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Summary. When biological or physiological variables change over time, we are often inter-
ested in making predictions either of future measurements or of the time taken to reach some
threshold value. On the basis of longitudinal data for multiple individuals, we develop Bayes-
ian hierarchical models for making these predictions together with their associated uncertainty.
Particular aspects addressed, which include some novel components, are handling curvature
in individuals’ trends over time, making predictions for both underlying and measured levels,
making predictions from a single baseline measurement, making predictions from a series of
measurements, allowing flexibility in the error and random-effects distributions, and including
covariates. In the context of data on the expansion of abdominal aortic aneurysms over time,
where reaching a certain threshold leads to referral for surgery, we discuss the practical applica-
tion of these models to the planning of monitoring intervals in a national screening programme.
Prediction of the time to reach a threshold was too imprecise to be practically useful, and we
focus instead on limiting the probability of exceeding the threshold after given time intervals.
Although more complex models can be shown to fit the data better, we find that relatively simple
models seem to be adequate for planning monitoring intervals.

Keywords: Abdominal aortic aneurysm; Hierarchical model; Monitoring intervals; National
screening; Prediction; Simulation

1. Introduction

Interest often lies in constructing models not only for estimation of the characteristics of a lon-
gitudinal process but also for prediction of how the process will evolve in the future. The focus
of such predictions can take various forms: a measurement of the process at a given time in the
future, the time taken to reach a certain threshold or a probability statement about exceeding a
given level at a future time. In this paper these issues are discussed in the particular context of
modelling the growth of abdominal aortic aneurysms (AAAs).

AAAs are swellings in the main artery from the heart, defined as an aortic diameter of 30 mm
or more, which can be detected and measured by ultrasound scanning. Aneurysms that grow
too large are at a substantial risk of rupture, which carries with it a high fatality rate (Bown et al.,
2002); AAAs are responsible for around 2% of all deaths in men aged over 65 years (Office for
National Statistics, 2000). It is now established practice to offer surgery if an aneurysm becomes
too large and before rupture occurs, typically when the diameter of the aneurysm is greater than
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or equal to 55 mm. National screening programmes have recently been established, in the UK
and elsewhere (UK National Screening Committee, 2007), where men aged 65 years are invited
for ultrasound screening. Within such programmes monitoring intervals need to be determined
to limit the probability of exceeding the 55 mm threshold before the next scan. Clearly the length
of the monitoring interval should depend on an individual’s current AAA diameter but may
also be tailored to depend on other patient characteristics associated with rates of growth.

The ‘Multicentre aneurysm screening study’ (MASS) (Thompson et al., 2009) has recorded
AAA diameters, using sequential ultrasound measurements, from men aged 65–74 years for up
to 11 years. In this paper data from the MASS are used to predict relevant quantities to help
to inform monitoring intervals for the UK national screening programme. The MASS study is
described in more detail in Section 4. However, to motivate the type of longitudinal model to
use, Fig. 1 shows the observed AAA growth for six individuals from the MASS study. These
individuals were chosen to illustrate the considerable variability in growth patterns between
patients and the variability within growth series. Some of the variation may be explained by
patients’ characteristics (e.g. age at screening, diabetes and smoking habits) (Brady et al., 2004)
although much will remain unexplained.

A flexible model is therefore required to allow for patient-specific AAA growth that may be
increasing or decreasing, linear or non-linear. Linear and quadratic hierarchical growth models
can provide this flexibility and have been implemented previously to characterize AAA growth
(Brady et al., 2004; Eriksson et al., 2005; Vardulaki et al., 1998). Hierarchical models (multilevel
models) are commonly used to account for correlation in repeated measurements when data
are hierarchically structured (Goldstein, 2003). Such models will be used to make predictions
about the future size of aneurysm for individuals with one or more AAA measurements.

In Section 2 the linear and quadratic hierarchical growth models are introduced. In Section
3, given data for a specific individual, a variety of predictions are obtained from the model by
using the estimated random effects for that individual. The MASS data set is described in more
detail in Section 4, and predictions are obtained from hierarchical growth models fitted to the
data. Finally we investigate extending the linear and quadratic models by relaxing the assump-
tion of normally distributed random effects and allowing for a heavier-tailed error distribution.

2. Linear and quadratic growth hierarchical models

Suppose that repeated measurements of a variable are collected from n individuals where yij

denotes the jth measurement from the ith individual, i=1, . . . , n, j =1, . . . , mi. Measurement yij

is obtained at time tij, where the time origin t =0 is well defined by, for example, a given calen-
dar time, age or clinical measurement. Assuming a normally distributed response, and normally
distributed intercepts and slopes, the basic form of the linear mixed effects growth model is

yij =xij.β+bi/+ "ij,

bi ∼N2.0, Σ/,
.1/

where xij = .1, tij/ is the design vector for patient i at the jth measurement, β= .β0, β1/T is a vec-
tor of parameters and bi = .b0i, b1i/

T specify the individual-specific random-effects terms. The
parameters β0 and β1 represent the average intercept and slope (rate of growth) respectively. The
error terms "ij are assumed independent N.0, σ2

w/, and the between-subject variance–covariance
matrix Σ has variances σ2

0 and σ2
1 on the diagonal, and covariance ρ01σ0σ1 on the off diagonal.

In addition, suppose that p covariates are available from individual i at measurement j, given by
the p-dimensional vector zij. If the effect of these covariates on both the intercept and the slope
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Fig. 1. AAA growth trajectories for six individuals from the MASS

is of interest, then the covariate design vector wij = .zij, tijzij/ can be formed to give the model

yij =xij.β+bi/+wijγ + "ij, .2/

where γ is a 2p×1 vector of parameters containing the effect of each covariate on the intercept
and slope.

The model can be extended to allow for curvature in individual growth rates by considering
a quadratic growth model. The design vector then becomes xij = .1, tij, t2

ij/ with corresponding
parameters β= .β0, β1, β2/T, and random effects bi = .b0i, b1i, b2i/

T modelled by using a trivari-
ate normal distribution. Σ is now a 3×3 variance–covariance matrix, with variances σ2

0, σ2
1 and

σ2
2, and covariances ρklσkσl, k, l = 0, 1, 2, k �= l. The effect of the p covariates on the intercept,

slope and curvature can be estimated by using the covariate design vector wij = .zij, tijzij, t2
ijzij/



572 M. J. Sweeting and S. G. Thompson

with associated 3p× 1 vector γ. We shall let θ = .β, γ, Σ, σw/ denote the vector of parameters
that are to be estimated by the model.

Growth models in which the random effects are normally distributed can be fitted by using
maximum likelihood or restricted maximum likelihood in various statistical packages including
xtmixed (Stata) (StataCorp, 2009), gllamm (Stata) (Rabe-Hesketh et al., 2004), nlme (R)
(Pinheiro et al., 2009), lme4 (R) (Bates and Maechler, 2009) and procmixed (SAS) (SAS
Institute, 2008). Alternatively, a Bayesian approach can be taken where the parameters θ are
given prior distributions, and posterior inferences are obtained via Markov chain Monte Carlo
(MCMC) sampling. A thorough introduction to Bayesian hierarchical models can be found in
chapter 5 of Gelman et al. (2003) and in Gelman and Hill (2007). Prior distributions that are
specific to the AAA application are described in Section 4.2.

3. Hierarchical model predictions

Predictions of AAA growth can be used to inform appropriate monitoring intervals for AAA
screening. Such predictions may be made from a fitted hierarchical model for possible hypo-
thetical individuals, who are not in the original data set (an out-of-sample prediction). For
example, it may be of interest to predict the diameter of an aneurysm, say 1 year after a screen-
ing measurement of 40 mm has been taken. Alternatively, a patient may have two or more repeat
ultrasounds recorded, and all such measurements may then be used to make future predictions.
One important question is whether the current diameter is adequate to make a precise prediction
or whether repeated measurements are required.

This section deals with the situation where predictions are to be made for a specific indi-
vidual given one or more response measurements with corresponding times of measurement.
The predictions use random effects which have been estimated conditionally on the individual’s
data. Suppose that bi are the random effects estimated from a linear model for individual i with
data .yi, ti/. Within a classical framework, shrunk estimates of the random effects, the empirical
Bayes estimates (Verbeke and Molenberghs, 2000), can be obtained for an individual from most
software packages. However, the distribution of the random effects given the observed data will
generally be of a non-standard form. If, however, Bayesian MCMC sampling is used, it is easy
to obtain the posterior distribution of the individual-specific random effects. Furthermore, if
the cut function in WinBUGS is used (Spiegelhalter et al., 2003), the random effects for a new
individual can be estimated without this individual’s data contributing to the likelihood and
updating the population parameters of the model. In what follows every prediction is a function
of the parameters, random effects and possibly the measurement error.

3.1. Estimated rate of growth
For a linear model the rate of growth for individual i, GL

i .θ/=β1 + b1i, is constant over time,
whereas for the quadratic model the rate of growth at time t is G

Q
i .t; θ/=β1 +b1i +2t.β2 +b2i/.

The posterior distribution for Gi can be easily calculated by using Bayesian MCMC sampling
and inferences made from this distribution.

3.2. Prediction of time taken to cross a threshold given a current measurement
One prediction that may be of interest is the time taken for an individual’s underlying growth
curve to cross a certain threshold α from any given time t. For the linear growth model without
covariates the time taken for individual i to hit threshold α can be calculated as

WL
i .t, α; θ/= α−β0 −b0i

β1 +b1i
− t: .3/
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One complication with the variable WL
i is that it may take negative values. This could happen

either because the individual is already over the threshold at time t, or because the true growth
rate is negative and hence the threshold was crossed in the past. The first case occurs when
β0 +b0i + .β1 +b1i/t �α and the second when β1 +b1i < 0. If, as is usual, the primary question
concerns the time until the process is greater than or equal to α, then it is necessary to set WL

i

to 0 if β0 +b0i + .β1 +b1i/t �α, since the process is already above the threshold. In contrast, if
β0 +b0i + .β1 +b1i/t<α and β1 +b1i < 0 then WL

i will be infinite, since the threshold will never
be crossed in the future.

Using a quadratic model, predictions of this type are even more complex. For a given time t,
interest lies in the first time in the future at which the threshold is crossed. As with the linear
model we should first assess whether β0 +b0i + .β1 +b1i/t + .β2 +b2i/t

2 �α, and if so set W
Q
i =0.

Otherwise, W
Q
i should be calculated as

W
Q
i .t, α; θ/=Ti.α; θ/− t, .4/

where Ti.α; θ/ is the first time after t at which the threshold is crossed. This can be calculated as
roots to a quadratic equation:

Ti.α; θ/= −.β1 +b1i/±√{.β1 +b1i/
2 −4.β2 +b2i/.β0 +b0i −α/}

2.β2 +b2i/
: .5/

If there are no roots, then the quadratic curve will never cross the threshold, and hence
W

Q
i .t, α; θ/ = ∞ for all values of t. Likewise, if both roots are less than t then the threshold

will not be crossed again, and W
Q
i .t, α; θ/=∞. Otherwise, we take the first root of Ti.α; θ/ that

occurs after t. Using these rules, posterior distributions for WL
i and W

Q
i can be obtained by

using Bayesian MCMC methods. In a classical analysis, the properties of this random variable
are far more difficult to compute, and some simulation technique would be required.

3.3. Prediction of a measurement at a given future time
Predictions of future measurements can be obtained relatively easily. For the linear growth
model without covariates, the predicted measurement at time t + s is simply

Y.t, s; θ/=β0 +b0i + .β1 +b1i/.t + s/+ ", .6/

whereas for the quadratic model the estimated measurement at time t + s is

Y.t, s; θ/=β0 +b0i + .β1 +b1i/.t + s/+ .β2 +b2i/.t + s/2 + ": .7/

The posterior distribution of this predictive quantity is more commonly known as the posterior
predictive distribution. Importantly, to obtain the probability that a measurement is above a
certain value at a given future time we can simply calculate the tail area of the posterior predictive
distribution corresponding to that which is above the chosen value.

4. The ‘Multicentre aneurysm screening study’

The MASS was set up to assess whether or not screening for AAA was beneficial in terms of long-
term mortality (Thompson et al., 2009). Between 1997 and 1999, men aged 65–74 years were
recruited from family doctor lists in four UK centres. Of the 33883 men who were invited to
screening, 26875 had a visualized abdominal ultrasound scan and 1334 aneurysms (diameter
30 mm or greater) were detected. For this analysis of growth rates, data are taken from 1046
subjects who had a diameter of 30–54 mm at their first screen and at least one follow-up
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ultrasound measurement. The current diameter of aneurysm determined the next examina-
tion time; individuals who measured 30–44 mm were rescanned a year later, whereas those with
diameters 45–54 mm were rescanned after a further 3 months. In total, the data contain 8941
ultrasound examinations. The average duration of follow-up was 4.9 years, with a mean of 8.5
ultrasound scans per person.

4.1. Follow-up and censoring
Individual series are terminated either because of surgery (36%), death (21%), loss to follow-up
(26%) or the administrative censoring date of March 31st, 2008 (17%), whichever comes first.
Individuals whose aneurysm diameter measured 55 mm or greater at any examination or who
showed rapid expansion (defined as observed growth 10 mm or more in 1 year) were considered
for elective surgery. Those who were deemed unsuitable for surgery had continued surveillance
of their aneurysm. A series that is terminated because the patient underwent elective surgery will
tend to be biased towards a larger diameter on the final measurement due to measurement error
(Brady et al., 2004). However, patients who drop out on the basis of their observed measure-
ment history define a random, and hence ignorable, drop-out mechanism, if a likelihood-based
analysis is used (see pages 283–285 and equation 13.2.3 of Diggle et al. (2002)). Fig. 2 shows
four ‘spaghetti’ plots of individual growth series, grouped by the mode of termination, together
with the empirical mean AAA diameter profiles. In Fig. 2 only measurements that were taken
close to an anniversary of screening are used, since 3-monthly rescans were only undertaken in
individuals with diameters 45–54 mm, and could distort mean values. It can clearly be seen that
on average AAA diameters are larger in the group who eventually go for surgery, and those who
become lost to follow-up have on average smaller AAAs. This latter observation is not entirely
unexpected, since many of the measurements in the lost to follow-up group are below 30 mm,
and essentially the AAA is no longer confirmed in this size range. This may explain why the
patients drop out of the study. Hence there is good reason to suspect that dropout due to both
surgery and lost to follow-up is mainly dependent on observed AAA diameters, and hence for
this analysis we assume (missing at) random dropout.

Of the 3846 non-final ultrasounds that measured less than 45 mm, 3158 (82%) had a repeat
measurement within 9–15 months, broadly following the protocol. 4041 non-final ultrasounds
measured 45 mm or more, for which 2913 (72%) had a repeat measurement within 1–5 months.
Appointments were therefore not always strictly adhered to, either because the patient did not
attend or because the appointment was not scheduled. The effect of these missed appointments
on the analysis should be minor, since these data are only intermittently missing and there is no
reason to suspect that the missingness depends on unobserved AAA diameters.

4.2. Estimation and convergence
Both classical restricted maximum likelihood and Bayesian MCMC methods are used to obtain
estimates of the parameters. Non-informative priors are used for the Bayesian models. The
population mean parameters .β, γ/ are given vague independent N.0, τ2/ priors with τ =1000.
The within-subject variance σ2

w is assigned an inverse gamma prior, IG.0:001, 0:001/. To ensure
that Σ is positive definite, an inverse Wishart prior distribution is used with degrees of freedom
equal to 1 plus the dimension of Σ, i.e. 3 for the linear model, and 4 for the quadratic. This has
the effect of placing a uniform distribution on each of the correlation parameters (Gelman and
Hill, 2007). Inferences are based on two parallel chains, each with 10000 iterations, of which the
first 500 are discarded as burn-in. The convergence diagnostic R̂ (Brooks and Gelman, 1998)
is assessed for each parameter with a value close to 1 indicating good convergence properties.
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Fig. 2. Trajectories of AAA growth given the type of censoring for all yearly AAA observations (the yearly
mean AAA diameter with 95% non-parametric bootstrap confidence intervals are superimposed on the plots):
(a) administrative censoring; (b) died; (c) lost to follow up; (d) surgery

We obtained R̂ < 1:02 for all parameters in all models. Posterior medians (with standard devi-
ations) from the Bayesian analyses are interpreted as equivalent to estimates (with standard
errors (SEs)) from the classical analyses. The WinBUGS code for the models that are presented
in this paper is available at www.mrc-bsu.cam.ac.uk.

4.3. Timescale for analysis
There are two possible choices for the timescale that is used in the longitudinal model; time
since screening and age. Time since screening is relevant since at baseline the population is con-
strained to be within the diameters 30–54 mm; the inclusion policy of the MASS study. This is
also the inclusion criterion for the UK national screening programme, and hence this timescale
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is highly relevant for predictions. However, using age as the timescale may be more relevant for
general predictions of aneurysm growth, where the time of screening is an irrelevant quantity. A
comparison of models using each timescale was first made. In a hierarchical model, the choice
of timescale is important as shrinkage of the random effects can result in different estimates of
mean growth and can change predictions. This is seen in Table 1, where restricted maximum
likelihood estimates from classical linear and quadratic growth models, using either time since
screening or age as the timescale, are presented (linear models, L1-time and L1-age; quadratic
models, Q1-time and Q1-age). The estimates of mean AAA growth are quite different between
the models L1-time and L1-age, and between Q1-time and Q1-age.

The models can be further compared by studying the Akaike information criterion AIC.
Clearly a non-linear trend provides a better fit as AIC decreases dramatically in the two quad-
ratic models. Furthermore, the use of time since screening as the timescale provides a better
fit to the MASS data. In terms of prediction, AIC helps us to choose a model that will give
good predictions for a new individual recruited in the same way as the sample, and clearly the
models that use time since screening are better in this respect. Time since screening is therefore
used as the timescale in all following models, but to make relevant predictions for the national
screening programme at age 65 years we also consider including baseline age as a covariate in
Section 5. This facilitates predictions to be made for a number of possible ages at screening, and
in particular age 65 years.

4.4. Bayesian models
Table 2 shows the parameter estimates for the standard linear (L1) and quadratic (Q1) models,
fitted by using Bayesian MCMC sampling. Compared with the maximum likelihood estimates
that were obtained from the classical fit (Table 1), the classical and Bayesian models produce
almost identical parameter estimates, suggesting that the priors that were chosen in the Bayesian

Table 1. Parameter estimates (with SEs in parentheses) from classical restricted maximum likelihood linear
and quadratic growth models, using either time since screening or age as the timescale†

Parameter Estimates for the following models:

L1-time L1-age‡ Q1-time Q1-age‡

β0 37.5 (0.2) 38.3 (0.3) 38.3 (0.2) 39.3 (0.3)
β1 2.19 (0.06) 1.89 (0.05) 1.48 (0.09) 1.24 (0.06)
β2 — — 0.109 (0.009) 0.106 (0.006)
σ0 7.13 9.71 6.69 8.87
σ1 1.70 1.43 2.27 1.62
σ2 — — 0.16 0.09
ρ01 0.52 0.34 0.58 0.67
ρ02 — — −0.35 −0.42
ρ12 — — −0.71 −0.29
σw 3.12 3.16 2.96 3.03

log.L/ −25677 −26018 −25444 −25732
k 6 6 10 10
AIC 51366 52049 50908 51484

†Log-likelihood log.L/; number of parameters k; Akaike information criterion AIC=−2 log.L/+2k.
‡Age centred at 70 years.
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Table 2. Parameter estimates from Bayesian linear and quadratic random-effects
models†

Parameter Estimates for the following models:

L1 Q1 L2 L1-T

β0 37.5 (0.2) 38.3 (0.2) 37.5‡ 37.4 (0.2)
β1 2.19 (0.07) 1.49 (0.09) 2.13 (0.06) 2.18 (0.06)
β2 — 0.108 (0.012) — —
σ0 7.12 (0.17) 6.69 (0.16) 7.69‡ 7.25 (0.17)
σ1 1.74 (0.06) 2.26 (0.10) 1.54 (0.06) 1.65 (0.06)
σ2 — 0.15 (0.01) — —
ρ01 0.51 (0.03) 0.58 (0.04) 0.41‡ 0.51 (0.03)
ρ02 — −0.36 (0.09) — —
ρ12 — −0.71 (0.06) — —
σw 3.12 (0.03) 2.97 (0.03) 3.14 (0.03) 3.25 (0.07)

D̄ 45692 44823 45810 44589
pD 1620 1812 1673 1723
DIC 47312 46635 47483 46312

†See Section 4.4 for a description of the models. Posterior medians with standard devi-
ations in parentheses are shown.
‡Empirical means and variances.

models are indeed effectively non-informative. Table 2 also shows the posterior mean deviance
D̄, the effective number of parameters pD and the deviance information criterion DIC= D̄+pD

(Spiegelhalter et al., 2002). From model L1, the average diameter at first screen is 37.5 mm (SE
0.2), with an average growth rate of 2.2 mm year −1 (SE 0.07). There is considerable between-
patient variationboth inAAAdiametersatfirst screenandingrowthrates,andthesearepositively
correlated. As with the classical models, there is evidence that AAA growth is non-linear since
the quadratic model (Q1) has a lower DIC.

Fig. 3 shows the distribution of measured aneurysm diameters at first screen. Clearly the dis-
tribution is skewed and non-normal, indicating that the standard model may be inadequate. To
avoid making a parametric assumption concerning the distribution of diameters at first screen,
a further model (L2) allows the individual-specific intercepts to be independent, and entirely
unrelated, parameters. Each individual’s intercept is given an independent uniform U.0, 1000/

prior. Hence this model estimates 1046 separate intercepts with no shrinkage towards their over-
all mean. The random slopes are then modelled conditionally on the intercepts by assuming
that the conditional distribution is Gaussian, as follows:

b1i|b0i ∼N.μCi, σ
2
C/,

μCi =λb0i,

σ2
C =σ2

1 −λ2σ2
0, .8/

where λ=ρ01σ1=σ0 is given a uniform U.−5, 5/ prior. This parameterization results in E [b1i]=0
and V.b1i/=σ2

1. Since the population of the intercepts is not specified and hence β0 and σ0 are
not parameters of the model, in Table 2 the unweighted empirical means and variances of the
intercepts are presented. The standard deviation σ0 is higher than estimated in model L1, reflect-
ing the fact that no shrinkage of the intercepts is taking place. Conversely the standard deviation
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Fig. 3. Histogram of aneurysm diameters 30–54 mm at first screen in the MASS .nD1046/

of the slopes σ1 is smaller as is the empirical correlation between intercepts and slopes. Interest-
ingly, the effective number of parameters increases by only 53 compared with the random-effects
model L1 and the posterior mean deviance D̄ is actually higher in model L2, as is DIC. One
possible reason for the increase in D̄ is that, since the deviance is averaged over its posterior
distribution, D̄ already incorporates a degree of penalty for model complexity. Indeed the rela-
tively small increase in the effective number of parameters (compared with the 1046 individuals)
suggests that there is not much shrinkage of the intercepts under model L1. Nevertheless, the
smaller DIC in model L1 indicates that this is the preferred model.

There is evidence from residual plots that the within-patient variation is more heavy tailed
than Gaussian. So a further model that we consider specifies a t-distribution for within-patient
variation. The degrees of freedom of this distribution are to be estimated, and we place a
U (2,1000) prior on the degrees-of-freedom parameter. Results from this extension to the linear
model, labelled L1-T, are given in Table 2. The degrees of freedom are estimated to be close to
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Table 3. Predictions (with 95% intervals) for an individual with a single AAA diameter measure-
ment at baseline (t D0) according to the four models of Table 2.

Baseline Prediction Results for the following models:
diameter
(mm)

L1 Q1 L2 L1-T

35 G (mm year−1) 1.9 2.1 1.9 2.0
(−1.0, 5.0) (0.4, 5.1) (−0.9, 4.8) (−0.9, 4.8)

W.t =0, α=55/ (years) 10.1 9.1 10.3 10.1
(3.5, ∞) (3.7, ∞) (3.6, ∞) (3.6, ∞)

p{Y.t =0, s= 1
4 /�55} 0.0 0.0 0.0 0.0

p{Y.t =0, s=1/�55} 0.0 0.0 0.0 0.0
50 G (mm year−1) 3.5 3.6 3.2 3.5

(0.4, 6.5) (1.0, 7.3) (0.4, 6.0) (0.5, 6.3)
W.t =0, α=55/ (years) 2.0 2.0 1.8 1.9

(0.4, 39.0) (0.4, 10.5) (0.2, ∞) (0.5, 23.2)
p{Y.t =0, s= 1

4 /�55} 0.08 0.07 0.18 0.07
p{Y.t =0, s=1/�55} 0.23 0.23 0.35 0.22

4, suggesting a heavy-tailed distribution, and DIC has decreased substantially compared with
model L1.

Table 3 shows predictions for a specific individual whose AAA diameter at screening (t = 0)
is either 35 mm or 50 mm. All models estimate a similar true growth rate when y = 35 at first
screen, at approximately 2 mm year−1. The predicted growth rates when y=50 at first screen are,
however, higher, at approximately 3.5 mm year−1. The estimated time for the underlying process
to cross 55 mm is similar across all models, although the wide credible intervals limit practical
usefulness of this quantity. The probabilities of crossing the 55 mm threshold within 3 months
and 1 year are practically 0 for a screening diameter of 35 mm and are very similar between models
L1, Q1, and L1-T for a screening diameter of 50 mm, whereas the probabilities from model L2 are
higher. Fig. 4 shows predicted aneurysm growth given a single measurement at screening of either

(a) 35 mm or
(b) 50 mm.

In general, predictions are remarkably similar between the fitted models, with the quadratic
model Q1 showing slight curvature for an individual with a diameter of 35 mm at screening.
Interestingly, for an individual who measures 50 mm at screening, the predicted average AAA
diameter 3 months later is slightly less than 50 mm for all models except L2. This occurs because
the intercepts from all these models are shrunk towards the population mean intercept, resulting
in slightly lower predictions, whereas there is no shrinkage of intercepts in model L2. By way
of explanation, these random-intercept models assume that an imperfectly measured baseline
diameter of 50 mm is more likely to be an outlier since it lies far from the mean baseline diameter
in the population. Hence the model predicts that a subsequent measurement would on aver-
age be less than 50 mm. For an individual with a diameter of 35 mm at screening, predictions
are more similar to the observed diameter since it is closer to the population mean diameter
resulting in less shrinkage.

In terms of planning monitoring intervals for AAA, a key desire is to limit the probability
that the next observation is greater than or equal to the 55 mm threshold. Such probabilities
can be easily calculated from the predictive distributions in an MCMC framework, and Fig. 5
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Fig. 4. Predicted AAA diameter given a current diameter of either (a)–(d) 35 mm or (e)–(h) 50 mm taken at
the time of screening, according to the four models of Table 2 (posterior medians and pointwise 95% credible
intervals are presented): (a), (e) model L1; (b), (f) model Q1; (c), (g) model L2; (d), (h) model L1-T

shows how these depend on the baseline AAA diameter and can be controlled by choosing the
time of the next measurement. Both the linear and the quadratic models are shown in Fig. 5 for
probability limits of 1%, 5% and 10%. For example, if we wish for fewer than 1% of individuals
to have a diameter over the threshold at their second scan, a screening interval of 2.5 years or less
would be sufficient for those who measured 35 mm at baseline. In contrast this interval would
need to be 5 months or less for an individual who measured 45 mm at baseline. For individuals
who measured 50 mm at baseline there is actually already a chance greater than 1% that an
immediate remeasurement would result in an observed diameter that is 55 mm or more. The
linear and quadratic models give very similar results.
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Fig. 5. Probability of an observed AAA diameter being greater than or equal to 55 mm at rescreening
given baseline AAA diameter, using (a) the first linear and (b) the quadratic models of Table 2: , 10%
probability; , 5% probability; , 1% probability

The accuracy of the models in predicting the probability of exceeding the 55 mm thresh-
old is investigated by forming a second, prediction, data set consisting of each individual’s
first k measurements, k = 1, 2, 3: We treat each individual in the prediction data set as a new
patient, independent from the analysis data set, for which new random effects are estimated.
The posterior predicted probability of a measurement being greater than or equal to 55 mm
is then calculated for each individual at years 1, 2, 3, 4 and 5 after screening. However, these
probabilities cannot be directly compared with the observed data owing to individuals with
high measurements dropping out of the study, and hence leaving a non-representative sample.
Instead, multiply imputed complete data sets, as suggested by Gelman et al. (2005), are used as
the comparator. Each multiply imputed data set is constructed as follows. For each individual at
year x .x=1, . . . , 5/, the measurement and observation time closest to year x is used. However, if
no scans are taken within 6 months of year x the measurement is imputed from the individual’s



582 M. J. Sweeting and S. G. Thompson

posterior predictive distribution at year x (using all available data). The multiply imputed data
set therefore consists of a mixture of observed data and imputed data. The percentage of miss-
ing, and hence imputed, data at years 1–5 is 3%, 10%, 23%, 34% and 49% respectively. Over all
(19000 MCMC) imputed data sets the mean proportion of measurements that were 55 mm or
greater was calculated as 18.5% by using model L1. This compares with predicted proportions
of 17.9%, 18.4% and 18.4% when the first one, two or three scans were used for prediction
respectively, suggesting an overall good predictive performance. Similar results were obtained
for the other models.

4.5. Predictors of abdominal aortic aneurysm growth
We consider extending model L1 to include possible predictors of AAA growth. We chose to
extend this model because of its simplicity and because its predictions were very similar to those
of the more complex models. At first repeat scan individuals were asked about their current
smoking habits. 97 individuals reported never smoking compared with 585 previous smokers
and 317 current smokers. Smoking data were missing for 47 individuals. The population param-
eters for this model are very similar to those for model L1 although there is strong evidence that
previous and current smokers have on average larger diameters at baseline than non-smokers,
by 2.4 mm (SE 0.8) and 2.5 mm (SE 0.9) respectively, and faster growth than non-smokers, by
0.53 mm year−1 (SE 0.21) and 0.82 mm year−1(SE 0.22) respectively. The age of an individual at
baseline was also considered as a predictor of aneurysm growth. There was found to be no evi-
dence of an association between age and AAA size at screening (−0.08 mm per year of baseline
age; SE 0.08), and only a small association between age and the rate of AAA growth (−0.04 mm
year−1 per year of baseline age; SE 0.02). The surprising negative coefficient, suggesting smaller
AAA growth in the older population, may be due to the MASS selection process. One hypothesis
is that fast growers in the older population will have diameters that are too large to be included
in the MASS, whereas slow growers in the young population have diameters that are too small
for selection. Such a selection bias could produce an apparently negative association between
age and growth.

Fig. 6 shows how predictions vary depending on the number and pattern of previous obser-
vations and the smoking status of an individual. All predictions are shown for individuals aged
65 years at screening who have a 40-mm-diameter aneurysm observed 2 years after screen-
ing. Fig. 6(a) is based on a single 40-mm-diameter measurement taken 2 years after screening
and can be used as the reference prediction. Fig. 6(b) presents an individual with two 40 mm
measurements at t = 1 and t = 2, and predictions are slightly higher in this scenario. Figs 6(c)
and 6(d) show predictions for ‘fast growers’ who have observed growth rates of 6 mm year−1

(approximately 2 standard deviations above the population mean). Meanwhile, Figs 6(e) and
6(f) show predictions for individuals whose AAA is observed to ‘shrink’ at a rate of −2 mm
year−1 (approximately 2 standard deviations below the population mean). Predictions change
only very slightly between smoking categories, despite the highly significant effect of including
this variable as a covariate in the model. In contrast, previously observed AAA diameters do
alter predictions, suggesting that the whole history is important, not just the final diameter.
Since the average observed diameter for individuals who ‘shrink’ (Figs 6(e) and 6(f)) is greater
than that for the ‘fast growers’ (Figs 6(c) and 6(d)), predictions are actually higher for these
individuals. Surprisingly, the number of measurements does not apparently alter the precision
of the predicted diameter, although the predicted size of AAA does change slightly between
patients who have two measurements compared with those who have three. Finally, all the
predicted growth curves appear to pass close to the average observed diameter at the average
observation time.
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Fig. 6. Predicted AAA diameter for an individual aged 65 years at screening, by smoking status and observed
growth (posterior medians and pointwise 95% credible intervals are presented for each prediction; see Section
4.5 for explanation): , current smoker; , ex-smoker; , non-smoker

5. Discussion

We have shown in this paper how various predictions can be made by using a linear or quadratic
hierarchical mixed effects model. Two novel aspects arise from this work. Firstly, we have
extended the mixed effects models to incorporate error and random-effects distributions that
are non-normal, within a Bayesian framework. Secondly, we make predictions for a specific
individual by using random effects estimated conditionally on their data.

A slightly different prediction approach has been described by Skrondal and Rabe-Hesketh
(2009). Here, the population-averaged predicted mean response is obtained analytically by
integrating over the random-effects distribution, whereas uncertainty in the mean response
is addressed by simulating the parameters from their sampling distribution. A parametric boot-
strap procedure has also been proposed as a way of obtaining a prediction interval for the
mean response given values of the covariates (Hall and Maiti, 2006). Meanwhile, Taylor and
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Law (1998) have given an account of how in-sample predictions of future observations can be
obtained from closed form solutions when multivariate normality is assumed.

One practical advantage of using Bayesian modelling within a flexible software package such
as WinBUGS is that many different model extensions can easily be investigated. For example, it
is clear that for an aneurysm-detected population the baseline distribution of aneurysm diam-
eters is non-normal. We have tried to relax the normality assumption placed on our random
effects by fitting an independent intercepts model (L2), although we could have investigated
other parametric distributions. An alternative approach is to model more precisely the pro-
cess by which the data were obtained. Specifically, individuals who were screened and deemed
‘normal’, i.e. had a diameter less than 30 mm, were not followed up further and hence were
excluded from the analysis data set. Therefore in reality, in addition to the 1046 measured AAA
diameters at first screen, there are also 25541 left-censored diameters, in which we know only
that y< 30. Each of these individuals have the following likelihood contribution:

Li =
∫

p.yi1 < 30|θ, b0i/p.b0i|θ/db0i: .9/

By adding these contributions to the likelihood, our inferences are then about the general popu-
lation, and not specifically about those with an aneurysm. As a consequence, for all individuals
with a detected aneurysm, their estimated baseline diameters are likely to be shrunk downwards
towards the population mean. For example, an individual whose observed diameter is 30 mm at
first screen is more likely to have their true diameter less than 30 mm, owing to our knowledge
that the population mean aneurysm diameter is far smaller. This behaviour can only be modelled
if the censoring mechanism is fully incorporated. We have attempted to fit censoring models
by assuming that the population distribution of AAA diameters at first screen follows either
a Gaussian distribution or t-distribution with the degrees of freedom estimated by the model.
The population mean diameter at first screen was estimated to be close to 20 mm whereas the
population mean rate of growth was 0.05 mm year−1 for the model with Gaussian intercepts,
and 1.18 mm year−1 for the model with t-distributed intercepts. Hence, estimates from these
models are highly sensitive to the choice of distribution for the intercepts. This is because 95%
of the individuals are censored and measurements for only the upper 5% tail of the distribu-
tion are available. To our knowledge, the issue of such censoring or truncation has been rarely
addressed when using longitudinal mixed effects models. Mehrotra et al. (2000) proposed an
EM-like algorithm to obtain maximum likelihood estimates when the sample is truncated, but
only for a fixed subject effects model. Further investigation into the behaviour of mixed effects
models when censoring or truncation is present would therefore be of interest.

The non-linear growth of AAAs has been shown previously (Brady et al., 2004; Vardulaki
et al., 1998). The use of mixed effects models with correlated intercept and linear growth rates
allows individuals with higher baseline measurements to have faster growth. Accelerated growth
within an individual’s growth series can also be modelled by using a non-linear model. How-
ever, we have shown that using either a quadratic or a linear model gave remarkably similar
predictions over the time period of interest for AAA monitoring. Since difficulties are associ-
ated with making predictions from a quadratic model, we question the practical relevance of
this model for this application. Indeed quadratic growth may be unrealistic in the long term,
with predictions possibly showing a reversal in the direction of growth for some individuals.
The linear model, despite representing a simplified version of the true nature of AAA growth,
appears to be adequate for short-term predictions.

In all the models fitted there was found to be very substantial between-individual variation,
which requires further exploration. The baseline smoking status of an individual was found to
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be significantly associated with both baseline AAA diameter and the rate of growth. Neverthe-
less, the between-individual standard deviations for the intercept and slope decreased by only
0.4% as a result of adding smoking status as a covariate. Other variables that have been shown
to correlate with AAA growth rates include diabetes and atherosclerosis (Brady et al., 2004);
although such variables could be included in future models, it is unlikely that they would impact
importantly on relevant predictions.

A variety of predictions can be made from longitudinal models, such as the time to reaching a
certain threshold, or the predicted level of the observed or underlying outcome after a given time
period. In our AAA application, however, we find that a prediction of the time taken to reach
a threshold diameter of 55 mm is of little practical use, since the prediction is very imprecise.
This has been noted previously in relation to time-to-event predictions in the context of survival
analysis (Graf et al., 1999). Joint longitudinal data and survival modelling (Tsiatis et al., 1995)
is inappropriate in our application, since we are modelling the time to an underlying threshold
that is an aspect of the longitudinal process, rather than to an observed event. More relevant for
planning monitoring intervals is the distribution of the (observed) outcome after a given time,
and the probability that a future observation will be greater than a specified threshold at that
time. Expressing the prediction in terms of the probability of crossing the threshold provides a
rational basis for planning appropriate monitoring intervals.
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