations as described in Section 2 with the exception that the case225

detection probabilities used were 0.25, 0.5 and 1, to simulate the occurrence of

under-reporting. These results are given in Figures 3 and 4 for population sizes

of 5,000 and 20,000, respectively. Figures 3 and 4 show that decreasing the

detection rate has the effect of increasing the probability of circulation with and

without the initial case assumption. Since the intervals used to calculate the230

probability of circulation rely on detecting cases, decreasing the rate at which

these occur increases the length of the intervals, thus increasing the probability

of circulation.

Furthermore, as the detection rate decreases, the discrepancy between the

11
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ICA and NICA predictions generally increases. The increase in disparity is a235

result of dynamics similar to those that are responsible for the difference in

circulation probability by population size. Since the NICA assumption requires

that at least one paralytic case be observed in the simulation, these simulations

had a higher occurrence of infections. Decreasing the detection rate further

restricts the simulations that had at least one paralytic case detected such that240

those that were selected for had an even higher rate of infection. Detected cases

in the NICA version were indicators of much higher levels of transmission than

in ICA, and, thus, elimination was more likely to quickly follow. In the case of

the larger population size (Figure 4), the infection rate is so high already that

the ICA had less of an effect.245

Figure 3: Effect of modifying the paralytic case detection rate on the silent circulation statistic

for the N = 5,000 population size. The top panels are the silent circulation statistic under

NICA. The silent circulation statistic under ICA is omitted for clarity. The bottom panels

are the differential probability of circulation (NICA - ICA) for each detection rate considered.

The right column contains the graphs from the left column restricted between years 3 and 4

to highlight the behavior around the three year threshold. For all plots, the x-axis is the time

since the last detected paralytic case (a ∆t interval of time).
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Figure 4: Effect of modifying the paralytic case detection rate on the silent circulation statistic

for the N = 20,000 population size. The top panels are the silent circulation statistic under

NICA. The silent circulation statistic under ICA is omitted for clarity. The bottom panels

are the differential probability of circulation (NICA - ICA) for each detection rate considered.

The right column contains the graphs from the left column restricted between years 3 and 4

to highlight the behavior around the three year threshold. For all plots, the x-axis is the time

since the last detected paralytic case (a ∆t interval of time).

3.1.3. Contact Rate and Waning Immunity Scenario

Figures 5 (N = 5,000) and 6 (N = 20,000) show the silent circulation

statistic′s sensitivity to varying β (and thus the force of infection) with and

without the initial case assumption. Under either assumption, as β increased,250

the probability of silent circulation increased. A higher β means a higher force

of infection, making stochastic extinction less likely since contacts between sus-

ceptible and infected individuals are more reliably made. For each β value, the

NICA version of the statistic predicted a probability of circulation less than that

predicted by the ICA version. This phenomenon is similar to ones described re-255

garding varying population size and varying detection rate.
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Figure 5: Effect of varying contact rates on the silent circulation statistic for the population

size N = 5,000. The top panels are the silent circulation statistic under NICA. The silent

circulation statistic under ICA is omitted for clarity. The bottom panels are the differential

probability of circulation (NICA - ICA) for each contact rate considered. The right column

contains the graphs from the left column restricted between years 3 and 4 to highlight the

behavior around the three year threshold. For all plots, the x-axis is the time since the last

detected paralytic case (a ∆t interval of time).
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Figure 6: Effect of varying contact rates on the silent circulation statistic for the population

size N = 20,000. The top panels are the silent circulation statistic under NICA. The silent

circulation statistic under ICA is omitted for clarity. The bottom panels are the differential

probability of circulation (NICA - ICA) for each contact rate considered. The right column

contains the graphs from the left column restricted between years 3 and 4 to highlight the

behavior around the three year threshold. For all plots, the x-axis is the time since the last

detected paralytic case (a ∆t interval of time).

Figures 7 (N = 5,000) and 8 (N = 20,000) demonstrate how the statistic

varies across waning immunity scenarios. The probability of circulation is only

slightly impacted by the assumed waning immunity structure. Similar results260

further confirming the minimal impact of waning immunity scenario selection

are shown in Vallejo et al. (2017).
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Figure 7: Effect of varying waning immunity scenarios on the silent circulation statistic for

the population size N = 5,000. The top panels are the silent circulation statistic under

NICA. The silent circulation statistic under ICA is omitted for clarity. The bottom panels are

the differential probability of circulation (NICA - ICA) for each waning immunity scenario

considered. The right column contains the graphs from the left column restricted between

years 3 and 4 to highlight the behavior around the three year threshold. For all plots, the

x-axis is the time since the last detected paralytic case (a ∆t interval of time).

16
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Figure 8: Effect of varying waning immunity scenarios on the silent circulation statistic for

the population size N = 20,000. The top panels are the silent circulation statistic under

NICA. The silent circulation statistic under ICA is omitted for clarity. The bottom panels are

the differential probability of circulation (NICA - ICA) for each waning immunity scenario

considered. The right column contains the graphs from the left column restricted between

years 3 and 4 to highlight the behavior around the three year threshold. For all plots, the

x-axis is the time since the last detected paralytic case (a ∆t interval of time).

3.1.4. Left Censoring

The ICA could cause left censoring to occur if the time between detected265

paralytic cases is not approximated by an exponential distribution. In this case,

neglecting the pre-history of the population before the simulation may cause

the initial case-free period in each simulation to be truncated. However, we

show that left censoring does not exist under the model conditions described in

Section 2. To confirm this, we constructed a quantile-quantile plot comparing270

the theoretical exponential distribution with mean the time between the start

of the simulation and the first explicitly simulated paralytic case with the sim-

ulated first Eichner & Dietz intercase intervals (Figure S6). Additionally, in

order to show that left censoring of the simulation intervals had no effect on the

silent circulation statistic, we modified the simulation data such that the first275

case-free period was replaced by a time drawn from an exponential distribution

17
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with mean the time between the start of the simulation and the first simulated

paralytic case. We compared the silent circulation statistic generated by the

unmodified simulation output to the silent circulation statistic generated by

the simulation output that was modified as described above (see Figure S7 for280

one example). We found that since the time between detected paralytic cases is

well approximated by an exponential distribution, and the exponential distribu-

tion is characterized by the memorylessness property, the expected waiting time

between paralytic cases is the same, regardless of when the simulation began.

Thus, left censoring does not appreciably influence the analysis of the model.285

3.1.5. Population Size-Dependent Effects of the Initial Case Assumption

We have shown that the impact of the ICA on the silent circulation statistic

decreases with increasing population size. We hypothesize that this is due to

two different effects. The first is interval type distribution. We have discussed290

three different types of intervals: the first Eichner & Dietz intercase interval

(defined as the difference between the start of the simulation and the first sim-

ulated paralytic case), true intercase intervals (defined as the time between any

consecutive explicitly simulated paralytic cases), and extinction intervals (de-

fined as an interval of time that ends in extinction). The ICA affects the first295

Eichner & Dietz intercase interval. Therefore, the degree to which the ICA will

have an impact on a simulation corresponds to the proportion of intervals in a

simulation that are first Eichner & Dietz intercase intervals. This varies with

population size. Table 2 shows a comparison of the distribution of intervals by

population size. As population size increases, the proportion of intervals that300

are first Eichner & Dietz intercase intervals decreases, which is a result of an

increase in the number of true intercase intervals. To see the effect of inter-

val distribution on the silent circulation statistic, consider the 100% detection

differential probability of circulation curve in both Figures 3 and 4. Since the

ICA affected 24% of the intervals used to generate the silent circulation curve305

in Figure 3, the differential probability is larger (highest value of approximately
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0.035 in absolute value) than the differential probability in Figure 4 (highest

value of approximately 0.02 in absolute value) since only 7% of the intervals

used to generate the silent circulation curve were affected by the ICA.

The second effect that determines the amount by which ICA affects the silent310

circulation statistic is how different the population disease-state distribution is

from that given by the endemic equilibrium of the related differential equations

model. At the endemic equilibrium, small perturbations in the population dis-

tribution have a minimal impact because, as long as the equilibrium is stable,

the system tends to stay near this point. The further the population distribu-315

tion deviates, the more likely that fluctuations will have a consequential effect on

long-term dynamics. To determine the magnitude by which the population dis-

tribution changed during the simulation from that of the endemic equilibrium,

we compared the time between detected paralytic cases when measured from the

beginning of the simulation (first Eichner & Dietz intercase interval) and when320

measured from the first explicitly simulated case (first true intercase interval) to

the time between detected paralytic cases expected at the endemic equilibrium

(see Figure 9). The 5,000 population had a longer theoretical time between

detected paralytic cases at the endemic equilibrium than actually observed in

the simulation, regardless of how it was measured. The shorter simulated time325

between cases is due to a transient increase in the force of infection: cases are

more likely to occur when the force of infection fluctuates higher (Figure S3). As

the population size increased, the time between detected paralytic cases more

closely approximated that of the endemic equilibrium (black dashed line in Fig-

ure 9), regardless of which type of interval considered. Thus, the smaller the330

population size, the more of an impact that ICA will have because, on average,

the population distribution is further away from the distribution at the endemic

equilibrium.
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Table 2: Comparison across population size of interval distribution. All intervals recorded in

the simulation fall into one of three categories: first Eichner & Dietz intercase interval, true

intercase interval, and extinction interval. Note that the number of extinction intervals is

constant across population size at 10,000.

Interval type N = 5000 N = 20000

First Eichner & Dietz intercase intervals 24.0% 7.0%

All true intercase intervals 14.0% 86.0%

Extinction intervals 62.0% 7.0%

Figure 9: The dot and whisker plot displays the mean (dot) and 95% confidence intervals

(whiskers) for the time between detected paralytic cases for varying population sizes for two

points of measurement: measuring the time between paralytic cases that occur from the

start of the simulation (first Eichner & Dietz intercase interval) and measuring the time

between paralytic cases that occur from the first explicitly simulated case (first true intercase

interval). The black dashed lines represent the expected time between detected paralytic cases

at the endemic equilibrium of the related differential equations model for each population size

considered, calculated under the assumption of an exponential distribution (i.e. the average

time between cases is the reciprocal of the mean rate at which cases occur).
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3.2. Right Censoring335

As described in Eichner & Dietz (1996), the statistic was originally con-

structed such that all simulations were terminated after 10 years. Arbitrarily

ending the simulations after 10 years has the effect of artificially shortening

the last circulation interval for simulations that have not gone extinct within

10 years, causing the possibility of right censoring to occur. We explored this340

effect by comparing simulations that were run to the 10 year time horizon with

those that were allowed to run to extinction. For small populations, elimination

occurring after 10 years is very unlikely, and thus the effect is minimal (Figure

S5). In the case of a population of size 10,000, for example, less than 1% of

the simulation replicates lasted beyond 10 years. Stochastic extinction happens345

more slowly for larger populations, however, and thus right censoring becomes

more of a problem. As shown in Figures 10 (N = 20,000) and 11 (N = 25,000),

right censoring had a substantial impact on the duration of circulation predicted

by the silent circulation statistic for larger population sizes.
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Figure 10: Effect of right censoring on the silent circulation statistic for the N = 20,000

population size. The top panel is the silent circulation with right censoring (truncates the

simulation at 10 years or elimination, whichever happens first) and without right censoring

(simulations end at elimination). The bottom panel presents the differential probability of

circulation (the difference between the two curves in the top panel: no right censoring minus

right censoring). For both plots, the x-axis is the time since the last detected paralytic case

(a ∆t interval of time).
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Figure 11: Effect of right censoring on the silent circulation statistic accounting for the N =

25,000 population size. The top panel is the silent circulation with right censoring (truncates

the simulation at 10 years or elimination, whichever happens first) and without right censoring

(simulations end at elimination). The bottom panel presents the differential probability of

circulation (the difference between the two curves in the top panel: no right censoring minus

right censoring). For both plots, the x-axis is the time since the last detected paralytic case

(a ∆t interval of time).

4. Discussion and Conclusion350

In this paper, we presented a more general approach to the silent circulation

statistic originally described in Eichner & Dietz (1996) and used in subsequent

analyses in Kalkowska et al. (2018) and Kalkowska et al. (2012). This gen-

eralization highlights the sensitivity of estimating poliovirus silent circulation

probability in different contexts, corresponding to different models. We demon-355

strated this sensitivity for a novel context relevant to elimination: unvaccinated,

small populations. We also identified conditions where analytic artifacts impact

the statistic. These included assumptions regarding the most recent case prior

to simulation and truncation of simulation results.
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Whether or not a paralytic case is assumed to have occurred at the start of360

the simulation affects the estimated probability of silent circulation. We found

that under the model assumptions examined, assuming a case generally led to

estimating a higher likelihood of circulation. The exception to this was in very

small populations for relatively short intervals (less than a year) since the last

observed case. For the other scenarios we considered (i.e. high vs. low paralytic365

case detection, high vs. low transmission, and fast vs. slow immunity waning),

assuming an initial case consistently led to estimating a higher probability of

ongoing silent circulation. Although it is unlikely for a paralytic case to have

occurred at the start of the simulation since the population is initialized at the

endemic equilibrium, the bias of the assumption is toward a higher probability370

of circulation which can be a more conservative approach depending upon re-

source availability.

We demonstrated that the assumption of right censoring implicitly implied

by the construction of the statistic (ten-year time horizon) had very minimal

impact on the predicted duration of silent circulation for smaller populations,375

but produced substantially different circulation probabilities for larger popula-

tions. To mitigate this effect, the silent circulation statistic should be applied to

simulations that are run to extinction, rather than to a specified time horizon.

Since the time between detected paralytic cases followed an exponential dis-

tribution, left censoring had no impact on the statistic. However, assuming the380

time between detected paralytic cases is exponentially distributed is unrealistic,

and initial exploration of this issue indicates it could be problematic. Further

examination of this problem is needed.

In examining these small populations, we found that silent circulation per-

sisted beyond the three year time horizon used for elimination declaration by385

the WHO. This suggests that the threshold for elimination declaration should

be revisited as it may not be appropriate for small populations in the absence

of vaccination.

It should be emphasized that these findings do not imply that in all scenar-

ios the silent circulation statistic under the ICA assumption would overestimate390
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the risk of silent circulation. Given the conditions examined in this paper of a

single isolated population, in the absence of vaccination, and in which infection

durations are exponentially distributed, the silent circulation statistic is biased

towards a higher probability of circulation than under the NICA assumption.

This may not be the case for models that incorporate vaccination or seasonal-395

ity. In areas with a history of vaccination, waning immunity might increase the

risks of silent circulation, whereas in our model, waning immunity had minimal

impact on transmission. Incorporating seasonality may have nuanced effects.

If we consider seasonality that increases transmission during the high season

and decreases transmission during the low season (relative to a constant level400

of transmission), seasonality may have the effect of increasing the probability

of extinction due to a more complete depletion of susceptibles during the high

season, meaning transmission chains in the low season have both low transmis-

sion probability and fewer potential hosts. In contrast, seasonality may have the

effect of decreasing the probability of extinction if seasonality tends to curtail405

epidemics, keeping a higher population of susceptibles available for transmis-

sion chains. Moreover, inferences based on the silent circulation statistic could

be affected by the complex dynamics arising from more realistic durations of

infection than those modeled in this paper, or from metapopulation structure

where transmissions between metapopulations might sustain transmissions.410

In Kalkowska et al. (2012), the issue of the ten-year time horizon was inves-

tigated using a model in which, among other differences such as the inclusion

of vaccination and a focus on large populations, immunity was assumed to be

permanent. They found that a five-year time horizon significantly reduced the

probability of extinction and that the ten-year time horizon had a minimal ef-415

fect. Conversely, we showed that, given the structure of our model in which

immunity is temporary and in the absence of vaccination, the ten-year time

horizon becomes more problematic as the size of the population increases. Fu-

ture work should examine the effects of vaccination, seasonality, and immunity

assumptions in order to better understand their effect on polio circulation in420

endemic regions.
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In this paper, we constructed a generalized approach to the silent circulation

statistic described in Eichner & Dietz (1996). We demonstrated how to account

for its limitations when applied to models of small populations. The under-

standing of the nuances of the silent circulation statistic developed in this paper425

will be useful in helping to accurately predict when a region can be declared

polio-free.
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5. Supplementary Information

5.1. Initialization Assumption

Figure S1: Effect of different initialization schemes on the silent circulation statistic for the

population size N = 5,000. The top panel presents the silent circulation statistic under

four assumptions: initializing at the endemic equilibrium with the initial case assumption

(EE: ICA), initializing at the endemic equilibrium without the initial case assumption (EE:

NICA), initializing in a mostly susceptible state with the initial case assumption (MS: ICA),

and initializing in a mostly susceptible state without the initial case assumption (MS: NICA).

The bottom panel gives the differential probability of circulation, which measures the effect

of the ICA for each initialization scenario. The differential probability of circulation is the

difference between curves of the same color in the top panel, calculated by subtracting the

PSC for the silent circulation statistic with the initial case assumption (ICA) from the PSC

for the silent circulation statistic without the ICA (NICA). A positive differential probability

of circulation implies NICA > ICA (i.e. NICA predicts a higher probability of circulation)

and a negative differential probability of circulation implies ICA > NICA (i.e. ICA predicts a

higher probability of circulation). For both plots, the x-axis is the time since the last detected

paralytic case (a ∆t interval of time).
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Figure S2: Effect of different initialization schemes on the silent circulation statistic for the

population size N = 20,000. The top panel presents the silent circulation statistic under

four assumptions: initializing at the endemic equilibrium with the initial case assumption

(EE: ICA), initializing at the endemic equilibrium without the initial case assumption (EE:

NICA), initializing in a mostly susceptible state with the initial case assumption (MS: ICA),

and initializing in a mostly susceptible state without the initial case assumption (MS: NICA).

The bottom panel gives the differential probability of circulation, which measures the effect

of the ICA for each initialization scenario. The differential probability of circulation is the

difference between curves of the same color in the top panel, calculated by subtracting the

PSC for the silent circulation statistic with the initial case assumption (ICA) from the PSC

for the silent circulation statistic without the ICA (NICA). A positive differential probability

of circulation implies NICA > ICA (i.e. NICA predicts a higher probability of circulation)

and a negative differential probability of circulation implies ICA > NICA (i.e. ICA predicts a

higher probability of circulation). For both plots, the x-axis is the time since the last detected

paralytic case (a ∆t interval of time).

It is likely that populations with continued polio circulation are not at the430

endemic equilibrium. To examine the effect of this assumption on the silent

circulation statistic, we considered two different initialization schemes: MS (one

initial I1 infected individual and the remaining individuals in the S compart-

ment) and EE (compartments are initialized using a multinomial distribution
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with compartment weights given by the endemic equilibrium of the related sys-435

tem of differential equations). Figures S1 and S2 demonstrate the effect of

varying initialization paradigms for different population sizes (N = 5,000, Fig.

S1; N = 20,000, Fig. S2). Due to the small number of initially infected individ-

uals, rapid, stochastic elimination of the virus is more likely for the MS starting

condition than for EE. This is evident by the initial dip (approximately 0.2 years440

after a detected case) in the ICA curves for both population sizes. Since the

NICA analysis conditions results on observing at least one paralytic case during

the simulation, immediate die out is improbable, and thus the differential risk

of circulation is positive. For the N = 5,000 population, the MS: NICA state

results in a higher PSC for small ∆t than assuming the population begins at445

the EE. As population size increases, the PSC predicted by the EE initialization

regime increases above that predicted by the MS regime. For those replicates

that do not experience immediate die out and thus are more likely included

among the MS: NICA replicates, the initially small epidemic takes more time to

run its course (relative to starting at EE) before stochastic elimination becomes450

likely due to susceptible depletion. Thus, the probability that a case has not

been observed in a small interval of time (less than ≈ 0.6 years after a detected

case) is less of an indicator of extinction for the MS regime than the EE regime.

For the MS regime, the simulations tend to result in either rapid elimination or

a single early, large epidemic followed by rapid elimination.455
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5.2. Population Disease-State Distribution Comparison

Figure S3: Comparison of the population disease-state distribution at the endemic equilibrium

with the population disease-state distribution at the first detected paralytic case. The dark

black line represents the median of the box plot and the circles represent outliers. This

data was generated for the N = 5,000 population size. The compartments are: S (naive

susceptible), I1 (first infected), R (recovered and fully immune), P (partially susceptible),

and Ir (reinfected). At the first detected paralytic case, the first infected force of infection

(FOI = β
(I1 + κIr)

N
) is on average higher than it is at the endemic equilibrium. This is

driven by the higher number of I1 and Ir individuals at the first detected paralytic case.
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Figure S4: Comparison of the first infected force of infection (FOI = β
(I1 + κIr)

N
) at the

endemic equilibrium with the FOI at the first detected paralytic case across populations. As

population size increases, the deviation of FOI at the first detected paralytic case decreases

from the expected value at the endemic equilibrium.
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5.3. Right Censoring

Figure S5: Effect of right censoring on the silent circulation statistic for the N = 10,000

population size. Simulations with right censoring end either at 10 years or with elimination,

whichever comes first. Simulations without right censoring end with elimination. The x-axis

is the time since the last detected paralytic case (a ∆t interval of time).
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5.4. Left Censoring

Figure S6: This quantile-quantile plot compares the quantiles of the simulated distribution of

first Eichner & Dietz intercase intervals (the time between the start of the simulation and the

first explicitly simulated paralytic case) with a theoretical exponential distribution with rate

parameter the simulated mean detected paralytic case rate. The red line is y = x. The closer

the points are to the red line, the more similar the theoretical and simulated distributions.

This plot is for N = 10,000 population size.
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Figure S7: Effect of left censoring on the silent circulation statistic for N = 10,000 population

size. The x-axis is the time since the last detected paralytic case (a ∆t interval of time).
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