Integrated phenotypic and genomics analysis to elucidate differences in stress resistance and virulence of L. monocytogenes strains

Alexandros Ch. Stratakos1, Mark Linton1, Patrick Ward2, Umer Ijaz3, Pam Scales3, Jane McBride1, Ozan Gundogdu4, Nicolae Corcionivoschi3

1Agri-Food and Biosciences Institute, Belfast, United Kingdom. 2Auranta, Dublin, Ireland. 3University of Glasgow, Glasgow, United Kingdom. 4London School of Hygiene and Tropical Medicine, London, United Kingdom

Abstract

Listeria is an important food-borne disease responsible for high rates of morbidity and mortality. L. monocytogenes has been the cause of several food-borne outbreaks and product recalls throughout the world. It can adapt and survive in a wide range of stress conditions which makes it difficult for food producers to eradicate. The goal of this study was to use phenotypic assays and whole genome sequencing to elucidate possible links between food-related stress resistance and virulence phenotypes in L. monocytogenes strains originating from different sources. Four L. monocytogenes isolates from sweetcorn and one isolate from a food-processing environment (control) were sequenced and evaluated for the ability to survive in acid (pH 3.5, 15 min), in the presence of an antimicrobial mixture (2% v/v, 90 min), heat (60°C, 5 min) and hydrogen peroxide (420 mM, 15 min). Results showed that the strains had different resistance levels to the above stressors with the environmental strain being more susceptible to heat and the commercial antimicrobial. Also, results showed that the four sweetcorn isolates were more virulent than the environmental isolate as they had significantly higher attachment and invasion capacity onto HCT-8 cell.

Introduction

In 2018 the European Food Safety Authority (EFSA) released a report on an invasive Listeria monocytogenes outbreak which had caused lethal human infections, with the source initially attributed to Hungarian frozen sweetcorn and other frozen vegetables (1). Whole-genome sequencing (WGS) confirmed the link between the human isolates and frozen sweetcorn isolates and so in 2018 the Hungarian authorities banned the marketing of all frozen vegetables (1). The authorities in the United Kingdom and other countries in the European Union took a similar action. Currently WGS represents a powerful tool for molecular epidemiological studies; however, associating genotype with phenotype, is often lacking. Many foodborne pathogenic bacteria will behave differently upon colonization of the human host and by coupling genome sequencing with phenotypic experimental data, our understanding of bacterial pathogenesis and survival can vastly improve. A variety of genes involved in pathogenicity and survival in the host are likely to be activated only in vivo, which strengthens the importance of scrutinizing outbreak isolates in experimental infections. In order to understand their virulence, we have isolated L. monocytogenes from commercially available frozen processed sweetcorn from Hungary and performed genotypic and phenotypic characterization.

Aim

In order to understand the pathogenic potential of the sweetcorn L. monocytogenes isolates we have performed comparative genomic analysis in addition to phenotypic assays to correlate genotypic and phenotypic markers for a virulence profile of these L. monocytogenes outbreak-like isolates. Our study explores the resistance of these L. monocytogenes outbreak-like isolates to the major stresses encountered during host invasion and the establishment of a disease phenotype.

Results and Discussion

The higher colonisation levels (Fig. 2) may imply that the sweetcorn isolates are better at tolerating the acidic conditions of the stomach. However, the in vitro results showed that all isolates used in this study had a similar resistance to acidic conditions. In addition, the OT171-4 sweetcorn isolates also had the same susceptibility to oxidative stress, which could suggest that increased survivability in the gastrointestinal tract is not the determining factor that influences colonisation.

SNP analysis revealed:

• Flagellar hook protein FljE as a potentially modified gene between OT171-4 sweetcorn isolates and FMT 1750.
• Transketolase (Tkt) as affected significantly between the OT171-4 sweetcorn isolates and the reference strain. Salmonella spp., lacking transketolase have been described as avirulent in mice suggesting their possible polar effect in pathogenesis (2). Increased resistance to stresses in the OT171-4 isolates may also be related to these significant changes in the TKT enzymes (3).
• Precorrin-38 C(17)-methyltransferase and sirohydrochlorin cobaltochelatase genes were predicted as mutated, which are involved in nutrient and survival needs in anaerobic conditions (4,5).

Conclusion

We identified similar phenotypic properties such as in vitro adhesion and invasion, in vivo liver and spleen colonisation, and resistance to heat for all four L. monocytogenes outbreak-like strains (OT171-4) which have differed significantly from a reference strain (FMT 1750). SNP analysis explored what genetic changes may be causing these phenotypic observations. We highlight the importance of combining WGS strategies in conjunction with phenotypic methods as a key approach in the investigation of listeriosis.

References