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Abstract

Metagenomic sequencing has the potential to transform microbial detection and characteri-
zation, but new tools are needed to improve its sensitivity. We developed CATCH (Compact
Aggregation of Targets for Comprehensive Hybridization), a computational method to en-
hance nucleic acid capture for enrichment of diverse microbial taxa. CATCH designs compact
probe sets that achieve full coverage of known sequence diversity and that scale well with this
diversity. To illustrate applications of CATCH, we focused on capturing viral genomes. We
designed, synthesized, and validated multiple probe sets, including one that targets whole
genomes of the 356 viral species known to infect humans. Capture with these probe sets
enriched viral content on average 18× and allowed us to assemble genomes that we could
not otherwise recover, while accurately preserving within-sample diversity. We used this
approach to recover genomes from the 2018 Lassa fever surge in Nigeria and to improve
detection of viral infections in samples with unknown content. Together, this work demon-
strates a path toward more sensitive, cost-effective metagenomic sequencing.
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Introduction

Sequencing of patient samples has revolutionized the detection and characterization of im-
portant human viral pathogens1 and has enabled crucial insights into their evolution and
epidemiology2–6. Unbiased metagenomic sequencing is particularly useful for identifying and
obtaining genome sequences of emerging or diverse species because it allows accurate de-
tection of species and variants whether they are known or novel1. However, in practice its
utility is often limited because of extremely low viral titers, e.g., as seen in the recent Zika
virus outbreak7–9, or high levels of host material10. The low ratio of viral to host material
results in few viral-derived sequencing reads, which can make genome assembly, if even at-
tainable, prohibitively expensive. To fully realize the potential of metagenomic sequencing,
we need new tools that improve its sensitivity while preserving its comprehensive, unbiased
scope.

Previous studies have used targeted amplification2,11 or enrichment via capture of viral
nucleic acid using oligonucleotide probes12–14 to improve the sensitivity of sequencing for
specific viruses. However, achieving comprehensive sequencing of viruses — similar to the use
of microarrays for differential detection15–21 — is challenging due to the enormous diversity
of viral genomes. One recent study used a probe set to target a large panel of viral species
simultaneously, but did not attempt to cover strain diversity22. Other studies have designed
probe sets to more comprehensively target viral diversity and tested their performance23,24.
These overcome the primary limitation of single virus enrichment methods, i.e., having to
know a priori the taxon of interest. However, existing probe sets that target viral diversity
have been designed with ad hoc approaches and they are not publicly available.

To enhance capture of diverse targets, we instead need rigorous methods, implemented in
publicly available software, that can be systematically applied to create and rapidly up-
date optimally designed probe sets. These methods ought to comprehensively cover known
sequence diversity, ideally with theoretical guarantees, especially given the exceptional vari-
ability of viral genomes. Moreover, as the diversity of known taxa expands and novel species
continue to be identified25,26, probe sets designed by such methods must also be dynamic
and scalable to keep pace with these changes. These methods should be applicable to any
taxa, including all microbes. Several existing approaches to probe design for non-microbial
targets27–29 strive to meet some of these goals but are not designed to be applied against the
extensive diversity seen within and across microbial taxa.

Here, we developed and implemented CATCH (Compact Aggregation of Targets for Com-
prehensive Hybridization), a method that yields scalable and comprehensive probe designs
from any collection of target sequences. Using CATCH, we designed several multi-virus probe
sets, and then synthesized and used them to enrich viral nucleic acid in sequencing libraries
from patient and environmental samples across diverse source material. We evaluated their
performance and investigated any biases introduced by capture with these probe sets. Fi-
nally, to demonstrate use in clinical and biosurveillance settings, we applied this platform to
recover Lassa virus genomes in low titer clinical samples from the 2018 Lassa fever surge in
Nigeria and to identify viruses in human and mosquito samples with unknown content.
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Results

Probe design using CATCH

To design probe sets, CATCH accepts any collection of sequences that a user seeks to target.
This typically represents all known genomic diversity of one or more species. CATCH designs
a set of sequences for synthetic oligonucleotide probes using a model for determining whether
a probe hybridizes to a region of target sequence (Supplementary Fig. 1a; see Methods for
details); the probes designed by CATCH have guarantees on capturing input diversity under
this model.

CATCH searches for an optimal probe set given a desired number of oligonucleotides to output,
which might be determined by factors such as cost or synthesis constraints. The input to
CATCH is one or more datasets, each composed of sequences of any length, that need not
be aligned to each other. In this study, each dataset consists of genomes from one species,
or closely related taxa, we seek to target. CATCH incorporates various parameters that
govern hybridization (Supplementary Fig. 1b), such as sequence complementarity between
probe and target, and accepts different values for each dataset (Supplementary Fig. 1c).
This allows, for example, more diverse datasets to be assigned less stringent conditions than
others. Assume we have a function s(d, θd) that gives a probe set for a single dataset d using
hybridization parameters θd, and let S({θd}) represent the union of s(d, θd) across all datasets
d where {θd} is the collection of parameters across all datasets. CATCH calculates S({θd}), or
the final probe set, by minimizing a loss function over {θd} while ensuring that the number
of probes in S({θd}) falls within the specified oligonucleotide limit (Fig. 1a).

The key to determining the final probe set is then to find an optimal probe set s(d, θd) for
each input dataset. Briefly, CATCH creates “candidate” probes from the target genomes in d
and seeks to approximate, under θd, the smallest set of candidates that achieve full coverage
of the target genomes. Our approach treats this problem as an instance of the well-studied
set cover problem30,31, the solution to which is s(d, θd) (Fig. 1a; see Methods for details). We
found that this approach scales well with increasing diversity of target genomes and produces
substantially fewer probes than previously used approaches (Fig. 1b, Supplementary Fig.
2).

CATCH’s framework offers considerable flexibility in designing probes for various applica-
tions. For example, a user can customize the model of hybridization that CATCH uses to
determine whether a candidate probe will hybridize to and capture a particular target se-
quence. Also, a user can design probe sets for capturing only a specified fraction of each
target genome and, relatedly, for targeting regions of the genome that distinguish similar
but distinct subtypes. CATCH also offers an option to blacklist sequences, e.g., highly abun-
dant ribosomal RNA sequences, so that output probes are unlikely to capture them. CATCH

can use locality-sensitive hashing32,33, if desired, to reduce the number of candidate probes
that are explored, improving runtime and memory usage on especially large numbers of in-
put sequences. We implemented CATCH in a Python package that is publicly available at
https://github.com/broadinstitute/catch.
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Figure 1 – Using CATCH for probe set design. (a) Sketch of CATCH’s approach to probe design, shown with three datasets
(typically, each is a taxon). For each dataset d , CATCH generates candidate probes by tiling across input genomes and, optionally,
reduces the number of them using locality-sensitive hashing. Then, it determines a profile of where each candidate probe will hybridize
(the genomes and regions within them) under a model with parameters θd (see Supplementary Fig. 1b for details). Using these
coverage profiles, it approximates the smallest collection of probes that fully captures all input genomes (described in text as s(d , θd )).
Given a constraint on the total number of probes (N) and a loss function over the θd , it searches for optimal θd . (b) Number of
probes required to fully capture increasing numbers of HCV genomes. Approaches shown are simple tiling (gray), a clustering-based
approach at two levels of stringency (red), and CATCH with three choices of parameter values specifying varying levels of stringency
(blue). See Methods for details regarding parameter choices. Previous approaches for targeting viral diversity use clustering in probe
set design. Shaded regions around each line are 95% pointwise confidence bands calculated across randomly sampled input genomes.
(c) Number of probes designed by CATCH for each dataset (of 296 datasets in total) among all 349,998 probes in the VALL probe
set. Species incorporated in our sample testing are labeled. (d) Values of the two parameters selected by CATCH for each dataset
in the design of VALL: number of mismatches to tolerate in hybridization and length of the target fragment (in nt) on each side of
the hybridized region assumed to be captured along with the hybridized region (cover extension). The label and size of each bubble
indicate the number of datasets that were assigned a particular combination of values. Species included in our sample testing are
labeled in black, and outlier species not included in our testing are in gray. In general, more diverse viruses (e.g., HCV and HIV-1)
are assigned more relaxed parameter values (here, high values) than less diverse viruses, but still require a relatively large number of
probes in the design to cover known diversity (see (c)). Panels similar to (c) and (d) for the design of VWAFR are in Supplementary
Fig. 3.

Probe sets to capture viral diversity

We used CATCH to design a probe set that targets all viral species reported to infect humans
(VALL), which could be used to achieve more sensitive metagenomic sequencing of viruses from
human samples. VALL encompasses 356 species (86 genera, 31 families), and we designed it
using genomes available from NCBI GenBank34,35 (Supplementary Table 1). We constrained
the number of probes to 350,000, significantly fewer than the number used in studies with
comparable goals23,24, reducing the cost of synthesizing probes that target diversity across
hundreds of viral species. The design output by CATCH contained 349,998 probes (Fig.
1c). This design represents comprehensive coverage of the input sequence diversity under
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conservative choices of parameter values, e.g., tolerating few mismatches between probe and
target sequence (Fig. 1d). To compare the performance of VALL against probe sets with lower
complexity, we separately designed three focused probe sets for commonly co-circulating viral
infections: measles and mumps viruses (VMM; 6,219 probes), Zika and chikungunya viruses
(VZC; 6,171 probes), and a panel of 23 species (16 genera, 12 families) circulating in West
Africa (VWAFR; 44,995 probes) (Supplementary Fig. 3, Supplementary Table 1). These probe
sets are publicly available (see Methods for link).

We synthesized VALL as 75 nt biotinylated ssDNA and the focused probe sets (VWAFR, VMM,
VZC) as 100 nt biotinylated ssRNA. The ssDNA probes in VALL are more stable and therefore
more suitable for use in lower resource settings compared to ssRNA probes. We expect the
ssRNA probes to be more sensitive than ssDNA probes in enriching target cDNA due to
their longer length and the stronger bonds formed between RNA and DNA36, making the
focused probe sets a useful benchmark for the performance of VALL.

Enrichment of viral genomes upon capture with VALL

To evaluate enrichment efficiency of VALL, we prepared sequencing libraries from 30 pa-
tient and environmental samples containing at least one of 8 different viruses: dengue virus
(DENV), GB virus C (GBV-C), Hepatitis C virus (HCV), HIV-1, Influenza A virus (IAV),
Lassa virus (LASV), mumps virus (MuV), and Zika virus (ZIKV) (see Supplementary Table
2 for details). These 8 viruses together reflect a range of typical viral titers in biological
samples, including ones that have extremely low levels, such as ZIKV11,37. The samples
encompass a range of source materials: plasma, serum, buccal swabs, urine, avian swabs,
and mosquito pools. We performed capture on these libraries and sequenced them both
before and after capture. To compare enrichment of viral content across sequencing runs,
we downsampled raw read data from each sample to the same number of reads (200,000)
before further analysis. Downsampling to correct for differences in sequencing depth, rather
than the more common use of a normalized count such as reads per million, is useful for
two reasons. First, it allows us to compare our ability to assemble genomes (e.g., owing to
capture) in samples that were sequenced to different depths. Second, downsampling helps
to correct for differences in sequencing depth in the presence of a high frequency of PCR
duplicate reads (see Methods for details), as observed in captured libraries. We removed
duplicate reads during analyses so that we could measure enrichment of viral information
(i.e., unique viral content) rather than measure an artifactual enrichment arising from PCR
amplification.

We first assessed enrichment of viral content by examining the change in per-base read depth
resulting from capture with VALL. Overall, we observed a median increase in unique viral
reads across all samples of 18× (Q1 = 4.6, Q3 = 29.6) (Supplementary Table 3). Capture
increased depth across the length of each viral genome, with no apparent preference in
enrichment for regions over this length (Fig. 2a, b, Supplementary Fig. 4). Moreover,
capture successfully enriched viral content in each of the 6 sample types we tested. The
increase in coverage depth varied between samples, likely in part because the samples differed
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in their starting concentration and, as expected, we saw lower enrichment in samples with
higher starting concentration (Supplementary Fig. 5).

Next we analyzed how capture improved our ability to assemble viral genomes. For samples
that had partial genome assemblies (< 90%) before capture, we found that application
of VALL allowed us to assemble a greater fraction of the genome in all cases (Fig. 2c).
Importantly, of the 14 samples from which we were unable to assemble any contig before
capture, 11 assembled at least partial genomes (> 50%) using VALL, of which 4 were complete
genomes (> 90%). Many of the viruses we tested, such as HCV and HIV-1, are known to
have high within-species diversity yet the enrichment of their unique content was consistent
with that of less diverse species (Supplementary Table 3).

We also explored the impact of capture on the complete metagenomic diversity within each
sample. Metagenomic sequencing generates reads from the host genome as well as back-
ground contaminants38, and capture ought to reduce the abundance of these taxa. Following
capture with VALL, the fraction of sequence classified as human decreased in patient sam-
ples while viral species with a wide range of pre-capture abundances were strongly enriched
(Fig. 2d). Moreover, we observed a reduction in the overall number of species detected
after capture (Supplementary Fig. 6a), suggesting that capture indeed reduces non-targeted
taxa. Lastly, analysis of this metagenomic data identified a number of other enriched viral
species present in these samples (Supplementary Table 4). For example, one HIV-1 sample
showed strong evidence of HCV co-infection, an observation consistent with clinical PCR
testing.

In addition to measuring enrichment on patient and environmental samples, we sought to
evaluate the sensitivity of VALL on samples with known quantities of viral and background
material. To do so, we performed capture with VALL on serial dilutions of Ebola virus (EBOV)
— ranging from single copy to 106 copies — in known background amounts of human RNA.
At a depth of 200,000 reads, use of VALL allowed us to reliably detect viral content (i.e.,
observe viral reads in two technical replicates) down to 100 copies in 30 ng of background
and 1,000 copies in 300 ng (Fig. 3a, Supplementary Table 5), each at least an order of
magnitude fewer than without capture, and similarly lowered the input at which we could
assemble genomes (Supplementary Fig. 7a). Although we chose a single sequencing depth
so that we could compare pre- and post-capture results, higher sequencing depths provide
more viral material and thus more sensitivity in detection (Supplementary Fig. 7b, c).

Comparison of VALL to focused probe sets

To test whether the performance of the highly complex 356-virus VALL probe set matches
that of focused ssRNA probe sets, we first compared it to the 23-virus VWAFR probe set.
We evaluated the 6 viral species we tested from the patient and environmental samples
that were present in both the VALL and VWAFR probe sets, and we found that performance
was concordant between them: VWAFR provides a similar number of unique viral reads as
VALL (1.01× as many; Q1 = 0.93, Q3 = 1.34) (Supplementary Table 3). The percentage
of each genome that we could unambiguously assemble was also similar between the probe
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Figure 2 – Improvement in genome coverage and assembly, and shift in metagenomic distribution after capture. (a) Distribution
of the enrichment in read depth, across viral genomes, provided by capture with VALL on 30 patient and environmental samples with
known viral infections. Each curve represents one of the 31 viral genomes sequenced here; one sample contained two known viruses.
At each position across a genome, the post-capture read depth is divided by the pre-capture depth, and the plotted curve is the
empirical cumulative distribution of the log of these fold-change values. A curve that rises fully to the right of the black vertical
line illustrates enrichment throughout the entirety of a genome; the more vertical a curve, the more uniform the enrichment. Read
depth across viral genomes DENV-SM3 (purple) and DENV-SM5 (green) are shown in more detail in (b). (b) Read depth throughout
a genome of DENV in two samples. DENV-SM3 (left) has few informative reads before capture and does not produce a genome
assembly, but does following capture. DENV-SM5 (right) does yield a genome assembly before capture, and depth increases following
capture. (c) Percent of the viral genomes unambiguously assembled in the 30 samples, which had 8 known viral infections across
them. Shown before capture (orange), after capture with VWAFR (light blue), and after capture with VALL (dark blue). Red bars below
samples indicate ones in which we could not assemble any contig before capture but, following capture, were able to assemble at least
a partial genome (> 50%). (d) Left: Number of reads detected for each species across the 30 samples with known viral infections,
before and after capture with VALL. Reads in each sample were downsampled to 200,000 reads. Each point represents one species
detected in one sample. For each sample, the virus previously detected in the sample by another assay is colored. Homo sapiens
matches in samples from humans are shown in black. Right: Abundance of each detected species before capture and fold-change
upon capture with VALL for these samples. Abundance was calculated by dividing pre-capture read counts for each species by counts
in pooled water controls. Coloring of human and viral species are as in the left panel.

sets (Fig. 2c), as was the read depth (Supplementary Fig. 4, Supplementary Fig. 8a, b).
Following capture with VWAFR, human material and the overall number of detected species
both decreased, as with VALL, although these changes were more pronounced with VWAFR

(Supplementary Fig. 6a, b, Supplementary Table 4).

We next compared the VALL probe set to the two 2-virus probe sets VMM and VZC. We found
that enrichment for MuV and ZIKV samples was slightly higher using the 2-virus probe sets
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than with VALL (2.26× more unique viral reads; Q1 = 1.69, Q3 = 3.36) (Supplementary
Table 3, Supplementary Fig. 4, Supplementary Fig. 8c, d). The additional gain of these
probe sets might be useful in some applications, but was considerably less than the 18×
increase provided by VALL against a pre-capture sample. Overall, our results suggest that
neither the complexity of the VALL probe set nor its use of shorter ssDNA probes prevent it
from efficiently enriching viral content.

Enrichment of targets with divergence from design

We then evaluated how well our VALL and VWAFR probe sets capture sequence that is divergent
from sequences used in their design. To do this, we tested whether the probe sets, whose
designs included human IAV, successfully enrich the genome of the non-human, avian subtype
H4N4 (IAV-SM5). H4N4 was not included in the designs, making it a useful test case for
this relationship. Moreover, the IAV genome has 8 RNA segments that differ considerably
in their genetic diversity; segment 4 (hemagglutinin; H) and segment 6 (neuraminidase; N),
which are used to define the subtypes, exhibit the most diversity.

The segments of the H4N4 genome display different levels of enrichment following capture
(Supplementary Fig. 9). To investigate whether these differences are related to sequence
divergence from the probes, we compared the identity between probes and sequence in the
H4N4 genome to the observed enrichment of that sequence (Fig. 3b). We saw the least
enrichment in segment 6 (N), which had the least identity between probe sequence and the
H4N4 sequence, as we did not include any sequences of the N4 subtypes in the probe designs.
Interestingly, VALL did show limited positive enrichment of segment 6, as well as of segment
4 (H); these enrichments were lower than those of the less divergent segments. But this
was not the case for segment 4 when using VWAFR, suggesting a greater target affinity of
VWAFR capture when there is some degree of divergence between probes and target sequence
(Fig. 3b), potentially due to this probe set’s longer, ssRNA probes. For both probe sets,
we observed no clear inter-segment differences in enrichment across the remaining segments,
whose sequences have high identity with probe sequences (Fig. 3b, Supplementary Fig. 9).
These results show that the probe sets can capture sequence that differs markedly from what
they were designed to target, but nonetheless that sequence similarity with probes influences
enrichment efficiency.

Quantifying within-sample diversity after capture: co-infections
and within-host nucleotide variants

Given that many viruses co-circulate within geographic regions, we assessed whether capture
accurately preserves within-sample viral species complexity. We first evaluated capture on
mock co-infections containing 2, 4, 6, or 8 viruses. Using both VALL and VWAFR, we observed
an increase in overall viral content while preserving relative frequencies of each virus present
in the sample (Fig. 3c, Supplementary Table 4).
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indicates amount of background material. (b) Relation between probe-target identity and enrichment in read depth, as seen after
capture with VALL and with VWAFR on an Influenza A virus sample of subtype H4N4 (IAV-SM5). Each point represents a window in
the IAV genome. Identity between the probe and assembled H4N4 sequence is a measure of identity between the sequence in that
window and the top 25% of probe sequences that map to it (see Methods for details). Fold-change in depth is averaged over the
window. No sequences of segment 6 (N) of the N4 subtypes were included in the design of VALL or VWAFR. (c) Effect of capture on
estimated frequency of within-sample co-infections. RNA of 2, 4, 6, and 8 viral species were spiked into extracted RNA from healthy
human plasma and then captured with VALL and VWAFR. Values on top are the percent of all sequenced reads that are viral. We
did not detect Nipah virus (NiV) using the VWAFR probe set because this virus was not present in that design. (d) Effect of capture
on estimated frequency of within-host variants, shown in positions across three dengue virus samples: DENV-SM1, DENV-SM2, and
DENV-SM5. Capture with VALL and VWAFR was each performed on n = 2 replicates of the same library. ρc indicates concordance
correlation coefficient between pre- and post-capture frequencies.

Because viruses often have extensive within-host viral nucleotide variation that can inform
studies of transmission and within-host virus evolution39–42, we examined the impact of
capture on estimating within-host variant frequencies. We used three DENV samples that
yielded high read depth (Supplementary Table 3). Using both VALL and VWAFR, we found
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that frequencies of all within-host variants were consistent with pre-capture levels (Fig. 3d,
Supplementary Table 6; concordance correlation coefficient is 0.996 for VALL and 0.997 for
VWAFR). These estimates were consistent for both low and high frequency variants. Since
capture preserves frequencies so well, it should enable measurement of within-host diversity
that is both sensitive and cost-effective.

Rescuing Lassa virus genomes in patient samples from Nigeria

To demonstrate the application of VALL in the case of a potential outbreak, we applied it
to samples of clinically confirmed (by qRT-PCR) Lassa fever cases from Nigeria. In 2018,
Nigeria experienced a sharp increase in cases of Lassa fever43, a severe hemorrhagic disease
caused by LASV44. Previous genome sequencing of LASV has revealed its extensive genetic
diversity, with distinct lineages circulating in different parts of the endemic region3,45, and
ongoing sequencing can enable rapid identification of changes in this genetic landscape.
We selected 23 samples, spanning 5 states in Nigeria, that yielded either no portion of a
LASV genome or only partial genomes with unbiased metagenomic sequencing even at high
sequencing depth (> 4.5 million reads), and performed capture on these using VALL.

At equivalent pre- and post-capture sequencing depth (200,000 reads), use of VALL improved
our ability to detect and assemble LASV. Capture considerably increased the amount of
unique LASV material detected in all 23 samples (in 4 samples, by more than 100×), and in
7 samples it enabled detection when there were no LASV reads pre-capture (Supplementary
Fig. 10a, Supplementary Table 7). This in turn improved genome assembly. Whereas pre-
capture we could not assemble any portion of a genome in 22 samples (in the remaining one,
2% of a genome) at this depth, following use of VALL we could assemble a partial genome
in 22 of the 23 (Fig. 4a, Supplementary Fig. 10b); most were small portions of a genome,
although in 7 we assembled > 50% of a genome. Assembly results with VALL are comparable
without downsampling (Supplementary Fig. 10c), likely because we saturate unique content
with VALL at low sequencing depths (Supplementary Fig. 7b, c).

Identifying viruses in uncharacterized samples using capture

We next applied our VALL probe set to pools of human plasma and mosquito samples with
uncharacterized infections. We tested 5 pools of human plasma from a total of 25 individuals
with highly suspected LASV or EBOV infections from Sierra Leone, as well as 5 pools of
human plasma from a total of 25 individuals with acute fevers of unknown cause from
Nigeria and 5 pools of Culex tarsalis and Culex pipiens mosquitoes from the United States
(see Methods for details). Using VALL we detected 8 viral species, each present in one or
more pools: 2 species in the pools from Sierra Leone, 2 species in the pools from Nigeria,
and 4 species in the mosquito pools (Fig. 4b, Supplementary Fig. 6c). We found consistent
results with VWAFR for the species that were included in its design (Supplementary Fig.
6d, Supplementary Table 4). To confirm the presence of these viruses we assembled their
genomes and evaluated read depth (Supplementary Fig. 11, Supplementary Table 8). We
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Figure 4 – Genomic applications using capture: sequencing from the 2018 Lassa fever surge and of infections in uncharacterized
samples. (a) Percent of LASV genome assembled, after use of VALL, among 23 samples from the 2018 Lassa fever surge. Reads
were downsampled to 200,000 reads before assembly. Bars are ordered by amount assembled and colored by the state in Nigeria that
the sample is from. (b) Viral species present in uncharacterized mosquito pools and pooled human plasma samples from Nigeria and
Sierra Leone after capture with VALL. Asterisks on species indicate ones that are not targeted by VALL. Detected viruses include
Umatilla virus (UMAV), Alphamesonivirus 1 (AMNV1), West Nile virus (WNV), Culex flavivirus (CxFV), GBV-C, Hepatitis B virus
(HBV), LASV, and EBOV. (c) Abundance of all detected species before capture and fold-change upon capture with VALL in the
uncharacterized sample pools. Abundance was calculated as described in Fig. 2d. Viral species present in each sample (see (b)) are
colored, and Homo sapiens matches in the human plasma samples are shown in black.

also sequenced pre-capture samples and saw significant enrichment by capture (Fig. 4c,
Supplementary Fig. 6c, d). Quantifying abundance and enrichment together provides a
valuable way to discriminate viral species from other taxa (Fig. 4c), thereby helping to
uncover which pathogens are present in samples with unknown infections.

Looking more closely at the identified viral species, all pools from Sierra Leone contained
LASV or EBOV, as expected (Fig. 4b). The 5 plasma pools from Nigeria showed little evi-
dence for pathogenic viral infections; however, one pool did contain Hepatitis B virus. Addi-
tionally, 3 pools contained GBV-C, consistent with expected frequencies for this region25,46.
In mosquitoes, 4 pools contained West Nile virus (WNV), a common mosquito-borne infec-
tion, consistent with PCR testing. In addition, 3 pools contained Culex flavivirus, which
has been shown to co-circulate with WNV and co-infect Culex mosquitoes in the United
States47. These findings demonstrate the utility of capture to improve virus identification
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without a priori knowledge of sample content.

Discussion

In recent years metagenomic sequencing has been widely used to investigate viral infec-
tions and outbreaks, but is often limited in practice due to low sensitivity. Capture using
oligonucleotide probes to enrich viral content is one approach that can address this limi-
tation12,13,22–24. Here we describe CATCH, a method that condenses highly diverse target
sequence data into a small number of oligonucleotides, enabling more efficient and sensitive
sequencing that is only biased by the extent of known diversity. We show that capture with
probe sets designed by CATCH improved viral genome detection and recovery, across a range
of sample source materials, while accurately preserving sample complexity of the targets.
Probe sets we present here have also helped us to assemble genomes of low titer viruses
in other patient samples: VZC for suspected ZIKV cases7 and VALL for a suspected case of
Powassan virus48.

The probe sets we have designed with CATCH, and more broadly capture with comprehen-
sive probe designs, improve the accessibility of metagenomic sequencing in resource-limited
settings through smaller capacity platforms. For example, in West Africa we are using the
VALL probe set to characterize viruses in patients with undiagnosed fevers by sequencing on
a MiSeq (Illumina). This could also be applied on other small machines such as the iSeq
(Illumina) or MinION (Oxford Nanopore)49. Further, the increase in viral content enables
more samples to be pooled and sequenced on a single run, increasing sample throughput and
decreasing per-sample cost relative to unbiased sequencing (Supplementary Table 9). Lastly,
researchers can use CATCH to quickly design focused probe sets, providing flexibility when
it is not necessary to target an exhaustive list of viruses, such as in outbreak response or for
targeting pathogens associated with specific clinical syndromes.

Despite the potential of capture, there are challenges and practical considerations that are
present with the use of any probe set. Notably, as capture requires additional cycles of
amplification, computational analyses should properly account for duplicate reads due to
amplification; the inclusion of unique molecular identifiers50,51 could improve determination
of unique fragments. Also, quantifying the sensitivity and specificity of capture with com-
prehensive probe sets is challenging — as it is for metagenomic sequencing more broadly
— because doing so would necessitate obtaining viral genomes for the hundreds of targeted
species, and false positives are likely to be due to components of sequencing and classification
that are unrelated to capture (e.g., contamination in sample processing or read misclassifi-
cations). For sequencing some ultra low input samples, targeted amplicon approaches may
be faster and more sensitive2,11, but genome size, sequence heterogeneity, and the need
for prior knowledge of the target species can limit the feasibility and sensitivity of these
approaches1,52,53. Similarly, for molecular diagnostics of particular pathogens, many com-
monly used assays such as qRT-PCR and rapid antigen tests are likely to be faster and
less expensive than metagenomic sequencing. Capture does increase the preparation cost
and time per-sample compared to unbiased metagenomic sequencing, but this is offset by
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reduced sequencing costs through increased sample pooling and/or lower-depth sequencing1

(Supplementary Table 9).

While our conclusions here are based on whole genome capture of viruses, CATCH is a versatile
approach that can be applied to capture of non-viral microbial genomes and to the design
of oligonucleotide sequences for uses other than whole genome enrichment. Because CATCH

scales well with our growing knowledge of genomic diversity25,26, it is particularly well-
suited for designing against any class of input from microbes that have a high degree of
diversity. Capture-based approaches have successfully been used to enrich whole genomes
of eukaryotic parasites such as Plasmodium54 and Babesia55, as well as bacteria56. Many
bacteria, like viruses, have high variation even within species57, and CATCH can enable
efficient and sensitive enrichment of these bacterial genomes or even of combinations of viral
and bacterial targets. Beyond microbes, CATCH can benefit studies in other areas, such as
the detection of previously characterized fetal and tumor DNA from cell-free material58,59,
in which known targets of interest may represent a small fraction of all material and for
which it may be useful to rapidly design new probe sets for enrichment as novel targets
are discovered. Moreover, CATCH can identify conserved regions or regions suitable for
differential identification, which can help in the design of PCR primers and CRISPR-Cas13
crRNA guides for nucleic acid diagnostics.

CATCH is, to our knowledge, the first approach to systematically design probe sets for whole
genome capture of highly diverse target sequences that span many species. Our results show
that it offers an important extension to the field’s toolkit for effective viral diagnostics and
surveillance with enrichment and other targeted approaches. We anticipate that CATCH,
together with these approaches, will help provide a more complete understanding of genetic
diversity across the microbial world.
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Methods

Probe design using CATCH

Designing a probe set given a single choice of parameters

We first describe how CATCH determines a probe set that covers input sequences under some
selection of parameters. That is, the input is a collection of (unaligned) sequences d and
parameters θd describing hybridization, and the goal is to compute a set of probes s(d, θd).
For example, d commonly encompasses the strain diversity of one or more species and θd
includes the number of mismatches that we ought to tolerate when determining whether a
probe hybridizes to a sequence.

CATCH produces a set of “candidate” probes from the input sequences in d by stepping along
them according to a specified stride (Fig. 1a). Optionally, CATCH uses locality-sensitive hash-
ing32,33 (LSH) to reduce the number of candidate probes, which is particularly useful when
the input is a large number of highly similar sequences. CATCH supports two LSH families:
one under Hamming distance32 and another using the MinHash technique33,60, which has
been used in metagenomic applications61,62. It detects near-duplicate candidate probes by
performing approximate near neighbor search33 using a specified family and distance thresh-
old. CATCH constructs hash tables containing the candidate probes and then queries each
(in descending order of multiplicity) to find and collapse near-duplicates. Because LSH re-
duces the space of candidate probes, it may remove candidate probes that would otherwise
be selected in steps described below, thereby increasing the size of the output probe set.
Use of LSH to reduce the number of candidate probes is optional in our implementation of
CATCH; we did not use it to produce the probe sets in this work. The approach of detecting
near-duplicates among probes (and subsequently mapping them onto sequences, described
below) bears some similarity to the use of P-clouds for clustering related oligonucleotides in
order to identify diverse repetitive regions in the human genome63,64.

CATCH then maps each candidate probe p back to the target sequences with a seed-and-
extend-like approach, in the process deciding whether pmaps to a range r in a target sequence
according to a function fmap(p, r, θd). fmap effectively specifies whether p will capture the
subsequence at r. Further, CATCH assumes that because p captures an entire fragment and
not just the subsequence to which it binds, p “covers” both r and some number of bases
(given in θd) on each side of r; we term this a “cover extension”. This yields a collection of
bases in the target sequences that are covered by each p, namely:

{(p, {(s, {bases in s covered by p}) for all s in d}) for all candidate probes p}.

Next, CATCH seeks to find the smallest set of candidate probes that achieves full coverage of
all sequences in d. The problem is NP-hard. To determine s(d, θd), an approximation of the
smallest such set of candidates probes, CATCH treats the problem as an instance of the set
cover problem. Similar approaches have been used in related problems in uncovering patterns
in DNA sequence. Notably, these include PCR primer selection65–67, string barcoding of
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pathogens68,69, and other applications in microbial microarrays70–72, although these are not
aimed at whole genome enrichment for sequencing many taxa.

CATCH computes s(d, θd) using the canonical greedy solution to the set cover problem30,31,
which likely provides close to the best achievable approximation73. In this approximation-
preserving reduction, each candidate probe p is treated as a set whose elements represent
the bases in the target sequences covered by p. The universe of elements is then all the bases
across all the target sequences — i.e., what it seeks to cover. To implement the algorithm
efficiently, CATCH operates on sets of intervals rather than base positions and applies other
techniques to improve performance for this particular problem.

Extensions to probe design

This framework for designing probes offers considerable flexibility. For example, it reduces
the design to a problem of determining probe-target hybridization. The function fmap,
which determines whether a probe hybridizes to a range in a target sequence (and, if it
does, precisely the range), can be customized by a user in CATCH’s source code or can be
provided in a command-line argument to be dynamically loaded. For example, although by
default CATCH does not use a thermodynamic model of hybridization, a user could choose
to incorporate a calculation of free energy to evaluate the likelihood of hybridization. Here,
when computing s(d, θd), CATCH’s default fmap is based on three parameters in θd: a number
m of mismatches to tolerate, a length lcf of a longest common substring, and a length i of
an island of an exact match. fmap computes the longest common substring with at most m
mismatches between the probe sequence and target subsequence, and returns that the probe
covers the target range if and only if the length of this is at least lcf. Optionally (if i > 0),
fmap additionally requires that the probe and target subsequence share an exact (0-mismatch)
match of length at least i to return that the probe covers the range. (See Supplementary Fig.
1b for a visual representation and “Exploring the parameter space across taxa” for example
values.)

There are many problems related to probe design that map well to generalizations of the set
cover problem. Relevant generalizations are the weighted and partial cover problems30,74,75.
Using the weighted cover problem, CATCH allows a user to perform differential identification
of taxa and also to blacklist sequences from the probe design. For these purposes, we
introduce the concept of a “rank” to our implementation of the set cover solution. A rank
of a set is analogous to a weight and makes it straightforward to assign levels of penalties
on sets. For two sets S and T , if rank(S) < rank(T ) then S is always considered before
T — i.e., if coverage is needed and S provides that coverage, then the greedy algorithm
always chooses S before T even if T provides more. These can be emulated entirely using
weights (i.e., costs), by assigning sufficiently high weights to each set. To perform differential
identification, CATCH accepts groupings of sequences as input (for example, each grouping
might encompass the available genomes of a species). Then, CATCH finds the number of
groupings that each candidate probe p “hits”. (p hits a grouping if it covers a part of at
least one sequence in that grouping.) A probe that hits only one grouping is suitable for
differential identification, whereas ones that hit more are poor choices. Thus, CATCH assigns
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a rank to each p equal to the number of groupings hit by p. CATCH can also accept a collection
of sequences to blacklist from the probe design. It determines the number of nucleotides in
blacklisted sequence that each p covers and assigns to p a rank equal to this value; therefore,
candidate probes that cover blacklisted sequence are highly penalized in the design. (When
a user opts to perform differential identification while also blacklisting sequences, the ranks
are assigned such that a candidate probe that covers a part of a blacklisted sequence always
receives a higher rank than one that does not.) For the purposes of determining whether
p hits an identification grouping or blacklisted sequence, CATCH accepts three additional
parameters, holding more tolerant values for m, lcf, and i as defined above, that fmap uses to
evaluate probe-target hybridization. We note as well that weights can have other applications
in probe design, e.g., if there is a reason to prefer some candidate probes over others due
to base composition. Finally, CATCH solves an instance of the weighted cover problem by
assigning the rank of each set to be the rank of the candidate probe it represents.

Based on the partial cover problem, CATCH offers the ability to design probes such that
they only cover a portion of each target sequence. The user specifies this portion as either
a fraction of the length of each sequence or as a fixed number of nucleotides. Reducing the
problem directly to an instance of the set cover problem with a single universe would not
allow partially covering each target sequence. Thus, we introduce “multiple universes” to
the instance, in which each universe corresponds to a target sequence and consists of all the
bases in that sequence. Each set (representing candidate probes) specifies which elements
in which universes it covers. The greedy algorithm continues selecting among the candidate
probes until it obtains the desired partial coverage of each universe (target sequence). We
don’t make claims about the approximation factor this achieves. As one application, note
that when performing differential identification the required partial coverage should be set
to be relatively low.

If desired, CATCH adds adapters to probe sequences in s(d, θd) for PCR amplification. Be-
cause many of these may overlap, it is possible that, during PCR, they could chain together
to form concatemers. Thus, we would like to use k unique adapters and divide the probes in
s(d, θd) into k groups such that the probes in each group are unlikely to chain together; then,
we can perform PCR separately on each group. CATCH uses a heuristic to solve this problem
for k = 2, i.e., two adapters A and B. Consider one target sequence t. It maps each of the
probes in s(d, θd) to t using fmap, as described above. It treats the ranges that each probe
covers as an “interval,” and finds the largest set of non-overlapping intervals (probes) Tno by
solving an instance of the interval scheduling problem. Then, we could assign adapter A to
each probe in Tno, and adapter B to each of the others. CATCH performs this for each target
sequence t, and each t “votes” once (either A or B) for each probe. We seek to maximize
the sum, across all probes, of the majority vote for the probe (to ensure a clear decision on
the adapter for each probe). Let V p

A be the number of A votes for a probe, and likewise for
V p
B . Then, we wish to maximize the quantity∑

p ∈ s(d,θd)

max(V p
A ,V p

B).

Since the distinction between A and B is arbitrary, at each t CATCH chooses whether to
assign A or B votes to the probes in Tno depending on which assignment yields a higher
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sum. This process yields the maximum sum, and CATCH then assigns adapter A or B to
each probe based on which has more votes.

Designing across many taxa

Consider a large set of input sequences that encompass a diverse set of taxa (e.g., hundreds
of viral species). We could run CATCH, as described above, on a single choice of parameters
θd such that the number of probes in s(d, θd) is feasible for synthesis. However, this can
lead to a poor representation of taxa in the diverse probe set; it can become dominated by
probes covering taxa that have more genetic diversity (e.g., HIV-1). Furthermore, it can
force probes to be designed with relaxed assumptions about hybridization across all taxa.
To alleviate these issues, we allow different choices of parameters governing hybridization
for different subsets of input sequences, so that some can have probes designed with more
relaxed assumptions than others.

We represent a set of taxa and its target sequences with a dataset d, with its own set of
parameters θd. Let {θd} be the collection of θd across all d. We wish to find S({θd}), the
union of s(d, θd) across all datasets d. CATCH finds this by solving a constrained nonlinear
optimization problem:

{θd}∗ = arg min
{θd}

∑
d

L(θd) s.t. |S({θd})| ≤ N .

The constraint N on the number of probes in the union is specified by the user; this is the
number of probes to synthesize, and might be determined based on synthesis cost and/or
array size. CATCH solves this using the barrier method with a logarithmic barrier function.
By default, we use the following loss function for each d:

L(θd) = wd (β1m
2
d + β2e

2
d)

where md gives a number of mismatches to tolerate in hybridization and ed gives a cover
extension, as defined above. wd allows a relative weighting of datasets, e.g., if one should
have more stringent assumptions about hybridization and thus more probes. β1, β2, and the
set of {wd}s can be specified by the user. A user can also choose to generalize the search to
a different set of parameters:

L(θd) = wd
∑
i

βiθ
2
di

where θdi is the value of the ith parameter for d and βi is a specified coefficient for that
parameter.

In practice, we have used the default loss function above, with wd = 1 for all d, β1 = 1,
and β2 = 1

100
. We calculate s(d, θd) for each d over a grid of values of θd before solving

for {θd}∗. CATCH interpolates |s(d, θd)| for non-computed values of θd and rounds integral
parameters in {θd}∗ to integers while ensuring that |S({θd}∗)| ≤ N . The probe set pooled
across datasets is then S({θd}∗).
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It is possible that CATCH cannot find a choice of θd such that |S({θd})| ≤ N . This might
be the case, for example, if the grid of θd values over which a user precomputes s(d, θd) has
too small a range to satisfy the constraint. That is, one or more of the parameter values
may need to be relaxed (across one or more datasets) to obtain ≤ N probes. When this
happens, our implementation of CATCH raises an error and suggests that the user provide
less stringent choices of parameter values.

We implemented CATCH in a Python package that is available at
https://github.com/broadinstitute/catch.

Design of viral probe sets presented here

Input sequences for design of probe sets

We designed four probe sets using publicly available sequences. The design of VALL (356 viral
species) incorporated available sequences up to June, 2016; VWAFR (23 viral species) up to
June, 2015; VMM (measles and mumps viruses) up to March, 2016; and VZC (chikungunya and
Zika viruses) up to February, 2016. Most sequences we used as input for designing probe
sets are genome neighbors (i.e., complete or near-complete genomes) provided in NCBI’s
accession list of viral genomes76 and were downloaded from NCBI GenBank35. We selected
a small number of other genomes using the NIAID Virus Pathogen Database and Analysis
Resource (ViPR)77. Supplementary Table 1 contains links to the exact input (accessions and
nucleotide sequences) used as input for each probe set.

In particular, in the input to the design of VALL we included all sequences in NCBI’s acces-
sion list of viral genomes76 for which human was listed as a host, along with all sequences
from a selection of additional species (Supplementary Table 1). Since genome neighbors for
Influenza A virus, Influenza B virus, and Influenza C virus were not included in the accession
list, we included a separate selection of sequences for Influenza A virus that encompass all
hemagglutinin and neuraminidase subtypes that infect human (in VALL, 8,629 sequences), as
well as sequences for Influenza B (376 sequences) and C (7 sequences) viruses. Furthermore,
we trimmed long terminal repeats from all sequences of HIV-1 and HIV-2 used as input to
both VALL and VWAFR. In VZC we included, along with genome neighbors, partial sequences
of Zika virus from NCBI GenBank35.

Exploring the parameter space across taxa

To explore the parameter space in the design of VALL and VWAFR, we varied md (number of
mismatches) and ed (cover extension) while fixing all other parameters. We pre-computed
probe sets over a grid with md in {0, 1, 2, 3, 4, 5, 6} and ed in {0, 10, 20, 30, 40, 50} when
finding optimal parameters. In designing VALL, we ran the optimization procedure 1,000
times, each with random starting conditions, and picked the choice of the parameter values
from the run with the smallest loss. Supplementary Table 1 lists the selected parameter
values of each dataset for each probe set, as well as other fixed parameter values.
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Design additions for synthesis and probe set data

For synthesis of probes in VALL, the manufacturer (Roche) trimmed bases from the 3’ end
of probe sequences to fit within synthesis cycle limits. Probe lengths did not change con-
siderably after trimming: of the 349,998 probes in VALL, which were designed to be 75 nt,
61% remained 75 nt after trimming and 99% were at least 65 nt after trimming. We did
not add PCR adapters for amplification to probe sequences in VALL. We did add adapters
to probe sequences in VWAFR, VZC, and VMM (designed to be 100 nt and synthesized with
CustomArray); we used two sets of adapters (20 bases on each end), selected by CATCH

for each probe to minimize probe overlap as described above. Furthermore, in these three
probe sets we included the reverse complement of each designed 140 nt oligonucleotide in the
synthesis. The probe sequences of each probe set (with the 20 nt adapters where applicable)
are available at https://github.com/broadinstitute/catch/tree/cf500c6/probe-designs.

Analysis of probe set scaling with parameter values and input size

In all evaluations of how probe counts grow with respect to an independent variable (Sup-
plementary Fig. 1c, Fig. 1b, and Supplementary Fig. 2), we used genome neighbors from
NCBI’s accession list of viral genomes76 (downloaded in September, 2017) as input. We
trimmed long terminal repeats from HIV-1 sequences. The specific sequences are available
at https://github.com/broadinstitute/catch/tree/323b639/hybseldesign/datasets/data. In
all of these evaluations, we designed 75 nt probes.

In the plots showing probe counts as a function of parameter values (Supplementary Fig.
1c), we varied only the mismatches (m) and cover extension (e) parameters using the values
shown. We set parameters on the longest common substring (lcf ) and island of exact match
(i) to their default values: lcf equal to the probe length (75) and i = 0. For each pair of
parameter values shown, we calculated probe counts across 5 replicates, with the input to
each replicate being 300 genomes that were randomly selected with replacement. Shaded
regions are 95% pointwise confidence bands.

In the plots showing how probe counts scale with the number of input genomes (Fig. 1b
and Supplementary Fig. 2), the “Baseline” approach generates probes by tiling each in-
put genome with a stride of 25 nt and removing exact duplicates. The “Clustering-based”
approach generates candidate probes using a stride of 25 nt and deems two probes to be re-
dundant if their longest common substring up to m mismatches (shown at m = 0 and m = 4)
is at least 65 nt. It then constructs a graph in which vertices represent candidate probes and
edges represent redundancy, and finds a probe set by approximating the smallest dominating
set of this graph. For running this clustering-based approach, see the design naively.py ex-
ecutable in our implementation of CATCH. The CATCH approach generates candidate probes
using a stride of 25 nt and is shown with parameter values (m = 0, e = 0), (m = 4, e = 0),
and (m = 4, e = 50), and all other parameters set to default values. Probe counts for Hepati-
tis C virus and HIV-1 were calculated and plotted with n = {1, 50, 100, 200, 300, . . . , 1000}
input genomes; for Zaire ebolavirus, n = {1, 50, 100, 150, . . . , 850} input genomes; and for
Zika virus, n = {1, 25, 50, 75, . . . , 375} input genomes. For each n, we calculated probe counts
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across 5 replicates, with the input to each replicate being n genomes that were randomly
selected with replacement. Again, shaded regions are 95% pointwise confidence bands.

Samples and specimens

Human patient samples used in this study (Supplementary Table 2) were obtained from
studies that had been evaluated and approved by the relevant Institutional Review Boards
(IRBs) or Ethics Committees at Harvard University (Cambridge, Massachusetts), Partners
Healthcare (Boston, Massachusetts), Massachusetts Department of Public Health (Jamaica
Plain, Massachusetts), Irrua Specialist Teaching Hospital (Irrua, Nigeria), Nigeria Federal
Ministry of Health (Abuja, Nigeria), Sierra Leone Ministry of Health and Sanitation (Free-
town, Sierra Leone), Nicaraguan Ministry of Health (Managua, Nicaragua), University of
California, Berkeley (Berkeley, California), the Ragon Institute (Cambridge, Massachusetts),
Hospital General de la Plaza de la Salud (Santo Domingo, Dominican Republic), Universidad
Nacional Autónoma de Honduras (Tegucigalpa, Honduras), Oswaldo Cruz Foundation (Rio
de Janeiro, Brazil), and Florida Department of Health (Tallahassee, Florida).

Informed consent was obtained from participants enrolled in studies at Irrua Specialist Teach-
ing Hospital, Kenema Government Hospital, the Ragon Institute, Hospital General de la
Plaza de la Salud, Universidad Nacional Autónoma de Honduras, Oswaldo Cruz Founda-
tion, and Universidad Industrial de Santander.

IRBs at the Massachusetts Department of Public Health, Florida Department of Health,
and Partners Healthcare granted waivers of consent given this research with leftover clinical
diagnostic samples involved no more than minimal risk. In addition, some samples from
Kenema Government Hospital and Irrua Specialist Teaching Hospital were collected under
waivers of consent to facilitate rapid public health response during the Ebola outbreak and
also because the research involved no more than minimal risk to the subjects.

The Harvard University and Massachusetts Institute of Technology IRBs, as well as the
Office of Research Subject Protection at the Broad Institute of MIT and Harvard, provided
approval for sequencing and secondary analysis of samples collected by the aforementioned
institutions.

For all clinical and environmental samples, including samples from the 2018 Lassa surge,
we extracted RNA using the Qiagen QiAmp viral mini kit, except in cases where samples
were provided for secondary use as extracted RNA (Supplementary Table 2). Extractions
were performed according to manufacturer’s instructions from 140 µL of biological material
inactivated in 560 µL of buffer AVL.

Mock co-infection samples were generated by spiking equal volumes of RNA isolated from 2,
4, 6 or 8 viral seed stocks (dengue virus, Ebola virus, Influenza A virus, Lassa virus, Marburg
virus, measles virus, Middle East Respiratory Syndrome coronavirus, and Nipah virus) into
RNA isolated from the plasma of a healthy human donor, purchased from Research Blood
Components. Ebola dilution series (Fig. 3a, Supplementary Fig. 7) were generated by
adding 1–106 copies of Ebola virus (Makona) to 30 ng or 300 ng of human K562 RNA. All
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dilutions were prepared and sequenced in duplicate. For samples where the microbial content
was uncharacterized — 26 mosquito pools from the United States, human plasma from 25
individuals with acute non-Lassa virus fevers from Nigeria, and human plasma from 25
individuals with suspected Lassa and Ebola virus infections from Sierra Leone — we created
sample pools by combining equal volumes of extracted RNA for 5 samples per pool (one
mosquito pool contained 6), resulting in 15 final pools (5 mosquito, 5 Nigeria, and 5 Sierra
Leone).

Construction of sequencing libraries

We first removed contaminating DNA by treatment with TURBO DNase (Ambion) and
prepared double-stranded cDNA by priming with random hexamers followed by synthesis
of the second strand as previously described13. We used the Nextera XT kit (Illumina)
to prepare sequencing libraries with modifications to enable hybrid capture10. Specifically,
we used non-biotinylated i5 indexing primers (Integrated DNA Technologies) in place of the
manufacturer’s standard i5 PCR primers. As cDNA concentrations from clinical samples are
typically lower than the recommended 1 ng, input to Nextera XT was 5 µL of cDNA, except
in the case of Ebola serial dilutions where input was 1 ng. Samples underwent 16–18 cycles
of PCR and final libraries were quantified using either the 2100 Bioanalyzer dsDNA High
Sensitivity assay (Agilent) or by qPCR using the KAPA Universal Complete Kit (Roche).
We also prepared sequencing libraries from water with each batch as a negative control.

Hybrid capture of sequencing libraries

We synthesized the 349,998 probes in VALL using the SeqCap EZ Developer platform
(Roche). Since the number of features on the array was 2.1 million, we repeated the
design 6 times (6× final probe density). We used these biotinylated single-stranded
DNA probes directly for hybrid capture experiments. We performed in solution hy-
bridization and capture according to manufacturer instructions (SeqCapEZ v5.1) with
modifications to make the protocol compatible with Nextera XT libraries. Specifi-
cally, we pooled up to 6 individual sequencing libraries with at least 1 unique index
together at equimolar concentrations (≥ 3 nm) in a final volume of 50 µL. We re-
placed the manufacturer’s indexed adapter blockers with oligos complementary to Nex-
tera indexed adapters (P7 blocking oligo: 5’-AAT GAT ACG GCG ACC ACC GAG ATC TAC

ACN NNN NNN NTC GTC GGC AGC GTC AGA TGT GTA TAA GAG ACA G/3ddC/-3’; P5 block-
ing oligo: 5’-CAA GCA GAA GAC GGC ATA CGA GAT NNN NNN NNG TCT CGT GGG CTC GGA

GAT GTG TAT AAG AGA CAG /3ddC/-3’; Integrated DNA Technologies). The concentra-
tion of Nextera XT adapter blockers was reduced to 200 µm to account for sample input
< 1 µg. The concentration of probes was also reduced to account for the replication of
our VALL probe set 6× across the 2.1 million features. We incubated the hybridization re-
action overnight (∼ 16 hrs). After hybridization and capture on streptavidin beads, we
amplified library pools using PCR (14–16 cycles) with universal Illumina PCR primers (P7
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primer: 5’-CAAGCAGAAGACGGCATACGA-3’; P5 primer: 5’-AATGATACGGCGACCACCGA-3’; Inte-
grated DNA Technologies).

We prepared the focused probe sets (VWAFR, VMM, VZC) using a traditional probe production
approach78 in which DNA oligos were synthesized on a 12k or 90k array (CustomArray).
To minimize PCR amplification bias and formation of concatemers by overlap extension we
performed two separate emulsion PCR reactions (Micellula, Chimerx) to amplify the non-
overlapping probe subsets (assigned adapters A and B as described above). One primer
in each reaction carried a T7 promoter tail (GGATTCTAATACGACTCACTATAGGG) at the 5’ end.
We performed in vitro transcription (MEGAshortscript, Ambion) on each of these pools to
produce biotinylated capture-ready RNA probes. Pools were aliquoted and stored at −80 ◦C
and combined at equal concentration and volume immediately prior to use. Hybrid capture
was a modification of a published protocol78. Briefly, we mixed the probes, salmon sperm
DNA and human Cot-1 DNA, adapter blocking oligonucleotides and libraries and hybridized
overnight (∼ 16 hrs), captured on streptavidin beads, washed, and re-amplified by PCR (16–
18 cycles). PCR primers and index blockers were the same as those used in the protocol for
the VALL probe set. In some cases, we changed the Nextera XT indexes during final PCR
amplification to enable sequencing of pre- and post-capture samples on the same run.

We pooled and sequenced all captured libraries on IIlumina MiSeq or HiSeq 2500 platforms.
Pre-capture libraries for all samples were also sequenced to allow for comparison of enrich-
ment by capture.

Assembly and alignments

We performed demultiplexing and data analysis of all sequencing runs using viral-ngs
v1.17.079,80 with default settings, except where described below. To enable comparisons
between pre- and post-capture results, we downsampled all raw reads to 200,000 reads using
SAMtools81. We performed all analyses on downsampled data sets unless otherwise stated.
We chose this number as 90% of all samples sequenced on the MiSeq (among the 30 patient
and environmental samples used for validation) were sequenced to a depth of at least 200,000
reads. For those few low coverage samples for which we did not obtain > 200,000 reads, we
performed all analyses using all available reads (Supplementary Table 3). Downsampling
normalizes sequencing depth across runs and allows us to more readily evaluate the effec-
tiveness of capture on genome assembly (i.e., the fraction of the genome we can assemble)
than an approach such as comparing viral reads per million. It also allows us to more readily
compare unique content (see below). A statistic like unique viral reads per unique million
reads can be distorted based on sequencing depth in the presence of a high fraction of vi-
ral PCR duplicate reads: sequencing to a lower depth can inflate the value of this statistic
compared to sequencing to a higher depth.

We used viral-ngs to assemble genomes of all viruses previously detected in these samples
or identified by metagenomic analyses, including the LASV genomes from the 2018 Lassa
fever surge in Nigeria and the EBOV genomes from the dilution series. For each virus
we taxonomically filtered reads against many available sequences for that virus (Supple-
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mentary Table 10). We used one representative genome to scaffold the de novo assembled
contigs (Supplementary Table 3, Supplementary Table 5, Supplementary Table 7). We set
the parameters assembly min length fraction of reference and assembly min unambig

to 0.01 for all assemblies. To calculate per-base read depth, we aligned depleted reads
from viral-ngs to the same reference genome that we used for scaffolding. We did this
alignment with BWA82 through the align and plot coverage function of viral-ngs with
the following parameters: -m 50000 --excludeDuplicates --aligner options ‘-k 12

-B 2 -O 3’ --minScoreToFilter 60. We counted the number of aligned reads (unique
viral reads) using SAMtools81 with samtools view -F 1024, and calculated enrichment of
unique viral content by comparing number of aligned reads before and after capture. viral-
ngs removes PCR duplicate reads with Picard based on alignments, allowing us to measure
unique content. We excluded samples where one or more conditions had less than 100,000
raw reads for reasons of comparability. Excluded samples are highlighted in red in Supple-
mentary Table 3.

To assess how the amount of viral content detected increases with sequencing depth
(Supplementary Fig. 7b, c), we used data from the Ebola dilution series on 103

and 104 copies. At these input amounts, both technical replicates, with and with-
out capture and in both 30 ng and 300 ng of background, yielded at least 2 million
sequencing reads. For each combination of input copies, background amount, techni-
cal replicate, and whether capture was used, we downsampled all raw reads to n =
{1, 10, 100, 1000, 10000, 100000, 200000, 300000, . . . , 1900000, 2000000} reads. For each n, we
performed this downsampling 5 times. We depleted reads with viral-ngs, aligned depleted
reads to the EBOV reference genome (Supplementary Table 5), and counted the number
aligned, as described above. We plotted the number of aligned reads for each subsampling
amount in Supplementary Fig. 7b and c, where shaded regions are 95% pointwise confidence
bands calculated across the 5 downsampling replicates.

To analyze the relation between probe-target identity and enrichment (Fig. 3b), we used an
Influenza A virus sample of avian subtype H4N4 (IAV-SM5). We assembled a genome of this
sample both pre-capture and following capture with VALL to verify concordance; we used the
VALL sequence for further analysis here because it was more complete. We aligned depleted
reads to this genome as described above (with BWA using the align and plot coverage

function of viral-ngs and the following parameters: -m 50000 --excludeDuplicates

--aligner options ‘-k 12 -B 2 -O 3’ --minScoreToFilter 60). For a window in the
genome, we calculated the fold-change in depth to be the fold-change of the mean depth
post-capture against the mean depth pre-capture within the window. Here, we used win-
dows of length 150 nt, sliding with a stride of 25 nt. We aligned all probe sequences in VALL

and VWAFR designs to this genome using BWA-MEM82 with the following options: -a -M -k

8 -A 1 -B 1 -O 2 -E 1 -L 2 -T 20; these sensitive parameters should account for most
possible hybridizations, and include a low soft-clipping penalty to allow us to model a portion
of a probe hybridizing to a target while the remainder hangs off. We counted the number
of bases that match between a probe and target sequence using each alignment’s MD tag
(this does not count soft-clipped ends), and defined the identity between a probe and target
sequence to be this number of matching bases divided by the probe length. We defined the
identity between probes and a window of the target genome as follows: we considered all
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mapped probe sequences that have at least half their alignment within the window, and took
the mean of the top 25% of identity values between these probes and the target sequence.
In Fig. 3b, we plot a point for each window. We did this separately with probes from the
VALL and VWAFR designs.

Within-sample variant calling

For our comparison of within-sample variant frequencies with and without capture (Fig.
3d, Supplementary Table 6), we used 3 dengue virus samples (DENV-SM1, DENV-SM2,
and DENV-SM5). We selected these because of their relatively high depth of coverage,
in both pre- and post-capture genomes (Supplementary Table 3); the high depth in pre-
capture genomes was necessary for the comparison. We did not subsample reads prior to
this comparison, in order to maximize coverage for detection of rare variants. For each of
the three samples, we pooled data from three sequencing replicates of the same pre-capture
library prior to downstream analysis. For each of these samples we performed two capture
replicates on the same pre-captured library (two replicates with VWAFR and two with VALL),
and sequenced, estimated, and plotted frequencies separately on these replicates.

After assembling genomes, we used V-Phaser 2.0, available through viral-ngs79,80, to call
within-sample variants from mapped reads. We set the minimum number of reads required
on each strand (vphaser min reads each) to 2 and ignored indels. When counting reads
with each allele and estimating variant frequencies, we excluded PCR duplicate reads through
viral-ngs. In Fig. 3d, we show frequencies for a variant if it is present at ≥ 1% frequency in
any of the replicates (i.e., either the pre-capture pool or any of the replicates from capture
with VWAFR or VALL). The plot shows positions combined across the three samples that we
analyzed.

We estimated the concordance correlation coefficient (ρc) between pre- and post-capture
frequencies over points in which each is a pair of pre- and post-capture frequencies of a
variant in a replicate. Because we had pooled pre-capture data, each pre-capture frequency
for a variant is paired with multiple post-capture frequencies for that variant.

Metagenomic analyses

We used kraken v0.10.683 in viral-ngs to analyse the metagenomic content of our pre- and
post-capture libraries. First, we built a database that included the default kraken “full”
database (containing all bacterial and viral whole genomes from RefSeq84 as of October 2015).
Additionally, we included the whole human genome (hg38), genomes from PlasmoDB85, se-
quences covering selected insect species (Aedes aegypti, Aedes albopictus, Anopheles albi-
manus, Anopheles gambiae, Anopheles quadrimaculatus, Culex pipiens, Culex quinquefas-
ciatus, Culex tarsalis, Drosophila melanogaster, Varroa destructor) from GenBank35, pro-
tozoa and fungi whole genomes from RefSeq, SILVA LTP 16 S rRNA sequences86, Uni-
Vec vector sequences, ERCC spike-in sequences and the human pathogenic viral sequences
that were used as input for the VALL probe design. The database we created and used is
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available in three parts. It can be downloaded at https://storage.googleapis.com/sabeti-
public/meta dbs/kraken full-and-insects 20170602/[file] where [file] is: database.idx.lz4

(642 MB), database.kdb.lz4 (98 GB), and taxonomy.tar.lz4 (66 MB).

For mock co-infection samples we ran kraken on all sequenced reads. To confirm that en-
richment was successful, we calculated the proportion of all reads that were classified as of
viral origin. To compare the relative frequencies of each virus pre- and post-capture with
VALL and VWAFR, we calculated the proportion of all viral reads that were classified as each
of the 8 viral species. For this we used the cumulative number of reads assigned to each
species-level taxon and its child clades, which we term “cumulative species counts”.

For each biological sample, we first subsampled raw reads to 200,000 reads using SAMtools81

(except for samples with < 200,000 reads, for which we used all available reads). Then, we re-
moved highly similar (likely PCR duplicate) reads from the unaligned reads with the mvicuna
tool through viral-ngs. We ran kraken through viral-ngs and separately ran kraken-filter

with a threshold of 0.1 for classification. For samples where two independent libraries had
been prepared and used for VALL and VWAFR, or where the same pre-capture library had been
sequenced more than once, we merged the raw sequence files prior to downsampling. To
account for laboratory contaminants we also ran kraken on water controls; we first merged
all water controls together, and classified reads as described above. We evaluated the pres-
ence and enrichment of viral and other taxa using the cumulative species-level counts, as
above. To do so we calculated two measures: abundance, which was calculated by dividing
pre-capture read counts for each species by counts in pooled water controls, and enrichment,
which was calculated by dividing post-capture read counts for each species by pre-capture
read counts in the same sample. For our uncharacterized mosquito pools and human plasma
samples from Nigeria and Sierra Leone, after capture with VALL we searched for viral species
with more than 10 matched reads and a read count greater than 2-fold higher than in the
pooled water control after capture with VALL. For each virus identified we assembled viral
genomes and calculated per-base read depth as described above (Supplementary Fig. 11,
Supplementary Table 8). When producing coverage plots, we calculated per-base read depth
as described above for known samples, except we removed supplementary alignments before
calculating depth to remove artificial chimeras.

Data availability

Sequences used as input for probe design (Supplementary Table 1) are available in the repos-
itory at https://github.com/broadinstitute/catch. Sequences of the probe designs are avail-
able at https://github.com/broadinstitute/catch/tree/cf500c6/probe-designs. Viral genomes
sequenced as part of this study will be deposited in NCBI GenBank35 prior to publica-
tion under BioProject accession PRJNA431306 (PRJNA436552 for the 2018 Lassa virus
genomes).
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Code availability

The full source code of CATCH is available at https://github.com/broadinstitute/catch under
the terms of the MIT license.
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Supplementary Figure 1 – Parameters used by CATCH in default model of hybridization. CATCH models hybridization between
each possible candidate probe and the target sequences. Doing so allows CATCH to decide whether a candidate probe captures (or
“covers”) a region of the target sequence, and thus find a probe set that achieves a desired coverage of the target sequences under this
model. For whole genome enrichment, the desired coverage would typically be 100% of each target sequence. (a) Relatively conserved
regions (e.g., a particular gene) in the input sequences can be captured with few probes because it is likely that any given probe,
under a model of hybridization, will capture observed variation across many or all of the input sequences. Highly variable regions
may require many probes to be captured because each given probe may capture the observed variation across only a small fraction
of the input sequences. (b) By default, CATCH decides whether a probe hybridizes to a region of a target sequence according to the
following parameters: a number m of mismatches to tolerate and a length lcf of a longest common substring. CATCH computes
the longest common substring with at most m mismatches between the probe and target subsequence, and decides that the probe
hybridizes to the target if and only if the length of this is at least lcf. If the parameter i is provided, CATCH additionally requires
that the probe and target subsequence share an exact (0-mismatch) match of length at least i . If CATCH decides that the probe
hybridizes to the subsequence of the target with which it shares a substring, then it determines that the probe captures the region
equal to the length of the probe as well as e nt on each side of this region. e, termed a cover extension, is a parameter whose value
is specified to CATCH, along with m, lcf, and i . Lower values of m, higher values of lcf, higher values of i , and lower values of e are
more conservative and lead to more probe sequences. (For details, see the description of fmap in Methods.) (c) Number of probes
required to fully capture 300 genomes of HCV, HIV-1, EBOV, and ZIKV, for varying values of the mismatches and cover extension
parameters, with other parameters fixed. Shaded regions are 95% pointwise confidence bands calculated across randomly sampled
input genomes.
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Supplementary Figure 2 – Scaling probe count with diversity of viral genomes. Number of probes required to fully capture increasing
numbers of HIV-1, EBOV, and ZIKV genomes. Approaches shown are simple tiling (gray), a clustering-based approach at two levels
of stringency (red; see Methods for details), and CATCH at three choices of parameters (blue). Shaded regions are 95% pointwise
confidence bands calculated across randomly sampled input genomes.
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Supplementary Figure 3 – Design of the VWAFR probe set. (a) Number of probes designed by CATCH for each dataset among all
89,990 probes in the VWAFR probe set. The total includes reverse complement probes, which were added to the design of VWAFR

for synthesis. (b) Values of two parameters selected by CATCH for each dataset in the design of VWAFR: number of mismatches to
tolerate in hybridization and length of the target fragment (in nt) on each side of the hybridized region assumed to be captured along
with the hybridized region (cover extension). The label within each bubble is the number of datasets that were assigned a particular
combination of values. Species included in our sample testing are labeled; for full list of parameter values, see Supplementary Table
1.
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Supplementary Figure 4 – Depth of coverage observed across all viral genomes. Depth of coverage across 31 viral genomes included
in this analysis, shown on a (a) linear and (b) logarithmic scale. The logarithmic scale helps compare variance in depth across each
genome between pre- and post-captured data.
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Supplementary Figure 5 – Relation between enrichment of viral content and viral titer. Fraction of all downsampled pre-capture
reads that mapped to the reference genome (shown on the horizontal axis) for 24 viral genomes reflects a wide range of initial viral
concentrations in these samples. Enrichment (shown on the vertical axis) was calculated by dividing the total number of post-capture
reads mapping to a reference genome by the number of mapped pre-capture reads. Those with the highest viral content showed lower
enrichment following capture with VALL. Seven of the 31 viral genomes included in the analysis are excluded from this plot because
they yielded fewer than 200,000 total reads (Supplementary Table 3). Two IAV samples with a high fraction of viral reads pre-capture
(bottom right) overlap on the plot. One sample (ZIKV-SM3, top right) showed no viral reads pre-capture, so its fold-change is
undefined.
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Supplementary Figure 6 – Metagenomic sequencing results for pre- and post-capture samples. (a) Number of species detected
(with at least 1 assigned read) in samples with known viral infections. Counts are shown before capture (orange), after capture with
VWAFR (light blue), and after capture with VALL (dark blue). (b) Left: Number of reads detected for each species across samples
with known viral infections, before and after capture with VWAFR. Right: Abundance of each species before capture and fold-change
upon capture with VWAFR. For each sample, the virus known to be present in the sample is colored, and Homo sapiens matches in
samples from humans are shown in black. (c) Number of reads detected for each species across uncharacterized sample pools, before
and after capture with VALL. Viral species present in each sample (Fig. 4b) are colored, and Homo sapiens matches in human plasma
samples are shown in black. Asterisks on species indicate ones that are not targeted by VALL. (d) Same as (b) but for VWAFR in
the uncharacterized sample pools. Asterisks on species indicate ones that are not targeted by VWAFR. In all panels, abundance was
calculated by dividing species counts pre-capture by counts in pooled water controls.
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Supplementary Figure 7 – Genome assembly in EBOV dilution series and effect of sequencing depth on amount of viral material
sequenced. (a) Percent of viral genome assembled in a dilution series of viral input in two amounts of background. There are n = 2
technical replicates for each choice of input copies, background amount, and use of capture (n = 1 replicate for the negative control
with 0 copies). Each dot indicates percent of genome assembled, from 200,000 reads, in a replicate; line is through the mean of
the replicates. Label to the right of each line indicates amount of background material. Assemblies are from read data presented in
Fig. 3a. (b) Number of unique viral reads sequenced at increasing sequencing depth, from an input of 103 viral copies in different
amounts of background. Horizontal axis gives the number of total reads to which a sample was subsampled. Each line is a technical
replicate (n = 2) and shaded regions are 95% pointwise confidence bands calculated across random subsamplings. Dashed vertical
line at 200,000 reads denotes the amount of total reads used in (a) and in Fig. 3a. Viral sequencing data generated after capture
with VALL saturates more quickly than without capture. (c) Same as (b), but from an input of 104 viral copies.
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Supplementary Figure 8 – Enrichment in read depth with focused probe sets. (a) Distribution of the enrichment in read depth,
across viral genomes, provided by capture with VWAFR. Each curve represents a viral genome. At each position across a genome, the
post-capture read depth is divided by the pre-capture depth, and the plotted curve is the empirical cumulative distribution of the log
of these fold-change values. (b) Distribution of the enrichment in read depth, across viral genomes, provided by VWAFR over VALL.
At each position across a genome, the read depth following capture with VWAFR is divided by the depth following capture with VALL,
and the plotted curve is the empirical cumulative distribution of the log of these fold-change values. (c) Same as (a), but for the
two-virus probe sets VMM and VZC. The mumps curves (green) show enrichment provided by VMM against pre-capture, and the Zika
curves (purple) show enrichment provided by VZC against pre-capture. (d) Same as (b), but for the two-virus probe sets VMM and
VZC. The mumps curves (green) show enrichment provided by VMM against VALL, and the Zika curves (purple) show enrichment
provided by VZC against VALL.
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Supplementary Figure 9 – Enrichment across segments of Influenza A virus (H4N4). Variable enrichment across segments of an
Influenza A virus sample of subtype H4N4 (IAV-SM5). Segments 4 and 6 contain the most genetic diversity and divergence from
probe sequences. No sequences of the N4 subtypes were included in the design of VALL or VWAFR. (a) Depth of coverage across
the sample’s genome. Each of the eight segments in IAV are labeled. (b, c) Distribution of the enrichment in read depth provided
by capture with VALL (b) and VWAFR (c). Each curve represents one of the eight segments. At each position across a genome, the
post-capture read depth is divided by the pre-capture depth, and the plotted curve is the empirical cumulative distribution of the log
of these fold-change values.
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Supplementary Figure 10 – Sequencing results of Lassa virus from the 2018 Lassa fever surge in Nigeria. (a) Number of unique
LASV reads, among 200,000 reads in total, sequenced following capture with VALL compared to pre-capture in 23 samples from the
2018 Lassa fever surge. Points are colored by the state in Nigeria that the sample is from (black is NTC). (b) Percent of LASV
genome assembled, after use of VALL, against the fraction of pre-capture reads that are LASV. Points to the left of the horizontal
break correspond to samples with no LASV reads pre-capture. As in Fig. 4a, reads were downsampled to 200,000 before assembly.
Points are colored as in (a). (c) Percent of LASV genome assembled, after use of VALL. Here, reads were not downsampled before
assembly. Bars are ordered as in Fig. 4a and colored by the state in Nigeria that the sample is from.
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Supplementary Figure 11 – Depth of coverage observed for viral species detected in uncharacterized samples. Depth of coverage
plots for 25 viral genomes detected by metagenomic analysis of uncharacterized samples following capture with VALL (see Fig. 4b).
Read depths are shown on a linear scale.
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