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Abstract

Objective

To assess the effectiveness of community-wide deployment of insecticide–impregnated col-

lars for dogs- the reservoir of Leishmania infantum–to reduce infantile clinical visceral leish-

maniasis (VL).

Methods

A pair matched–cluster randomised controlled trial involving 40 collared and 40 uncollared

control villages (161 [95% C.L.s: 136, 187] children per cluster), was designed to detect

a 55% reduction in 48 month confirmed VL case incidence. The intervention study was

designed by the authors, but implemented by the Leishmaniasis Control Program in NW

Iran, from 2002 to 2006.

Results

The collars provided 50% (95% C.I. 17�8%–70�0%) protection against infantile VL incidence

(0�95/1000/yr compared to 1�75/1000/yr). Reductions in incidence were observed across

76% (22/29) of collared villages compared to pair–matched control villages, with 31 fewer

cases by the end of the trial period. In 11 paired villages, no further cases were recorded

post–intervention, whereas in 7 collared villages there were 9 new clinical cases relative to

controls. Over the trial period, 6,835 collars were fitted at the beginning of the 4 month sand

fly season, of which 6.9% (95% C.I. 6.25%, 7.56%) were lost but rapidly replaced. Collar

coverage (percent dogs collared) per village varied between 66% and 100%, with a mean

annual coverage of 87% (95% C.I. 84�2, 89�0%). The variation in post-intervention clinical

VL incidence was not associated with collar coverage, dog population size, implementation

logistics, dog owner compliance, or other demographic variables tested. Larger reductions
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and greater persistence in incident case numbers (indicative of transmission) were

observed in villages with higher pre-existing VL case incidence.

Conclusion

Community–wide deployment of collars can provide a significant level of protection against

infantile clinical VL, achieved in this study by the local VL Control Program, demonstrating

attributes desirable of a sustainable public health program. The effectiveness is not dissimi-

lar to the community-level protection provided against human and canine infection with L.

infantum.

Author summary

Zoonotic visceral leishmaniasis is a sand fly-borne disease of humans and dogs caused by

the intracellular parasite Leishmania infantum. Dogs are the proven reservoir. The disease

is of global health significance, and usually fatal unless treated. There are limited options

to reduce transmission. Insecticide-treated dog collars have been shown to protect dogs

against infectious bites from sand fly vectors, resulting in reductions of new infections in

both dogs and humans. However, there have been no studies to demonstrate the public

health benefits of this approach i.e. the impact on clinical VL incidence. This study

assessed the effectiveness of community-wide deployment of insecticide–impregnated

collars on dogs to reduce the incidence of clinical visceral leishmaniasis in children, the

high risk age-group. Collars were fitted to dogs in 40 endemic villages over 4 consecutive

years by the regional public health authorities in NW Iran. The case incidence of infantile

visceral leishmaniasis in these villages was compared to that in 40 untreated villages at the

end of the intervention period. The community-wide deployment of collars proved to

provide a 50% reduction in the development of the disease in children. This effect was

achieved under the operational conditions of the regional routine health authorities. We

conclude that the implementation of insecticide-impregnated collars should be consid-

ered in strategic scale-up operations against zoonotic visceral leishmaniasis.

Introduction

Visceral leishmaniasis (VL) is a protozoan vector–borne parasitic disease of humans following

infection with Leishmania donovani or L. infantum, characterized by prolonged fever, wasting,

splenomegaly, and hepatomegaly, and>95% case–fatality in the absence of treatment[1].

Leishmania are transmitted by female phlebotomine sand flies. Leishmaniasis is a Neglected

Tropical Disease (NTD) strongly associated with poverty and malnutrition[2], resulting in a

global incidence of 50,000 to 90,000 new VL cases per year[1]. Difficulties in reducing VL case

burdens arise due to the current lack of a human vaccine, limited safe therapeutic drugs, need

for improved vector control, and a better understanding of transmission dynamics[3–5].

VL due to L. donovani is anthroponotically transmitted, whereas VL due to L. infantum is a

zoonosis involving infectious domestic dog reservoirs[6], and uncertain role of humans[7], in

maintaining transmission[8]. Otherwise traditionally known as “infantile VL”, zoonotic VL is

a disease mainly of young children[9–14], although case age-distributions may vary e.g. [15,

16].
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Regional VL control programs focus on human case detection and treatment, adult sand fly

vector control, and for dogs, optional strategies including canine vaccination, topical insecti-

cide protection, chemotherapeutic treatment, or euthanasia[17–19]. Anthroponotic VL has

been targeted for elimination as a public health problem (<1 case/10,000 people per year at

district levels) in the Indian subcontinent by 2020, with substantial investment, technical and

political support[3, 5, 20]. This has contributed to significant reductions in incidence between

2012 and 2017 [1, 12, 21]. In contrast, investment to reduce zoonotic VL in endemic Latin

America, central Asia and Caucasia, are minimal by comparison; no such reductions in inci-

dence are observed notably in the Americas where>90% of cases occur [22, 23].

Vector and animal reservoir control are necessary to reduce zoonotic VL incidence as treat-

ment of human clinical cases, though necessary, is unlikely to impact on the transmission

cycle. Insecticides topically applied to dogs as slow release insecticide–impregnated collars

have been extensively tested in different regions, showing that they are effective against sand

fly vectors[24–28], and reduce infection risk in dogs[29–37]. Evidence that collars also can

reduce human infection incidence is limited to a single cluster randomized trial conducted in

NW Iran[31]. However, there are no peer-reviewed studies to test the impact of this approach

on human clinical VL disease.

In collaboration with the regional VL control program authorities in NW Iran, and with

access to VL case records provided by the Ministry of Health (MoH), we had the opportunity

to evaluate the impact of community–wide distribution of collars against clinical VL incidence,

and as conducted under operational conditions. The principal aims of the study were (i) to

measure the efficacy of the collar intervention against VL case incidence; (ii) to evaluate the

operational logistics of collar implementation; and (iii) to assess likely causes for the variation

in intervention effectiveness.

Methods

Study location

The study was conducted in the rural communities of the Kalaybar and Ahar administrative

districts of East Azerbaijan province, NW Iran (38688131N; 4321696E) from 2002 to 2006. Vil-

lages were located at altitudes of 369-1305m (Table 1). The main economic activity in the area

is agriculture, cash crops and particularly sheep farming. Dogs are kept as shepherd dogs or

household guard dogs, and small numbers of livestock (sheep, goats, cattle, chickens) are kept

in shelters variably near or attached to houses. Houses are constructed of plastered or unplas-

tered stone, cement, or brick, and rooves constructed of cement, thatched or corrugated iron.

Dried manure is generally stocked in piles away from houses as a source of fertilizer and fuel.

Temperatures ranged from 1˚C (in January) to 23˚C (in July/August), and rainfall from 18mm

(in August) to 76mm (in May).

In the region, 100–150 new VL cases were reported annually between 1998 and 2005, repre-

senting 45% of the total VL cases in Iran, the vast majority being children <10yrs of age[9–11,

38]. At the time of the study, pediatric L. infantum infection incidence measured by Direct

Agglutination Test (DAT) seroconversion was 2�4% compared to 1.9% by Leishmanin skin

test (LST) reaction [31]. Canine DAT seroconversion incidence was 7%[31], with reported

regional seroprevalences of 11%-22% [31, 38, 39]. In the same locations, the canine to human

seroprevalence ratio was 1.4: 1 (11% vs 8%)[31] compared to 3.1:1 (22% vs 7%) six years earlier

in 1995[39]. Transmission is predominantly peridomestic, with human exposure being inde-

pendent of age and sex, and associated with endophilic Phlebotomus sand fly vectors and

infected dogs[39–43]. The risk of childhood Leishmania seropositivity is associated with dog

ownership, village dog density (28/km2, 95% C.I.: 23.6–32.1), and the dog to human ratio[39].
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Two species of sand fly, Phlebotomus (Larroussius) perfiliewi transcaucasicus and Ph. (L.) kan-
delakii, are likely vectors in this region, being seasonally active for 4 months (late June to Octo-

ber)[41, 44].

The VL control program hinges on the District Ministry of Public Health (DTARH) which

is responsible for the District Health Centers (DHCs) in Kalaybar and Ahar. These centers

coordinate activities of 12 provincial Rural Health Centers (RHCs), which are run by trained

medical staff and health officers. Each RHC supervises about ten village health posts (khaneh
behdasht) where resident Health Promoters (behvarz) are responsible for disease surveillance,

control implementation, and facilitate suspect VL cases attendance at the RHCs. The RHCs

provide free VL diagnostic testing and treatment services, and refer those needing more spe-

cialist hospitalization to the DHCs or district hospital. Clinical VL is a notifiable disease.

Study design

Randomisation and treatment allocation. The trial was designed as a pair–matched clus-

ter randomised trial[45]. Villages were designated as clusters and selected in a two–step proce-

dure (Fig 1). All 417 endemic villages in the two districts, and confirmed VL case numbers in

the 4�5 years prior to the intervention (January 1998– June 2002) were listed. The inclusion cri-

teria for village recruitment were that the population size was>100, at least one confirmed

clinical VL case was recorded in this period, and that the village population was not nomadic.

A total of 91 villages met these criteria.

Following consultation by the RHC supervisors with village leaders and health workers, 80

of the more accessible villages were finally recruited. Ranked in descending order of pre–inter-

vention VL incidence, the top two villages were paired and randomly assigned to the treatment

(collars) or control (no collars) group by tossing a coin in the presence of observers. All

Table 1. Demographic characteristics of trial villages (clusters).

Collar arm Control arm

Total numbers per arm

Villages 40 40

Human population 22904 22844

Children 0–10 yrs 6341 6562

Households 3760 4011

Dogs 1962 1670

Houses with�1 dog 1364 1387

Geometric mean (95% C.L.s) per village Wilcoxon rank-sum z P�

Proportion of the population 0–10 yrs 0�27 (0�256, 0�283) 0�29 (0�270, 0�301) 1.29 0.190

M: F sex ratio children 0–15 yrs 0�99 (0�921, 0�106) 1�03 (0�978, 1�09) 0.85 0.394

Ratio shepherd: guard dog per village 0�45 (0�350, 0�589) 0�46 (0�344, 0�570) 0.55 0.389

Households per village 72 (56�4, 91�4) 82 (66�9, 100�8) 1.00 0.319

Humans population per village 469 (383�3, 574�2) 478 (392�9, 580�4) 0.20 0.840

Children 0–10 yrs per village 126 (101�1, 157�7) 136 (112�0, 165�6) 0.50 0.620

Dogs per village 43 (36�5, 50�2) 37 (31�5, 43�6) 0.69 0.488

Ratio dogs to children 0�34 (0�256, 0�449) 0�27 (0�209, 0�354) 0.20 0.229

Proportion population literate 0�40 (0�356, 0�444) 0�48 (0�417, 0�545) 1.40 0.088

Proportion population employed 0�21 (0�189, 0�241) 0�27 (0�200, 0�258) 0.83 0.408

Proportion houses with dog 0�39 (0�300, 0�522) 0�35 (0�266, 0�467) 0.33 0.740

Village altitude (m) 664 (544�4, 810�2) 674 (594�7, 763�5) 0.46 0.591

Ratio dogs to human 0�09 (0�070, 0�118) 0�08 (0�059, 0�102) 1.09 0.275

https://doi.org/10.1371/journal.pntd.0007193.t001
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subsequent pairs were similarly assigned alternately to either the treatment or control group,

resulting in 40 control and 40 pair-matched villages.

The pre–intervention DTARH house–to–house survey indicated that the collar and con-

trol villages (clusters) were demographically well balanced (Table 1). Although Iran has a

national Leishmania control program, during the trial period neither insecticide spraying,

canine test–and–slaughter, nor VL health education programs were conducted in the

Fig 1. Trial design.

https://doi.org/10.1371/journal.pntd.0007193.g001
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enrolled communities. However, 27 stray dogs were removed by the authorities (11 and 16

dogs from five and seven control and collar villages, respectively).

The intervention. Dog collars impregnated with 40mg/g deltamethrin (Scalibor Protec-

torBand, Intervet International, Boxmeer, Netherlands), were fitted to household dogs in the

40 treatment villages in late June/early July in each of four consecutive years (2002–2005).

The Scalibor collar label claimed 5–6 months insecticidal activity[25, 26] which exceeded the

annual transmission season.

The intervention was implemented by DTARH operational DHCs in Kalaybar and Ahar.

The collars were donated by Intervet, and given to the DHCs who distributed them to the

village Health Promoters, ensuring that sufficient collars and replacements were supplied

each year. Health Promoters conduct routine house–to–house visitation forming part of the

DTARH public health advisory and monitoring system. On these visits, they fitted the collars

to dogs, promoted the correct use of the collars, recorded the daily numbers of collars fitted,

lost, replaced, or refusals to fit collars (defined here as non-compliance), and identified any

adverse clinical effects reported by dog owners. The authors helped train the Health Promoters

to systematically record these events.

VL case definition and reporting. Confirmed clinical VL case numbers were extracted

from secondary records provided by DTARH. At the time of the study, the DTARH proto-

col stated that suspect VL cases were considered confirmed if they presented clinical signs

including prolonged fever, lymphadenopathy, and hepatosplenomegaly, associated with a

positive DAT (threshold �1/3200 titer), and/or microscopic detection of Leishmania in

clinical aspirates. All confirmed cases received treatment following WHO guidelines[12].

Based on parasite infections found in sand flies[42], Leishmania tropica is also transmitted

in the region. However, this parasite typically causes cutaneous infections, does not nor-

mally induce DAT seroconversion, and the distinctive clinical signs are known by the

DHCs.

Data management and masking. DTARH collated details of confirmed VL incident cases

which were provided to the authors anonymised accompanied by records of the patient’s age,

sex, village of residence, and date when they first presented at the medical center.

Lacking placebo collars, the village Health Promotors were not blinded to the intervention,

but the clinicians and DTARH data managers who collated the case data were.

Trial outcomes. The primary outcome for analysis was the cumulative number of inci-

dent VL cases per village by the end of the 48 months follow–up period. The transmission sea-

son of infection was attributed based on the date of the patient’s initial presentation: dates

falling between Julyyear × and end of Juneyear ×+1 were assigned to transmission seasonyear ×.

This interval allowed for a�9 month incubation period which exceeds the usual 2–6 months

incubation period reported in Iran and elsewhere[38].

Sample size calculations. The study was statistically powered to detect a 55% reduction in

the 48 month clinical VL incidence in collar clusters compared to control clusters, from base-

line 0.004 (~3.978 cases per 1000 children�10yrs old/yr) calculated for the 4�5 yr pre–inter-

vention period in the 80 trial clusters, and a surveyed harmonic mean of 106 children per

cluster. Data from the previous collar trial in the region[31], gave an inter–cluster coefficient

of variation of κ = 0�124 indicative of the degree of cluster pairwise matching achievable. We

applied a more conservative κ = 0�25 in power calculations. Under these assumptions, 38 clus-

ters per arm were required to achieve a power of 90% with α = 0�05 to reject the null hypothe-

sis. The final number of clusters enrolled was 40 clusters per arm. Comparison of unpublished

DTARH and published[39] demographic records showed that the village humans and dog

populations were generally stationary and stable.
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Statistical analysis

The intervention effect was computed using random–effects Poisson regression to test differ-

ences in the cumulative numbers of incident VL cases per cluster (= village), expressed as an

incidence risk ratio (IRR). The model included variables describing the trial design: the attrib-

uted year of infection, the log10 transformed childhood baseline village incidence, and the

pair–matching structure (as a cluster term). The number of children�10yrs per village, being

the well documented high risk group, was set as the model offset parameter. The variance

in cluster ratios of children to total population size were similar between treatment arms

(Table 1). Additional demographic variables, listed in Table 1, were then individually tested by

log–likelihood ratio test [LRT] of nested models, as potential modifiers of the unadjusted inter-

vention effect estimates.

A secondary analysis following[45] tested the normalized residuals of the observed

/expected case ratios for pair-matched clusters (Supplementary S1), where the expected num-

ber of cases per cluster were generated first by fitting the Poisson model, simultaneously

adjusting for significant covariates as described above, but excluding the intervention term.

Then, normalized (square root transformed) residuals of the observed /expected case ratios

were tested by Student’s paired t-test where the results of each cluster are given equal weight-

ing[45]. Differences in these ratios were also confirmed by applying a non–parametric two–

sided weighted signed rank test.

The relationship between post-intervention VL incidence differences between pair-

matched villages, and pre-intervention incidence, was examined by linear regression (illus-

trated in Fig 4). The relationships between village incidence pre–and post–intervention was

evaluated by negative binomial regression (nbreg), and by Spearman’s rank correlation (illus-

trated in Fig 5).

Data were analysed in Stata v.15.1 (StataCorp LP, College Station, TX).

Ethical considerations

The trial protocol was approved by the Regional Committee of Medical Ethics, Tabriz Univer-

sity of Medical Sciences, Iran. The University of Warwick’s Biomedical and Scientific Research

Ethics Committee (BSREC) confirmed that the trial raised no significant ethical concerns due

to its use of secondary anonymised human case data. There was no local animal ethical com-

mittee at the time of the study. Informed written consent was obtained from village leaders,

and from dog owners to fit collars, and dogs were monitored on a regular basis by village

Health Promotors for any adverse reactions to the collars.

Results

In the 4�5 years prior to the intervention (January 1998– June 2002), 113 confirmed clinical

VL cases were reported in a population of 6,562 children in the 40 control villages, with an

average annual case incidence of 3�83 per 1000. In the 40 collar villages during the same period,

118 cases were recorded amongst 6,341 children, an average incidence of 4�14 per 1000. These

rates were not significantly different (IRR = 1�04 [95% C.L.s 0�802, 1�344], p>0�77).

During the 48 month intervention period, 24 compared to 46 clinical VL cases were

recorded in the collar and control arms, respectively. The corresponding incidences were 0�95/

1000/yr and 1�75/1000/yr. Accounting for a general decline in VL case numbers over the years

of observation in both trial arms (Fig 2), there was a significant cumulative protective effect

attributed to the collar intervention (LR test: χ2
(1) = 7�83, p = 0�0051). The trial design–

adjusted incidence risk ratio (IRR) was 0�50 (95% C.I. 0�300, 0�822) (model fit: Wald χ2
(5) =

25�7, p<0�0001), equivalent to 50% (95% C.I. 17�8%, 70�0%) protection against clinical VL.
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The intervention effect was further confirmed by showing a significantly lower than expected

number of cases in collared vs control villages (Student’s t = -3.39, df = 39, p = 0�0016) (Supple-

mentary S1). The non–parametric sign rank test of these residuals was also significant (p =

0�008).

Additional demographic variables (listed in Table 1) were individually tested for effect

estimate modification, but none of the variables significantly improved the model fit (LRT:

χ2
(1) <1�92, p>0�187).

VL case characteristics

The median age of the 70 reported clinical cases during the trial period was 1.6yrs (range: 0.5–

5yrs), with M:F sex ratios of 25:21 and 12:12 in control and collar arms, respectively. There

were no significant differences in case age distributions between trial arms (Poisson regression:

z = -0�97, P = 0�331), nor between intervention years (non–parametric test for trend: z = -1�54,

p = 0�124).

Heterogeneities in the intervention effect

Year of intervention. The annual point estimates of the intervention effect suggested that

the protective effect steadily increased with time under intervention, though the case numbers

were low and the errors broad (Table 2).

Variation in the intervention effect between villages. By the end of the intervention, 12

(30%) of the 40 collar villages, compared to 24 (60%) of the 40 control villages, presented�1

clinical VL case, indicating a reduced risk also at the village level (IRR = 0�57 [95% C.I.s 0�372,

0�879], χ2
(1) = 7�27, p = 0�007).

Eleven of the 40 paired–matched villages reported zero cases post–intervention in both

treatment arms. Of the remaining 29 pairs, 22 (76%) collared villages showed reductions

in incidence compared to the pair-matched control villages (Fig 3), with 11 new VL cases

recorded compared to 42 VL cases in the control villages. However, in seven collared villages,

Fig 2. Confirmed VL case incidence during the 1998 to 2005 transmission seasons in collar villages (black line,

N = 40) and control villages (red line, N = 40). Arrow represents when collars were fitted in late June/early July of

each year before the start of transmission.

https://doi.org/10.1371/journal.pntd.0007193.g002
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there was an increase in incidence, with 13 VL cases compared to 4 cases in the pair-matched

control villages over the 4 year period.

The difference in post-intervention VL incidence between pair-matched villages attributed

to the intervention was negatively associated with their pre-intervention baseline incidence

(linear regression b = -0�427, z = -3�19, p<0.001) (Fig 4). This suggested that despite the gen-

eral decline in VL case numbers by the end of the study, the intervention had a larger impact

on higher compared to lower levels of pre-existing transmission intensity.

In the control arm, there was a positive association between village pre–and post–interven-

tion incidence (nbreg: b = 0�095, z = 1�86, p = 0�06; Spearman’s r = 0�420, p = 0�007) (Fig 5).

This relationship was interrupted by the intervention (nbreg: b = -0�107, z = -0�75, p = 0�45;

Spearman’s r = -0�109, p = 0�50) (Fig 5).

Collar coverage

Over the trial period, 6,835 dogs were fitted with collars before the beginning of the sand fly

season (1,682, 1,722, 1,689, and 1,742 dogs annually in the 4 years). Of these, 6.9% (95% C.I.

6.25%, 7.56%) were lost per year, respectively 7�3% (123/1,682), 6.4% (110/1722), 6.9% (117/

1689) and 7.0% (122/1742). The mean annual coverage (percent of total dogs collared) was

87% (95% C.I. 84�2, 89�0%) being consistent across years (Kruskal–Wallis test: χ2
(3) = 0�260,

p = 0�967), although it varied significantly between villages (range: 65�7%–100%) (Kruskal–

Fig 3. Frequency distribution of the absolute differences in post–intervention VL case incidence per 1000 between the 40 pair–

matched collar and control villages. Negative differences represent a reduction in incidence attributed to the collar intervention.

Positive changes represent an increase in incidence in the collar compared to the pair–matched control village. Values calculated as

(post incidence collar–control) for pair–matched villages.

https://doi.org/10.1371/journal.pntd.0007193.g003
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Fig 4. The absolute differences in the post–intervention period VL case incidence per 1000 between the pair–matched collar

and control villages. Villages were pair–matched based on their pre–intervention incidence as described in the Methods, and

ordered from low to high (Y axis: numbers 1–40). Dashed line: least squares linear fit from regression of the post–intervention

incidence difference against the pre–intervention incidence.

https://doi.org/10.1371/journal.pntd.0007193.g004
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Wallis test: χ2
(39) = 0�122, p = 0�0001) (Fig 6). Coverage in any single village and year was not

associated with the village dog population size (z = 1�14, p = 0�26).

The variation in post-intervention VL incidence between pair-matched villages were not

associated with the mean or variance in village collar coverage (t<0.67, p>0.51, r2 = 0.008);

similar coverage was observed in villages with no incident VL cases, as those with >0 incident

VL cases (Fig 6).

Intervention logistics

Collar fitting, loss and replacement rates. Based on the most complete daily records

(2002 data), collars were distributed by the DHCs to all village Health Promoters within 16

Fig 5. Association between the pre–and post–intervention incidence per 1000 in the 40 control and 40 collar

villages. Line: least squares linear fit from regression of the post–intervention incidence against the pre–intervention

incidence, weighted by number of children in the denominator (symbol size).

https://doi.org/10.1371/journal.pntd.0007193.g005

Table 2. Crude and adjusted clinical VL incidence risk ratios (IRR), and observed number of confirmed VL cases, per year under intervention.

Year of intervention IRR (95% CLs) adjusted for trial design

characteristics1
IRR (95% CLs) unadjusted for trial design

characteristics2
VL cases (number in collar/control

arm)3

2002 0�69 (0�31, 1�57) 0�74 (0�33, 1�66) 10/14

2003 0�51 (0�23, 1�16) 0�55 (0�24, 1�23) 9/17

2004 0�19 (0�06, 0�67) 0�21 (0�06, 0�71) 3/15

2005 – – 2/0

Average across 2002–

2005

0�50 (0�30, 0�82) 0�54 (0�33, 0�88) 24/46

1 computed by fitting the RE Poisson model adjusted for trial design characteristics
2 computed from analysis of the raw annual risk ratios in absence of trial design characteristics
3 observed number of confirmed VL cases

https://doi.org/10.1371/journal.pntd.0007193.t002
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days at the start of the study. Aligned from the date (19th June 2002) of supply to the first vil-

lage, all collars were fitted in the 40 villages within one month.

In individual villages, all collars were fitted within a median 14 days (IQR 12.3–14.0;

range: 4–30 days) from collar provision, with>70% in place within eight days. The number

of dogs per village did not influence either the total fitting time (quantile regression: t = 0�95,

p = 0�348) or daily fitting rates (comparison of daily slope interactions: z<0�71, p>0�54). Fit-

ting rates were similar for guard and shepherd dogs (Two-sample Wilcoxon rank-sum test: z =

-0.262, p = 0.794).

Collars were lost in 35 of the 40 collar villages, 2–147 days post-fitting. A median 3 (IQR

2–4; range 1–10) collars were lost per village. However, these were rapidly replaced: 59%

within 4 days, and 91% within 8 days.

Fig 6. Association between the intervention effect on pair–matched collar and control village incidence per 1000 and the village

annual collar coverage level (circles). Y axis error bars represent the minimum and maximum annual dog collar coverage per

village over the 4 years intervention.

https://doi.org/10.1371/journal.pntd.0007193.g006
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Discussion

The effectiveness of insecticide–impregnated collars against human clinical VL had not been

trialled as a potential public health control option. Community–wide collar coverage over 4

transmission seasons reduced the relative risk of infantile VL by 50% (95% C.I. 30%, 82%), and

reduced the total VL case numbers by 48% during the intervention period.

The protective effect was clear despite a 70% general decline in reported case numbers over

the study period, the decline being consistent with national trends from the late 1990s to 2014

in Iran[9] and elsewhere: waxing and waning cycles in incident case numbers are reported in

the Indian subcontinent[5], with speculation over the regulating mechanisms[46]. In Iran, VL

is a notifiable disease, subject of major public health programs, and well known to physicians

in the study region. Development of VL from subclinical infection in the region is 8% (1 in 13

infections), where conversion risk declines with age associated with a rise in cell–mediated

immunity[40]. The observed VL cases were�5yrs old, similar to the VL age–distributions

throughout Iran[9–11]. This contrasts to the older average age groups afflicted with VL due to

L. donovani infection[47], and in immunocompromised VL patients generally[16]. Tradition-

ally a disease of children, variability in L. infantum VL case age distributions are appearing

[23].

All eight published studies designed to evaluate the efficacy of Scalibor collars, demon-

strated reduced canine seroinfection incidence by 46%–86% within 1–2 years of use[30–35, 37,

48]. They have been shown to reduce also sand fly densities[27], and sand fly infection preva-

lence with L. infantum[48]. The DTARH program did not monitor changes in canine infection

rates or sand fly densities during the trial period, which is one limitation of this study. How-

ever, a previous cluster randomized trial of community-wide distribution of Scalibor collars in

the study region, reported protective effects against canine infection of 54% [95% C.L.s 30%,

70%]), associated with a reduction in infection (cf. clinical disease) incidence of 43% (95% C.L.

s 10%, 63%) in�10yr old children[31]. What was not clear from that study, was whether

reductions in seroconversion would directly translate into reductions in clinical VL incidence.

Scalibor collars release deltamethrin into dermal secretions, resulting in reduced sand fly

blood–feeding by>90%, and increased mortality in blood–fed sand flies by 35%–100% over 8

months[25, 26]. More recent studies suggest that Scalibor collars offer 94–98% protection

against Phlebotomous perniciosus sand fly bites for up to 12 months[49]. These effects reduce

the likelihood of a collared dog acquiring infection and being a source for onward transmis-

sion, thus, they are expected to reduce the number of infectious bites on humans. The risk of

clinical development is associated with elevated parasite burdens and immune responses[50,

51]; collars may also reduce the metacyclic inoculum delivered by vectors, and/or the initial

amastigote infection burdens, sufficient to reduce the subclinical to clinical VL conversion

rate. Lower incident anti–Leishmania antibody titers, observed in seronegative collared dogs

[32], support this hypothesis.

The annual effect estimates in this study suggest that one to two years of continued inter-

vention achieved a similar outcome to the 4-year cumulative effect. However, the point esti-

mate errors were broad as the study was not statistically powered to detect significant changes

in any single transmission season. Interpretation of the effect estimates over time was further

hindered by the very low VL case numbers in both arms and inevitable stochastic events in the

latter years of the study. A different cyclical pattern of VL between control and intervention

villages is unlikely to have occurred due to the randomization of trial clusters.

Clinical VL cases continued to be notified in villages during the years of collar use, indicat-

ing that collars were not wholly effective in interrupting transmission. Villages with higher

pre–intervention incidence were more likely to experience continued transmission, despite
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achieving greater relative reductions in disease incidence compared to villages of low pre–

intervention incidence. This raises the possibility that the collar coverage was insufficient in

some villages.

Collar coverage showed significant variation between villages with some being consistently

low. Changes in village VL incidence was not associated with village coverage, nor indeed with

any demographic variable. In three of the seven collared villages where the intervention failed

to prevent a higher number of incident cases compared to controls, annual collar coverage was

>84% (average c.90%); and in all except one of the 7 villages, the minimum annual coverage

was>77%. Therefore, we do not attribute these failures to lower collar coverage levels. Nor do

we attribute it to collar losses or to non–compliance (owner refusing to have collars fitted to

dogs). Short–term allergic dermal reactions to deltamethrin, reported in 2%–16% of collared

dogs in two Brazilian studies[32, 37], usually cause owners to remove the collars. Such adverse

effects were not reported in this trial, nor in the previous trial in NW Iran[31]. Similarly,

there were no cases of dog owners refusing to have collars fitted to their dogs by the Health

Promoters.

Dogs�3m old were not collared (following label instructions) but represented <3% of

the canine population. The period of latency to infectious onset far exceeds the 4 month trans-

mission season[6], thus ruling out these dogs as significant reservoirs for continued transmis-

sion. Stray dogs were rarely seen (27 in total), equivalent to<0�2 dogs per study village year.

Although local wild canid populations can support infections[38], their densities are relatively

low, and the role of wild canids in maintaining transmission is disputed[8, 52, 53].

Potential scale-up and sustainability

A significant finding of this study was that the intervention effect was achieved under the oper-

ational conditions as implemented by the DTARH VL control program. After ensuring that

the design and village randomisation processes met CRT analytical requirements, the authors

had minimal contact with authorities. The authors supplied known numbers of collars to the

DHCs who distributed them to the villages, and collated details of the collar implementation.

This provided the opportunity to measure the logistics and likely sustainability of program-

matic scale–up.

Collars were fitted within only 15 days of village supply, and collar losses were rapidly

replaced, suggesting coverage levels were maintained during the transmission seasons. Neither

coverage level nor time to complete collar fitting were related to the total number of dogs eligi-

ble for a collar, concluding that lower village coverage levels were not due to time constraints.

Feasibility of a regional–level scale–up was indicated by DTARH taking only 16 days to deliver

collars to all 40 villages spread over an area of 15,000km2, and total collars being fitted within

one month from collar provision to the first village.

Collars were socially accepted, visibly distinguished treated dogs, and should not require

replacement every 3–4 weeks, unlike alternative topical formulations. Coupled with the short

transmission season, effective collar duration, and rapid replacement rate, the feasibility of

effective sustainable scale–up is indicated. Collar losses in this region of between 1% per

month[31] and 1.7% (95% CI: 1.6%, 1.9%) per month (this study), were not substantially

higher than in other endemic regions: 0�8% in Brazil[37] and 0�6–0�7% in Italy[34, 54], though

exceptional rates, 7�8% and 8�2%, in both continents have been reported[32, 33].

Sustainability will be governed also by costs and cost–effectiveness. Considering the cost of

collars alone, in this study, collars were donated by the manufacturer. However, based on €14

per collar, the annual material cost would have equated to approximately €24,000, or €96,000

over 4 years. That is €4,364 per VL case averted compared to case numbers in the control arm.
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This value is for a period with 70% relative decline in reported case numbers from the late

1990s to 2014[9]. Better cost–effectiveness may be expected as the cyclical waning in case num-

bers inevitably reverses in non–intervention regions.

One key knowledge gap is how best to implement dog collar programs: currently unknown

is the minimum community coverage level necessary to reduce transmission, equivalent to

vaccination coverage thresholds calculated to maintain herd immunity[55]. Mathematical

models suggest that increasing collar coverage from 70% to 90% could cause moderate to sub-

stantial reductions in both canine and human infection prevalences[32, 56, 57]. However,

three empirical studies that report coverage of 70%–100% failed to corroborate these predic-

tions[31, 34, 37]. Without known target thresholds, collar campaigns may result only in pro-

tection of the individual dog or its household.

Of relevance to NTD elimination strategies, our data suggest that greater initial reductions

in incidence may be achieved in communities with higher compared to lower preexisting

transmission pressure. One prediction is that by reducing transmission, infection in the lower-

prevalence settings becomes more clustered, thus more stable and more resilient to interven-

tions[58]. Approaching elimination will require different control strategies to those used in the

initial attack phase. For example, heterogeneities in household sand fly densities, and the trans-

mission potential of individual vectors and reservoirs[53, 59, 60], imply the need for high cov-

erage levels to encounter such transmission hotspots.

In conclusion, the results of this study promote the community-wide application of insecti-

cide–impregnated collars as a public health tool to reduce clinical VL burdens, not just human

and canine infection. The observed level of impact was achieved working within the existing

MoH infrastructure, demonstrating many desirable attributes of a potentially sustainable con-

trol program that could be scaled–up with minimal additional technical capacity training.
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