Synthesis of diphenoxyladamanantane alkylamines with pharmacological interest

Markos-Orestis Georgiadis¹, Violeta Kourbeli², Vaya Ioannidou³, Evangelos Karakitsios⁴, Ioannis Papanastasiou⁵, Andrew Tso tinis⁶, Dimitri Komiotis⁷, Anthony Vocat⁸, Stewart T. Cole⁹, Martin C. Taylor¹⁰ and John M. Kelly¹¹

¹School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece
²Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, 41221 Larissa, Greece
³Global Health Institute, Ecole Polytechnique Fédérale de Lausanne, Station 19, 1015 Lausanne, Switzerland
⁴Institut Pasteur, 25-28 rue du Docteur Roux, 75724 Paris Cedex 15, France
⁵Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1 E7HT, UK
Synthesis of diphenoxyadamantane alkylamines with pharmacological interest

Markos-Orestis Georgiadis a, Violeta Kourbeli a, Vaya Ioannidou a, Evangelos Karakitsios a, Ioannis Papanastasiou a, Andrew Tsonitas, Dimitri Komiotis b, Anthony Vocat c, Stewart T. Cole c, d, Martin C. Taylor e and John M. Kelly e

a School of Health Sciences, Department of Pharmacy, Division of Pharmaceutical Chemistry, National and Kapodistrian University of Athens, Panepistimioupoli-Zografou, 157 84 Athens, Greece
b Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, 41221 Larissa, Greece
c Global Health Institute, Ecole Polytechnique Federale de Lausanne, Station B19, 1015 Lausanne, Switzerland
d Institut Pasteur, 25-28 rue du Docteur Roux, 75724 Paris Cedex 15, France
e Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1 E7HT, UK

Neglected Tropical Diseases (NTDs) represent a plethora of infections (17 according to WHO) caused by various pathogenic agents, such as viruses, bacteria, protozoa and helminths, which affect population in developing countries in Africa, Asia and America. Human African Trypanosomiasis (HAT) and American trypanosomiasis or Chagas disease are among the diseases which received the minimum interest and funding from the pharmaceutical industry and therefore called as the most neglected diseases. Trypanosomatids, flagellated Kinetoplastida protozoan, are the cause of trypanosomiasis and display two main strains that infect humans: Trypanosoma brucei and Trypanosoma cruzi, which correspond to the two types of trypanosomiasis.

Tuberculosis (TB) is one of the three major microbial lethal threats, alongside HIV/AIDS and malaria, to humans history in developing and industrialized countries worldwide. WHO estimates that there were 1.6 million TB deaths in 2017, and 0.3 million deaths resulting from coinfection of TB and HIV. Mycobacterium tuberculosis (Mt), the etiologic pathogen agent of TB, is being investigated to find new targets for antitubercular therapy. Besides the gravity of the disease, TB receives insufficient funding and research for new drugs is less intense compared to other diseases. Only two new drugs have been approved, bedaquiline and delamanid, to complement the current four-drug regimen over the last 60 years.

Figure 1. Derivatives with trypanocidal and tuberculocidal activity.

Various reports in literature display functionalized piperazine backbones of derivatives with trypanocidal activity. Based on our previous work on adamantane substituted derivatives with pharmacological activity against trypanosomiasis, we now describe the preparation of a series of adamantane diphenoxy...
alkylamines Ia-f and IIa-f (Figure 2). The new adducts possess the adamantane core connected through a phenoxy moiety to the side chain of alkylamine. The termini of their side chains consist of a piperazine moiety, with a variety of substituents (derivatives Ia-c). In addition, morpholine and diethanolamine were used as more polar functional groups at the same site.

In derivatives Id-f and IIa-f the ethanolamine side chain was modified to 1-amino-2-propanol, which is an important feature in diverse antimicrobial agents.\(^{15,16}\) Moreover, this β-aminoalcohol motif has been linked with antimycobacterial action.

Ethambutol\(^{17}\) is the main representative of this category of antitubercular agents. The 1,2-diamine congeners, such as the adamantane derivative SQ-109\(^{18,19}\) and the camphane aminoalcohols\(^{20}\) exhibit very low toxicity and improved pharmacokinetic properties. Our lab has also reported antimycobacterial adamantane derivatives\(^{21-25}\) bearing a diarylmethane scaffold.\(^{24}\)

The synthesis of the new adamantane piperazines Ia-c is depicted in Scheme 1.

The starting material, 2,2-adamantanediyl-di(4-phenol) \(^{25}\) is acylated to form the diester 2. This ethoxycarbonylmethylation is accomplished in the presence of sodium hydride in DMF, under heating at \(80 \degree C\) for 72 h, generating first the phenoxy anion, which subsequently reacts with ethyl chloroacetate in the presence of cat. sodium iodide. Sodium iodide promotes halogen exchange and accelerates the nucleophilic substitution. Lower temperature or shorter heating time afforded a mixture of monoacetylated and diacylated esters in a ratio of 1:2. Moreover, the use of sodium carbonate in acetone leads to the monosubstituted adduct. Reduction of the diester 2 with lithium aluminium hydride in dry THF gave dialcohol 3, which was functionalized with methane sulfonyl chloride in the presence of pyridine to afford the corresponding methane sulfonate 4. The latter was treated with the appropriate piperazine to give the desired adamantane piperazines Ia-c.

For comparison purposes, adamantane phenylpiperazine Ib was also synthesized by the reaction sequence shown in Scheme 2.

In the second synthetic pathway, diphenoxethyl acetate 2 was converted to the diphenylacetamide 6 via the intermediate chloride 5. The diester 2 was saponified to the corresponding acid, treated with thionyl chloride and then converted to diacylchloride 5. The latter was coupled with 1-phenylpiperazine to afford the diphenylacetamide 6, which was reduced by lithium aluminium hydride in dry THF to the respective phenylpiperazine Ib. The second synthetic route gives Ib in an overall yield of 19% (from the ester), whilst the first method in 24%.

Figure 2. Diphenoxyadamantane alkylamines Ia-f and IIa-f.

Scheme 1. Reagents and conditions: (a) NaH / DMF dry; (b) NaI, ethyl chloroacetate, \(80 \degree C, 72\) h; (c) i. LiAlH\(_4\) / THF, rt, 2 h, ii. \(H_2O/\text{OH}, - 0 \degree C\); (d) MsCl/Py/THF-EtOH or \(n\)-BuOH, 40 \degree C, 1 h; (e) appropriate piperazine, \(\Delta\), 24 h.

Scheme 2. Reagents and conditions: (a) NaOH / EtOH-H\(_2\)O, reflux; (b) SOCl\(_2\), reflux; (c) benzene; (d) appropriate piperazine, \(\Delta\), 1 h; (e) i. LiAlH\(_4\) / THF, \(\Delta\), 1 h, ii. \(H_2O/\text{OH}, - 0 \degree C\)
The preparation of 2-hydroxypropylene derivatives Id-f and IIa-f is shown in Scheme 3.

The method for the epoxide formation of the two isomeric alcohols, 4,4'-adamantane-2,2-diyl)diphenol (I) and 4,4'-((adamantane-1,3-diyl)diphenol (7), has been patented, and followed only for the generation of the phenoxy anion. Thereafter, as a result of considerable experimentation, we modified the procedure as follows: portions of sodium hydroxide were added over a period of 2 h into a mixture of the corresponding diphenol and epichlorohydrin in MIBK and DMSO, which was heated at 45 °C. Subsequently, the temperature of the reaction mixture was increased to 75 °C and after 4 h, the desired disubstituted epoxide 8 was produced. However, the 1,3-substituted isomeric phenol 7 did not give a sole product, but a mixture of mono and double substituted epoxide in a ratio of 1:5. To rectify this, the 4,4'-((adamantane-1,3-diyl)diphenol (7) was heated, instead, for 24 h to give the 1,3-bis(4-glycidyloxyphenyl)adamantane (9) in 81.5% yield.

The O-alkylation of phenols with epichlorohydrin is well documented in literature. Apart from the formation of 3-aryloxy-1,2-epoxypropane, the epoxy ring opening affords the chloroalcohol (Figure 3). The IR spectral data confirmed the formation of the respective open-form chloroalcohol; IR ν (OH) = 3556 cm⁻¹ in the case of diphenol 1 and IR ν (OH) = 3436 cm⁻¹ in the case of diphenol 7.

The coupling of the corresponding amine with either of the O-alkylated diphenols 1 and 7 leads to the same final aminoalcohols. Amin alcoholic 1d-f and IIa-f were prepared by two different methods, either under conventional heating in an autoclave or microwave irradiation using i-PrOH as solvent in both of methods.

The in vitro results from the anti-T. brucei screening are summarized in Table 1. The 1-methylpiperazine derivatives Ia, Id and IIe seem to be more potent in comparison to their congeners. Bulky substituents, such as 4-phenylpiperazine and 1-(4-fluoromethyl)-phenylpiperazine, have a negative impact on potency. Moreover, the ethanolamine spacer seems to enhance the trypanocidal activity, while the 2-hydroxypropylene linker in the side chain decreases the positive role in potency of the end groups. Derivatives Id and IIc have lower activity than the Ia adduct. On the other hand, the aminoalkane groups at the functional end of the side chains (derivatives IIId, IIe and IIIf) corroborate the argument that small substituents enhance the activity. The 4 carbon atom length of the amino substitution seems to enhance the activity. The butylamine derivative IIIe was found more active than its congeners. Based on the promising trypanocidal potency of 1-methylpiperazine derivative Ia (SI=6.5, the ratio of IC₅₀ values obtained with L6 cells and T. brucei), we will prompt our efforts toward decreasing the cytotoxicity of future analogues. The in vitro antimycobacterial test results of the new adamantane derivatives against replicating M. tuberculosis H37Rv and non-replicating SS18b, assessed by REMA, are presented in Table 2. The antimycobacterial activity of the 1-methylpiperazine adducts Ia and Id is notable, whilst IIe’s is marginal. On the other hand, aminoalkanes IIIe and IIIIf seem to have the best activity against M. tuberculosis. The bulky substitution is proven, and in this case, to have a negative impact on the antimycobacterial efficacy. The polar heads at the side chain (congener IIf) do not enhance the antimycobacterial activity, either.

The antimycobacterial activity of the 1-methylpiperazine derivatives Id-f and IIa-f is shown in Scheme 3.

The method for the epoxide formation of the two isomeric alcohols, 4,4'-adamantane-2,2-diyl)diphenol (I) and 4,4'-((adamantane-1,3-diyl)diphenol (7), has been patented, and followed only for the generation of the phenoxy anion. Thereafter, as a result of considerable experimentation, we modified the procedure as follows: portions of sodium hydroxide were added over a period of 2 h into a mixture of the corresponding diphenol and epichlorohydrin in MIBK and DMSO, which was heated at 45 °C. Subsequently, the temperature of the reaction mixture was increased to 75 °C and after 4 h, the desired disubstituted epoxide 8 was produced. However, the 1,3-substituted isomeric phenol 7 did not give a sole product, but a mixture of mono and double substituted epoxide in a ratio of 1:5. To rectify this, the 4,4'-((adamantane-1,3-diyl)diphenol (7) was heated, instead, for 24 h to give the 1,3-bis(4-glycidyloxyphenyl)adamantane (9) in 81.5% yield.

The O-alkylation of phenols with epichlorohydrin is well documented in literature. Apart from the formation of 3-aryloxy-1,2-epoxypropane, the epoxy ring opening affords the chloroalcohol (Figure 3). The IR spectral data confirmed the formation of the respective open-form chloroalcohol; IR ν (OH) = 3556 cm⁻¹ in the case of diphenol 1 and IR ν (OH) = 3436 cm⁻¹ in the case of diphenol 7.

The coupling of the corresponding amine with either of the O-alkylated diphenols 1 and 7 leads to the same final aminoalcohols. Amin alcoholic 1d-f and IIa-f were prepared by two different methods, either under conventional heating in an autoclave or microwave irradiation using i-PrOH as solvent in both of methods.

The in vitro results from the anti-T. brucei screening are summarized in Table 1. The 1-methylpiperazine derivatives Ia, Id and IIe seem to be more potent in comparison to their congeners. Bulky substituents, such as 1-phenylpiperazine and 1-(4-fluoromethyl)-phenylpiperazine, have a negative impact on potency. Moreover, the ethanolamine spacer seems to enhance the trypanocidal activity, while the 2-hydroxypropylene linker in the side chain decreases the positive role in potency of the end groups. Derivatives Id and IIc have lower activity than the Ia adduct. On the other hand, the aminoalkane groups at the functional end of the side chains (derivatives IIId, IIe and IIIf) corroborate the argument that small substituents enhance the activity. The 4 carbon atom length of the amino substitution seems to enhance the activity. The butylamine derivative IIIe was found more active than its congeners. Based on the promising trypanocidal potency of 1-methylpiperazine derivative Ia (SI=6.5, the ratio of IC₅₀ values obtained with L6 cells and T. brucei), we will prompt our efforts toward decreasing the cytotoxicity of future analogues. The in vitro antimycobacterial test results of the new adamantane derivatives against replicating M. tuberculosis H37Rv and non-replicating SS18b, assessed by REMA, are presented in Table 2. The antimycobacterial activity of the 1-methylpiperazine adducts Ia and Id is notable, whilst IIe’s is marginal. On the other hand, aminoalkanes IIIe and IIIIf seem to have the best activity against M. tuberculosis. The bulky substitution is proven, and in this case, to have a negative impact on the antimycobacterial efficacy. The polar heads at the side chain (congener IIf) do not enhance the antimycobacterial activity, either.

The in vitro results from the anti-T. brucei screening are summarized in Table 1. The 1-methylpiperazine derivatives Ia, Id and IIe seem to be more potent in comparison to their congeners. Bulky substituents, such as 1-phenylpiperazine and 1-(4-fluoromethyl)-phenylpiperazine, have a negative impact on potency. Moreover, the ethanolamine spacer seems to enhance the trypanocidal activity, while the 2-hydroxypropylene linker in the side chain decreases the positive role in potency of the end groups. Derivatives Id and IIc have lower activity than the Ia adduct. On the other hand, the aminoalkane groups at the functional end of the side chains (derivatives IIId, IIe and IIIf) corroborate the argument that small substituents enhance the activity. The 4 carbon atom length of the amino substitution seems to enhance the activity. The butylamine derivative IIIe was found more active than its congeners. Based on the promising trypanocidal potency of 1-methylpiperazine derivative Ia (SI=6.5, the ratio of IC₅₀ values obtained with L6 cells and T. brucei), we will prompt our efforts toward decreasing the cytotoxicity of future analogues. The in vitro antimycobacterial test results of the new adamantane derivatives against replicating M. tuberculosis H37Rv and non-replicating SS18b, assessed by REMA, are presented in Table 2. The antimycobacterial activity of the 1-methylpiperazine adducts Ia and Id is notable, whilst IIe’s is marginal. On the other hand, aminoalkanes IIIe and IIIIf seem to have the best activity against M. tuberculosis. The bulky substitution is proven, and in this case, to have a negative impact on the antimycobacterial efficacy. The polar heads at the side chain (congener IIf) do not enhance the antimycobacterial activity, either.

The in vitro results from the anti-T. brucei screening are summarized in Table 1. The 1-methylpiperazine derivatives Ia, Id and IIe seem to be more potent in comparison to their congeners. Bulky substituents, such as 1-phenylpiperazine and 1-(4-fluoromethyl)-phenylpiperazine, have a negative impact on potency. Moreover, the ethanolamine spacer seems to enhance the trypanocidal activity, while the 2-hydroxypropylene linker in the side chain decreases the positive role in potency of the end groups. Derivatives Id and IIc have lower activity than the Ia adduct. On the other hand, the aminoalkane groups at the functional end of the side chains (derivatives IIId, IIe and IIIf) corroborate the argument that small substituents enhance the activity. The 4 carbon atom length of the amino substitution seems to enhance the activity. The butylamine derivative IIIe was found more active than its congeners. Based on the promising trypanocidal potency of 1-methylpiperazine derivative Ia (SI=6.5, the ratio of IC₅₀ values obtained with L6 cells and T. brucei), we will prompt our efforts toward decreasing the cytotoxicity of future analogues. The in vitro antimycobacterial test results of the new adamantane derivatives against replicating M. tuberculosis H37Rv and non-replicating SS18b, assessed by REMA, are presented in Table 2. The antimycobacterial activity of the 1-methylpiperazine adducts Ia and Id is notable, whilst IIe’s is marginal. On the other hand, aminoalkanes IIIe and IIIIf seem to have the best activity against M. tuberculosis. The bulky substitution is proven, and in this case, to have a negative impact on the antimycobacterial efficacy. The polar heads at the side chain (congener IIf) do not enhance the antimycobacterial activity, either.
The new adamantane derivatives presented herein are doubly substituted by a phenoxo, incorporating various aminooalky side chains. The 1-methylpiperazine derivative Ia is the most active against *T. brucei*, while hexylamine III exhibits the higher antimycobacterial potency among its analogs. The ethylene spacer of the side chain leads to enhanced activity compared to the 2-hydroxyproplylene linker. These preliminary results will be utilized in future studies on phenyl-substituted adamantane derivatives with a trypanocidal and antitubercular potency devoid of toxicity against mammalian cells.

Appendix A. Supplementary data

Supplementary data to this article can be found online at

Table 1

<table>
<thead>
<tr>
<th>Compd</th>
<th>T. brucei</th>
<th>T. brucei</th>
<th>L cells</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>IC₅₀ (µM)</td>
<td>IC₅₀ (µM)</td>
<td>IC₅₀ (µM)</td>
</tr>
<tr>
<td>Ia</td>
<td>0.05±1±0.008</td>
<td>0.07±0.017</td>
<td>0.33±0.06</td>
</tr>
<tr>
<td>Id</td>
<td>0.11±0.002</td>
<td>0.13±0.002</td>
<td>0.54±0.02</td>
</tr>
<tr>
<td>IIa</td>
<td>0.25±0.006</td>
<td>0.29±0.002</td>
<td>0.27±0.02</td>
</tr>
<tr>
<td>Ic</td>
<td>0.17±0.003</td>
<td>0.20±0.003</td>
<td>0.26±0.01</td>
</tr>
<tr>
<td>IId</td>
<td>0.17±0.017</td>
<td>0.23±0.007</td>
<td>0.29±0.02</td>
</tr>
<tr>
<td>Ile</td>
<td>0.09±0.003</td>
<td>0.11±0.002</td>
<td>0.55±0.02</td>
</tr>
<tr>
<td>IIIf</td>
<td>0.20±0.004</td>
<td>0.27±0.006</td>
<td>0.45±0.03</td>
</tr>
</tbody>
</table>

*IC₅₀ and IC₉₀: concentration that inhibits growth by 50% and 90%, respectively.

Table 2

<table>
<thead>
<tr>
<th>Compd</th>
<th>H37Rv</th>
<th>SS1b</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIC (µg/mL)</td>
<td>Imax</td>
</tr>
<tr>
<td>Ia</td>
<td>3.3±0.04</td>
<td>100%</td>
</tr>
<tr>
<td>Id</td>
<td>6±NT</td>
<td>NT</td>
</tr>
<tr>
<td>If</td>
<td>17.4±0.7</td>
<td>N.T</td>
</tr>
<tr>
<td>IIa</td>
<td>7±0.17</td>
<td>99%</td>
</tr>
<tr>
<td>Ic</td>
<td>14.5±5.2</td>
<td>95%</td>
</tr>
<tr>
<td>Ile</td>
<td>2.7±100%</td>
<td>100%</td>
</tr>
<tr>
<td>IIIf</td>
<td>0.06±0%</td>
<td>0%</td>
</tr>
<tr>
<td>RIF</td>
<td>0.0008±54%</td>
<td>13%</td>
</tr>
<tr>
<td>EMB</td>
<td>0.03±0%</td>
<td>0%</td>
</tr>
</tbody>
</table>

*MIC: minimum inhibition concentration.

The new adamantane derivatives have shown increased activity against *T. brucei*.

References

16. Priyanka, Singh V, Ekta, Katiyar D, Synthesis, antimicrobial, cytotoxic and E. coli DNA gyrase inhibitory activities of...
crotiter assay plate: simple and
tectical Formulations (II),
anglycidol and some of its derivatives.

