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ABSTRACT: Access to continuous water supply is key for
improving health and economic outcomes in rural areas of low-
and middle-income countries, but the factors associated with
continuous water access in these areas have not been well-
characterized. We surveyed 4786 households for evidence of
technical, financial, institutional, social, and environmental
predictors of rural water service continuity (WSC), defined as
the percentage of the year that water is available from a source.
Multiple imputed fractional logistic regression models that account
for the survey design were used to assess operational risks to WSC
for piped supply, tube wells, boreholes, springs, dug wells, and
surface water for the rural populations of Bangladesh, Pakistan,
Ethiopia, and Mozambique. Multivariable regressions indicate that
households using multiple water sources were associated with lower WSC in Bangladesh, Pakistan, and Mozambique. However,
the possibility must be considered that households may use more than one water source because services are intermittent. Water
scarcity and drought were largely unassociated with WSC, suggesting that service interruptions may not be primarily due to
physical water resource constraints. Consistent findings across countries may have broader relevance for meeting established
targets for service availability as well as human health.

■ INTRODUCTION

While access to water services has increased globally over recent
decades,1 an estimated 925 million people are served by piped-
to-premise water supplies that are intermittent.2 Pressure loss in
an intermittent piped system can result in groundwater
infiltration, surface water infiltration, and biofilm growth that
can contaminate water supplies.3,4 Non-networked sources can
also supply water intermittently.When water services of any type
are interrupted, households may resort to using less water,

storing water, and/or using less accessible and potentially

contaminated water sources.5,6 Risk assessment models suggest

that the annual health benefits of a safe drinking water source can

be eliminated in just a few days of compromised service.7
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Cross-sectional surveys spanning four decades show that a
high percentage of water sources in low- and middle-income
countries do not supply water at the time of data collection,
especially in rural areas.8,9,18−20,10−17 Studies have identified
various factors associated with reduced water source function-
ality (whether the water source was operational on the day of
observation),8,9,21−26 reliability (whether the water source had
previously broken down),25 and continuity (whether the water
source provided service 24 h per day).27,28 The problem with
these data is that such binary outcomes do not capture the
temporal variability of water services and offer poor indicators to
assess the cumulative risk over time posed by intermittent water
services.29 Best available estimates suggest that intermittency
from piped-to-premise water supplies alone may account for
109 000 diarrheal disability adjusted life years and 1560 deaths
globally each year,2 but the predictors of intermittent supply are
poorly understood.
The aim of this study was to assess possible technical,

financial, institutional, social, and environmental predictors of
water service continuity (WSC), defined as the percentage of the
year that water is available to households, of household taps,
tube wells/boreholes, dug wells, springs, and surface water for
the rural populations of four low and lower-middle income
countries: Bangladesh, Pakistan, Ethiopia, and Mozambique.
Specifically, because interrupted services can result in house-
holds using multiple water sources, this study conceptualizes
rural water service delivery through overall user experience
instead of water sources individually. Factors associated with
WSC may reflect rural water service issues such as insufficient
cost recovery,30 seasonal service,31 poor maintenance,32 and
using multiple sources.33 Similar findings across countries may
point to consistent underlying causes of intermittency and may
guide the development of strategies to achieve global targets for
water service availability.

■ MATERIALS AND METHODS
Data Collection. In 2014, we collected survey data on water

services that were representative of the rural populations of four
countries: Bangladesh, Pakistan, Ethiopia, and Mozambique.
These countries are located within sub-Saharan Africa and South
Asia, where an estimated 57 and 14% of people are without
access to a “basic water source” as defined by the UnitedNations
(i.e., an improved water source not exceeding a 30 min round
trip collection time, including queueing), respectively.34 Under
our supervision, field teams administered surveys to commun-
ities and households within those communities in rural
Bangladesh, Pakistan, Ethiopia, and Mozambique (Table S1).
The household survey collected data on publicly and privately
available water services as perceived by households, while the
community surveys assessed water services at the community
level. Survey data from all countries were imported into Stata S/
E 15.0,35 merged, and cleaned.
To supplement survey data, raster data of surface water and

groundwater consumption and availability were obtained from
Mekonnen and Hoekstra.36 The raster model has high spatial
resolution (30 × 30 arc-min), high duration and frequency of
estimates (calculatedmonthly over the 10-year period of 1996 to
2015), and includes environmental flow requirements. Water
scarcity indices indicate the ratio of the blue water footprint to
the blue water availability, where blue water is freshwater and
includes groundwater and surface water. A water scarcity index
below 1.0 indicates low scarcity, 1.0 to 1.5 signifies moderate
scarcity, 1.5 to 2.0 equates to significant scarcity, and above 2.0 is

severe scarcity.36 Using Global Positioning System coordinates,
we matched water sources to their respective water scarcity
index in QGIS and then imported data into Stata S/E 15.0.37

Sampling Strategy. For survey data, we included only rural
areas in the sampling frame, adopting the definition of “rural”
used by census authorities within each country. We estimated
the required sample size for the questionnaires using EpiInfo
7.2.38 We aimed for a target sample size of 1200 households in
60 clusters (20 households in each cluster) to allow for
nonresponse and to increase power. Further information about
sample size calculations and sampling areas is included in the
Supporting Information.
We used a three-stage sampling design for household and

community survey data collection. In the first stage, we used a
probability proportional to size method39 to randomly select
about 60 rural census enumeration areas in each country.
Probability of selection for enumeration areas was based on the
number of households within each enumeration area, which was
provided by the Pakistan Bureau of Statistics, the Bangladesh
Bureau of Statistics, the Central Statistics Agency of Ethiopia,
and the National Institute of Statistics in Mozambique. In the
second stage, we segmented enumeration areas with more than
300 households into smaller clusters (i.e., communities) and
randomly selected one of the clusters with equal probability. The
third stage involved systematic random sampling of 20
households within each cluster with equal probability. We
derived household design weights by multiplying the inverse
probability-of-selection for the three stages. All public water
sources in the sampled clusters were included in the community
interview.
Field teams conducted household and community surveys

over 14 weeks in 2014 (February−March in Pakistan, May−
June in Bangladesh, July−September in Mozambique, and
October−December in Ethiopia). In all, teams collected data
from 4786 households in 242 census enumeration areas. More
information about the study design andmethods can be found in
the Supporting Information and in previous reports.40−45

Survey Design. The survey included community and
household questionnaires. We first interviewed a group of 8−
12 key community members with the purpose of enumerating
publicly available water sources within the community and to
allocate them identification codes. These codes aided in
referencing public water sources identified in the household
survey. Data incorporated from the community surveys were:
the number of community water sources, community rurality
index, and if the community experienced a drought or flood in
the past year.
For the household survey, the preferred respondent was an

adult female within the household who we identified as most
knowledgeable of the household composition and water
management. If this person was not available at the time of
the interview, we interviewed any adult (≥18 years) from the
household with sufficient knowledge of household water use and
willingness to participate. Household survey data incorporated
into our study included a listing of all unimproved and improved
water sources and types used by the household; data used to
derive household wealth quintiles; if the household regularly
paid tariffs to use water sources; if the household financially
contributed to the construction of water sources; household
perception of appearance, taste, safety, odor, and accessibility of
water from sources; round trip travel time to water sources;
number of water sources used by the household; whether the
household owned the water source; if the household had to leave
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the plot to use the water source; and if the household used the
source for drinking. Both household and community surveys
were cross-sectional, yet they asked respondents to self-report
time-varying data.
Outcome and Predictor Variables. We defined the

outcome variable for this analysis, WSC, as the percentage of
the year that water of any quality is available to a household from
a water source. We calculated WSC using

=
× ×
× ×

×i
k
jjj

y
{
zzzWSC

WS WS WS
24 30 12

100%H D M

(1)

where WSH represents the typical hours per day of service (out
of 24), WSD is the usual days per month of service (out of 30),
and WSM denotes the typical months per year of service (out of
12). The unit of analysis in this study was household−water
source combinations, such that WSC was calculated for each
water source utilized by a household.
Based on the literature, we hypothesized that the following

predictor variables in the data set might have effects on WSC:
water source type;10,46 household wealth quintile;6 regular tariff
payment;9,24,47 financial contributions to water source con-
struction;48 the number of community water sources;21,24

community rurality index;6 water scarcity;49−51 drought in the
past year;51 flood in the past year;46,49 water quality
(appearance, taste, perception of safety, and odor);9,52 water
source accessibility;10 round trip travel time to the water
source;53 number of water sources used by the household;10,48

and ownership of the water source.10 To determine wealth
quintiles, we estimated wealth indices from key indicators
related to household wealth (i.e., characteristics of the dwelling
and asset ownership) using principal component analysis and
previously established methods.54,55 For the number of
community water sources, only improved water sources were
summed to represent available protected sources. We derived
the community rurality index, which summarizes the extent to
which a household is rurally located or removed from
development, by tallying specific amenities within the
community. We gave each amenity an equivalent weight: a
primary school, secondary school, health center, hospital, post
office, bank, market, bus stop, mobile phone network, local
NGO office, and local government office. The rurality index is a
three-level categorical variable, where communities with fewer
than three amenities have a high rurality index and those with
more than seven have a low rurality index. Survey questions,
further variable definitions, and the rationale for including
independent variables are available in the Supporting
Information.

Multiple Imputation. We handled missing data using
multiple imputation by chained equations.56−58 All variables
listed in the Outcome and Predictor Variables section were
included in imputation models with the exception of predictors
missing more than 20% of data, which were excluded prior to
imputation. When fewer than 20% of observations were missing,
we used multiple imputation by chained equations to impute
missing data by generating 50 imputation data sets. We included
two auxiliary variables in imputation models: if the household
had to leave the plot to use the water source and if they used the
source for drinking. Imputation models used logistic regression
for binary variables (regular tariff payment, financial contribu-
tions to water source construction, drought, flood, water
appearance, taste, odor, safety in drinking, water source
accessibility, ownership of the water source), and truncated
regression58 (WSC and community rurality index) or predictive
mean matching59,60 (number of community water sources,
round trip travel time, and water scarcity index) for continuous
variables.

Descriptive Analysis and Survey Estimation. As some
households used more than one water source, the number of
survey observations exceeded the number of sampled house-
holds. We assigned household-level survey weights for each
household−water source combination, and those weights were
incorporated using survey estimation techniques.61 We then
conducted descriptive data analysis to determine the following
estimates for the rural population of each country: the
proportion of household−water source combinations of each
water source type; WSC of each water source type; and water
services across hourly, daily, monthly, and yearly time-scales.
Estimates are representative of all water sources used by
households (i.e., household−water source combinations) in
rural populations. As multiple households may rely on the same
water source, estimates are not representative of all independent
water sources in rural populations.

Fractional Logistic Regression. After categorizing water
source types with less than 10% of the sample size as “other”
water sources, we tested all variables for multicollinearity using
variance inflation factors. Then, we used survey estimation
fractional logistic regression62 to provide estimates of opera-
tional risks to water service by testing for associations between
independent variables andWSC. Fractional logistic regression is
a quasi-maximum-likelihood estimation method that assumes
the conditional mean WSC follows a logit distribution bounded
(0,1), while allowing for actual values of WSC to exist on the
range [0,1].62

Multivariable regression models for each country included all
variables listed in the Outcome and Predictor Variables section,
except for variables with greater than 20% missingness. Due to

Table 1. Estimates of the Proportion of Household−Water Source Combinations of Each Water Source Type for the Rural
Population of Each Countrya

Bangladesh Pakistan Ethiopia Mozambique

water source type cases (%) CI (%) cases (%) CI (%) cases (%) CI (%) cases (%) CI (%)

tube well/borehole 53.2 50.0−56.4 50.6 41.7−59.5 14.1 7.5−20.7 25.2 16.0−34.5
piped supply 3.5 1.6−5.4 40.1 29.9−50.3 7.3 2.0−12.5 3.1 0.4−5.8
dug well 0.4 0.01−0.8 1.8 −0.08−3.6 3.1 0.7−5.6 46.2 33.7−58.8
spring 28.1 18.1−38.0 1.9 −1.1−4.9
surface water 39.7 36.5−42.8 6.1 0.1−12.1 47.2 38.5−55.9 23.4 12.2−34.6
other 3.2 1.3−5.0 1.5 0.4−2.5 0.2 −0.09−0.5 0.1 −0.05−0.3

aEstimated total number of household−water source combinations in the rural populations: Bangladesh (49 587 000), Pakistan (15 269 000),
Ethiopia (27 686 000), and Mozambique (3 443 000). CI: 95% confidence intervals.
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the exploratory nature of this work, we calculated odds ratios
(OR) and 95% confidence intervals (CI) and highlighted
predictors associated with WSC with nominal significance (p <
0.05). To account for the risk of Type I error inherent in
multiple hypothesis testing, we calculated false discovery rate q-
values (Table S2) independently for each country using
qqvalue63 in Stata with the Holm multiple-test method.64 We
also conducted univariable regressions, which are located in the
Supporting Information (Figures S1−S4).
Odds ratios indicate the direction of association between a

predictor and an outcome in our nonlinear models: an OR
significantly greater than 1 indicates the predictor is associated
with greaterWSC, while an OR significantly less than 1 indicates
that the predictor is associated with lower WSC. To concretize
these abstract associations into tangible scenarios, we calculated
the predicted WSC when changing an independent variable and
holding other variables to reference values (specified in the
Results).

■ RESULTS
Descriptive Data. A total of 2111 (Bangladesh), 1671

(Pakistan), 2230 (Ethiopia), and 1322 (Mozambique) house-
hold−water source combinations were observed and incorpo-
rated into the analysis. Tube wells/boreholes were the most
common water source in Bangladesh (53.2%, CI = 50.0−56.4%)
and Pakistan (50.6%, CI = 41.7−59.5%), in comparison to
surface water in Ethiopia (47.2%, CI = 38.5−55.9%) and dug
wells in Mozambique (46.2%, CI = 33.7−58.8%) (Table 1).
In Ethiopia and Mozambique, tube wells/boreholes, piped

supply, and other water sources had the lowest WSC (Figure 1).

In Ethiopia, WSC was less than 50% for both tube wells/
boreholes (44.4%, CI = 28.8−60.0%) and piped supply (35.4%,
CI = 21.6−49.2%). Piped supply and tube wells/boreholes were
on average the least interrupted sources in Bangladesh and
Pakistan, respectively.
The time-scale of water supply cycles varied, as shown by

stratifying WSC by the typical hours per day of service, days per
month of service, and months per year of service (Figure 2).
Water sources in all countries had high levels of water service on
a day-to-day basis, as all countries had typical service for over
97.5% of the days per month. Less than 24-h service per day was
the most common form of intermittency in Pakistan (93.6%, CI
= 91.7−95.6%), Ethiopia (74.8%, CI = 64.3−85.4%), and
Mozambique (93.4%, CI = 90.4−96.5%). On the other hand,

inactive months during the year was the leading type of water
source intermittency in Bangladesh (94.7%, CI = 93.4−96.0%).
The percentage of missing data for each variable (in order of

Bangladesh, Pakistan, Ethiopia, andMozambique) were: regular
tariff payment (<0.1, 0.6, 0.0, 0.0%); financial contribution to
water source construction (0.8, 0.5, 0.2, 0.4%); number of
community water sources (4.3, 8.8, 21.4, 37.7%); community
rurality index (1.1, 0.0, 0.0, 0.0%); water scarcity index (10.1,
6.9, 3.3, 7.8%); flood and drought in the past year (1.1, 0.0, 0.0,
0.0%); appearance, taste, and odor of water (43.9, 23.1, 37.4,
3.1%); perception of safety in drinking water (43.8, 23.4, 37.5,
3.3%); water source accessibility (64.8, 75.0, 2.6, 6.5%), round
trip travel time to the water source (0.0, 0.0, 0.0, <0.1%),
household ownership of the water source (0.4, 4.8, 0.2, <0.1%).
Further descriptive data are available in the Supporting
Information (Tables S3−S6).

Bangladesh. Multivariable regression analysis revealed that
WSCwas significantly (p < 0.05) lower in Bangladesh for surface
water (q = 0.54) and other water sources (q < 0.001) compared
to tube wells/boreholes (Figure 3). WSC was also significantly
lower when households used multiple water sources instead of
relying on a single source (q = 0.001). Holding other variables at
reference values (Figure 3), the regression model predicted
households using multiple water sources to have water sources
with WSC of 99% (CI = 97−99%) for tube wells/boreholes,
98% (CI = 95−99%) for surface water, and 83% (CI = 66−93%)
for other water sources but predicted a WSC of ∼100% for
households relying on one water source. WSC significantly
increased when households financially contributed to water
source construction (q = 0.06) and were in the highest wealth
quintile (q = 0.09). WSC was also significantly higher for
households living in communities with an intermediate rurality
index instead of a low rurality index (q = 0.06) and traveling 5−
30 min round trip to fetch water compared with under 5 min (q
= 0.16). However, there were no significant differences between
WSC and households falling in the lowest and highest rurality
index or households traveling less than 5 min and more than 30
min round trip for water. Environmental predictorswater
scarcity index, flood, or droughtwere not significantly
associated with WSC. In the univariable regression, privately
owned water sources had significantly higher WSC (Figure S1),
but no association was found in multivariable analysis.

Figure 1. Estimates of WSC for household−water source combinations
for the rural population of each country (with 95%CI). AWSC of 100%
indicates uninterrupted water supply over a year, while a WSC of 0%
suggests no water supply over a year. An asterisk (*) indicates no
observed cases.

Figure 2. WS estimates (with 95% CI) across different time-scales for
the rural population of each country. WSM denotes the typical months
per year of service;WSD is the usual days per month of service; andWSH
represents the typical hours per day of service. WSC is the composite
variable that combinesWSM,WSD, andWSH constituents in accordance
with eq 1. AWS of 100% indicates noninterrupted water supply over the
given time-scale, while a WS of 0% suggests no water supply over that
time-scale.
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Pakistan. In Pakistan, WSC was significantly (p < 0.05)
lower for piped supply (q = 0.01) and other water sources (q =
0.67) compared to tube wells/boreholes (Figure 4). WSC was
also significantly lower when tariffs were regularly paid by
households (q = 0.01) andwhen households usedmultiple water
sources (q = 0.01). On the other hand, WSC was significantly
higher for households in the second highest wealth quintile
compared to the lowest quintile (q = 0.40) and for households
that financially contributed to water source construction (q =
0.001). When households financially contributed to water
source construction, while holding other variables at reference
values (Figure 4), the model predicted higher WSC for tube
wells/boreholes (OR = 95%, CI = 75−99%), piped supply (OR
= 80%, CI = 47−95%), and other water sources (OR = 88%, CI
= 51−98%) compared to when financial contributions were not
made for tube wells/boreholes (OR = 85%, CI = 51−97%),
piped supply (OR = 57%, CI = 23−85%), and other water
sources (OR = 70%, CI = 28−94%). WSC was also significantly
higher for households within communities where a flood
occurred in the past year (q = 0.33). Household-owned water
sources had significantly higher WSC in univariable analysis
(Figure S2), but no significant difference was found in
multivariable analysis.
Ethiopia. In Ethiopia, WSC was significantly (p < 0.05)

lower for households in regions with significant water scarcity
indices (q = 0.41) but not for other water scarcity categories in
the multivariable analysis (Figure 5). Springs (q = 0.01) were
associated with significantly higher WSC compared to tube
wells/boreholes. The model predicted WSC for springs (OR =
91%, CI = 54−99%), surface water (OR = 82%, CI = 36−97%),
and other water sources (OR = 79%, CI = 42−95%) to be higher
than tube wells/boreholes (OR = 73%, CI = 24−96%) when
holding other variables at reference values (Figure 5). Easily

Figure 3. Multivariable fractional logistic regression for Bangladesh
indicating the OR of WSC. All listed predictors were included in the
regression model. An OR of significantly greater than 1 indicates the
factor is associated with increased WSC, while an OR significantly less
than 1 signifies an association with reduced WSC. Bold text indicates
significant p-values (p < 0.05), and significant q-values (q < 0.05) have a
boxed data point. Bounds around data points denote 95%CI. Reference
values used for WSC predictions are noted by an asterisk (*).

Figure 4. Multivariable fractional logistic regression for Pakistan
indicating the OR of WSC. All listed predictors were included in the
regression model. An OR of significantly greater than 1 indicates the
factor is associated with increased WSC, while an OR significantly less
than 1 signifies an association with reduced WSC. Bold text indicates
significant p-values (p < 0.05), and significant q-values (q < 0.05) have a
boxed data point. Bounds around data points denote 95%CI. Reference
values used for WSC predictions are noted by an asterisk (*).

Figure 5. Multivariable fractional logistic regression for Ethiopia
indicating the OR of WSC. All listed predictors were included in the
regression model. An OR of significantly greater than 1 indicates the
factor is associated with increased WSC, while an OR significantly less
than 1 signifies an association with reduced WSC. Bold text indicates
significant p-values (p < 0.05), and significant q-values (q < 0.05) have a
boxed data point. Bounds around data points denote 95%CI. Reference
values used for WSC predictions are noted by an asterisk (*).
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accessible water sources were also linked with higher WSC (q =
0.67). Neither the use of multiple water sources nor water source
ownership was associated with significantly higher WSC in
multivariable or univariable regressions (Figure S3).
Mozambique. In Mozambique, WSC was significantly (p <

0.05) lower when households perceived the water source to be
safe for drinking (q = 0.61) and households had a round trip
travel time to the water source between 5−30 min (compared to
less than 5 min) (q = 0.75) (Figure 6). WSC was also

significantly lower when households usedmultiple water sources
(q = 0.85). WSC was significantly higher when households
perceived the water source to be easily accessible (q = 0.48) and
the water to have good appearance (q = 0.13). Holding other
variables at reference values (Figure 6), the model predicted
sources with good water appearance to have higher WSC for
tube wells/boreholes (OR = 97%, CI = 88−99%), dug wells
(OR = 98%, CI = 90−100%), surface water (OR = 99%, CI =
93−100%), and other water sources (OR = 98%, CI = 92−99%)
compared to tube wells/boreholes (OR = 93%, CI = 77−98%),
dug wells (OR = 94%, CI = 80−99%), surface water (OR = 96%,
CI = 85−99%), and other water sources (OR = 94%, CI = 85−
98%) with poor water appearance. No measured environmental
factors (i.e., water scarcity index, flood, or drought) were
significant predictors of WSC in the multivariable analysis.
Household ownership was not significantly associated with
WSC in multivariable or univariable regressions (Figure S4).

■ DISCUSSION

Water services in low- and middle-income countries may face
technical, financial, institutional, social, or environmental
constraints (e.g., drought) that can cause water sources to
become intermittent.5 Target 6.1 of the Sustainable Develop-
ment Goals (SDGs) specifies that one required component of
safely managed drinking water is that “household respondents
either report having access to sufficient water when needed, or
having water available at least 50% of the time (i.e., at least 12 h
per day or 4 days per week).”65 However, even a small
interruption to service can expose households to unsafe water as
they change to distant alternative sources that may be unfit for
drinking water use or as they use an existing piped system at risk
of contamination due to reduced pressure.66 Provision of
uninterrupted services is then necessary (though not sufficient)
to protect water quality and public health. WSC as defined here
focuses on any intermittency of service and, therefore, is distinct
from Target 6.1 in the SDGs.
We analyzed water services of the rural populations of

Bangladesh, Pakistan, Ethiopia, and Mozambique and found
WSC to be variable across countries and water source types.
Though the results presented here should not be given a causal
interpretationdirectionality of association cannot be inferred
from cross-sectional analysiswe found significant associations
between households’ use of multiple water sources and lower
WSC in Bangladesh, Pakistan, and Mozambique. Another study
also discovered a similar negative association between house-
holds having a reliable alternative source (a source within 1 km
that has water during the dry season) and a working primary
water source, which they explained by households with several
sources placing less demand for a working primary source.21

Therefore, it could be that water sources are intermittent
because households have access to multiple sources. Access to
multiple sources could limit the need for a single source to
supply all water needs and potentially suppress community
investment in the primary source. An additional explanation for
the identified association is the inverse. Households may use
multiple water sources to access reliable supply because their
preferred sources are intermittent, as a coping strategy to
maintain consistent access for different times and/or needs.4,67

While data from the United Nations Joint Monitoring
Programme show disparities in water access across wealth
quintiles,34 to our knowledge, no previous study has
demonstrated a direct connection between household wealth
and water service intermittency. Households in the highest
wealth quintile in Bangladesh as well as the second highest
wealth quintile in Pakistan had significantly higher WSC
compared to the lowest quintile. This suggests that households
in the lowest quintiles of Bangladesh and Pakistan are not only
less likely to access water free from contamination,6 but these
households are also less likely to receive continuous water
supply.
In Bangladesh and Pakistan, households that financially

supported construction of water sources were more likely to
have sources with higher WSC. This finding is consistent with
previous literature noting a link between communal feelings of
ownership and sustained water services.68 Financial contribu-
tions to water source construction may be an expression of
household demand for water as well.21 The association between
good water appearance and WSC in Mozambique can be
explained by greater water quality increasing household demand
for water in the form of willingness to pay.52 Physical water

Figure 6. Multivariable fractional logistic regression for Mozambique
indicating the OR of WSC. All listed predictors were included in the
regression model. An OR of significantly greater than 1 indicates the
factor is associated with increased WSC, while an OR significantly less
than 1 signifies an association with reduced WSC. Bold text indicates
significant p-values (p < 0.05), and significant q-values (q < 0.05) have a
boxed data point. Bounds around data points denote 95%CI. Reference
values used for WSC predictions are noted by an asterisk (*).
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source ownership by households (an indicator of excludability)
was not significantly associated with WSC in multivariable
analyses for any country. While a previous work found an
association between private ownership and higher handpump
functionality, it did not control for socioeconomic character-
istics.25 Our univariable analysis for Bangladesh and Pakistan
also showed household ownership to be related to higher WSC,
but an association was not apparent after moderating for
household wealth quintile and other factors in multivariable
regressions. The lack of association between water source
ownership and WSC is of particular interest amidst the
consideration of self-supply as a service delivery model.69

Further investigation is required to explore the relationship
between household ownership and continuity of supply after
controlling for household wealth.
Several other counterintuitive findings from this study have

possible explanations. Regular tariff payment was associated
with significantly lower WSC in Pakistan, but it may be that
water sources with tariffs are more likely to experience supply
interruptions (such as from planned maintenance interventions
or if water sources require operator supervision to collect tariffs
per use at the source). Our proxy for “safe water” only accounted
for user perception and not physicochemical properties of water
supply (microbial and chemical composition data were not
available) and may have produced a spurious association
between safe water and lower WSC in Mozambique. In
Bangladesh, a 5−30 min travel time was associated with higher
WSC than a less than 5 min travel time to the water source, but
this may be due to households electing to use distant water
sources because they proved most reliable. Lastly, the
associations between greater WSC and the intermediate rurality
index in Bangladesh was also unexpected. It may be that more
economically developed areas (low rurality index) require more
water and place more stress on sources during dry months, while
less developed areas (higher rurality index) may have more
secure water access and not be subjected to this problem. This
inference is supported by the fact that intermittency in
Bangladesh was primarily on a month-to-month basis.
With the exception of significant water scarcity in Ethiopia, no

water scarcity or drought predictors were apparently associated
with WSC after controlling for other factors. This finding
supports previous literature suggesting that physical water
resource constraints are not the sole cause of interrupted
service.70 However, even if physical water scarcity plays a small
role in household water security,51 water scarcity can emerge as a
product of management, socioeconomic, or political fac-
tors.49,70,71 Also unexpectedly, tariff payments and private
ownership of water sources did not contribute to higher WSC.
Rather, households using one water source had the highest WSC
in Bangladesh, Pakistan, and Mozambique, either because those
households express greater demand on sustained performance
or because households using multiple water sources are doing so
because their preferred sources are intermittent. Generally, few
consistent trends emerged, perhaps due to contextual differ-
ences between countries and water source types, suggesting that
service intermittency may be difficult to attribute to any
ubiquitous set of operational factors.

■ LIMITATIONS
There are several limitations in the survey design, data analysis,
and interpretation. With the cross-sectional design of the survey,
causal inference is not possible. We collected surveys at different
times of the year for each country without considering seasonal

climate variations, which impedes cross-country comparability.
As WSC likely varied over time and households self-reported
outcome data based on their usual experience, we expect
substantial recall error. Other error in WSC data could have
arisen from households irregularly using water sources.
Reported WSC data are also not representative of all water
services available but rather services that households use, which
may be the most continuous sources.
Regarding the analysis, households sharing water sources

could have resulted in unmeasured clustering, which was only
controlled for using Huber-White robust standard errors. As a
composite variable, WSC equivalently weights hourly, daily, and
monthly components of intermittency. A water source operating
diurnally (e.g., 12 h per day, 30 days per month, and 12 months
per year) yields the same WSC as one functioning seasonally
(e.g., 24 h per day, 30 days per month, and 6 months per year),
although the former may be a better service than the latter.
Predictors are also likely to interact with each component of
WSC differently, and the incorporation of several water source
types may have masked water source-specific predictors. We
conducted regression analyses that included water source-
predictor interactions to evaluate water source-specific associ-
ations with WSC (Tables S7 and S8). Results were broadly
consistent with the presented models, except in a few cases
where we have accordingly de-emphasized results. The potential
predictors of WSC in the models are not exhaustive, nor can we
rule out unmeasured confounding in this observational data set.
Concerning data interpretation, the presence of many
hypotheses increased the risk of Type I error: apparent
associations may be due to chance.
Country-specific results are likely not generalizable to other

rural settings, although common factors among countries may
illuminate aspects of rural water service delivery that may be true
on a broader scale. Future research should address how
identified predictors are related to providing continuous water
services for specific water sources on different time-scales in
rural regions of low- and middle-income countries. In this way,
elucidating the mechanisms that underlie the predictors of WSC
can inform policy responses that better service delivery
approaches and maximize health and economic outcomes for
rural communities.
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