 Naomi F. Walker^{1,2,3,4} PhD, Charles Opondo PhD⁵, Graeme Meintjes^{1,3} PhD, Nishta Jhil; PhD, Jon S Friedland⁶ FMedSci, Paul T Elkington^{2,7} FRCP, Robert J Wilkinson^{1,3,8,9} F M Sci, Katalin A Wilkinson^{1,3,8} PhD. ¹Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University Town, Observatory 7925, Republic of South Africa ¹Infectious Diseases and Immunity, and Imperial College Wellcome Trust Centre for Global Health, Imperial College London, W United Kingdom ¹Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa ¹TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT Kingdom ⁵Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, United Kingdom ⁶Institute of Infection & Immunity, St, George's, University of London, London, SW17 0RE, United Kingdom ⁸NHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of South Stouthanpton, S016 6YD, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁸Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸The Francis Crick Institute 1 Midland Road, London NW1 1AT Email: <u>katalin</u>, wilkinson@crick.ac.uk Alternative corresponding author: Dr Naomi F. Walker London, School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count' 231 	1004
 PhD, Jon S Friedland⁶ FMedSci, Paul T Elkington^{4,7} FRCP, Robert J Wilkinson^{4,3,6,9} F M Sci, Katalin A Wilkinson^{1,3,8} PhD. ¹Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University Town, Observatory 7925, Republic of South Africa ¹Infectious Diseases and Immunity, and Imperial College Wellcome Trust Centre for Global Health, Imperial College London, W United Kingdom ¹Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa ¹¹B Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT Kingdom ¹⁰Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, United Kingdom ¹⁰NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of South Southampton, SO16 6YD, United Kingdom ¹⁰The Francis Crick Institute, London, NW1 1AT, United Kingdom ¹⁰Department of Medicine, Imperial College London, W2 1PG, United Kingdom ¹¹Rustitute of Medicine, Imperial College London, W2 1PG, United Kingdom ¹²Running title: <i>Invariant Natural Killer T cells in TB-IRIS</i> Address for correspondence: Dr Katalin Wilkinson ¹⁴The Francis Crick Institute ¹⁴Midland Road, London NW1 1AT ¹⁴Email: <u>katalin.wilkinson@erick.ac.uk</u> Alternative corresponding author: ¹⁵Dr Naomi F. Walker ¹⁶London School of Hygiene and Tropical Medicine ¹⁷Kepel Street, London, WC1E 7HT ¹⁷Email: naomi.walker@lshtm.ac.uk ¹⁸Word Count: 2988 ¹⁷Abstrate Word Count: 2311 	Naomi F. Walker ^{1,2,3,4} PhD, Charles Opondo PhD ⁵ , Graeme Meintjes ^{1,3} PhD, Nishta Jhilm
 Sci, Katalin A Wilkinson^{1,3,5} PhD. ¹Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University Town, Observatory 7925, Republic of South Africa ²Infectious Diseases and Immunity, and Imperial College Wellcome Trust Centre for Global Health, Imperial College London, W United Kingdom ³Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa ⁴TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT Kingdom ⁵Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT Kingdom ⁶Institute of Infection & Immunity, St. George's, University of London, London, SW17 0RE, United Kingdom ⁷NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of South South Southampton, SO16 6YD, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸The Francis Crick Institute ⁸Infertance Correspondence: ⁸Dr Katalin Wilkinson ⁸The Francis Crick Institute ⁸Infertance Corresponding author: ⁸Dr Naomi F, Walker ⁸London School of Hygiene and Tropical Medicine ⁸Keppel Street, London, WC1E 7HT ⁸Email: naomi.walker@lshtm.ac.uk ⁸Word Count: 2988 ⁸Abstract word count: 231 	PhD, Jon S Friedland ^o FMedSci, Paul T Elkington ^{2,7} FRCP, Robert J Wilkinson ^{1,5,6,9} F Me
 ¹Wellcome Centre for Infectious Diseases Research in Africa, Institute of Infectious Disease and Molecular Medicine, University Town, Observatory 7925, Republic of South Africa ²Infectious Diseases and Immunity, and Imperial College Wellcome Trust Centre for Global Health, Imperial College London, W United Kingdom ³Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa ⁴TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, United Kingdom ⁴Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, United Kingdom ⁴Nether and Department, St. George's, University of London, London, SW17 0RE, United Kingdom ⁸Nith Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of South Southanpton, S016 6YD, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁸Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸The Francis Crick Institute ⁸Institute 7 Infection Wellix Nondence: ⁸Dr Katalin Wilkinson ⁸The Francis Crick Institute ⁸Indiand Road, London NW1 1AT ⁸Email: <u>katalin.wilkinson@crick.ac.uk</u> Alternative corresponding author: ⁹Dr Naomi F. Walker ⁹London School of Hygiene and Tropical Medicine ⁸Keppel Street, London, WC1E 7HT ⁸Email: naomi.walker@lshtm.ac.uk ⁹Word Count: 2988 ⁴Abstract word count: 231 	Sci, Katalin A Wilkinson ^{1,5,6} PhD.
 ¹ Town, Observatory ¹ ¹ ² ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹ ¹	Wallcome Centre for Infectious Diseases Pessarch in Africa, Institute of Infectious Disease and Molecular Medicine, University of
 ²Infectious Diseases and Immunity, and Imperial College Wellcome Trust Centre for Global Health, Imperial College London, W United Kingdom ³Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa ⁴TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, Kingdom ⁵Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, United Kingdom ⁶Institute of Infection & Immunity, St, George's, University of London, London, SW17 0RE, United Kingdom ⁷NHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of South Southampton, S016 6YD, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸Running title: <i>Invariant Natural Killer T cells in TB-IRIS</i> Address for correspondence: Dr Katalin Wilkinson The Francis Crick Institute I Midland Road, London NW1 1AT Email: katalin.wilkinson@crick.ac.uk Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	Town, Observatory 7925, Republic of South Africa
 ³Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa ⁴TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT Kingdom ⁵Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, United King ⁶Institute of Infection & Immunity, St. George's, University of London, London, SW17 0RE, United Kingdom ⁷NHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of South Southampton, SO16 6YD, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸Running title: <i>Invariant Natural Killer T cells in TB-IRIS</i> Address for correspondence: Dr Katalin Wilkinson The Francis Crick Institute 1 Midland Road, London NW1 1AT Email: <u>katalin.wilkinson@crick.ac.uk</u> Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231 	² Infectious Diseases and Immunity, and Imperial College Wellcome Trust Centre for Global Health, Imperial College London, W12 United Kingdom
 ⁴TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT Kingdom ⁵Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, United Kingdom ⁶Institute of Infection & Immunity, St. George's, University of London, London, SW17 0RE, United Kingdom ⁷NHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of South Southampton, SO16 6YD, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸The Francis Crick Institute ⁹In Wilkinson ⁹The Francis Crick Institute ¹I Midland Road, London NW1 1AT ¹Email: <u>katalin.wilkinson@crick.ac.uk</u> ¹Alternative corresponding author: ¹Dr Naomi F. Walker ¹London School of Hygiene and Tropical Medicine ¹Keppel Street, London, WC1E 7HT ¹Email: naomi.walker@lshtm.ac.uk ¹Word Count: 2988 ¹Abstract word count: 231 	³ Department of Medicine, University of Cape Town, Observatory 7925, Republic of South Africa
 ⁵Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, United King ⁶Institute of Infection & Immunity, St. George's, University of London, London, SW17 0RE, United Kingdom ⁷NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of South Southampton, SO16 6YD, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸The Francis Crick Institute, London NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸The Francis Crick Institute, London NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸Running title: <i>Invariant Natural Killer T cells in TB-IRIS</i> Address for correspondence: Dr Katalin Wilkinson The Francis Crick Institute 1 Midland Road, London NW1 1AT Email: katalin.wilkinson@crick.ac.uk Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	⁴ TB Centre and Department of Clinical Research, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, Kingdom
 ⁶Institute of Infection & Immunity, St. George's, University of London, London, SW17 0RE, United Kingdom ⁷NHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Soutt Southampton, S016 6YD, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom ⁸Running title: <i>Invariant Natural Killer T cells in TB-IRIS</i> Address for correspondence: Dr Katalin Wilkinson The Francis Crick Institute 1 Midland Road, London NW1 1AT Email: katalin.wilkinson@crick.ac.uk Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231 	⁵ Department of Medical Statistics, London School of Hygiene and Tropical Medicine, Keppel St, London, WC1E 7HT, United Kingdo
 ⁷NHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of South Southampton, SO16 GYD, United Kingdom ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom Running title: <i>Invariant Natural Killer T cells in TB-IRIS</i> Address for correspondence: Dr Katalin Wilkinson The Francis Crick Institute 1 Midland Road, London NW1 1AT Email: <u>katalin.wilkinson@crick.ac.uk</u> Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk 	⁶ Institute of Infection & Immunity, St. George's, University of London, London, SW17 0RE, United Kingdom
 ⁸The Francis Crick Institute, London, NW1 1AT, United Kingdom ⁹Department of Medicine, Imperial College London, W2 1PG, United Kingdom Running title: <i>Invariant Natural Killer T cells in TB-IRIS</i> Address for correspondence: Dr Katalin Wilkinson The Francis Crick Institute 1 Midland Road, London NW1 1AT Email: katalin.wilkinson@crick.ac.uk Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231 	⁷ NIHR Biomedical Research Centre, School of Clinical and Experimental Sciences, Faculty of Medicine, University of Southan Southampton, SO16 6YD, United Kingdom
 ⁵Department of Medicine, Imperial College London, W2 1PG, United Kingdom Running title: <i>Invariant Natural Killer T cells in TB-IRIS</i> Address for correspondence: Dr Katalin Wilkinson The Francis Crick Institute 1 Midland Road, London NW1 1AT Email: katalin.wilkinson@crick.ac.uk Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk 	⁸ The Francis Crick Institute, London, NW1 1AT, United Kingdom
Running title: <i>Invariant Natural Killer T cells in TB-IRIS</i> Address for correspondence: Dr Katalin Wilkinson The Francis Crick Institute 1 Midland Road, London NW1 1AT Email: <u>katalin.wilkinson@crick.ac.uk</u> Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	⁹ Department of Medicine, Imperial College London, W2 1PG, United Kingdom
Address for correspondence: Dr Katalin Wilkinson The Francis Crick Institute 1 Midland Road, London NW1 1AT Email: katalin.wilkinson@crick.ac.uk Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	Description titles Investigated Network Killer Testile in TD IDIC
Address for correspondence. Dr Katalin Wilkinson The Francis Crick Institute 1 Midland Road, London NW1 1AT Email: <u>katalin.wilkinson@crick.ac.uk</u> Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	Address for correspondence:
The Francis Crick Institute 1 Midland Road, London NW1 1AT Email: <u>katalin.wilkinson@crick.ac.uk</u> Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	Dr Katalin Wilkinson
 1 Midland Road, London NW1 1AT Email: <u>katalin.wilkinson@crick.ac.uk</u> Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231 	The Francis Crick Institute
Email: <u>katalin.wilkinson@crick.ac.uk</u> Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	1 Midland Road, London NW1 1AT
Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	Email: katalin wilkinson@crick ac.uk
Alternative corresponding author: Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	
Dr Naomi F. Walker London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	Alternative corresponding author:
London School of Hygiene and Tropical Medicine Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	Dr Naomi F. Walker
Keppel Street, London, WC1E 7HT Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	London School of Hygiene and Tropical Medicine
Email: naomi.walker@lshtm.ac.uk Word Count: 2988 Abstract word count: 231	Keppel Street, London, WC1E 7HT
Word Count: 2988 Abstract word count: 231	Email: naomi.walker@lshtm.ac.uk
Word Count: 2988 Abstract word count: 231	
Abstract word count: 231	Word Count: 2988
Tostidet word count. 251	Abstract word count: 231
Key words: invariant Natural Killer T cell; HIV; tuberculosis; paradoxical immune	Key words: invariant Natural Killer T cell; HIV; tuberculosis; paradoxical immune

iNKT cells were depleted in patients with advanced HIV infection, most significantly immunoregulatory CD4+ subsets.

In patients with HIV-associated TB who developed TB-IRIS, iNKT cells were elevated with increased degranulation compared to non-IRIS patients, implicating iNKT cells in TB-IRIS immunopathology.

39

41 Abstract

43 Rationale: Tuberculosis (TB) is the leading cause of mortality and morbidity in people living 44 with HIV infection. HIV-infected patients with TB disease are at risk of the paradoxical TBassociated immune reconstitution inflammatory syndrome (TB-IRIS) when they commence 45 46 anti-retroviral therapy. However, the pathophysiology is incompletely understood and specific 47 therapy is lacking. 48 49 Objectives: We investigated the hypothesis that invariant Natural Killer T (iNKT) cells 50 contribute to innate immune dysfunction associated with TB-IRIS. 51 52 Methods: In a cross-sectional study of 101 HIV-infected and -uninfected South African patients 53 with active TB and controls, iNKT cells were enumerated using α-galactosylceramide-loaded 54 CD1d tetramers and subsequently functionally characterised by flow cytometry. In a second 55 study of 49 HIV-1-infected TB patients commencing anti-retroviral therapy, iNKT cells in TB-56 IRIS patients with non-IRIS controls were compared longitudinally. 57 58 Measurements and main results: Circulating iNKT cells were reduced in HIV-1 infection, most 59 significantly the CD4+ subset, which was inversely associated with HIV-1 viral load. iNKT 60 cells in HIV-associated TB had increased surface CD107a expression, indicating cytotoxic 61 degranulation. Relatively increased iNKT cell frequency in HIV-infected patients with active 62 TB was associated with development of TB-IRIS following anti-retroviral therapy initiation. 63 iNKT cells in TB-IRIS were CD4+CD8- subset deplete and degranulated around the time of 64 TB-IRIS onset. 65

66	Conclusions: Reduced iNKT cell CD4+ subsets as a result of HIV-1 infection may skew iNKT
67	cell functionality towards cytotoxicity. Increased CD4- cytotoxic iNKT cells may contribute
68	to immunopathology in TB-IRIS.
69 70 71	

72 Introduction

73 Tuberculosis (TB) causes 1.6 million deaths annually and is the leading cause of death in HIV-74 1 infected people (1). Anti-retroviral therapy (ART) naive HIV-1-infected patients with TB are 75 at risk of the paradoxical TB immune reconstitution inflammatory syndrome (TB-IRIS) after 76 commencing ART (2). Paradoxical TB-IRIS is characterised by an acute inflammatory 77 response to *Mycobacterium tuberculosis* (Mtb) presenting as a clinical deterioration in a patient already receiving TB treatment, typically around two weeks post ART initiation (3). 78 79 Paradoxical **TB-IRIS** is difficult to manage, frequently requiring non-specific 80 immunosuppression with corticosteroids. Risk factors include disseminated TB and low CD4 81 T cell count at ART initiation, but the pathophysiology is incompletely defined (4). Recent 82 studies have identified potential contributory innate immune mechanisms, including neutrophil 83 recruitment, inflammasome activation and proinflammatory cytokine excess (5-10). These 84 potential mechanisms have been recently reviewed (2)

85

Invariant natural killer T (iNKT) cells are a T cell subset that bridge innate and adaptive immunity, therefore are of interest in TB-IRIS pathogenesis (11). Distinct from NK cells and conventional T cells, iNKT cells express an invariant T cell receptor comprised of V α 24 and V β 11 in humans, and specifically recognise CD1d-presented lipid antigens, responding on activation with rapid cytokine production. Additionally, iNKT cells recognise and are potently activated by the marine sponge glycolipid α -galactosylceramide (α -galcer), bound to CD1d (12, 13).

93

Mtb cell wall is lipid-rich and therefore CD1d-presented molecules that activate iNKT cells
may have a role in host immunity to Mtb (14, 15). *In vitro*, iNKT cells directly restricted Mtb
growth and were bactericidal (16). In mice, augmenting iNKT cell responses with α-galcer

97 improved BCG vaccine efficacy and anti-tuberculosis treatment responses (17, 18). In non98 human primates, increased iNKT cell frequency was associated with TB resistance (19). In
99 humans, a limited number of studies have demonstrated numerical and functional defects of
100 iNKT cells in active TB (20-23).

101

102 We previously reported elevated expression of cytotoxic mediators, perforin and granzyme B, 103 in peripheral blood mononuclear cells (PBMC) in response to Mtb antigen stimulation and 104 elevated frequencies of cytotoxic cells expressing CD3 and V α 24 T cell receptor in TB-IRIS 105 patients compared to non-IRIS controls, suggesting that iNKT cells may play a role in TB-IRIS 106 (24). Here, we systematically investigated iNKT cells in cross-sectional and longitudinal 107 studies addressing the hypothesis that iNKT cell dysfunction contributes to TB-IRIS 108 immunopathology. We describe for the first time iNKT cell aberration in HIV-associated TB 109 disease and increased cytotoxic iNKT cells in TB-IRIS patients.

110

111 Methods

112 Full methods are provided in the online supplement.

113 Study Participants

114 The study was approved by the University of Cape Town Human Research Ethics Committee

115 (REF 516/2011). All participants provided written informed consent. Cross-sectional study

- 116 participants were retrospectively designated into four categories:
- 117 1) HIV-uninfected patients without active TB (HIV-TB-)
- 118 2) HIV-uninfected patients with a new diagnosis of active TB (HIV-TB+)
- 119 3) ART naïve, HIV-infected patients without active TB (HIV+TB-)
- 120 4) ART naïve, HIV-infected patients with a new diagnosis of active TB (HIV+TB+).
- 121 Longitudinal study participants were ART naïve HIV-1-infected patients with a CD4 count

<200 cells/µL and recently diagnosed TB. Longitudinal study visits occurred at TB diagnosis
(TB0), ART initiation (ARV0), two (ARV2) and four (ARV4) weeks of ART and if new
symptoms suggesting TB-IRIS occurred. TB-IRIS diagnosis was assigned retrospectively on
expert case review, using consensus criteria (3).

126

127 *iNKT cell enumeration and characterisation*

PBMC were isolated over Ficoll and cryopreserved. Cells were rapidly thawed in warmed 128 RPMI/10% FCS, before viability staining with Violet LIVE/DEAD[©] Fixable stain kit (VIVID, 129 130 Invitrogen, Paisley, UK), then washed and re-suspended for incubation with either α-galcer-131 loaded CD1d tetramer or control CD1d tetramer (Proimmune, Oxford, UK) for 30 minutes on 132 ice, protected from light. Subsequently, cells were washed, stained with antibody mastermix 1 (Supplementary Table S1) for 30 minutes at 4°C, washed and re-suspended in PBS, 1% Hi-133 134 FCS and 2% paraformaldehyde, then incubated for 1 hour, washed and resuspended for 135 acquisition.

136

137 Data acquisition and analysis

138 Data were acquired on an LSRFortessaTM (BD Biosciences, USA) and analysed using Flowjo 139 software (Tree Star, Ashland, OR). iNKT cells were defined as CD3+ CD19- CD1d α -galcer 140 tet+ V β 11+ T cells. The gating strategy is shown in Figure 1A. iNKT cell frequency was 141 calculated as a percentage of CD3+ CD19- live lymphocytes, with subtraction of the equivalent 142 tetramer negative control proportion, and reported per million CD3+CD19- live lymphocytes. 143 iNKT cell numbers were calculated by multiplying the iNKT cell frequency as a percentage of 144 live lymphocytes with the total lymphocyte count per millilitre of peripheral blood (22).

146 Statistical analysis was performed using Prism 6 (GraphPad, UK) and STATA 14. Unadjusted 147 non-parametric analyses were by two-tailed Fisher's Exact or Mann-Whitney U, or for 148 comparisons of more than two groups, by Kruskal-Wallis with Dunn's multiple comparisons 149 test. In the cross-sectional study, we used a multivariable linear regression model to investigate 150 differences in iNKT cell frequency and in percentage iNKT cell CD4/CD8 expression by 151 disease category. In the longitudinal study, a multivariable negative binomial model was fitted to examine associations of iNKT cell frequency and number with TB-IRIS status, and 152 153 a multivariate linear regression model to estimate difference in CD4/CD8 cell subset 154 percentages between TB IRIS and non-IRIS patients.

155

156 **Results**

PBMC samples were available from 101 patients (see Table 1). HIV+TB+ patients compared
to HIV+TB- patients had lower total CD4 counts but similar CD4 percentages, and higher HIV1 viral loads. In HIV+TB+ compared to HIV-TB+, there were trends towards reduced cavitary
(p=0.067), but increased miliary (p=0.051) and extra-pulmonary (p=0.054) TB presentation,
indicating reduced destructive pulmonary pathology but more widely disseminated TB disease
in HIV-infected patients (25).

163

164 Circulating iNKT cells are depleted in HIV-1 infection and active TB

In an unadjusted analysis, comparing iNKT cell frequency in HIV-1-infected and -uninfected patients, with and without active TB, we found that iNKT cell frequency was reduced in HIV+TB+ (p=0.001) and HIV+TB- (p=0.005) compared to HIV-TB- patients (Figure 1B and Table 2). Example plots are shown in Supplementary Figure S1. A similar pattern was observed in comparison of iNKT cell numbers (iNKT cells per ml, Figure 1C) and reduction in iNKT cells numbers was found in HIV-TB+ compared to HIV-TB- patients (p=0.044). Linear 171 regression comparing HIV-TB+, HIV+TB- and HIV+TB+ to HIV-TB- provided further 172 evidence of association between reduced iNKT cell frequency in HIV+TB- (p=0.023) and 173 HIV+TB+ (p=0.024) after adjustment for age and sex, but there was no evidence of a reduction 174 in iNKT cell frequency in HIV-TB+ compared to HIV-TB- (p=0.301).

175

176 CD4+ iNKT cell subsets are depleted in HIV-1 infection

iNKT cells may exist as CD4+CD8-, CD4-CD8+, CD8+CD4+, or double negative (DN) 177 178 subsets. CD4+ iNKT cells secrete both Th1 and Th2 cytokines and may be immunoregulatory, 179 whilst CD8+ iNKT cells and DN iNKT cell subsets predominantly secrete Th1 cytokines and 180 have increased cytotoxic functionality (26, 27). Unadjusted analyses showed that HIV-1 181 infection was associated with lower CD4+ iNKT cell percentages (Figure 2A) and frequency 182 (CD4+ iNKT cells per million CD3+ CD19- live lymphocytes, Figure 2B) in patients with 183 (p=0.007) and without (p=0.005) active TB. Active TB did not clearly reduce CD4+ iNKT cell 184 percentage, but was associated with reduced CD4+ iNKT cell frequency in HIV-uninfected 185 patients (Figure 2B, p=0.016). In HIV-infected patients, total iNKT cell frequency did not 186 correlate with peripheral blood CD4 T cell count, peripheral blood CD4 T cell percentage or 187 HIV-1 viral load. However, CD4+ iNKT cell percentage was correlated with total peripheral 188 blood CD4 T cell count (Figure 2C, r=0.456, p=0.001) and there was an inverse correlation 189 with HIV-1 viral load (Figure 2D, r=-0.571, p<0.001), indicating most severe depletion of 190 CD4+ iNKT cells occurred in advanced HIV infection.

191

Next, we examined CD4 and CD8 co-expression on iNKT cells. In HIV-TB-, we found
CD4+CD8- (Figure 2E) and DN iNKT cells (Figure 2F) to be the predominant iNKT cell
subsets constituting a median of 42.1% and 43.7% of the iNKT cell population respectively.
However, compared to HIV-TB- patients, HIV-infected patients had reduced percentages of

196 CD4+CD8- iNKT cells, constituting a median of only 1.55% iNKT cells in HIV+TB+ 197 (p<0.001). In HIV-infected patients, there was a trend towards an increased percentage of CD4-198 CD8- iNKT cells (Figure 2F) and CD4-CD8+ iNKT cells (not shown), compared to HIV 199 uninfected patients. To explore this further, we performed regression analysis comparing 200 CD4/CD8 iNKT cell percentages in each group to HIV-TB-, adjusting for age and sex 201 (Supplementary Table S2). This analysis showed evidence of reduced CD4+CD8- iNKT cells 202 in HIV+TB- and HIV+TB+ compared to HIV-TB- (p<0.001 for both) and increased CD4-203 CD8- percentage in HIV+TB- (p=0.010). CD4-CD8+ cells were increased in HIV+TB-204 (p=0.037) and HIV+TB+ (p=0.016) compared to HIV-TB-. For CD4/CD8 subset iNKT cell 205 frequencies, see Supplementary Figure S2.

206

207 *iNKT cells in HIV-associated TB are pro-inflammatory with a cytotoxic phenotype*

208 There was high iNKT cell surface expression of the maturation marker, CD161, CD95 and 209 PD1 in HIV+TB+, but not more than in the control groups (data not shown). We investigated 210 iNKT cell degranulation by measuring CD107a surface expression (28). CD107a+ iNKT cells 211 were increased in HIV+TB+ patients, compared to HIV+TB- patients, suggesting increased 212 cytotoxic degranulation (Figure 3A), but this phenotype was not observed in all HIV+TB+ 213 patients. To explore this further, we investigated association between CD107a+ iNKT cell 214 positivity and TB disease phenotype in HIV+TB+. We found significantly increased CD107a+ 215 iNKT cell percentage in HIV+TB+ patients with clinical features of extrapulmonary TB 216 compared to those without, consistent with the hypothesis that disseminated Mtb might lead to 217 peripheral blood iNKT cell degranulation (Figure 3B).

218

220 In summary, we found that HIV infection was associated with iNKT cell depletion and CD4+ 221 iNKT cell subsets were most significantly depleted in advanced HIV. Active TB was associated 222 with a modest reduction in iNKT cell number in HIV-uninfected patients, but did not clearly 223 reduce iNKT cell frequency. The immunoregulatory CD4+CD8- iNKT cell subset, the 224 predominant subset in the healthy repertoire, was depleted in HIV-infected patients with and 225 without active TB. CD4-CD8+ and DN iNKT cells were the dominant iNKT cell subsets in 226 HIV-infected patients. There were increased CD107a+ iNKT cell percentages in HIV-infected 227 patients with active TB, indicating a cytotoxic phenotype, which was associated with extra-228 pulmonary TB.

229

230 iNKT cell frequency is increased in TB-IRIS patients

231 Next, in a longitudinal study, we evaluated iNKT cells in patients with advanced HIV and 232 recently diagnosed TB, who commenced TB treatment and then ART, and were at risk of 233 paradoxical TB-IRIS. Fifty-seven participants were enrolled. Clinical features of this cohort 234 have previously been reported (25). Paradoxical TB-IRIS was diagnosed in 29 (59.2%) 235 patients. Participants were included if PBMC were available at least one study timepoint (TB0, 236 ARV0, ARV2 and ARV4) and there was follow up to ARV12. One participant was excluded 237 as no PBMC samples were available, another as they were an elite controller and therefore 238 likely to be immunologically distinct, and a third due to hepatotoxicity on TB treatment 239 resulting in a significant delay to ART initiation. The subsequent analysis reports findings from 240 29 TB-IRIS patients and 17 non-IRIS controls. Patient demographics and TB diagnosis are 241 provided in Table 3 and were not significantly different comparing TB-IRIS with non-IRIS 242 patients. Between ARV0 and ARV4, peripheral blood CD4 T cell counts increased (p<0.001) 243 from median 101 cells/µl to 206 cells/µl in TB-IRIS patients and from 99 cells/µl to 175 cells/µl 244 in non-IRIS patients.

245

246 First, we enumerated iNKT cells. We found an elevated iNKT cell frequency in TB-IRIS 247 compared to non-IRIS patients (Figure 4A). At ARV2, the most frequent time of TB-IRIS 248 presentation, the median iNKT cell frequency per million CD3+CD19- live lymphocytes in 249 TB-IRIS was 992 (IQR, 166-5682) compared to 100 (IQR 24.5-440) in non-IRIS patients 250 (p=0.025 in unadjusted analysis). Multivariable modelling including data from timepoints 251 ARV0, ARV2 and ARV4 demonstrated a significant association between TB-IRIS and 252 increased iNKT cell frequency, adjusted for age and sex (p=0.022, Supplementary Table S3), 253 but no increase in iNKT cell frequency over time and the association did not differ with total 254 peripheral blood CD4 T cell count, nor HIV viral load. A similar trend was found for iNKT 255 cell numbers in the adjusted logistic regression analysis (p=0.062, Supplementary Figure S3).

256

257 *iNKT cell function and phenotype in TB-IRIS*

258 Next, we examined CD4/CD8 iNKT cell subsets in the longitudinal study. CD4+ iNKT cell 259 percentage and frequency were low, both in TB-IRIS and non-IRIS patients and did not 260 increase in the first four weeks of ART, despite an increased peripheral blood CD4 T cell count. CD4+CD8- iNKT cell percentage was significantly lower in TB-IRIS patients than non-IRIS 261 262 patients, (p=0.015 by multivariate linear regression modelling, Figure 4B). Supplementary 263 Figure S4 shows CD4/CD8 subset frequency demonstrating a predominance of DN and CD4-264 CD8+ iNKT cells in TB-IRIS compared to non-IRIS patients, at ARV2 (p=0.029 and p=0.036 265 respectively).

266

In both TB-IRIS and non-IRIS patients, CD161+ iNKT cell and CD107a+ iNKT cell percentages were dynamic (Supplementary Figure 5 A-B). CD95 cell surface expression, indicative of cytotoxicity, and PD1+ iNKT cell percentages were high both in TB-IRIS and 270 non-IRIS patients whilst CD40L+ iNKT cell percentages were relatively low, possibly 271 indicating iNKT cell exhaustion (Supplementary Figure S5 C-E) (22, 29). In TB-IRIS, CD161+ iNKT cell percentages decreased between ARV0 and ARV2, suggesting a loss of mature iNKT 272 273 cells, whereas in non-IRIS patients, iNKT cell CD161 positivity was similar (Figure 5A). In 274 TB-IRIS patients, CD107a+ iNKT cells increased between ARV0 and ARV2 relative to non-275 IRIS patients, suggesting degranulation occurred at the time of IRIS symptom onset (Figure 276 5B). CD107a+ iNKT cell frequency was increased in TB-IRIS compared to non-IRIS patients 277 at ARV2 (Figure 5C).

278

In summary, patients with advanced HIV and active TB had low circulating iNKT cell frequency pre-ART initiation, but iNKT cell populations were skewed towards proinflammatory, cytotoxic subsets. Higher iNKT cell frequency was associated with TB-IRIS following ART initiation and iNKT cells in TB-IRIS patients were CD4+CD8- subset deplete, with increased DN and CD4-CD8+ iNKT cell frequency at the time of TB-IRIS onset. Increased CD107a+ iNKT cell subsets in TB-IRIS patients also at ARV2 suggested increased iNKT cell degranulation occurring at the time of TB-IRIS presentation.

286

287 Discussion

In this study, we demonstrated low iNKT cell frequency in ART-naïve patients with advanced HIV infection, with a paucity of CD4+ iNKT cells, and relatively increased proportions of CD4-CD8- iNKT cells, representing a shift from CD4+ subsets found in HIV-uninfected patients. Decreased iNKT cell numbers and CD4+ iNKT cell frequency were associated with active TB in patients without HIV infection, but this finding was not consistent in HIV-infected patients. In HIV-infected patients with active TB, increased degranulation of iNKT cells was found. Despite low iNKT cell frequencies in these patients, there were relatively increased iNKT cells in patients who went on to develop TB-IRIS compared to those who did not and
these were predominantly DN or CD4-CD8+ iNKT cells. There was no significant recovery in
peripheral blood CD4+ iNKT cells in the first four weeks of ART, despite increased peripheral
blood CD4 count (25).

299

300 Our findings are consistent with prior human studies measuring iNKT cells in HIV infection, 301 which report reduced iNKT cell frequency in HIV-infected patients (23, 30, 31). A previous 302 study demonstrated that *in vitro* HIV-1 infection directly infects and selectively depletes CD4+ 303 iNKT cells. Activated iNKT cells were more susceptible to HIV-1 infection than conventional 304 CD4 T cells. (32). In HIV-leprosy co-infection, iNKT cell populations were found to be 305 reduced more profoundly than in leprosy or HIV infection alone (33). iNKT cell activation due 306 to mycobacterial infection might exacerbate iNKT cell depletion in HIV-1 infected patients. 307 Although we found the lowest iNKT cell frequency and numbers in patients with HIV-1 308 infection and active TB, active TB did not clearly have an additive effect of iNKT cell depletion 309 in HIV-infected patients.

310

311 There are a number of potential mechanisms by which iNKT cells may contribute to 312 immunopathology in TB-IRIS. They may directly recognise foreign or self lipid antigens 313 presented via CD1d, or become activated by local cytokine networks (26). Once activated 314 iNKT cells may rapidly secrete proinflammatory cytokines and chemokines promoting CD4 T 315 cell expansion, activation and neutrophil infiltration, features of TB-IRIS we have previously 316 shown, in addition to causing cell death (5, 6, 9, 10, 26, 34). Ultimately, this cascade may lead 317 to MMP activation and tissue destruction, in turn propagating proinflammatory cytokine 318 secretion in the vicious cycle of hyperinflammation that is the hallmark of TB-IRIS (7, 25).

320 iNKT cell quantification using a-galcer-loaded CD1d-loaded tetramers, is recognised as a 321 stringent method of iNKT cell quantification (35, 36). However, we cannot extrapolate our 322 findings beyond the limitations of this methodology, which may be affected by TCR 323 downregulation on activation, nor beyond peripheral blood into tissue compartments (35). It is 324 possible that increased circulating iNKT cells in TB-IRIS patients represents failure of 325 migration to tissues. We found evidence of increased iNKT cell degranulation in extrapulmonary TB, compared to pulmonary TB, raising the possibility that more abundant, 326 327 disseminated Mtb antigen may drive iNKT cell degranulation in HIV-associated TB and 328 increased iNKT cell cytotoxicity in TB-IRIS patients (24).

329

330 As a rare T cell subset, iNKT cells have formerly been difficult to study and iNKT cell function 331 in infection is a relatively understudied area. However, in the field of oncology, adjuvants to 332 boost iNKT cell cytotoxicity have been the focus of translational research and have entered 333 early phase clinical trials (37, 38). Our study suggests that boosting iNKT cell cytotoxicity 334 would not be an appropriate strategy in HIV-associated TB. However, an improved 335 understanding of the role of iNKT cells in TB immunopathology could identify novel 336 therapeutic targets. As human and mouse iNKT cell physiology differ, further human clinical 337 and cellular studies are required, including study of iNKT cells in tissue compartments.

338

339 Conclusion

This study supports a role for iNKT cells in innate immune dysfunction in paradoxical TB-IRIS. We have shown profound CD4+ iNKT cell subset depletion in advanced HIV-1 infection and a lesser effect of active TB in HIV-uninfected patients. In patients with advanced HIV and a new diagnosis of active TB, iNKT cell populations were skewed towards a proinflammatory, cytotoxic phenotype. Patients who developed TB-IRIS had increased iNKT cells compared to non-IRIS patients and iNKT cell degranulation occurred at the time of IRIS, potentiallycontributing to immunopathology.

- 349
- 350 N.F.W., G.M., R.J.W., J.S.F., P.T.E. and K.A.W. conceived and designed the clinical study.
- 351 N.F.W., G.M., and R.J.W. recruited the clinical cohort. N.F.W. N.J. R.J.W. and K.A.W.
- 352 conceived and designed the cellular studies. N.F.W. and K.A.W. conducted the cellular studies.
- 353 N.F.W and C.O. performed data analysis. N.F.W and K.A.W. hold all primary data and are
- responsible for the integrity of the data. All authors contributed to the writing of the manuscript
- and approved the final submitted version.
- 356

357 Funding

358 NFW received funding from Wellcome (094000) and The British Federation of Women Graduates (Elizabeth Bowden scholarship), and is currently supported by a National Institute 359 360 for Health Research Academic Clinical Lecturership, the British Infection Association (Research Project Grant), and a Starter Grant for Clinical Lecturers (The Academy of Medical 361 362 Sciences UK, Wellcome, Medical Research Council UK, British Heart Foundation, Arthritis Research UK, Royal College of Physicians and Diabetes UK); GM was supported by 363 Wellcome (098316 and 203135/Z/16/Z), the South African Research Chairs Initiative of the 364 365 Department of Science and Technology and National Research Foundation (NRF) of South Africa (Grant No 64787), NRF incentive funding (UID: 85858) and the South African Medical 366 367 Research Council through its TB and HIV Collaborating Centres Programme with funds 368 received from the National Department of Health (RFA# SAMRC-RFA-CC: TB/HIV/AIDS-369 01-2014); RJW and KAW receive support from the Francis Crick Institute which is supported 370 by Wellcome (FC001218), Medical Research Council (FC001218) and CRUK (FC001218), 371 and the European Union Horizon 2020 research and innovation programme under grant 372 agreement no. 643381; RJW receives additional support from Wellcome (104803, 203135) and 373 the National Institutes of Health (U01AI115940); NJ was supported by Wellcome (088316) 374 and The South African National Research Foundation (443386).

375

376 Acknowledgements

377 We thank S. Mansour for review of the draft manuscript.

379 **References**

WHO. Global tuberculosis report 2018. World Health Organisation, Geneva, Switzerland,
 2018.

Walker NF, Stek C, Wasserman S, Wilkinson RJ, Meintjes G. The tuberculosis-associated
 immune reconstitution inflammatory syndrome: recent advances in clinical and pathogenesis
 research. Curr Opin HIV AIDS. 2018;13(6):512-21.

385 3. Meintjes G, Lawn SD, Scano F, Maartens G, French MA, Worodria W, et al. Tuberculosis-386 associated immune reconstitution inflammatory syndrome: case definitions for use in resource-387 limited settings. Lancet Infect Dis. 2008;8(8):516-23.

Namale PE, Abdullahi LH, Fine S, Kamkuemah M, Wilkinson RJ, Meintjes G. Paradoxical TB-IRIS
 in HIV-infected adults: a systematic review and meta-analysis. Future Microbiol. 2015;10(6):1077-99.
 Lai RP, Meintjes G, Wilkinson KA, Graham CM, Marais S, Van der Plas H, et al. HIV-tuberculosis-

associated immune reconstitution inflammatory syndrome is characterized by Toll-like receptor and
 inflammasome signalling. Nature Commun. 2015;6:8451.

393 6. Tadokera R, Meintjes G, Skolimowska KH, Wilkinson KA, Matthews K, Seldon R, et al.
394 Hypercytokinaemia accompanies HIV-tuberculosis immune reconstitution inflammatory syndrome.
395 Eur Respir J. 2011;37(5):1248-59.

Tadokera R, Meintjes GA, Wilkinson KA, Skolimowska KH, Walker N, Friedland JS, et al. Matrix
 metalloproteinases and tissue damage in HIV-tuberculosis immune reconstitution inflammatory
 syndrome. Eur J Immunol. 2014;44(1):127-36.

Andrade BB, Singh A, Narendran G, Schechter ME, Nayak K, Subramanian S, et al.
Mycobacterial antigen driven activation of CD14++CD16- monocytes is a predictor of tuberculosisassociated immune reconstitution inflammatory syndrome. PLoS Pathog. 2014;10(10):e1004433.

402 9. Marais S, Wilkinson KA, Lesosky M, Coussens AK, Deffur A, Pepper DJ, et al. Neutrophil403 Associated Central Nervous System Inflammation in Tuberculous Meningitis Immune Reconstitution
404 Inflammatory Syndrome. Clin Infect Dis. 2014;59(11):1638-47.

10. Nakiwala JK, Walker NF, Diedrich CR, Worodria W, Meintjes G, Wilkinson RJ, et al. Neutrophil
Activation and Enhanced Release of Granule Products in HIV-TB Immune Reconstitution Inflammatory
Syndrome. J Acquir Immune Defic Syndr. 2018;77(2):221-9.

408 11. Taniguchi M, Seino K, Nakayama T. The NKT cell system: bridging innate and acquired 409 immunity. Nat Immunol. 2003;4(12):1164-5.

Kim CH, Johnston B, Butcher EC. Trafficking machinery of NKT cells: shared and differential
chemokine receptor expression among Valpha 24(+)Vbeta 11(+) NKT cell subsets with distinct
cytokine-producing capacity. Blood. 2002;100(1):11-6.

413 13. Godfrey DI, Stankovic S, Baxter AG. Raising the NKT cell family. Nat Immunol. 2010;11(3):197414 206.

415 14. De Libero G, Mori L. The T-Cell Response to Lipid Antigens of Mycobacterium tuberculosis.
416 Front Immunol. 2014;5:219.

417 15. Fischer K, Scotet E, Niemeyer M, Koebernick H, Zerrahn J, Maillet S, et al. Mycobacterial
418 phosphatidylinositol mannoside is a natural antigen for CD1d-restricted T cells. Proc Natl Acad Sci U S
419 A. 2004;101(29):10685-90.

Sada-Ovalle I, Chiba A, Gonzales A, Brenner MB, Behar SM. Innate invariant NKT cells
recognize *Mycobacterium tuberculosis*-infected macrophages, produce interferon-gamma, and kill
intracellular bacteria. PLoS Pathog. 2008;4(12):e1000239.

Venkataswamy MM, Baena A, Goldberg MF, Bricard G, Im JS, Chan J, et al. Incorporation of
NKT cell-activating glycolipids enhances immunogenicity and vaccine efficacy of *Mycobacterium bovis*bacillus Calmette-Guerin. J Immunol. 2009;183(3):1644-56.

426 18. Sada-Ovalle I, Skold M, Tian T, Besra GS, Behar SM. Alpha-galactosylceramide as a therapeutic
427 agent for pulmonary *Mycobacterium tuberculosis* infection. Am J Respir Crit Care Med.
428 2010;182(6):841-7.

429 19. Chancellor A, White A, Tocheva AS, Fenn JR, Dennis M, Tezera L, et al. Quantitative and
430 qualitative iNKT repertoire associations with disease susceptibility and outcome in macaque
431 tuberculosis infection. Tuberculosis (Edinb). 2017;105:86-95.

432 20. Montoya CJ, Catano JC, Ramirez Z, Rugeles MT, Wilson SB, Landay AL. Invariant NKT cells from
433 HIV-1 or *Mycobacterium tuberculosis*-infected patients express an activated phenotype. Clin Immunol.
434 2008;127(1):1-6.

435 21. Sutherland JS, Jeffries DJ, Donkor S, Walther B, Hill PC, Adetifa IMO, et al. High
436 granulocyte/lymphocyte ratio and paucity of NKT cells defines TB disease in a TB-endemic setting.
437 Tuberculosis. 2009;89(6):398-404.

438 22. Kee SJ, Kwon YS, Park YW, Cho YN, Lee SJ, Kim TJ, et al. Dysfunction of Natural Killer T Cells in
439 Patients with Active Mycobacterium tuberculosis Infection. Infect Immun. 2012;80(6):2100-8.

440 23. Paquin-Proulx D, Costa PR, Terrassani Silveira CG, Marmorato MP, Cerqueira NB, Sutton MS,

441 et al. Latent Mycobacterium tuberculosis Infection Is Associated With a Higher Frequency of Mucosal442 Associated Invariant T and Invariant Natural Killer T Cells. Front Immunol. 2018;9:1394.

Wilkinson KA, Walker NF, Meintjes G, Deffur A, Nicol MP, Skolimowska KH, et al. Cytotoxic
mediators in paradoxical HIV-tuberculosis immune reconstitution inflammatory syndrome. J Immunol.
2015;194(4):1748-54.

Walker NF, Wilkinson KA, Meintjes G, Tezera LB, Goliath R, Peyper JM, et al. Matrix
Degradation in Human Immunodeficiency Virus Type 1-Associated Tuberculosis and Tuberculosis
Immune Reconstitution Inflammatory Syndrome: A Prospective Observational Study. Clin Infect Dis.
2017;65(1):121-32.

450 26. Brennan PJ, Brigl M, Brenner MB. Invariant natural killer T cells: an innate activation scheme
451 linked to diverse effector functions. Nat Rev Immunol. 2013;13(2):101-17.

452 27. Chen CY, Huang D, Wang RC, Shen L, Zeng G, Yao S, et al. A critical role for CD8 T cells in a
453 nonhuman primate model of tuberculosis. PLoS Pathog. 2009;5(4):e1000392.

Zeng SG, Ghnewa YG, O'Reilly VP, Lyons VG, Atzberger A, Hogan AE, et al. Human invariant
NKT cell subsets differentially promote differentiation, antibody production, and T cell stimulation by
B cells in vitro. J Immunol. 2013;191(4):1666-76.

Liu TY, Uemura Y, Suzuki M, Narita Y, Hirata S, Ohyama H, et al. Distinct subsets of human
invariant NKT cells differentially regulate T helper responses via dendritic cells. Eur J Immunol.
2008;38(4):1012-23.

460 30. van der Vliet HJJ, von Blomberg BME, Hazenberg MD, Nishi N, Otto SA, van Benthem BH, et
461 al. Selective Decrease in Circulating Vα24+Vβ11+ NKT Cells During HIV Type 1 Infection. J Immunol.
462 2002;168(3):1490-5.

463 31. van der Vliet HJ, van Vonderen MG, Molling JW, Bontkes HJ, Reijm M, Reiss P, et al. Cutting
464 edge: Rapid recovery of NKT cells upon institution of highly active antiretroviral therapy for HIV-1
465 infection. J Immunol. 2006;177(9):5775-8.

466 32. Motsinger A, Haas DW, Stanic AK, Van Kaer L, Joyce S, Unutmaz D. CD1d-restricted human
467 Natural Killer T cells are highly susceptible to human immunodeficiency virus 1 infection. J Exp Med.
468 2002;195(7):869-79.

33. Carvalho KI, Bruno FR, Snyder-Cappione JE, Maeda SM, Tomimori J, Xavier MB, et al. Lower
numbers of Natural Killer T cells in HIV-1 and *Mycobacterium leprae* co-infected patients. Immunology.
2012;136(1):96-102.

472 34. Marais S, Lai RPJ, Wilkinson KA, Meintjes G, O'Garra A, Wilkinson RJ. Inflammasome Activation
473 Underlying Central Nervous System Deterioration in HIV-Associated Tuberculosis. J Infect Dis.
474 2017;215(5):677-86.

475 35. Berzins SP, Smyth MJ, Baxter AG. Presumed guilty: Natural Killer T cell defects and human
476 disease. Nat Rev Immunol. 2011;11(2):131-42.

Brossay L, Chioda M, Burdin N, Koezuka Y, Casorati G, Dellabona P, et al. CD1d-mediated
recognition of an alpha-galactosylceramide by natural killer T cells is highly conserved through
mammalian evolution. J Exp Med. 1998;188(8):1521-8.

- 480 37. Nair S, Dhodapkar MV. Natural Killer T Cells in Cancer Immunotherapy. Front Immunol.
 481 2017;8:1178.
- 482 38. Shissler SC, Bollino DR, Tiper IV, Bates JP, Derakhshandeh R, Webb TJ. Immunotherapeutic
- 483 strategies targeting natural killer T cell responses in cancer. Immunogenetics. 2016;68(8):623-38.

484

486 Figure Legends

487 Figure 1 Reduced iNKT cells in HIV-1 infection and active TB

488 iNKT cells were enumerated by flow cytometry using α -galcer loaded CD1d tetramers. Each 489 sample was stained in parallel with a control tetramer (without α -galcer) to identify non-490 specific tetramer binding for subtraction. The gating strategy shown in (A) demonstrates an 491 iNKT cell frequency of 0.77%, with no control tetramer binding, equivalent to 7700 cells per 492 million CD3+CD19- live lymphocytes. Decreased iNKT cell frequency (B) was found in HIV-493 infected patients with active TB (HIV+TB+) and without active TB (HIV+TB-), compared to 494 HIV-uninfected patients without active TB (HIV-TB-). Similarly, in HIV-infected patients with 495 and without active TB, decreased iNKT cell numbers (cells per millilitre peripheral blood (C)) 496 were found compared to HIV-uninfected patients without active TB. Additionally, in HIV-497 uninfected patients with active TB (HIV-TB+), iNKT cell numbers were reduced compared to 498 HIV-uninfected patients without TB. Analysis was by Kruskal Wallis with Dunn's multiple 499 comparison's test to calculate adjusted p values: *p<0.05; **p<0.01; ***p<0.001. In (B) and 500 (C), zero values were replaced by one for representation on a log scale.

501

502 Figure 2 CD4+ iNKT cell subset depletion in HIV-1-associated TB

503 HIV-infected patients, most significantly those with active TB, had depleted CD4+ iNKT cells 504 as measured by percentage of total iNKT cell count (A) and frequency per million CD3+ CD19-505 live lymphocytes (B). In HIV-infected patients, peripheral blood CD4 T cell count positively 506 correlated with CD4+ iNKT cell percentage (C). HIV-1 viral load negatively correlated with 507 CD4+ iNKT cell percentage (D). In HIV-uninfected patients without active TB, iNKT cells 508 were mostly either CD4+ CD8- or double negative (CD4-CD8-), whilst in HIV-infected 509 patients CD4+ CD8- iNKT cells were depleted and double negative iNKT cells were the 510 predominant subset (E, F). Analysis was by Kruskal Wallis with Dunn's multiple comparisons test to calculate multiplicity-adjusted p values: * p<0.05; ** p<0.01; *** p<0.001 or by
Spearman's correlation (C, D).

513

514 Figure 3 iNKT cell cytotoxicity in HIV-associated TB

515 In HIV-associated TB, there were increased percentages of CD107a+ iNKT cells, suggestive 516 of cytotoxic degranulation (A). In HIV-infected patients with clinical features of extra-517 pulmonary TB (EPTB), there were increased CD107a+ iNKT cell percentages compared to 518 HIV-infected patients with pulmonary TB (B). Analysis was by Kruskal Wallis with Dunn's 519 multiple comparisons test to calculate multiplicity-adjusted p values or by Mann-Whitney U in 520 (D): * p<0.05.

521

522 Figure 4 iNKT cells are elevated in TB-IRIS patients and are CD4+CD8- subset

523 deplete

524 iNKT cells were enumerated longitudinally by flow cytometry using α -galcer loaded CD1d 525 tetramers, in a cohort of 46 HIV-1-infected patients with active TB. Samples were collected 526 around the time of TB diagnosis (TB0), at anti-retroviral therapy initiation (ARV0, a median 527 of 17.5 days post TB treatment initiation) and at two weeks (ARV2) and four weeks (ARV4) 528 post-ART initiation although not all patients contributed data to the first timepoint as patients 529 who had taken more than four doses of TB treatment at enrolment contributed data from ARV0, 530 resulting in fewer data points at TB0. TB-IRIS presentation was typically at ARV2. Increased 531 iNKT cell frequency (A) was observed in TB-IRIS patients compared to non-IRIS controls. 532 CD4+CD8- iNKT cell percentages were reduced in TB-IRIS patients (B). Statistical analysis 533 was by multivariable negative binomial modelling to examine associations of iNKT cell 534 frequency and number with TB-IRIS status and by multivariate linear regression modelling to 535 estimate difference in CD4/CD8 cell subset percentages between TB IRIS and non-IRIS

patients, including data from all timepoints to derive p values which are reported on the
corresponding figure. In (A), zero values were replaced by one for representation on a log scale.

539 Figure 5 iNKT cell cytotoxicity associated with TB-IRIS

540 iNKT cells were characterised longitudinally by flow cytometric analysis for surface markers 541 CD161 and CD107a, in TB-IRIS patients and non-IRIS patients. Between ARV0 and ARV2, 542 CD161+ iNKT cells there was a reduction in CD161+ iNKT cell percentage in TB-IRIS 543 compared to non-IRIS patients (A), whereas CD107a+ iNKT cell percentage increased in TB-544 IRIS patients between ARV0 and ARV2, compared to non-IRIS patients (B). CD107a+ iNKT 545 cell frequency (cells per million CD3+CD19- live lymphocytes) was increased in TB-IRIS 546 patients compared to non-IRIS controls at ARV2, the most common time of TB-IRIS 547 presentation (C). Mann-Whitney U analysis for TB-IRIS vs non-IRIS: * p<0.05; **p<0.01.

Table 1 Demographic and clinical features of the cross-sectional study participants

	HIV-TB-	HIV-TB+	HIV+TB-	HIV+TB+	p value
n	32	20	26	23	
Female, n (%)	14 (43.8)	7 (35.0)	15 (57.7)	9 (39.1)	>0.100ª
Smoking status:	17 (53.1)	10 (50.0)	9 (34.6)	9 (39.1)	>0.100 ^a
current or ex,, n (%)					
Age, median years (IQR)	29.0 (23.3-38.8)	38.0 (30.0-42.8)	32.5 (28.5-35.3)	31.0 (28.0-40.0)	0.059 ^b
CD4 T cell count,	N/A	N/A	349 (204-483)	187 (104-386)	0.041
median cells/ml (IQR)					
CD4 T cell percentage,	N/A	N/A	17.8 (12.0-22.3)	13.7 (9.22-26.3)	0.901
median (IQR)					
HIV viral load,	N/A	N/A	25735 (6807-	296196 (13540-	0.031
median copies/ml (IQR)			92169)	503097)	
Symptomatic, n (%)	16 (50.0)	20 (100)	10 (38.5)	23 (100)	
Duration of symptoms,	14.0 (4.00-150)	28.0 (14.0-30.0)	60.0 (11.3-82.5)	30.0 (21.0-30.5)	0.595 ^c
median days (IQR)					
Miliary TB, n (%)	0 (0)	0 (0)	0 (0)	5 (21.7)	0.051 ^d
Extrapulmonary TB, n (%)	N/A	3 (15.0)	N/A	10 (43.5)	0.054 ^d
Smear positive TB, n (%)	0 (0)	13 (65.0)	0 (0)	8 (34.8)	0.069 ^d
Culture positive TB, n (%)	0 (0)	10 (50.0)	(0)	18 (78.3)	0.064 ^d
Clinical diagnosis TB, n (%)	0 (0)	3 (15.0)	0 (0)	2 (8.70)	0.650
Cavitary disease on CXR,	0 (0)	14 (70.0)	0 (0)	9 (39.1)	0.067 ^d
n (%)					

^afor comparison between each group by Fisher's Exact test ^bfor comparison of all groups by Kruskal-Wallis test, Dunn's multiple comparisons test for a difference between HIV-TB- and HIV-TB+ (p=0.033) ^cfor comparison of all groups by Kruskal-Wallis test ^dfor comparison between HIV-TB+ and HIV+TB+ by Fisher's Exact test

558 Table 2 iNKT cell enumeration in cross-sectional study participants by diagnosis 559

Patient category			Dunn's multiple comparisons test					
HIV- TB-	HIV- TB+	HIV+TB-	HIV+TB+	HIV- TB- vs. HIV- TB+	HIV- TB- vs. HIV+TB-	HIV- TB- vs. HIV+TB+	HIV+TB- vs. HIV+TB+	HIV- TB+ vs. HIV+TB+
	iN	IKT cell freque	ncy, median p	er million CD3+	CD19- live lymp	hocytes (IQF	R)	
1700	735	375	280	0.149	0.005	0.001	>0.999	0.731
(1125,	(253,	(198,	(62.7,					
2600)	1800)	1775)	1300)					
		iNK	T cell number	, median cells p	er ml blood (IQF	R)		1
282628	88580	44965	24439	0.044	0.002	<0.001	0.432	0.161
(151100,	(29600,	(19635,	(3789,					
487870)	203771)	219669)	119449)					
CD4+ iNKT cells, median percentage (IQR)								
44.5	38.9	13.67	3.15	>0.999	0.005	<0.001	>0.999	0.007
(27.9, 61.1)	(16.3,	(2.77,	(0, 39.6)					
	67.1)	39.2)						
	CD4+ iNKT cell frequency, median per million CD3+ CD19- live lymphocytes (IQR)							
712	202	100	18.9	0.016	<0.001	<0.001	>0.999	0.013
(451, 1043)	(78.8, 601)	(11.5, 236)	(0, 148)					

561 Table 3 Demographic and clinical features of participants in longitudinal study at enrolment562

	TB-IRIS	non-IRIS	p value
n (%)	29 (63.0)	17 (37.0)	
Female, n (%)	14 (48.3)	10 (58.8)	0.552
Smoking status: current or ex-, n (%)	9 (31.0)	3 (17.5)	0.489
Age, median years (IQR)	35.0 (29.5-42.0)	35.0 (30.5-43.0)	0.924
CD4 T cell count, median cells/µl	89.0	82.0	0.987
(IQR)	(64.0-141.5)	(69.5-145.5)	
HIV-1 viral load, median copies/ml	621075	520295	0.343
(IQR)	(207018-1185455)	(126925-1029554)	
Extrapulmonary TB, n (%)	21 (72.4)	12 (70.6)	1.00
Miliary TB, n (%)	5 (17.2)	1 (5.88)	0.390
Smear positive TB, n (%)	14 (48.3)	5 (29.4)	0.235
Culture positive TB, n (%)	21 (72.4)	11 (64.7)	0.742
Clinical diagnosis TB, n (%)	2 (6.90)	4 (23.5)	0.174
ART initiation, days post TB treatment initiation	15	21	0.186
(IQR)	(14-28)	(14-41)	
IRIS symptom onset, median days post-ART	6	N/A	
initiation (IQR)	(4-10)		
IRIS presentation, median days post-ART initiation	14	N/A	
(IQR)	(9-15)		
INSHI ^a criteria for paradoxical TB-IRIS fulfilled, n	25 (86.2)	0 (0)	
(%)			

^aInternational Network for the Study of HIV-associated IRIS

В

576

CD4- CD8- INKT cells (% total iNKT) • • • ר100 ...' : 80-60-; 40-20-HIN' TBX HN'TB' HIV*TB 0 HIV*TB*

F

Online Data Supplement

Invariant Natural Killer T cell dynamics in HIV-associated tuberculosis

Invariant Natural Killer T cells in TB-IRIS

Walker NF, Opondo C, Meintjes G, Jhilmeet N, Friedland JS, Elkington PT, Wilkinson RJ, Wilkinson KA.

Materials and Methods

Study Participants and clinical assessment

The study was approved by the University of Cape Town Human Research Ethics Committee (REF 516/2011) and conducted in accordance with the Declaration of Helsinki. Cross-sectional study participants were recruited in an outpatient clinic in Khayelitsha, South Africa and were either healthy volunteers, patients with symptoms requiring assessment, or recently diagnosed TB patients. HIV-infected patients were ART naive at enrolment. Cross-sectional study participants who were on anti-tuberculosis therapy were required to have had less than 3 doses prior to study samples being collected. Once enrolled, cross-sectional study participants were provided appropriate follow up by the research team for study clinical results and were then followed up routinely by clinic staff, unless also eligible for the longitudinal study.

Cross-sectional study participants were retrospectively designated into four categories:

1) HIV-uninfected patients without active TB (HIV-TB-)

2) HIV-uninfected patients with a new diagnosis of active TB (HIV-TB+)

3) ART naïve, HIV-infected patients without active TB (HIV+TB-)

4) ART naïve, HIV-infected patients with a new diagnosis of active TB (HIV+TB+).

Active TB was diagnosed on the basis of smear or culture positivity, or in cases of smearnegative TB according to international guidelines [1, 2]. This required suggestive symptoms and at least one of:

- a) Sputum smear positive for acid fast bacilli on microscopy (Smear positive)
- b) Sputum Gene Xpert-RIF (Cepheid, Sunnyvale, CA) positive for *Mycobacterium tuberculosis* (Mtb)
- c) Sputum culture positive for Mtb (Culture-confirmed)
- d) Clinical features highly suggestive of TB such as diagnostic features on chest radiograph or other imaging modality and a decision to start TB treatment by the treating clinician (Clinical diagnosis)

Cross-sectional study participants who had symptoms but did not meet the criteria for TB diagnosis were designated controls if there was a low clinical suspicion for active TB and they had at least one induced sputum smear negative for acid fast bacilli and one induced sputum culture that was negative for Mtb. These patients were not started on anti-tuberculosis therapy. All HIV-infected patients who were designated non-TB controls also had at least one induced sputum smear negative for acid fast bacilli and one induced sputum culture that was negative for acid fast bacilli and one induced sputum culture that was negative for acid fast bacilli and one induced sputum culture that was negative for acid fast bacilli and one induced sputum culture that was negative for Mtb. HIV-infected active TB patients in the cross-sectional study who met eligibility criteria for the longitudinal study were co-enrolled, or if eligibility became apparent after enrolment, were invited to subsequently participate in the longitudinal study.

Longitudinal study participants were ART naïve HIV-infected patients with a low CD4 count (<200 cells/mm³) and a recent diagnosis of active TB. Following anti-tuberculosis therapy initiation and enrolment into the longitudinal study (study visit TB0) patients received counselling for ART initiation. Anti-tuberculosis therapy and ART followed national guidelines [3, 4]. First-line ART at the time of the study was principally tenofovir, lamivudine, and

efavirenz. ART was initiated typically two weeks after anti-tuberculosis therapy (study visit ARVO) and patients attended further scheduled study visits at two weeks post-ART initiation (ARV2, Day 14 +/- 72 hours) and four weeks post-ART initiation (ARV4, Day 28 +/-72 hours) for clinical assessment and sampling. Patients who had taken more than four doses of TB treatment at enrolment contributed samples from ARVO.

Patients were requested to attend for assessment if any new symptoms or clinical deterioration occurred (study interim assessment) and were followed up to twelve weeks post-ART initiation. Clinical research staff telephoned participants regularly to reinforce this, to remind patients about scheduled visits and to investigate non-attendance. If a case of TB-IRIS was suspected, study samples were collected as at a scheduled visit, in addition to clinically indicated diagnostic tests. Where possible, when patients were hospitalized at the time of a study visit, they were visited by the study team for data and sample collection. Retrospective designation into one of three longitudinal study categories (paradoxical TB-IRIS (INSHI IRIS), probable paradoxical TB-IRIS not meeting INSHI criteria (IRIS non-INSHI), and no paradoxical TB-IRIS (non-IRIS)) followed the results of all relevant investigations and clinical follow up, and was made on case review by a consensus panel (comprising the study clinician NFW, and two clinical specialists: GM, RJW). Designation as TB-IRIS included both INSHI-IRIS and non-INSHI IRIS.

In both cross-sectional and longitudinal studies, demographic information was recorded at enrolment, including gender and smoking status. At each study visit, symptoms and clinical examination, full blood count, albumin, C-reactive protein (CRP) and chest radiograph were

performed, plus additional investigations if clinically indicated. Induced sputum and venous blood were collected (see below) at each visit for microbiological and laboratory analysis.

Venous blood for PBMC isolation was collected in sodium heparin vacutainers, transported at room temperature to UCT, and processed within four hours of collection. PBMC were isolated by layering over Ficoll and cryopreserved in heat-inactivated fetal calf serum (FCS) with 10% dimethyl sulfoxide (DMSO) until used in batches.

Additional venous blood sample analysis was performed by the National Health Laboratory Service (NHLS), including full blood count and differential measured using a Siemens Advia 2120I (Siemens, Surrey, UK), albumin and C-reactive protein (CRP) quantification on a Roche Modular (F. Hoffman-La Roche Ltd) and for HIV-infected patients, CD4 count measured on a Beckman Coulter FC500MP (Beckmann Coulter, Inc, Buckinghamshire, UK) and HIV-1 viral load measured on an Abbott M2000 (Abbott Analytical Limited, London, UK). Induced sputum was collected for microscopy and mycobacterial culture.

CD1d Tetramer staining

Cryopreserved PBMC were rapidly thawed in warmed RPMI/10% FCS and washed. All wash steps consisted of centrifugation at 1500 rpm for 5 minutes, discarding of supernatant and disruption of the cell pellet by vortex. PBMC were counted using a Bio-rad TC20[™] automated cell counter and viability was ascertained by trypan blue exclusion. For iNKT cell enumeration, one million cells per tube were transferred into two labelled fluorescence activated cell sorting (FACS) tubes per patient: one for α -galcer-loaded CD1d tetramer and one for CD1d (control) tetramer staining for each sample. Cells were washed in PBS and resuspended for viability staining with Violet LIVE/DEAD[®] Fixable stain kit (VIVID, Invitrogen, Paisley, UK) (1:1000 dilution, 200µl per tube) and incubated for 30 minutes at 4°C in the dark. They were then washed in PBS and resuspended in 30µl cold PBS prior to tetramer staining with α -galcer-loaded CD1d tetramer (tet+) or control CD1d tetramer (tet-cont) (Proimmune, Oxford, UK), added at 0.5ul per tube and then incubated for 30 minutes on ice. Tet+ and tet-cont-stained cells were protected from light at all times.

Characterisation by cell surface marker expression

Following tetramer staining, cells for surface marker characterisation were stained with an antibody mastermix containing CD3, CD19, CD4, CD8, CD107a, CD95, CD161, CD40L, PD1, and V β 11 for 30 minutes at 4°C (see Supplementary Table S1). They were then washed and resuspended in PBS, 1% Hi-FCS, 2% paraformaldehyde for 1 hour. After a further wash, cells were re-suspended in 300 μ l wash buffer and acquired on an LSR Fortessa (BD Biosciences) within 24 hours of staining. Single fluorochrome-stained positive and negative control compensation beads were acquired for each experiment to enable fluorescence compensation. Data were analysed using Flowjo software (Tree Star, Ashland, OR).

iNKT cell frequency was calculated as a percentage of CD3+ CD19- live lymphocytes, with subtraction of the equivalent tet-cont proportion, and reported per million CD3+CD19- live lymphocytes. Negative values were reassigned zero for analysis. Zero values were assigned 1

if graphically represented on a log scale. Absolute iNKT cell numbers were calculated by multiplying the iNKT cell count, as a percentage of live lymphocytes, with the total lymphocyte count per milliliter of peripheral blood, as previously reported [5]. Phenotypic characteristics of iNKT cells are reported as the iNKT cell percentage expressing cell surface markers (CD4, CD8, CD107a, CD95, CD161, CD40L, PD1). This proportion was multiplied by the total iNKT cell frequency to give the iNKT cell subset frequency.

Statistical analysis

Flow cytometry data was analysed using Flowjo software (Treestar, USA). Gating was determined by comparison to samples stained by the control tetramer or fluorescenceminus-one controls. Statistical analysis was performed using Prism 6 (GraphPad, UK) and STATA version 14. Unadjusted non-parametric analyses were by two-tailed Fisher's Exact or Mann–Whitney U, or for comparisons of more than two groups, by Kruskal-Wallis with Dunn's multiple comparisons test. Comparison of total CD4 count changes over time in the longitudinal study was by two-way repeated measures ANOVA. In the cross-sectional study, we used a multivariable linear regression model to investigate differences in iNKT cell frequency and percentage CD4/CD8 expression by disease category. In the longitudinal study, a multivariable negative binomial model was fitted to examine the association of iNKT frequency with TB-IRIS status and a multivariate linear regression model was used to estimate the difference in CD4/CD8 cell subset percentages between TB IRIS and non-IRIS patients. Data from scheduled visits, ARV0, ARV2 and ARV4 was included in this analysis and ARV0 was used as the baseline timepoint.

Supplementary References

- Siddiqi K, Lambert ML, Walley J. Clinical diagnosis of smear-negative pulmonary tuberculosis in low-income countries: the current evidence. Lancet Infect Dis 2003; 3(5): 288-96.
- WHO. Improving the diagnosis and treatment of smear-negative pulmonary and extrapulmonary tuberculosis among adults and adolescents: recommendations for HIVprevalent and resource-constrained settings. World Health Organisation, Geneva, 2006.
- The South African Antiretroviral Treatment Guidelines 2013. Department of Health, Republic of South Africa, 2013.
- 4. National Tuberculosis Management Guidelines 2014: Department of Health, Republic of South Africa 2014.
- 5. Kee SJ, Kwon YS, Park YW, et al. Dysfunction of Natural Killer T Cells in Patients with Active *Mycobacterium tuberculosis* Infection. Infect Immun **2012**; 80(6): 2100-8.

Supplementary Figure Legends

Supplementary Figure S1 iNKT cell enumeration in cross-sectional study participants

iNKT cells were enumerated using α -galcer-loaded CD1d tetramers and control CD1d tetramers (no α -galcer). Gating on CD3+ CD19- live lymphocytes generated the plots shown. For each participant, peripheral blood mononuclear cells were stained using α -galcer-loaded CD1d tetramers (column A) in parallel with a control tetramer (column B). iNKT cells (shown in Q2, column A) were defined as CD3+ CD19- CD1d α -galcer tet+ V β 11+ T cells and enumerated by subtraction of non-specific tetramer staining in the equivalent control gate (Q2 column B). Representative plots are shown for each of the four patient categories in the cross-sectional study: HIV-uninfected patients without active TB (HIV-TB+); HIV-1-infected patients without active TB (HIV+TB-); HIV-1-infected patients without active TB (HIV+TB-); HIV-1-infected patients without active TB (HIV+TB-); HIV-1-infected patients with active TB (HIV+TB+).

Supplementary Figure S2 CD4 and CD8 iNKT cell subset frequency in cross-sectional study patients

CD4+CD8- iNKT cell subset frequency (cells per million CD3+CD19- live lymphocytes) was reduced in HIV infection and in active TB in HIV-uninfected patients (A). There was reduced CD4-CD8- iNKT cell frequency in HIV-infected patients with active TB compared to HIV-uninfected patients without active TB (B). There was no difference in iNKT cell frequency of CD-CD8+ (C) or CD4+ CD8+ (D) iNKT cell frequency between HIV-infected and uninfected patients, with and without active TB. Analysis was by Kruskal Wallis with Dunn's multiple comparison's test to calculate multiplicity adjusted p values: *p<0.05; **p<0.01; ***p<0.001.

Supplementary Figure S3 iNKT cell numbers in longitudinal study patients

iNKT cells were enumerated by flow cytometry using α-galcer loaded CD1d tetramers, in a cohort of 46 HIV-1-infected patients with active TB. Following TB diagnosis (TB0), TB treatment was initiated. Anti-retroviral therapy was initiated at ARV0, a median of 17.5 days post TB treatment initiation. Patients who had taken more than four doses of TB treatment at enrolment contributed data from ARV0, resulting in fewer data points at TB0. Additional study visits occurred at two (ARV2) and four (ARV4) weeks post-ART initiation. TB-IRIS presentation was typically at ARV2. iNKT cell numbers were calculated by multiplying the iNKT cell count, as a percentage of live lymphocytes quantified by flow cytometry, with the total lymphocyte count per millilitre of peripheral blood as recorded on the full blood count. There was a trend towards increased iNKT cell numbers in TB-IRIS patients compared to non-IRIS controls in the age and sex-adjusted multivariate model (p=0.062). Zero values were replaced by one for representation on a log scale.

Supplementary Figure S4 CD4 negative iNKT cell subsets predominate in TB-IRIS and non-IRIS patients

CD4-CD8- and CD4-CD8+ iNKT cell subset percentage (A, B) and iNKT cell frequency per million CD3+ CD19- live lymphocytes (C, D) are shown. CD4-CD8- iNKT cells were the most abdundant as a percentage of total iNKT cells (A), followed by CD4-CD8+ iNKT cells (B) in both TB-IRIS and non-IRIS patients. However, in TB-IRIS patients CD4-CD8- (C) and CD4-CD8+ (D) iNKT cell frequency was increased compared to non-IRIS patients at ARV2, the usual time of IRIS presentation. CD4+CD8+ iNKT cells were infrequent (data not shown). Zero values were replaced by 0.1 for representation on a log scale. Analysis was by Mann Whitney-U comparing TB-IRIS with non-IRIS at each timepoint: *p<0.05.

Supplementary Figure S5 iNKT cell phenotype in HIV-associated TB

iNKT cells where characterized by proportional surface expression of CD161, CD107a, CD95, PD1 and CD40L, indicating maturation, degranulation, cytotoxicity, anergy and activation, respectively. CD161+ (A) and CD107a+ (B) iNKT cell proportions were dynamic. CD95+ iNKT cell proportions were very high in both TB-IRIS and non-IRIS patients (C). PD1+ iNKT cell proportions were relatively high (E) whereas CD40L+ iNKT cell proportions were relatively low, possibly indicating an exhausted state (F). Individual patient data are shown and consecutive visits are joined by a line. Routine study visits were at ARV0 (anti-retroviral therapy initiation), ARV2 and ARV4 (two and four weeks post-ART initiation). Unscheduled study visits indicating new symptoms were at ARV1 and ARV3 (one and three weeks post-ART initiation).

Supplementary Tables

Supplementary Table S1 Flow cytometry panel for iNKT cell enumeration and phenotype, comprising LIVE/DEAD[®] Fixable stain (VIVID), either α -galcer-loaded CD1d tetramer or control CD1d tetramer and antibodies for cell surface markers (surface antibody mastermix 1).

Surface Marker	Function	Fluorochrome	Volume/million PBMC stained (µl)
	Viability	VIVID	200 (1:1000)
CD3	Identify T cells	FITC	1
CD19	Gate out B cells	BV510	3
CD1d tetramer		APC	0.5
VB11	INK I cell identification	PE	5
CD4	Assess functional maturity & Th1 (CD4+/-)/Th2 (CD4+) polarisation	PerCP-Cy5.5	5
CD8	Cytotoxicity (CD8+)	APC-H7	1
	Activation / maturation		_
CD161 (NK1.1)	NK marker	BV510	5
CD107a	Degranulation	Alexa Fluor 700	5
CD95	Fas- Fas ligand mediated cytotoxicity	BV711	5
PD-1	Induction and maintenance of iNKT cell anergy (in TB)	PE-Cy7	5
CD40L (CD154)	Activation	PE CE504	5
60402 (60134)	Interaction with innate immune cells / B cells	FE-0F394	5

Supplementary Table S2 Multivariable linear regression model of CD4/CD8 percentage expression on iNKT cells in the cross-sectional cohort by clinical category in comparison to HIV-uninfected controls without active TB (HIV-TB-), adjusted for age and sex.

		Coefficient	95% CI	p value
20.4.00.0				
CD4-CD8+				
	HIV-TB+	4.92	-3.58, 13.4	0.257
	HIV+TB-	6.97	0.42, 13.5	0.037
	HIV+TB+	12.4	2.28, 22.5	0.016
CD4+CD8+				
	HIV-TB+	-0.38	-2.49, 1.73	0.725
	HIV+TB-	-0.39	-1.18, 0.40	0.334
	HIV+TB+	2.22	-1.87, 6.31	0.288
CD4+CD8-				
	HIV-TB+	-4.00	-17.9, 9.91	0.573
	HIV+TB-	-23.8	-33.7, -13.8	<0.001
	HIV+TB+	-30.5	-41.3, -19.6	<0.001
CD4-CD8-				
	HIV-TB+	0.45	-13.2, 14.1	0.949
	HIV+TB-	13.6	3.31, 23.8	0.010
	HIV+TB+	11.8	-4.45, 28.0	0.155

Supplementary Table S3 Multivariable negative binomial model assessing relationship between iNKT cell frequency and TB-IRIS status.

Unadjusted	Coefficient	95% CI	p value
	3.99	1.18, 13.5	0.026
Adjusted ^a	Coefficient	95% CI	p value
	4.13	1.23, 13.9	0.022

^aadjusted for age and sex

Supplementary Table S4 Multivariate linear regression model to estimate the difference in CD4/CD8 cell subset percentage between TB IRIS and non-IRIS patients, adjusted for time.

	Difference in cell subset percentage (TB-IRIS vs non-IRIS)	95% CI	p value
CD4-CD8+	-3.02	-14.4, 8.36	0.603
CD4+CD8+	1.03	-10.5, 12.6	0.861
CD4+CD8-	-6.64	-12.0, -1.28	0.015
CD4-CD8-	8.63	-5.49, 22.2	0.231

Supplementary Figures

Supplementary Figure S1

Supplementary Figure S2

Supplementary Figure S3

Supplementary Figure S4

Supplementary Figure S5