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Shared random effects joint models are becoming increasingly popular for investigating the
relationship between longitudinal and time-to-event data. Although appealing, such complex models
are computationally intensive, and quick, approximate methods may provide a reasonable alter-
native. In this paper, we first compare the shared random effects model with two approximate
approaches: a naı̈ve proportional hazards model with time-dependent covariate and a two-stage joint
model, which uses plug-in estimates of the fitted values from a longitudinal analysis as covariates in a
survival model. We show that the approximate approaches should be avoided since they can severely
underestimate any association between the current underlying longitudinal value and the event ha-
zard. We present classical and Bayesian implementations of the shared random effects model and
highlight the advantages of the latter for making predictions. We then apply the models described to
a study of abdominal aortic aneurysms (AAA) to investigate the association between AAA diameter
and the hazard of AAA rupture. Out-of-sample predictions of future AAA growth and hazard of
rupture are derived from Bayesian posterior predictive distributions, which are easily calculated
within an MCMC framework. Finally, using a multivariate survival sub-model we show that un-
derlying diameter rather than the rate of growth is the most important predictor of AAA rupture.

Keywords: Abdominal aortic aneurysm; Hierarchical model; Joint model; Prediction; Shared
random effects.
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1 Introduction

In clinical trials or observational studies it is common to collect information about a time-
to-event outcome, together with longitudinal measurements of a disease marker. Joint modelling
has become an increasingly popular approach to characterise the relationship between the long-
itudinal and time-to-event processes. The literature in this area is now extensive, and good over-
views can be found in Tsiatis and Davidian (2004) and Hogan and Laird (1998), with seminal papers
by Tsiatis et al. (1995) and Self and Pawitan (1992) focusing on the joint modelling of CD4 counts
and time to AIDS.

This paper is motivated by a project where the objective is to estimate growth and rupture rates in
patients with abdominal aortic aneurysms (AAA), and to assess implications for monitoring
intervals. AAAs are swellings of the aorta, which grow over time and can rupture if left untreated,
leading to a high mortality rate (Bown et al., 2002). Although it has long been known that the
current AAA diameter is strongly associated with the risk of rupture, the question remains as to
whether the rate of AAA growth is an independent explanatory variable. In addition to this basic
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aetiological question, predictions of future AAA diameter and risk of rupture are required to inform
appropriate monitoring intervals for screening programmes. In particular, given an individual with
a series of AAA diameter measurements, an appropriate monitoring interval can be chosen based
on their predicted cumulative incidence of rupture, or the decision can be taken to refer the patient
for surgery if the risk of rupture before the next screen is too high. We illustrate in this paper how
joint models can be used to make such predictions.

We first contrast three methods for modelling the association between aspects of a longitudinal
process and a time-to-event outcome. A naı̈ve approach, where repeated measurements are used as
time-dependent covariates in a Cox (Cox, 1972) or parametric survival model, is compared to a
shared random effects joint model and a two-stage joint modelling approach. Section 2 presents a
classical implementation, and describes the pros and cons of each method. A simulation study is
conducted in Section 3 to contrast the three approaches in their ability to estimate the true asso-
ciation between a longitudinal process and the event hazard. We then describe in Section 4 how a
shared random effects joint model can be fit using Bayesian MCMC methods in WinBUGS (Spie-
gelhalter et al., 2003). Such software is flexible in allowing a number of possible associations
between the longitudinal and time-to-event processes to be investigated, while predicted survival
curves and future longitudinal values can easily be obtained for an individual using posterior
predictive distributions. Nevertheless, the Bayesian model implemented in WinBUGS is currently
restricted to models in which the cumulative hazard has a closed form. Finally, in Section 5 we
apply the models to data from the Multicentre Aneurysm Screening Study, which has collected
repeated measurements of aneurysm diameter over time (via ultrasound scans), together with in-
formation about rupture events (Thompson et al., 2009). Our aim was to develop a model first to
estimate the association between the risk of rupture and the size and rate of growth of the aneurysm,
and second to make predictions about the future growth and probability of rupture.

2 Classical approaches to joint modelling

Suppose longitudinal response data and time-to-event data are available from m subjects. Denote
yi ¼ fyiðtijÞ; j ¼ 1; . . . ; nig to be a set of longitudinal response measurements for the i-th subject
collected at times ftij ; j ¼ 1; . . . ; nig. In addition, each subject provides a (possibly right censored)
failure time Ti ¼ minðT�i ;CiÞ and an event indicator di ¼ IðT�i � CiÞ, which indicates whether the
observed failure time is a true failure time, T�i , or a censoring time Ci.

2.1 A survival model with time-dependent covariates

Perhaps, the simplest method to include association between the longitudinal and time-to-event
processes is a survival model with the longitudinal measurements specified as time-dependent
covariates. The hazard of failure at time t for patient i is modelled as

hiðtÞ ¼ h0ðtÞ expðx
T
i ðtÞb1ayiðtÞÞ;

where h0(t) is either a parametric or semi-parametric baseline hazard function, a is a parameter
measuring the association between the observed longitudinal measurement and the hazard of failure
at time t, and xi is a vector of further explanatory variables with regression parameters b. Generally,
measurements are only available at the examination times tij while the model must make assump-
tions about the value of yi(t) continuously throughout time (or at the failure times for the semi-
parametric Cox model). Software implementations usually do this by assuming the time-dependent
covariates remain constant between examination times, and hence the model for the hazard is

hiðtÞ ¼ h0ðtÞ expðx
T
i ðtijÞb1ayiðtijÞÞ

for tijrtoti,j11.
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The problems associated with this modelling approach are well known as described by Tsiatis
et al. (1995). In particular, any true association between the hazard and underlying response will be
underestimated due to measurement error (Prentice, 1982). This is problematic if interest lies in
understanding the strength of association between the two processes, for example if the response
measurement were being considered as a surrogate for failure. Even if decisions are to be based on
observed measurements, as is the case with choosing monitoring intervals for AAA, the underlying
association between the longitudinal and time-to-event processes is still of importance as it indicates
the maximum explanatory power of the longitudinal process that could be obtained by reducing
measurement error (Tsiatis et al., 1995). Interpolation of the longitudinal measurements between
examination times is a further disadvantage of the time-dependent covariate model, especially if
examinations are sparse or taken a considerable time before failure. Such interpolations are a
further cause of measurement error, resulting in dilution of the estimated association. Finally, no
modelling of the longitudinal process is attempted with this approach, which may also be of interest.

2.2 Joint models with shared random effects

To describe the shared random effects model we use notation similar to that presented by
Henderson et al. (2000). The response measurements are modelled using a mixed-effects model, a
popular and flexible choice for continuous longitudinal data. The model can be written as

yij ¼ miðtijÞ1W1iðtijÞ1eij ¼ miðtijÞ1eij ;

where miðtijÞ ¼ xT1iðtijÞb1 is the mean response for subject i at tij, and is modelled in terms of a set of
explanatory variables x1i(t) measured at each examination time. Subject-specific random effects are
incorporated through W1i(t)5 d1i(t)Ui, where Ui is a vector of q zero-mean random effects, and
d1i(t) is a vector of explanatory variables (possibly a subset of x1i(t)). The random effects are
commonly modelled as multivariate normal random variables, Ui �iid Nq(0,R). Finally, the eij �iid

N(0,s2) are the measurement error terms. Thus a linear mixed-effects model with random intercept
and slope is obtained by letting mi(t)5 b111b12t and W1i(t)5U1i1U2it.

The hazard of failure is specified by the multiplicative model

hiðtÞ ¼ h0ðtÞ expðx
T
2iðtÞb21aW2iðtÞÞ; ð1Þ

where x2i(t) are a set of explanatory variables with associated fixed effect parameters b2. W2i(t)5

d2i(t)Ui is a function of the random effects Ui with association parameters a. The longitudinal and
time-to-event processes can therefore be made stochastically dependent through the use of shared
random effects in W1i and W2i.

Henderson et al. (2000) proposed an extension of this joint model for investigating the
relationship between the hazard of failure and the subject-specific intercept, slope, and the current
underlying measurement in a linear mixed-effects model. Specifically, this is achieved by letting
W1i(t)5U1i1U2it and replacing aW2i(t) in the hazard (1) by W�2iðtÞ ¼ a1U1i1a2U2i1a3ðUi11U2itÞ:
The parameters a1, a2, and a3 measure the association between the hazard of failure and the random
intercept, slope and current W1i value (the subject-level deviation from the mean level at time t).

Specialist software is available to fit shared random effects joint models. The JM package in R
(Rizopoulos, 2010) allows users to fit a variety of survival models with parametric or semi-
parametric baseline hazards, and a wide range of mixed-effects models. The current software can
model dependency between the processes using either the current underlying longitudinal value
(W2i(t)5mi(t)), the rate of growth (W2i(t)5 dmi(t)/dt) or both. Maximum likelihood estimation
(MLE) is performed for parametric survival models, while the EM algorithm is used for Cox-type
models. Predicted survival probabilities can be obtained using a Monte–Carlo procedure that
samples from an approximation of the posterior distribution of the random effects given an
individual’s observed data (Rizopoulos, 2010). The software is constantly being updated and
readers should refer to http://rwiki.sciviews.org/doku.php?id5packages:cran:jm
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for new developments. The JoineR collaboration (http://www.liv.ac.uk/joine-r/) also
provides R software for fitting a shared random effects model. Here, the association can be linked
through either a random intercept W2i(t)5U1i, a random intercept and linear slope W2i(t)5U1i1

U2it or through a quadratic model W2i(t)5U1i1U2it1U3it
2. The software does not currently allow

for a parametric specification of h0(t), and standard errors must be obtained through bootstrapping.

2.3 A two-stage approach

The final model considered is a two-stage joint modelling approach where the longitudinal process is
first fitted separately, and the MLE and best linear unbiased predictors (BLUPs) of the random
effects are obtained. Then in a second stage, a model is fit to the survival data using the longitudinal
fitted values as covariates. Two-stage approaches have been investigated previously by Bycott and
Taylor (1998), Self and Pawitan (1992), Tsiatis et al. (1995), and Dafni and Tsiatis (1998). Let
m̂iðtÞ ¼ m̂iðtÞ1Ŵ1iðtÞ be the fitted value for the i-th individual at time t, where m̂iðtÞ ¼ xT1iðtÞb̂1 is
the fitted mean response and Ŵ1iðtÞ ¼ d1iðtÞÛi is the fitted individual deviation at time t, using the
BLUPs of the random effects, Ûi.

The second stage of this approach can be conducted as in Section 2.1, using the standard survival
analysis software. Since m̂iðtÞ can be evaluated continuously throughout time, the data set can be
split into as fine time-intervals as required, so that the assumption of constant longitudinal mea-
surements between examination times is weakened. Note, that for a Cox model, the value of the
covariate is only required at the event times, and there is no requirement to split the data set into
finer time intervals.

The advantage of using a two-stage approach is that it is relatively quick to implement and
requires only standard mixed-effects and survival software. The drawbacks are that it does not
correct for event-dependent drop-out, and uncertainty in the estimated MLEs and BLUPs are not
carried forward to the survival model, resulting in estimates that are too precise. Furthermore, the
form of the BLUPs depends critically on the validity of normally distributed random effects and
error terms, an assumption which becomes less satisfactory as time increases and subjects suffer
informative drop-out (Tsiatis and Davidian, 2004).

3 Classical simulations

To compare the performance of the three approaches described above a simulation study was
carried out. These simulations aim to assess to what extent the time-dependent covariate and two-
stage approaches adequately model a shared random effects data-generating process and how
biased estimates might be (Section 3.1). The joint model is expected to perform well in these
simulations. Meanwhile, the robustness of all three approaches under mild and gross model mis-
specification is assessed in a second set of simulations in Section 3.2.

3.1 Performance of time-dependent and two-stage approaches in approximating a joint

model

Longitudinal and survival data were generated for 1000 individuals, with follow-up examinations at
times t5 0,2,4,6,8. First, the longitudinal process was simulated from a linear mixed-effects
model with the true parameters chosen to be similar to those estimated in the AAA
application presented in Section 5. Specifically, the following values were chosen for the parameters:
b11 5 38.5 (mean AAA diameter at initial screening in mm), b12 5 1.73 (mean rate of growth
in mm/year), s5 2.8, R11 5 43.5, R12 5 3.2, and R22 5 1.7. The time-to-event process was
simulated from a time-varying covariate model with constant baseline hazard, and with the
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hazard at time t linked only to the underlying measurement process, mi(t). We wished to
simulate a relatively rare event, to reflect the small number of ruptures observed in the AAA
application. A constant baseline hazard was assumed and fixed at l5 0.008; this corresponds to the
hazard of failure when the longitudinal value is equal to the mean of the process over the 10-year
follow-up. The association parameter, a, was set to 0.2 to reflect modest correlation between the two
processes.

Two censoring mechanisms were considered. First, individuals were subject to random censoring
over follow-up, where the time to censoring for subject i was simulated from a uniform distribution,
C1i � U(0,10). A second censoring mechanism occurred when the subject was first observed to have
a measurement over a certain threshold v; that is C2i 5min(tj: yijZv, j5 1,y,6). This mechanism
reflects what occurs in the AAA application presented in Section 5, where individuals whose dia-
meter is observed to be above a threshold are referred for surgery. Here, we take v5 55mm, to
reflect this policy. The observed failure time for each individual was therefore calculated as
Ti ¼ minðT�i ;Ci1;Ci2Þ, where T�i is the simulated true failure time.

All three models were fitted using the same structure as generated the data (i.e. a linear mixed-
effects model for the longitudinal process, and a parametric survival model with constant baseline
hazard). The time-dependent covariate model used the observed longitudinal values at the ex-
amination times as the explanatory variable, while the joint model used the underlying current
measurement process and the two-stage model used the fitted values at the examination times (i.e.
every 2 years). In addition, we also fitted two-stage models that used fitted values every 6 months,
and every month between t5 0 and the failure/censoring event. Finally, each model was also fitted
using a Cox (semi-parametric) baseline hazard. For the two-stage Cox model the fitted values were
calculated at the failure times of the simulated data.

We first consider the case where only random censoring is acting on the subjects. Over 1000
simulations, the mean number of failures was 81, with an average follow-up of 4810 person-years (1.7
per 100 person-years). Table 1 shows the mean of the MLEs, average asymptotic standard error, and
95% coverage for the log baseline hazard, log(l), and the association parameter, a, for the three
approaches. Using 1000 simulations the precision (i.e. 95% interval) of the estimated 95% coverages
is71.5%, while the standard error of the estimates for log(l) and a was never greater than 0.007 and

Table 1 Results from a simulation study comparing the mean MLE (Mean), mean asymptotic
standard error (SE) and nominal 95% coverage of the estimated baseline hazard and association
parameter under random censorings.

Model log(l)5�4.83 a5 0.20

Mean SE Coverage (%) Mean SE Coverage (%)

Time-dependent covariate

Constant hazard �4.30 0.16 10.4 0.186 0.011 72.6
Cox model – – – 0.189 0.014 84.8

Joint model

Constant hazard �4.85 0.21 95.0 0.202 0.015 95.4
Cox model – – – 0.199 0.008 62.8

Two-stage model

Constant hazard (every 2-years) �4.21 0.15 4.9 0.195 0.012 90.4
Constant hazard (every 6-months) �4.56 0.19 61.0 0.194 0.012 89.2
Constant hazard (every month) �4.65 0.19 76.7 0.191 0.012 85.0
Cox model (at failure times) – – – 0.188 0.015 81.1
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0.0005, respectively across all the fitted models. With one exception, discussed below, the mean
asymptotic standard errors are in close agreement with the Monte–Carlo empirical standard
deviations. The time-dependent covariate model, fitted using streg in Stata, overestimates the
baseline hazard by 11% while underestimating the association parameter by 9% (a result of
regression dilution caused by using an explanatory variable measured with error). The joint model,
fitted using JM in R, provides unbiased estimates of the baseline hazard and association parameter,
and good coverage properties when the parametric model is used. A Cox-model, however, provides
too small standard errors and hence confidence intervals that are too tight as reflected by the low
coverage probability. The mean asymptotic standard error of 0.008 was far lower than the empirical
standard deviation of 0.018. Hsieh et al. (2006) showed that standard errors based on the Fisher
information are unreliable for semi-parametric joint models due to the implementation of the EM
algorithm within the profile likelihood. The solution is to calculate bootstrap estimates of the
standard error, although due to computational costs we have not investigated this approach within
this simulation study. The two-stage model, using xtmixed and streg in Stata, overestimates the
baseline hazard by 13% when fitted values are used every 2 years, but this bias reduces to 4% as the
gap times are reduced to monthly. The association parameter is generally underestimated, no matter
whether a parametric or Cox model is used, with the parametric model estimates converging to that
of the Cox model as the gap times are reduced.

The performance of the time-dependent and two-stage models are improved somewhat when
both random and threshold censoring are acting on the population (Table 2). In this scenario, the
mean number of failures was only 23 over an average follow-up of 4393 person-years (0.5 per 100
person-years). The sparseness of events, resulting in less event-dependent drop-out, could be one
reason why the approximate time-dependent covariate and two-stage methods perform better under
this scenario. Nevertheless, bias is still present using these approximate methods. The joint model
provides unbiased results even under this informative (threshold) censoring scheme. This is because
the censoring mechanism causes data to be missing at random (MAR) since drop-out is either
random or depends on previously observed data (Little, 1995). This can be adequately dealt with
using a likelihood-based joint model.

Table 2 Results from a simulation study comparing the mean MLE (Mean), mean asymptotic
standard error (SE) and nominal 95% coverage of the estimated baseline hazard and association
parameter under random and threshold censorings.

Model log(l)5�4.83 a5 0.22

Mean SE Coverage (%) Mean SE Coverage (%)

Time-dependent covariate

Constant hazard �4.38 0.20 41.1 0.202 0.041 93.8
Cox model – – – 0.199 0.043 93.2

Joint model

Constant hazard �4.90 0.25 94.8 0.205 0.040 94.7
Cox model 0.204 0.034 87.4

Two-stage model

Constant hazard (every 2-years) �4.32 0.20 33.2 0.198 0.036 93.3
Constant hazard (every 6-months) �4.65 0.21 81.3 0.183 0.032 88.9
Constant hazard (every month) �4.74 0.18 89.4 0.179 0.031 86.3
Cox model (at failure times) – – – 0.172 0.033 83.2
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3.2 Performance under model misspecification

The performance of the three approaches under model misspecification was examined by generating
longitudinal profiles that were quadratic in nature, while the models fitted assumed linear trajec-
tories. Figure 1 shows the mean longitudinal profile of data generated under mild (slight curvature)
and gross (large curvature) misspecification. These trajectories are plotted next to the linear
relationship used in Section 3.1. Under mild misspecification, the following values were chosen for
the longitudinal parameters: b11 5 38.5, b12 5 1.3, b13 5 0.1, s5 2.8, R11 5 43.5, R12 5 3.2,
R13 5�0.3, R22 5 1.7, R23 5�0.2, R33 5 0.08, where b13 is the fixed effect for the quadratic term in
the model, and R is a 3� 3 between subject variance–covariance matrix for the intercept, linear, and
quadratic terms. Under gross misspecification the fixed effect parameters were changed to
b11 5 38.5, b12 5 0.8, b13 5 0.3 to reflect greater curvature. All other parameters remained un-
changed from the simulations conducted in Section 3.1, while both random and threshold censoring
acted on the population.

The results from this simulation study are presented in Table 3. Under both mild and gross
misspecification, the time-dependent model severely overestimates both the baseline hazard and the
association parameter. The two-stage model overestimates the baseline hazard but underestimates
the association parameter. The joint model performs reasonably well, with the association para-
meter in particular being quite robust to such model misspecification. The baseline hazard para-
meter is slightly overestimated, and coverage falls to 87% under gross misspecification.
Nevertheless, the case for using the joint model is strengthened from these results.

4 A Bayesian approach to joint modelling

An alternative approach to joint modelling is to use Bayesian MCMC methods. Such an approach
has been considered previously by Faucett and Thomas (1996), Brown et al. (2005), Brown and
Ibrahim (2003), and Chi and Ibrahim (2006) where tailor-made Gibbs sampling algorithms have
been developed. In contrast, Guo and Carlin (2004) use generic MCMC software such as WinBUGS
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Figure 1 Mean longitudinal profiles of data generated under mild (slight curvature) and
gross (large curvature) misspecification. These curves are plotted next to the original
linear relationship.
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(Spiegelhalter et al., 2003) to implement a joint model. The attraction of using WinBUGS is that a
joint model can be coded relatively simply, which applied researchers can then easily adapt to suit
their needs. There is also considerable flexibility in model specification. For example, an individual’s
underlying intercept, slope or current value can all be associated with the time-to-event process.
Second, standard errors of the model parameters can be obtained from posterior distributions
without the need for asymptotic theory. Finally, in and out-of-sample predictions of both long-
itudinal and time-to-event processes can be obtained relatively easily using posterior predictive
distributions.

However, a current limitation of implementing a joint model in WinBUGS is that, for the time-to-
event process, a closed-form evaluation of the integrated hazard function is required in order to
formulate the likelihood. For this reason, our Bayesian model is currently restricted to joint models
for which the longitudinal process is specified by a linear mixed-effects model, so that mi(t)5 b111
b12t1U1i1U2it while the hazard for the time-to-event process is modelled using a constant baseline
hazard. The baseline hazard is multiplied by a function of the individual-specific intercept, slope and
underlying measurement, as follows:

hiðtÞ ¼ l expða1ðb111U1iÞ1a2ðb121U2iÞ1a3miðtÞÞ:

Under this specification the integrated hazard has the following closed-form expression:

HiðtÞ ¼

Z t

0

hiðuÞdu ¼
hiðtÞ � hið0Þ

a3ðb121U2iÞ
:

More generally, to relax the assumption of a constant baseline hazard, a piecewise-constant baseline
hazard can be specified and the integrated hazard evaluated within each time band separately.
Furthermore, to allow for a wider range of hazards and non-linear longitudinal profiles, the

Table 3 Results from a simulation study comparing the mean MLE (Mean), mean asymptotic
standard error (SE) and nominal 95% coverage of the estimated baseline hazard and association
parameter under random and threshold censorings with model misspecification.

Model log(l)5�4.83 a5 0.22

Mean SE Coverage (%) Mean SE Coverage (%)

Mild misspecification, Mean no. events/f-up5 47/4359

Time-dependent covariate

Constant hazard �4.03 0.17 1.8 0.251 0.033 67.7

Joint model

Constant hazard �4.75 0.22 91.2 0.194 0.027 95.3

Two-stage model

Constant hazard (every month) �4.51 0.16 48.5 0.174 0.021 73.1

Gross misspecification, Mean no. events/f-up5 101/4157

Time-dependent covariate

Constant hazard �4.01 0.16 1.0 0.251 0.021 29.6

Joint model

Constant hazard �4.68 0.21 87.2 0.197 0.019 95.1

Two-stage model

Constant hazard (every month) �4.34 0.14 8.9 0.175 0.015 57.1

Biometrical Journal 53 (2011) 5 757

r 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



trapezium rule could be used to approximate the integrated hazard function, an approach taken by
Brown et al. (2005). The WinBUGS code used to implement a constant baseline hazard joint model
with linear longitudinal process is given as Supporting Information on the journal website. We use
minimally informative Normal(0, 104) priors for all fixed effect parameters (b11, b12, log(l), a1, a2
and a3), a Uniform(0, 100) prior for the within patient standard deviation, and a scaled inverse-
Wishart prior for the between patient variance–covariance matrix, with degrees of freedom equal to
one plus the number of random effects, as suggested previously for the specification of mixed-effect
models (Gelman and Hill, 2007).

Inferences concerning future longitudinal values from a new individual (an out-of-sample pre-
diction) can be obtained from the posterior predictive distribution. The existing data on m patients
can be summarised by Dm ¼ fy1; . . . ; ym ;T1; . . . ;Tm; d1; . . . ; dmg recalling that yi 5 yi(tij), j5 1,y,ni,
Ti ¼ minðT�i ;CiÞ, and di ¼ IðT�i � CiÞ. Suppose now that a set of longitudinal measurements are
obtained from a new individual, labelled m11, together with information that they have survived up
to time s. This can be summarised as Y ¼ fym11;Tm11 ¼ s; dm11 ¼ 0g. Then, given this data, the
predictive distribution for a new observation ~y from this individual with random effects ~U and
hyperparameters h ¼ ðb1; b2; a;s;l;RÞ is

pð ~yjDm;YÞ ¼
Z Z

pð ~yjY; ~U; hÞpð~UjY; hÞpðhjDmÞ dh d~U:

Similarly, the predicted survival probability, for the time to failure ~T� for the new individual, at
time t given survival up to time s is

pð ~T� � tjDm; ~T
�4s; ym11Þ ¼

Z Z
pð ~T� � tj ~T� > s; ym11; ~UÞpð~Uj ~T

� > s; ym11; hÞpðhjDmÞdhd~U

¼

Z Z
pð ~T� � tjym11; ~UÞ

pð ~T� � sjym11; ~UÞ
pð~Uj ~T�4s; ym11; hÞpðhjDmÞdhd~U;

where pð~Uj ~T�4s; ym11; hÞ is the posterior distribution of the random effects for the new individual
conditional on their data and the hyperparameters h. These quantities are easily obtained within the
WinBUGS software, and as demonstrated in the code given as Supporting Information.

5 Analysis of the Multicentre Aneurysm Screening Study data

The Multicentre Aneurysm Screening Study (Thompson, 2009) has recorded AAA diameters, using
sequential ultrasound measurements, from men aged 65–74 years for up to 11 years. Individuals
were considered for elective surgery when their AAA was observed to reach 55mm or greater in
diameter, if their observed growth rate was greater than 10mm/year or if they were exhibiting
symptoms attributable to the aneurysm.

For this analysis the focus is on the growth and rupture rates for the ‘small’ diameter range
30–54mm. In total, 1122 men whose initial screening diameter was in the range 30–54mm were
included. Rupture events are defined as either an emergency operation for a ruptured AAA, or death
from ruptured AAA. Individuals are censored as soon as they are observed to have a measurement
Z55mm. Censoring also occurs before this time if the individual dies from a non-rupture event, is
referred for surgery (for reasons other than their aneurysm being Z55mm), is lost to follow-up
(LTFU) or is administratively censored. Follow-up for all individuals was restricted to 2 years after
their last AAA measurement, since it was not always possible to ascertain whether censoring events
(such as operations) were still being recorded for all individuals after LTFU. The administrative
censoring date of the database is 31 March 2008. A total of 5281 person-years of follow-up are
available for analysis; 20 ruptures occurred, giving a naı̈ve rupture rate of 0.38 per 100 person-years.

Figure 2 presents the observed trajectories of the 1122 individuals, stratified by censoring
mechanism. The mean AAA diameter is superimposed on each plot; its use is not intended for
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inferential purposes but to aid discussion of possible informative drop-out. As mentioned in Section
3.1 a threshold censoring mechanism is not problematic since it causes data to be MAR, which can
be accommodated using a likelihood-based joint model (i.e. drop-out depends on the observed AAA
diameter beingZ55mm) (Little, 1995). Similarly, decisions governing whether the patient should be
sent to surgery below 55mm may have been based on the observed AAA growth rate (92 out of the
129 patients had observed growth of Z10mm/year). For individuals who are LTFU, the empirical
growth rate is lower. Indeed many individuals are observed to have diameters o30mm, and essen-
tially the AAA is no longer confirmed in this size range. This may be one explanation why patients
drop out of the study. If the reason for LTFU is entirely determined by one or more low measure-
ments then, as before, this is sufficient for an MAR process. Therefore, based on these observations,
we assume the data are MAR and further modelling of the missing data mechanism is unnecessary.

A further issue is the competing risk of non-rupture related mortality. Some work has been done
to extend the joint modelling framework to the situation of competing risks (Williamson et al.,
2008). However, it is not the intention of this paper to address such issues. Rather, we acknowledge
that estimates of rupture risk obtained from these analyses are from a non-competing risks model,
and reflect risk in the absence of death from other causes.

5.1 Models

We begin by fitting joint models where individual growth trajectories are linear. Results from the
Classical time-dependent (C-TD), Classical two-stage (C-2S), Classical shared random effects
(C-SRE), and Bayesian shared random effects (B-SRE) models, each using a constant baseline
hazard, are shown in Table 4, where either an individual’s rate of growth or current diameter were

Figure 2 Individual trajectories of AAA growth, stratified by censoring mechanism. The yearly
mean AAA diameter is superimposed on the plots.

Biometrical Journal 53 (2011) 5 759

r 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



used as the explanatory variable in the survival sub-model. In the time-dependent model the
observed measurements were used, but the observed rate of growth was found to be too variable to
use, with some individuals only having two measurements taken close together. Hazard ratio
estimates were generally smaller in the time-dependent and two-stage models. For the C-2S and
SRE models, both variables were significantly associated with an increased risk of rupture in
univariate analyses. The Bayesian estimate of the hazard ratio for a 1mm increase in the current
underlying AAA diameter was 1.34, 95% credible interval (1.22, 1.49), which is almost identical to a
Classical joint model estimate fit using JM. After adjustment in a multivariable model, only the
current underlying AAA diameter was found to still have an independent association with rupture,
with its hazard ratio remaining relatively unchanged from univariate analyses.

The Classical shared random effects model was also extended to allow non-linear individual
trajectories through introduction of random quadratic terms. There was strong evidence for non-
linear trajectories (po0.0001; likelihood ratio test), although the degree of curvature made little
difference to short-term predictions (up to 5 years) of the longitudinal process (Sweeting and
Thompson, 2011). The estimated hazard ratios associated with rupture using this Classical quad-
ratic shared random effects (CQ-SRE) model (implemented in JM) are shown in Table 4. The hazard
ratios have reduced slightly compared with the linear model, but the effect of current diameter on
rupture remains statistically significant. The model was further extended to allow the baseline
hazard to be piecewise constant, by using one cut-point placed 5 years after an individual’s first
screen. There was, however, no evidence of an improved model fit as assessed using the deviance
information criteria (DIC).

Figure 3 shows the predictions of future AAA growth and incidence of rupture for the Bayesian
shared random effects model with current underlying diameter as the covariate, a constant baseline
hazard, and linear individual trajectories. Two hypothetical individuals are presented; one with
measurements of 30, 35, and 40mm and the other with measurements of 44, 42, and 40mm, taken at
0, 1, and 2 years after screening. The individuals exhibit observed growth rates of 5 and �2mm/year
with model predicted growth rates of 2.3 and 1.3mm/year, respectively. Predicted AAA diameter is
higher in the second individual due to larger observed diameters, and this is reflected in a higher
predicted cumulative risk of rupture. Since small aneurysm ruptures are very rare events, the 95%
credible intervals from the model are wide. Nevertheless, the model indicates that to be confident of

Table 4 Hazard ratios (95% confidence/credible interval) associated with the risk of rupture using
Classical time-dependent (C-TD), Classical two-stage (C-2S), Classical shared random effects (C-SRE),
Bayesian shared random effects (B-SRE) and Classical quadratic shared random effects (CQ-SRE)
models, each using a constant baseline hazard.

Model Rate of growth (per mm/y) Current underlying diameter (per mm increase)

Univariate
C-TD – 1.26 (1.15, 1.38)
C-2S 2.02 (1.56, 2.62) 1.29 (1.16, 1.43)
C-SRE 2.15 (1.54, 2.99) 1.33 (1.21, 1.46)
B-SRE 2.14 (1.49, 3.03) 1.34 (1.22, 1.49)
CQ-SRE 1.83 (1.44, 2.32) 1.31 (1.20, 1.44)

Multivariate
C-TD – –
C-2S 1.29 (0.90, 1.85) 1.27 (1.13, 1.42)
C-SRE 1.39 (0.91, 2.12) 1.30 (1.18, 1.44)
B-SRE 1.36 (0.80, 2.07) 1.31 (1.19, 1.46)
CQ-SRE 1.28 (0.98, 1.69) 1.29 (1.17, 1.42)
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limiting the probability of rupture to be less than 1%, patient 1 should be re-screened within 2 years
(i.e. before year 4) and patient 2 should be re-screened within a year (i.e. before year 3).

6 Discussion

Joint models are appropriate when interest lies in the association between a time-dependent
covariate measured with error in a survival analysis or when accounting for event-dependent drop-
out in a longitudinal analysis. A two-stage approach can provide quick and approximate inferences
using standard statistical software. Nevertheless, our simulations have shown that such an approach
can often suffer from bias and have poor coverage properties. Furthermore, using the observed
longitudinal data as a time-dependent covariate in a survival analysis is not recommended and can
result in severe underestimation of the true association, due to regression dilution. Hence, despite its
computational burden, a shared random effects model is the recommended approach. Both classical
and Bayesian implementations have been developed, the latter being especially useful when survival
and longitudinal predictions are required.

AAA screening studies have used various criteria for deciding when to refer patients for elective
surgery, based on symptoms, current diameter, and observed growth rate of Z10mm/year
(Thompson et al., 2009; UK Small Aneurysm Trial Participants, 1995; Scott et al., 1995). In our
joint analysis of the Multicentre Aneurysm Screening Study data, despite the small number of
ruptures, we have still found a strong association between risk of rupture and underlying current

Figure 3 Predicted AAA growth and cumulative probability of rupture for two hypothetical
individuals, each with three AAA measurements at years 0, 1, and 2. Cumulative rupture prob-
abilities are shown together with pointwise 95% credible intervals.
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diameter but have found no independent association with an individual’s rate of growth. Never-
theless, it should be noted that the current aneurysm diameter and rate of growth are correlated,
and detecting independent effects may be difficult for small aneurysms where rupture events are
rare. A similar issue is currently the subject of debate in prostate cancer screening, where a high
correlation exists between PSA and PSA velocity (rate of change) (Vickers et al., 2011). Using
posterior predictive distributions we are able to make predictions of future incidence of AAA
rupture. Nevertheless, the uncertainty surrounding such predictions is large, partly due to the rare
nature of AAA rupture in the small size range being studied. Care therefore must be taken if basing
inferences on the overall risk of AAA rupture from these analyses.

We have estimated a low rupture rate in the aneurysm size range 30–54mm from this study.
This suggests that the current threshold of 55mm for referral to surgery is relatively safe provided
individuals are screened regularly enough to ensure rapid detection when the aneurysm grows this
large. The choice of how often the screen individuals should be informed by predictions of AAA
growth, and in particular the probability of exceeding 55mm within a certain time period. This
latter prediction can be obtained from the tail area of the posterior predictive distribution
of a future AAA diameter, and such calculations have been presented in other research papers
(Brady et al., 2004; Sweeting and Thompson, 2011), albeit not through the implementation of a
joint model.
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