Majonga, Edith D; Rehman, Andrea M; Mchugh, Grace; Mujuru, Hilda A; Nathoo, Kusum; Odland, Jon O; Ferrand, Rashida A; Kaski, Juan Pablo; (2019) Incidence and progression of echocardiographic abnormalities in HIV-infected older children and adolescents taking antiretroviral therapy: A prospective cohort study. Clinical Infectious Diseases. ISSN 1058-4838 DOI: https://doi.org/10.1093/cid/ciz373

Downloaded from: http://researchonline.lshtm.ac.uk/id/eprint/4652853/

DOI: https://doi.org/10.1093/cid/ciz373

Usage Guidelines:

Please refer to usage guidelines at https://researchonline.lshtm.ac.uk/policies.html or alternatively contact researchonline@lshtm.ac.uk.

Available under license: http://creativecommons.org/licenses/by/2.5/
Supplementary Data 1

Methods
Transthoracic echocardiography was performed by an echocardiographer trained in pediatric echocardiography (EDM). A standard protocol consisting of 2-dimensional, M-mode, pulsed and continuous wave Doppler as recommended by American Society of Echocardiography (ASE) was adopted for image acquisition and cardiac measurements [1]. Images were acquired and saved in DICOM format for off-line analysis. Blood samples were collected for HIV viral load and CD4 count testing. All clinical assessments were repeated at 18-month follow up.

Definitions
The echocardiographic cardiac measures were normalized to body surface area (BSA) (calculated using the Du Bois and Du Bois method) [2] and converted to z-scores using previously-published local references [3]. Echocardiographic abnormalities were broadly categorized as right and left heart abnormalities. Right heart abnormalities refer to either right ventricular (RV) dilatation (defined as a z-score >+2 for RV diameter end-diastole); and/or systolic dysfunction [defined as a tricuspid annular plane systolic excursion (TAPSE) z-score of < -2]; and/or pulmonary hypertension [defined as present if the tricuspid regurgitation velocity was ≥2.9 m/s, pulmonary arterial systolic pressure (PASP) ≥37 mmHg with/without additional echocardiographic variables suggestive of pulmonary hypertension (assuming right atrial pressure of 5mmHg)[4]]. Left heart abnormalities included LV dilatation (defined as a z-score >+2 for LV end-diastolic diameter) or hypertrophy (defined as maximal wall thickness of interventricular septum (IVS) and/or LV posterior wall (LVPW) greater than +2 z-scores); and/or left atrial (LA) dilatation (defined as z-score >+2 for LA end-systolic diameter); and/or systolic and/or diastolic dysfunction. LV systolic function was assessed using Simpson’s Biplane method and an ejection fraction ≥55% was considered normal [1]. LV diastolic
dysfunction was assessed using transmitral Doppler peak early (E) and late diastolic (A) filling velocities, E/A ratio, deceleration time and pulmonary venous flow velocities, including peak systolic (S) and diastolic (D) waves, S/D ratio and atrial reversal (Ar) velocity; paediatric reference ranges were used to define abnormality [5]. Participants were classified as having diastolic dysfunction when at least four parameters were abnormal.

Resting tachypnoea was defined as a respiratory rate >25/min. Stunting and wasting were defined as a z-score <-2 for height-for-age and weight-for-age respectively, using British 1990 growth references [6]. Hypoxia was defined as a resting oxygen saturation <88%. Abnormal spirometry was defined as a reduced ratio of the highest forced expiratory volume in 1 second (FEV1) and forced vital capacity (FVC) (FEV1: FVC) or reduced FVC regardless of normal FEV1: FVC ratio not reversed with salbutamol [7].
Additional References


