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Calmette-Guérin vaccination

Christine E. Jonesa,b,c, Anneke C. Hesselingd, Nontobeko G. Tena-Cokia,b,

Thomas J. Scribae, Novel N. Chegouf, Martin Kiddg,

Robert J. Wilkinsonh,i,j and Beate Kampmanna,b,k
aAcademic Depar
Medicine, Univer
University of Lond
Sciences, Stellenb
and Molecular Me
Research and MR
Biomedical Scienc
Sciences, Faculty
Research, Mill Hil
Medicine, Univers
kVaccinology The

Correspondence t
George’s, Univers

Tel: +44 208 725
Received: 15 Aug

DOI:10.1097/QAD

ISSN 0269-9370 Co
Creative Commons
the original work is
Objective: The objective of this study is to assess the effect of maternal HIV and
Mycobacterium tuberculosis (Mtb) infection on cellular responses to bacille Calmette-
Guérin (BCG) immunization.

Design: A mother–infant cohort study.

Methods: Samples were collected from mother–infant pairs at delivery. Infants were
BCG-vaccinated at 6 weeks of age and a repeat blood sample was collected from infants
at 16 weeks of age. BCG-specific T-cell proliferation and intracellular cytokine
expression were measured by flow cytometry. Secreted cytokines and chemokines
in cell culture supernatants were analysed using a Multiplex assay.

Results: One hundred and nine (47 HIV-exposed and 62 HIV-unexposed) mother–
infants pairs were recruited after delivery and followed longitudinally. At birth,
proportions of mycobacteria-specific proliferating T cells were not associated with
either in-utero HIV exposure or maternal Mtb sensitization. However, in-utero HIV
exposure affected infant-specific T-cell subsets [tumour necrosis factor-alpha (TNF-a)
single positive proliferating CD4þ T cells and interferon-gamma (IFN-g), TNF-a dual-
positive CD4þ T cells]. Levels of TNF-a protein in cell culture supernatants were also
significantly higher in HIV-exposed infants born to Mtb-sensitized mothers. In the
presence of maternal Mtb sensitization, frequencies of maternal and newborn BCG-
specific proliferating CD4þ T cells were positively correlated. Following BCG vaccina-
tion, there was no demonstrable effect of HIV exposure or maternal Mtb infection on
infant BCG-specific T-cell proliferative responses or concentrations of secreted cyto-
kines and chemokines.

Conclusion: Effects of maternal HIV and Mtb infection on infant immune profiles at
birth are transient only, and HIV-exposed, noninfected infants have the same
potential to respond to and be protected by BCG vaccination as HIV-unexposed
infants. � 2015 Wolters Kluwer Health, Inc. All rights reserved.
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Introduction

Many studies have reported that HIV-exposed infants
have increased rates of morbidity and mortality compared
with infants not exposed to HIV in utero [1–10] including
high rates of tuberculosis (TB) early in life, even if they do
not acquire HIV infection themselves [11]. A number of
factors might contribute to this observation, not least
social considerations, including immunological differ-
ences, some of which have been shown to persist into
childhood. However, their direct impact on clinical
outcomes is not understood [12–22].

The developing immune system can be primed in utero by
sensitization to maternal infections [23–26]. Published
data show that a proportion of infants display cytokine
responses to mycobacterial antigens already at birth, prior
to apparent exposure to Mycobacterium tuberculosis (Mtb),
bacille Calmette-Guérin (BCG) vaccination or environ-
mental mycobacteria [27–29].

We hypothesized that in-utero exposure of infants to HIV
and/or mycobacterial antigens might impact their immune
responses to BCG vaccination, as considerable heterogen-
eity has been observed. We conducted a comprehensive
analysis of immune responses in paired maternal and infant
blood samples at delivery and following infant BCG
vaccination with the live attenuated strain of Mycobacterium
bovis.
Materials and methods

Study setting
The study was conducted between March 2009 and June
2011 in Khayelitsha, Western Cape, South Africa. The TB
incidence in Khayelitsha was 1389 per 100 000 and the
HIV prevalence amongst pregnant women registering
for antenatal care was 33.1% in 2010 [30]. The
comprehensive HIV prevention of mother-to-child
transmission (PMTCT) programme at the study site has
been described previously [31].

Recruitment of participants and study measures
The study was approved by the Universities of Cape
Town (382/2008) and Stellenbosch (N08/10/278) and
the National Research Ethics Service, England (07/
H0720/178) and local health authorities. Following
antenatal provision of study-specific information, eligible
postpartum mothers and their infants were recruited and a
blood sample collected from mothers and infants within
24 h of delivery. Women with active TB were excluded
from the study (see figure, Supplemental Digital Content
1, http://links.lww.com/QAD/A614), and full eligibility
criteria have been previously reported [31]. All HIV-
exposed infants were tested at 4 weeks to exclude HIV
infection using standardized HIV PCR (Amplicor HIV-a
DNA kit, Version 1.5; Roche, Branchburg, New Jersey,
USA) BCG vaccine (unadjuvanted Danish strain 1331;
Statens Serum Institut, Copenhagen, Denmark) was
administered at 6 weeks of age to HIV-uninfected infants,
as per WHO recommendations [32]. A second blood
sample was collected from infants at 16 weeks of age to
assess immune responses to BCG vaccination.

Data were analysed for four groups of mothers and
infants, based on maternal antenatal HIV results with
confirmatory testing at delivery (Abbott Determine HIV-
1/2; Abbott, Tokyo, Japan) and QuantiFERON-TB
Gold In-Tube (QFN: Qiagen, Hilden, Germany) results
as a measure of Mtb sensitization.

Laboratory assays
Six-day whole blood Ki67 lymphoproliferation assay
Whole blood (125 ml, diluted 1 : 10 with warm RPMI
1640) was incubated with 5� 105 CFU/ml BCG
vaccine, or 1 mg/ml Staphylococcal enterotoxin B or
media alone as positive and negative controls, respectively,
in 24-well plates at 378C, 5% CO2, 80% humidity for 6
days, following a method adapted from Soares et al. [33].
BCG was used to stimulate mycobacterial recall responses
in newborns and mothers and to assess the response to
BCG vaccination in 16-week-old infants. After 24 h,
150 ml of supernatant was collected and stored at -808C
for cytokine analysis. On day 6, 2.5 mg/ml Brefeldin A,
26 ng/ml Phorbol 12-myristate 13-acetate (PMA) and
2.6 mg/ml Ionomycin (Sigma-Aldrich, St Louis, Mis-
souri, USA) were added for the last 4 h of culture. Cells
were harvested with EDTA, red cells lysed and white cells
stained with LIVE/DEAD Fixable Violet Dead Cell Stain
Kit (Invitrogen, Eugene, Oregon, USA). Fixed white
cells were stored at -808C in 10% DMSO.

Thawed white cells were permeabilized and stained with
optimized concentrations of fluorescent-conjugated
mAbs (BD Biosciences, San Jose, California, USA);
anti-CD8 PerCP-Cy5.5 (RPA-T8), anti-IFN-g Alexa
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Fluor 700 (B27), anti-IL-2 FITC (MQ1-17H12), anti-
TNF-a PE-Cy7 (MAb11), anti-Ki67 PE (B56), anti-IL-
17A Alexa Fluor 647 (N49-853) and anti-CD3 Qdot 605
(UCHT1; Invitrogen). Ki67 is a nuclear protein expressed
during active phases of the cell cycle, but absent in resting
cells, making it a useful marker of proliferation [34].

PMA and ionomycin were used to assess the capacity of
antigen-specific T cells to produce cytokine by restimu-
lating cells for the last 4 h of culture. However, PMA and
ionomycin strongly downregulate the surface expression
of CD4þ on T cells; therefore, the CD3þ CD8� T-cell
subset was used in place of the CD4þT-cell subset. CD8�

T cells are subsequently considered equivalent to CD4þ

T cells, consistent with previous publications [33,35].

Multiparameter flow cytometry and controls
A BD LSRFortessa Flow Cytometer (model 649225B7;
five lasers, 19 detectors) using FACSDiva software (BD
Biosciences) was used to acquire the entire sample. Optimal
photomultiplier tube voltages were established for this
study. Single-stained antimouse or antirat beads immuno-
globulin, k, beads were used to calculate compensation in
FACSDiva. Dead cells were excluded using viability stain.

Multiparameter flow cytometry data analysis
Data were analysed using FlowJo v 9.4.11 (TreeStar,
Ashland, Oregon, USA) by a single operator using a
predetermined gating strategy and template (see figure,
Supplemental Digital Content 2, http://links.lww.com/
QAD/A614). Boolean gating was used to determine
combinations of antigen-specific cytokine-producing
cells. Background subtraction was performed using Pestle
v 1.7 (VRC, NIH) and display of multiple combination of
cells was performed using SPICE v 5.22 [36]. Samples were
excluded from analysis if therewas no distinct population of
live cells or contained less than 1000 live CD3þ T cells.

Multiplex analysis
Customized plates (MILLIPLEX MAP; Millipore, Bill-
erica, Massachusetts, USA) were used to quantify 20
cytokines and chemokines in supernatants collected after
24 h of culture (Supplemental Digital Content 3, http://
links.lww.com/QAD/A614) following manufacturer’s
instructions. Beads were analysed on a Bio-Plex array
reader (Bio-Rad, Hercules, California, USA). The
standard curve for all analytes ranged from 3.2 to
10 000 pg/ml. Unstimulated sample values were sub-
tracted from stimulated sample values. Values less than the
lower limit of detection of the assay were assigned a value
of 1.6 pg/ml and values greater than the upper limit were
assigned a value of 10 000 pg/ml.

Statistical analysis
Statistical analysis was performed using SPSS (version 20),
GraphPad Prism (version 5.0a, 2008) and Statistica (v10).
A two-way analysis of variance (ANOVA) or Kruskal–
Wallis test was used to test the interaction of maternal
HIV and QFN status with frequencies of specific T cells.
Bonferroni adjustment was applied to correct for multiple
comparisons; the corrected P value is reported. A mixed
ANOVA was used to analyse paired infant responses.
Multiplex data was analysed using a three-way repeated
measures ANOVA with mixed models or a generalized
estimating equations (GEEs) model, depending on the
distribution of data. Spearman’s rank order correlation
was used to assess the association of maternal and infant
immune responses.
Results

Participant characteristics
One hundred and nine mother–infant pairs were
enrolled, of which 47 women (43%) were HIV-infected
and 62 (57%) HIV-uninfected. Of this cohort, 95 infants
(87%) were followed up to 16 weeks of age (Supplemental
Digital Content 1, http://links.lww.com/QAD/A614).
Of these, 39 infants (41%) were HIV-exposed and 56 (59%)
were HIV-unexposed. One infant (1%) was found to be
HIV-infected at 4 weeks of age and was referred for rapid
initiation of antiretroviral treatment (mother–infant pair
subsequently excluded from analysis). There was no
significant difference in gestation and birth weight between
HIV-exposed and unexposed infants (Supplemental
Digital Content 4, http://links.lww.com/QAD/A614).

The mean CD4þ cell count among HIV-infected women
was 474 cells/ml (SD 252); the median viral load was
730 copies/ml [interquartile range (IQR) 357–3925].
Antenatal zidovudine or HAART was received by 41
(89%) women; 30 (65%) women received intrapartum
nevirapine or HAART.

Data were analysed in four groups, according to maternal
HIV and Mtb sensitization status: HIV–QFN– (n¼ 27),
HIV–QFNþ (n¼ 35), HIVþQFN– (n¼ 25) and HIVþ
QFNþ (n¼ 20). One HIV-infected mother had an
indeterminate QFN result; maternal and infant data were
used when considering the effect of HIV status alone, but
not when analysing all four groups.

In-utero HIV exposure affected T-cell subsets in
newborn infants; however, overall
mycobacteria-specific proliferative T-cell
responses were unaffected by HIV-exposure or
maternal Mycobacterium tuberculosis
sensitization
There were no differences in the frequency of BCG-
specific Ki67þCD4þ or CD8þ T cells between the four
groups of infants at birth (P¼0.25 and P¼0.73), or in the
total expression of intracellular cytokines in these cells
between the four groups of infants (see table, Supplemental
Digital Content 5, http://links.lww.com/QAD/A614).
However, some differences were observed amongst
T-cell subsets. At birth, HIV-exposed, uninfected infants
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displayed increased frequencies of BCG-specific TNF-a
single-positive Ki67þCD4þ T cells (median¼ 0.34%,
IQR 0.17–1.89), compared with infants born to HIV-
uninfected mothers (median¼ 0.12%, IQR 0.00–0.49),
P¼0.04. Exposed infants also showed an increased
frequency of BCG-specific Ki67þCD4þ IFN-gþTNF-
aþ T cells compared with unexposed infants (median
0.2%, IQR 0.04–0.99 vs. 0.00%, IQR 0.00–0.08),
P¼0.007. Frequencies of TNF-a single-positive CD8þ

T cells (0.17, IQR 0.00–0.99) were increased in HIV-
exposed infants compared with undetectable frequencies in
unexposed infants, P¼0.007. IL-2 single-positive CD8þ

T cells were increased in HIV-exposed compared with
unexposed infants (0.25%, IQR 0.09–0.96 vs. 0.11%,
IQR 0.00–0.89, P¼0.007).

Consistent with the results from flow cytometric data, in-
utero HIV exposure and maternal Mtb sensitization were
also associated with significant differences in BCG-
specific secreted cytokines and chemokines. At birth,
HIV-exposed, uninfected infants had significantly higher
concentrations of TNF-a in response to BCG antigens
than unexposed infants (P¼0.03). When comparing the
four groups of infants, maternal HIV infection only had
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an effect on infant TNF-a and granulocyte macrophage
colony-stimulating factor responses in the presence of
maternal Mtb sensitization (Fig. 1). A higher IFN-g
concentration to BCG antigens was also seen in HIV-
unexposed infants born to Mtb-sensitized mothers than
HIV-exposed infants born to Mtb-unsensitized mothers
(Fig. 1). Maternal Mtb sensitization was associated with
higher sCD40L responses to BCG antigens in HIV-
unexposed, but not in HIV-exposed infants (Fig. 1).
Positive association between some
mycobacteria-specific responses in mothers and
their infants at birth
We used identical immunological assays to determine
association between maternal HIV infection and Mtb
sensitization with maternal responses to BCG antigens at
delivery. Amongst HIV-infected women, Mtb-sensitized
participants had higher frequencies of BCG-specific
CD4þ and CD8þ Ki67þ T cells than Mtb-unsensitized
women (Fig. 2). Mtb-sensitized, HIV-infected women
also had significantly higher frequencies of BCG-specific
proliferating CD4þ T cells expressing IFN-g, TNF-a
and IL-2 than Mtb-unsensitized, HIV-infected women
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Fig. 2. Maternal T-cell responses to BCG antigens. CD4þ (a) and CD8þ (b) T cell proliferation in response to bacille Calmette-
Guérin stimulation and frequencies of BCG-specific CD4þ Ki67þ T cells expressing IFN-g (c), TNF-a (d), IL-2 (e) or IL-17 (f) in
women at delivery. Groups of mothers: HIV–QFN– (n¼22, n¼18 for IL-17); HIV–QFNþ (n¼31, n¼ 25 for IL-17); HIVþQFN�
(n¼20, n¼18 for IL-17) and HIVþ QFNþ (n¼ 20, n¼ 19 for IL-17). Square root transformed data are presented in (a) and (b);
horizontal lines represent mean response. Only comparisons with adjusted P<0.05 are given.
(Fig. 2). In agreement with these findings, the concentration
of IFN-g in BCG-stimulated cell culture supernatants was
also significantly higher in Mtb-sensitized than Mtb-
unsensitized women (Fig. 3). Interestingly, such differences
were not observed amongst HIV-uninfected women. In
addition, the frequency of CD8þ T cells expressing TNF-a
(P¼0.006), IL-2 (P¼0.03) and IL-17 (P¼0.01) differed
significantlybetween the four maternal groups, Supplemental
Digital Content 6 (http://links.lww.com/QAD/A614).

We then correlated the maternal responses with paired
infant responses. In the presence of maternal Mtb
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sensitization, frequencies of maternal and newborn infant
BCG-specific proliferating CD4þ T cells were positively
correlated, rs¼0.43, P¼0.03; however, no association
was observed in the absence of maternal Mtb sensitization,
rs¼0.02, P¼0.92. This association did not persist
following infant BCG vaccination. Moreover, at birth,
the frequency of BCG-specific Ki67þCD4þ and CD8þ

IL-2þT cells was associated with the frequencyof the same
cells in mothers (Table 1). At 16 weeks, this correlation
persisted in the CD8þ, but not the CD4þ compartment,
and association was strongest in HIV-infected, Mtb-
sensitized mothers and their infants, rs¼0.65, P¼0.01.
Maternal and newborn infant CD4þKi67þ TNF-aþ T-
cell frequencies were also positively correlated; this
association was strongest in the context of maternal Mtb
sensitization, but it did not persist at 16 weeks of age. An
Table 1. Association between maternal and infant bacille Calmette-Guérin

CD4þKi67þ

Group IFN-gþ IL-2þ TNF-a

Overall cohort (n¼49) rs 0.27 0.49 0.39
P 0.07 <0.0005 0.006

HIV-negative (n¼32) rs 0.29 0.53 0.43
P 0.11 0.002 0.02

HIV-positive (n¼17) rs 0.25 0.37 0.30
P 0.33 0.14 0.24

QFN� (n¼22) rs �0.05 0.45 0.02
P 0.84 0.03 0.93

QFNþ (n¼26) rs 0.32 0.49 0.52
P 0.11 0.01 0.007

HIV–QFN� (n¼14) rs �0.05 0.56 0.20
P 0.88 0.04 0.49

HIV–QFNþ (n¼18) rs 0.44 0.49 0.56
P 0.07 0.04 0.02

HIVþ QFN� (n¼8) rs �0.10 0.17 �0.12
P 0.81 0.70 0.78

HIVþ QFNþ (n¼8) rs �0.23 �0.17 �0.10
P 0.59 0.69 0.82

Data were square root transformed and analysed using Spearman’s rank orde
in bold. IFN-g, interferon-gamma; IL, interleukin; TNF-a, tumour necrosis
association of maternal and infant TNF-a concentration
was also observed at birth and persisted in 16-week-old
infants born to HIV-uninfected, Mtb-sensitized mothers,
rs¼0.43, P¼0.01 (Supplemental Digital Content 7,
http://links.lww.com/QAD/A614). Further strong
associations between concentrations of maternal and
newborn infant cytokines (IL-1b, IL-1Ra, IL-6 and IL-
10) were observed (Supplemental Digital Content 7,
http://links.lww.com/QAD/A614).

Responses to bacille Calmette-Guérin
vaccination in infants at 16 weeks of age were
robust and independent of maternal HIV or
Mycobacterium tuberculosis status
In order to determine the potential impact of infant
responses at birth on the subsequent immunogenicity of
specific CD4R and CD8R Ki67R cytokineR T-cell frequencies at birth.

CD8þKi67þ

þ IL-17þ IFN-gþ IL-2þ TNF-aþ IL-17þ

0.23 0.14 0.45 0.22 �0.17
0.15 0.36 0.001 0.13 0.29
0.28 0.37 0.50 0.12 �0.03
0.16 0.04 0.004 0.66 0.88
0.06 �0.18 0.29 0.30 �0.42
0.85 0.49 0.26 0.09 0.16
�0.14 �0.24 0.44 �0.24 �0.32

0.60 0.28 0.04 0.28 0.23
0.48 0.36 0.50 0.47 �0.10
0.02 0.07 0.01 0.02 0.65
�0.08 0.02 0.58 �0.12 �0.22

0.82 0.94 0.03 0.70 0.54
0.52 0.59 0.44 0.55 0.09
0.31 0.01 0.06 0.02 0.74
�0.22 �0.40 0.00 �0.51 �0.48

0.68 0.33 1.00 0.20 0.33
0.25 0.19 0.63 0.04 �0.70
0.59 0.65 0.09 0.93 0.08

r correlation, P<0.05 were considered significant and are highlighted
factor-alpha.
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delayed BCG vaccination at 6 weeks of age, identical
assays were repeated in infants at 16 weeks of age.

BCG vaccination induced strong immune responses in all
infants: there was a significant increase in the frequency of
CD4þKi67þ T cells in infants following vaccination (mean
36.84%, SD 3.50) compared with prevaccination (mean
3.35%, SD 1.5), P<0.0005. CD8þKi67þ T cells also
significantly increased (mean prevaccination 2.19%, SD 1.18,
mean postvaccination 10.18% SD 1.80), P<0.0005.
Similarly, post-BCGvaccination, therewas ahighly significant
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for CD8þ IL-17þ T cells). The expansion of these cells was
similar for all infants, with no statistically significant
differences between groups of infants (Supplemental
Digital Content 8, http://links.lww.com/QAD/A614).
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of maternal HIV infection or Mtb sensitization on the
frequency of BCG-specific proliferating CD4þ T cells
expressing intracellular IFN-g, TNF-a, IL-2 or IL-17,
Fig. 4, or CD8þ T cells expressing intracellular IFN-g
(P¼0.77), TNF-a (P¼0.83), IL-2 (P¼0.37) or IL-17
(P¼0.20), see figure, Supplemental Digital Content 9,
http://links.lww.com/QAD/A614.

We examined the quality of the CD4þ proliferative
response to BCG antigens by examining distinct
functional populations. The distribution of these cells
were similar amongst infants, irrespective of maternal
HIV (P¼0.26) or Mtb sensitization status (P¼0.76),
Supplemental Digital Content 10, http://links.lww.com/
QAD/A614. BCG-specific IL-2þ CD8þ T cells con-
tributed a very small proportion of the overall response;
however, the frequency was significantly different
between the four groups of infants, P¼0.005. HIV-
unexposed infants had higher frequencies of these cells
(median¼ 0.18%, IQR 0.09–0.73) than HIV-exposed
infants, (median¼ 0.04%, IQR 0.00–0.19, P¼0.002).
Infants born to Mtb-sensitized mothers (median¼ 0.18%,
IQR 0.03–0.70) also had an increased frequency of these
cells compared with infants born to unsensitized mothers
(median¼ 0.05%, IQR 0.00–0.16), P¼0.02.

Following BCG vaccination at 6 weeks of age, there were
no differences in the cytokines or chemokines detectable
in cell culture supernatants amongst any group of infants,
and there was no significant effect of maternal HIVor Mtb
sensitization alone or in combination (data not shown).
Discussion

Our study is the first to investigate the effects of both
maternal HIV infection and Mtb sensitization on BCG-
induced immune responses in mother–infant pairs.
Despite the differences in T cell responses between
HIV-infected and HIV-uninfected mothers and some
differences in their infants at birth, immune responses
following BCG vaccination were strikingly similar
amongst all infants by 16 weeks of age. This implies
that HIV-exposed and unexposed infants have the same
potential to respond to BCG immunization at 6 weeks of
age, irrespective of maternal Mtb sensitization, and are as
likely to benefit from vaccination. Given the high risk of
Mtb exposure early in life in HIV-exposed infants, this is
an important finding [11,37].

There is compelling evidence that foetal HIV-exposure
can ‘prime’ the developing immune system resulting in a
more activated and mature immunophenotype [13–
16,19,38–40]. It has been postulated that HIV-exposed,
uninfected infants may therefore be more responsive to
unrelated antigens [27]. A previously unexplored
hypothesis is that sensitization to mycobacteria in utero
might ‘prime’ the immune system such that infants have
recall responses to mycobacterial antigens after birth. In
mice, it has been shown that Mtb can prime the foetal
immune system, but this had not previously been
explored in humans [41].

In our cohort, we did not observe any effect of HIV
exposure or maternal Mtb sensitization on T-cell
proliferation or total intracellular expression of cytokine
in response to BCG antigens in newborn infants.
However, there were some differences in frequencies
of subsets of proliferating T cells expressing TNF-a IFN-
g, IL-2 in various combinations. These results were
corroborated by results of secreted cytokines. It seems
therefore that exposure to HIV in utero may prime specific
aspects of the response to mycobacterial antigens at birth
and that maternal Mtb sensitization can modulate this to
some extent. The underlying mechanisms for this are not
clear but could include HIVor Mtb antigen, and maternal
cells or antigen-loaded microvesicles might traverse the
placental barrier; alternatively, maternal cytokines or
chemokines may cross the placenta and influence the
immunological milieu of the developing foetus. In
support of this, we observed correlations between
maternal and infant cellular and cytokine responses to
mycobacterial antigens at birth, a few of which persisted
to 16 weeks of age.

In addition to infant responses, we measured paired
maternal mycobacterial responses in order to explore
possible reasons for the differences in infant immune
responses at birth. We showed that HIV-infected mothers
demonstrate significant differences in responses to BCG
antigens dependent on prior Mtb sensitization; this effect
was not observed amongst HIV-uninfected women,
which was somewhat surprising. A potential explanation
is that memory responses to BCG are severely impaired in
HIV-infected women, but boosting occurs though cross-
priming of BCG memory cells by Mtb [42]. It has been
established that central memory T-cell responses to
childhood vaccines are lost early in the course of adult
HIV infection and remain severely impaired [43,44]. In
contrast, vaccine recall responses are detectable for many
years in HIV-uninfected individuals [44,45]. We speculate
that in HIV-uninfected women, the pool of memory cells
induced by childhood BCG vaccination is maintained
and cross-priming by Mtb does not increase this
population of BCG memory cells further. Experiments
analysing the differential responses between BCG and
Mtb-specific antigens would be required to investigate
this hypothesis.

Participating HIV-infected women were more likely to
reside in an informal housing structure than HIV-
uninfected women. This alludes to additional socio-
economic disadvantage in this group and suggests that
there are likely to be unmeasured differences between the
groups of women, for example in diet, maternal
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microbiome and microbial exposure that might act as
potential confounders. Most relevant is Mtb exposure; we
used the QFN test to determine Mtb sensitization and
repeated clinical screening of mothers and infants to
exclude TB disease. However, given the factors discussed,
the intensity of exposure might be different in the
different groups.

An important strength of our study was the measurement
of infant responses to mycobacterial antigen pre and post-
BCG vaccination in order to ascertain whether differen-
tially affected immune responses at birth affect vaccine
immunogenicity. Our data show that BCG vaccination is
associated with a substantial increase in BCG-specific
T-cell proliferation and intracellular cytokine expression,
independent of HIV exposure and maternal Mtb sensit-
ization. There are few studies that have examined antigen-
specific responses pre and post-BCG vaccination in infants
exposed to HIV in utero and none that have addressed
whether maternal Mtb infection can additionally alter this
response. In a different study setting, using different
methodology, Van Rie et al. [27] found that the pattern of
change in secreted IFN-g response to BCG vaccination
was altered in some, but not all, HIV-exposed, uninfected
infants, in contrast to our own results.

Following BCG vaccination, we found no difference in the
frequency of proliferating T cells, the expression of
intracellular cytokines or the concentration of secreted
cytokines between infants. However, HIV-exposed,
uninfected infants and infants born to Mtb-sensitized
mothers had significantly higher frequencies of BCG-
specific IL-2 single-positive CD8þ T cells than HIV-
unexposed infants. Although this small subset of CD8þ T
cells may not have any relevance for the protection afforded
by the BCG vaccine, these cells may reflect infant antigenic
CD8þ ‘memory’. Interestingly, an association between
maternal and infant CD8þ IL-2þ T cells was still observed
at 16 weeks postdelivery, particularly amongst infants born
to Mtb-sensitized mothers.

Mansoor et al. [46] also reported comparable BCG
immunogenicity in HIV-exposed and unexposed infants.
In contrast to the short-term stimulation assay used in
their laboratory, we utilized a 6-day proliferation assay to
assess central memory responses, which are thought to be
critical for long-term vaccine-induced protection [47].
Our data are also consistent with a study from Uganda,
which showed no difference in secreted cytokines in
response to mycobacterial antigens amongst BCG-
vaccinated infants, irrespective of maternal HIV status
[48]. Another study from Malawi found a tendency
towards reduced proliferative capacity in response to
purified protein derivative, but similar responses to BCG
antigens in HIV-exposed, uninfected infants compared
with HIV-unexposed infants [14]. Mazzola et al. [49],
however, reported a higher proportion of proliferating
CD4þ T cells and lower proportion of gdþ cells in
HIV-exposed infants than unexposed infants. Unlike our
study, none of these studies also assessed the impact of
maternal Mtb sensitization on infant BCG responses.

We have previously reported that concentrations of
specific antibody are influenced by in-utero HIV-
exposure, but that antibody responses to non-BCG
vaccines were unaffected [31]. Our findings of cellular
immune responses to BCG vaccination reported here
mirror these observations.

A limitation of our study was enrolment of modest
numbers of mother–infant pairs at a single centre.
Enrolment was consecutive and representative of the
women delivering at the community health facility, but
the cohort may not be representative of other areas of the
resource-poor world. We were unable to correlate BCG-
induced responses with protection against TB, which
would require very large cohorts, making the detailed
immunological studies challenging.

In summary, despite the effect of maternal HIV and Mtb
sensitization on maternal mycobacteria-specific responses
and infant responses at birth, our data suggest that
HIV-exposed infants have the same potential to respond
to BCG immunization administered at 6 weeks of age as
HIV-unexposed infants and are therefore as likely to
benefit from this vaccine.
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vaccine in HIV-uninfected infants. Immunology 2010;
129:446–454.

15. Nielsen SD, Jeppesen DL, Kolte L, Clark DR, Sørensen TU,
Dreves AM, et al. Impaired progenitor cell function in HIV-
negative infants of HIV-positive mothers results in decreased
thymic output and low CD4 counts. Blood 2001; 98:398–404.

16. Rich KC, Siegel JN, Jennings C, Rydman RJ, Landay AL. Function
and phenotype of immature CD4R lymphocytes in healthy
infants and early lymphocyte activation in uninfected infants of
human immunodeficiency virus-infected mothers. Clin Diagn
Lab Immunol 1997; 4:358–361.
17. Embree J, Bwayo J, Nagelkerke N, Njenga S, Nyange P, Ndinya-
Achola J, et al. Lymphocyte subsets in human immunodefi-
ciency virus type 1-infected and uninfected children in Nair-
obi. Pediatr Infect Dis J 2001; 20:397–403.

18. Borges-Almeida E, Milanez HM, Vilela MMS, Cunha FG,
Abramczuk BM, Reis-Alves SC, et al. The impact of maternal
HIV infection on cord blood lymphocyte subsets and cytokine
profile in exposed noninfected newborns. BMC Infect Dis
2011; 11:38.

19. Ono E, Nunes dos Santos AM, de Menezes Succi RC, Machado
DM, de Angelis DSA, Salomão R, et al. Imbalance of naive and
memory T lymphocytes with sustained high cellular activation
during the first year of life from uninfected children born to
HIV-1-infected mothers on HAART. Braz J Med Biol Res 2008;
41:700–708.

20. Velilla PA, Montoya CJ, Hoyos A, Moreno ME, Chougnet C,
Rugeles MT. Effect of intrauterine HIV-1 exposure on the
frequency and function of uninfected newborns’ dendritic
cells. Clin Immunol 2008; 126:243–250.

21. Chougnet C, Kovacs A, Baker R, Mueller BU, Luban NL,
Liewehr DJ, et al. Influence of human immunodeficiency
virus-infected maternal environment on development of infant
interleukin-12 production. J Infect Dis 2000; 181:1590–1597.

22. Kuhn L, Coutsoudis A, Moodley D, Mngqundaniso N, Trabat-
toni D, Shearer GM, et al. Interferon-gamma and interleukin-10
production among HIV-1-infected and uninfected infants of
HIV-1-infected mothers. Pediatr Res 2001; 50:412–416.
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