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Abstract

This paper summarises key advances and priorities since the 2011 presentation of the

Malaria Eradication Research Agenda (malERA), with a focus on the combinations of inter-

vention tools and strategies for elimination and their evaluation using modelling approaches.

With an increasing number of countries embarking on malaria elimination programmes,

national and local decisions to select combinations of tools and deployment strategies

directed at malaria elimination must address rapidly changing transmission patterns across

diverse geographic areas. However, not all of these approaches can be systematically eval-

uated in the field. Thus, there is potential for modelling to investigate appropriate ‘packages’

of combined interventions that include various forms of vector control, case management,

surveillance, and population-based approaches for different settings, particularly at lower

transmission levels. Modelling can help prioritise which intervention packages should be

tested in field studies, suggest which intervention package should be used at a particular

level or stratum of transmission intensity, estimate the risk of resurgence when scaling down

specific interventions after local transmission is interrupted, and evaluate the risk and impact

of parasite drug resistance and vector insecticide resistance. However, modelling interven-

tion package deployment against a heterogeneous transmission background is a challenge.

Further validation of malaria models should be pursued through an iterative process,

whereby field data collected with the deployment of intervention packages is used to refine

models and make them progressively more relevant for assessing and predicting elimination

outcomes.

Summary points

• Since 2011, there have been significant improvements in the development, organisation,

and infrastructure of country programmes for malaria control and elimination globally.

This has included the increasing use of combinations of interventions against the mos-

quito vector and the parasite in humans to reduce transmission in large and expanding
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geographies and populations and an adaptation of these interventions as transmission is

progressively reduced.

• Similarly, there has been substantial improvement in the sophistication and field valida-

tion of malaria transmission models and their ability to describe and predict the effects

of ecologic changes and the impact of specific interventions. These advances permit the

investigation and comparison of multiple complementary interventions in elimination

settings.

• There is an increasing need to combine interventions into ‘packages’ that can be tailored

to specific settings based on the characteristics of their transmission dynamics and epi-

demiology (landscape stratification). The challenge is to identify the complementary

components of each intervention package and establish the triggers and thresholds for

their deployment (or withdrawal) throughout the elimination process, including main-

taining elimination once transmission has been interrupted.

Introduction

In 2011, the Malaria Elimination Research Agenda (malERA) made recommendations for

how mathematical modelling efforts could best inform policy and guide research for specific

intervention tools for elimination—diagnostics, drugs, vector control, and vaccines [1]. Since

then, experience with malaria intervention tools has grown, and the toolbox has expanded

with new drugs, new insecticides, better diagnostics, and a first vaccine [2]. As more countries

seek elimination, grouping tools to best address diverse and changing transmission intensity

has become a central issue. Some tools are oriented primarily towards reducing disease bur-

den, e.g., seasonal malaria chemoprevention; others are dedicated to reducing transmission,

e.g., drug-based population-wide parasite clearance; and some meet both of these objectives,

e.g., vector control. Thus, not all tools will contribute equally to malaria elimination, and the

timing and duration of their use must adapt as programmes progress.

This paper summarises progress since the initial malERA publication regarding transmis-

sion-aligned ‘elimination tool packages’ and deployment strategies and opportunities for mod-

els to help inform and prioritise intervention choices. The findings come from an extensive

literature review of published and unpublished materials and the deliberations of the 2015

malERA Refresh Consultative Panel on Combination Interventions and Modelling, which

includes specialists from malaria modelling, field researchers, and National Malarial Control

Programme (NMCP) representatives [3].

Methods

The findings presented in this paper result from an extensive literature review of published

and unpublished materials and the deliberations of the 2015 malERA Refresh Consultative

Panel on Combination Interventions and Modelling. Electronic databases were systematically

searched for published literature from 1 January 2010 until 1 August 2015, without language

limitations. The websites of the institutions that apply modelling techniques to malaria

research questions and the MESA Track database of current research projects relevant to

malaria elimination were systematically searched to identify pertinent ongoing research.

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002453 November 30, 2017 2 / 27

and the Wellcome-Trust Major Overseas

Programme in SE Asia.

Abbreviations: ACT, artemisinin-based

combination therapy; ESP, Elimination Scenario

Planning; fMDA, focal mass drug administration;

IRS, indoor residual spraying; LLIN, long-lasting

insecticidal bed net; malERA, Malaria Eradication

Research Agenda; MDA, mass drug administration;

MSAT, mass screening and treatment; NMCP,

National Malarial Control Programme; WHO, World

Health Organization.

Provenance: Submitted as part of a Supplement;

externally peer reviewed.

https://doi.org/10.1371/journal.pmed.1002453


Panellists were invited to recommend additional literature and additional ongoing research

projects. The comprehensive search for literature and ongoing research provided the basis for

launching the second step.

A 2-day workshop was held with the majority of the panel members, including specialists

from malaria modelling, field researchers, and NMCP representatives. The panel broke into 2

working groups to identify the issues in combining interventions and how mathematical

modelling could be applied to these problems. Each group fed back to a plenary session in

which further robust discussions and input occurred. This helped refine the opportunities and

gap areas in which research is needed. The final findings were arrived at with inputs from all

panellists and several iterations of the manuscript.

Intervention packages to achieve elimination

Over the past 5 years, regardless of initial local transmission levels, most countries have contin-

ued to reduce the clinical burden of malaria and transmission [4]. The World Health Organi-

zation (WHO) recently published its Global Technical Strategy (GTS) for Malaria 2016–2030

(Fig 1) [5]. This builds on the core activities of vector control, case management, and surveil-

lance, with additional interventions to accelerate progress to elimination. In the GTS, for the

first time, modelling studies were used to support goal setting [5].

The malERA Refresh Consultative Panel on Combination Interventions and Modelling

approach encompassed the full spectrum of malaria transmission—addressing emerging pro-

grammatic aims and combining into ‘packages’ the available tools and strategies directed

towards malaria elimination (Fig 2). As transmission is reduced to very low levels, the inter-

vention packages must adapt to increasingly focal and heterogeneous populations, in which

infections are rare. Given the extensive range of available tools and the diversity/heterogeneity

of transmission settings, it becomes difficult to field test all possible intervention packages.

Models can assist the prioritisation and design of clinical trials and in the choice of an inter-

vention package to achieve their desired goals.

Progress in combination interventions and modelling

Initial malERA recommendations for a research and development agenda in mathematical

modelling are shown in Box 1 [1]. Subsequently, the scope and depth of research has expanded

to include diverse vector control strategies, complex diagnostics, drug and vaccine dynamics,

and deployment strategies. Additionally, infection models have advanced following incorpo-

ration of new field trial data, particularly regarding mass drug administration (MDA) and spe-

cific aspects of vector control, providing greater plausibility to model predictions.

The interface between modelling and implementation has not developed as was perhaps

envisaged, in terms of appropriate portals to allow ’end users’ access to relevant software and

explore the effect of varying conditions on the ideal choice of control measures. However, the

development, organisation, and infrastructure of malaria modelling has improved (Box 2),

and recent efforts include an expansion of open-access data and software [6–13]. Also, model-

ling has been incorporated at the policy level within WHO [5] and included in planning tools

for malaria elimination [14]. Wider implementation is possibly now dependent upon the

development of next-generation models that sufficiently address combination interventions

against a background of heterogeneity and low transmission as more countries move towards

elimination.

These advances are complemented by discoveries in basic science, large field trials of new

and existing interventions, and substantial data gathering efforts that provide the raw evidence

to further validate models. A number of recent reports used models to address the role of
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multiple complementary interventions (Table 1) [15–35], and additional field trials are ongo-

ing (Table 2) [29].

Consensus modelling

In consensus modelling, independent modelling groups examine the same research question,

sometimes using the same source dataset to parameterise their model. Through objective com-

parison and critique, modelling groups have reached a degree of consensus on important

issues, such as the relationship between health burden and transmission intensity [6], and have

undertaken an in-depth analysis for the RTS,S vaccine [36]. Such efforts are resource intensive

but may give robust answers incorporating the breadth of uncertainty in our understanding.

There is also value in less intensive forms of model comparison in which common findings

from work conducted independently are assessed (Table 3) [9,18,21,23,24,28,30–32,35,37–58].

This approach can also be particularly useful for identifying areas in which there is a lack of

consensus, as this can focus efforts on further model development, basic science, and field data

collection needs.

Fig 1. Schematic of the pillars and supporting elements of the World Health Organization (WHO) Global Technical Strategy for

Malaria 2016–2030 (source: WHO, 2015) [5].

https://doi.org/10.1371/journal.pmed.1002453.g001
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Fig 2. An example of the role of modelling across the spectrum of malaria elimination. Note that the measures of transmission are based on

sub-Saharan Africa, and other constructs and transmission levels may be relevant in different geographical areas. Malaria transmission intensity

measures and the relationship entomologic inoculation rate for Plasmodium falciparum from very high to zero transmission are adapted from data

presented in [6]; personal communication from D. Smith and P. Gething. Zero refers to no locally transmitted cases of malaria infection; imported

infections may be identified. Intervention package components and sequencing will depend on transmission intensity at the start of the elimination

programme, the speed at which transmission declines, and the underlying typology (i.e., malaria epidemiology, species, vector ecology, and health
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Next steps for combination interventions and modelling in malaria

elimination

Fig 2 provides an example of how transmission strata, programmatic aims, the choices of interven-

tion packages, and the iterative development between modelling and programme choices change

together as malaria transmission intensity is progressively reduced towards zero, summarizing key

opportunities and identifying challenges. Note that not all countries will start from high transmis-

sion levels and that the measures of transmission used in Fig 2 are based on sub-Saharan Africa.

Thus, other constructs and transmission levels may be relevant in different geographical areas.

Opportunities

Combination intervention modelling

There has been considerable progress in modelling combination interventions. Models have

been developed to examine the overall expected impact of diagnostic, drug, vaccine, and vector

system factors). EIR, entomologic inoculation rate: average number of infectious mosquito bites per person per year; N.B. the table is organised by

log differences in the EIR, and other measures are aligned (approximated) based on these entomologic measures. PfPR, P. falciparum parasite

rate: proportion of people with a current infection with P. falciparum—typically determined by a population-based survey and often timed to a

specific interval of the transmission season. API, annual parasite index: number of confirmed malaria cases per 1,000 population per year. Cases,

cases per health facility per week: average number of confirmed malaria cases expected to present on an average week to a health facility serving a

population of 5,000 people. Because many infections can be asymptomatic at any point in time (and thus not present to health services), the

proportion of asymptomatic individuals varies with transmission intensity, and because most transmission is seasonal, these average estimates

may vary substantially by location and season.

https://doi.org/10.1371/journal.pmed.1002453.g002

Box 1. 2011 malERA research agenda for modelling to support
malaria elimination.

Further development of models and model systems:

• Within-host dynamics of Plasmodium infections

• The human infectious reservoir

• Bionomics and ecology of the vectors

• Dynamics of the stimulation and decay of human immunity across a range of trans-

mission settings

• Heterogeneities in host, vector, and parasite dynamics

• Heterogeneities in host and vector movements

• Drug pharmacokinetics/pharmacodynamics

• Vaccines that interrupt malaria transmission

• Ecology of genetically modified mosquitoes

• Development and impact of drug and pesticide resistance

• Integration of health system attributes and linking to microeconomic outputs
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control intervention combinations, including cost-effectiveness [16,18–20,24,48,57,59–62],

and comparing interventions added to the backbone of standard measures [21–23,25–

27,30,36,63,64]. Modelling studies have investigated the applications of several new potential

interventions such as the RTS,S vaccine [36], ivermectin [19,54], mosquito traps [17], and

next-generation diagnostics [25,33,65,66] and have highlighted critical attributes of new prod-

ucts, such as a preerythrocytic vaccine [20,67–69], genetically modified mosquitos [70–72],

and combinations of future interventions [73].

Models are designed to allow scale-up and scale-down of interventions over time. The next

step is to define the epidemiological information that would be most informative for making

such dynamic changes and the triggers for switching or scaling. The aim is to develop a set of

rules that define the characteristics of transmission that can direct specific changes in the compo-

sition and phasing of intervention packages and their targeting to specific locations and popula-

tions. These predictions can then be evaluated with further evidence from specific field trials. If

reliable, such measures could be used in the subnational stratification of intervention packages.

Accelerating community clearance of malaria parasites. One hypothesis being tested in

various settings is the potential to accelerate elimination by targeting the human parasite reser-

voir (symptomatic and asymptomatic) with time-limited deployment of community-based

interventions such as MDA or mass screening and treatment (MSAT) [74]. If the intervention

is justified, a wealth of modelling studies provides guidance on optimizing its deployment

Box 2. Recent advances in malaria modelling.

Communications:

• A growing number of modelling groups are working in a collaborative fashion

• Greater engagement between modellers, country programmes, and operational

research partners has helped refine the paramount research questions

Models:

• The development of model systems that are diverse but much improved in terms of

their incorporation of malaria biology and natural history, as well as validated esti-

mates for intervention effects, drug pharmacokinetics/ pharmacodynamics, and vac-

cine dynamics

• The development of models that allow the investigation of target product profiles for

new tools—for example, diagnostics, surveillance systems, and drugs

Infrastructure:

• Greater dissemination of malaria models at different levels of user-interface complex-

ity, through online hosting and open-source code repositories leading to wider access

to modelling information for programme implementers, planners, and policy decision

makers

• Improved means of compiling data and using common ontologies, frameworks, and

metadata standards with growing international databases of some measures of malaria

transmission, e.g., parasite rate surveys
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[15,18,28,32,33,41,53–55,57,75–79]. However, estimating the level of coverage required for

successful MDA is critical [53], and for MSAT, the sensitivity of the diagnostic tool is an addi-

tional key determinant of efficacy as the current tests may fail to detect low-level infections

[16,25].

Current models of MDA all include the parameters whereby immediately following MDA,

there is a dramatic drop in malaria prevalence, but in the absence of elimination, prevalence

returns to preintervention levels (albeit at different rates depending on the model) [53]. Coun-

try malaria programs are increasingly aware of this potential and have learned not to rely solely

on MDA to eliminate transmission; thus, MDA is an accelerator used to move to a next set of

interventions and strategies to find and clear the remaining transmission foci. The models

must now be adapted to include a next set of actions with the potential to end transmission,

i.e., MDA moving to focal MDA (fMDA) and other reactive strategies in households and

neighbourhoods with rare but remaining transmission [33,79,80]. In the field, these increas-

ingly infrequent actions will require robust local information systems as part of the interven-

tion, rather than models.

Non-falciparum species. Recent progress has been made in models considering non-fal-

ciparum parasites and vectors, though further work is needed [76,81–95]. To address the public

health and public engagement challenge of eliminating all human malaria species, multispecies

Table 1. Key modelling studies on combination interventions quarter 4 2010–quarter 1 2016, with the

main outcome indicated.

Multi-intervention combined

• Mass campaigns with antimalarial drugs are highly effective at interrupting transmission if deployed shortly

after ITN campaigns [15].

• Compared with untargeted approaches, selective targeting of hot spots with drug campaigns is an

ineffective tool for elimination because of limited sensitivity of available field diagnostics [16].

• High coverage with a combination of LLINs and attractive toxic sugar baits could result in substantial

reductions in malaria transmission [17].

• Mass treatment needs to be repeated or combined with other interventions for long-term impact in many

endemic settings [18].

• Including ivermectin in mass treatment strategies could be a useful adjunct to reduce and interrupt malaria

transmission [19].

• Preerythrocytic vaccines will have a maximum impact where bed net coverage has saturated, vector

feeding is primarily outdoors, and transmission is moderate to low [20].

Multi-intervention compared

• While adult killing methods can be highly effective under many circumstances, other vector control

methods are frequently required to fill effective coverage gaps [21].

• Adding vaccines to existing vector control efforts extends the ability to achieve elimination starting from

higher baseline transmission levels and with less favourable vector behaviour [22].

• Decreases in malaria transmission and burden can be accelerated over the next 15 years if the coverage

of key interventions is increased [23].

• Vector control plans should consider the spatial arrangement of any intervention package to ensure

effectiveness is maximised [24].

• The sensitivity of the diagnostic can play a part in increasing the chance of interrupting transmission [25].

• A failing partner drug will result in greater increases in malaria cases and morbidity than would be

observed from artemisinin resistance only [26].

• Selecting combinations of interventions that target different stages in the vector’s life cycle will result in

maximum reductions in mosquito density [27]

Multi-intervention: Cost-effectiveness

• In all the transmission settings considered, achieving a minimal level of ITN coverage is a ‘best buy’. At

low transmission, MSAT probably is not worth considering. Instead, MSAT may be suitable at medium to

high levels of transmission and at moderate ITN coverage [28].

ITN, insecticide-treated bed net; LLIN, long-lasting insecticidal bed net; MSAT, mass screening and

treatment.

https://doi.org/10.1371/journal.pmed.1002453.t001
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mathematical models that consider unified strategies and exploit the interactions between the

species for improved cost-effectiveness should be used [96]. Notably, where P. vivax is present,

the malaria programme might be sustained even as P. falciparum becomes rare and is elimi-

nated. However, different approaches to both surveillance and malaria interventions would be

required to reduce the P. vivax burden while detecting P. falciparum cases and preventing the

reestablishment of P. falciparum transmission.

Surveillance as an intervention

Surveillance is an intervention tool. When honed for elimination purposes, surveillance must

evolve to be able to discover evidence of transmission; establish its location, timing, nature,

Table 2. Ongoing field studies in combination interventions as reported on the MESA Track database

[29].

Vector control

• Combining indoor residual spraying and long-lasting insecticidal nets for malaria prevention: a cluster

randomised controlled trial in Ethiopia (Maltrials); Ethiopia (Sep 2014–Sep 2016); Addis Ababa University,

Ethiopia

• Integrated vector management: Interaction of larval control and indoor residual spraying on Anopheles

gambiae density and vectorial capacity for human malaria; Malaria Research and Training Center (MRTC),

University of Bamako, Mali

• IRS and LLIN: Integration of methods and insecticide mode of actions for control of African malaria

vector mosquitoes; Tanzania, United Republic of; Ifakara Health Institute (IHI), Swiss Tropical and Public

Health Institute (Swiss TPH)

• Cluster randomised trial of the impact of dual-insecticide treated nets vs. traditional LLINs on malaria

vectors and malaria epidemiology in 2 districts of Mali; Mali (Dec 2013–Dec 2014); Centers for Disease

Control and Prevention (CDC), United States

• The Majete Integrated Malaria Control Project (MMP): Community-based malaria control in the

perimeter of Majete Wildlife Reserve in Chikhwawa district using a Scale-Up-For-Impact (SUFI) strategy,

assessing complementary intervention options, including larval source management and house

improvement; Malawi (Jan 2014–Dec 2018); Wageningen University, Netherlands; University of

Amsterdam; College of medicine, University of Malawi; Liverpool School of Tropical Medicine

Case management and surveillance

• Routine case investigation and reactive case detection for malaria elimination in Richard-Toll District in

northern Senegal; Senegal (2012–2017); PATH MACEPA, National Malaria Control Programme (NMCP)

Senegal

Mass treatment

• The Haiti Malaria Elimination Consortium (HaMEC); Dominican Republic, Haiti (Feb 2015–2020);

Malaria Zero Consortium, US

• Assessing the effectiveness of household-level focal mass drug administration and community-wide

mass drug administration with dihydroartemisinin + piperaquine for reducing malaria parasite infection

prevalence and incidence in Southern Province Zambia; Zambia (2014–2016); PATH MACEPA, Tulane

University, Zambian National Malaria Control Centre

• Population parasite clearance to decrease malaria transmission in Amhara Region, Ethiopia: a pilot

study; Ethiopia (2014–2015); PATH MACEPA, Ministry of Health (MOH) Ethiopia

• Reduction of malaria parasitaemia and transmission in low to moderate seasonal transmission settings

(Kanel, Ranérou and Linguère) in Senegal: a pilot study; Senegal (2014–2015); PATH MACEPA, National

Malaria Control Programme (NMCP) Senegal

• Community reactive case detection versus reactive drug administration in malaria elimination areas: a

cluster randomised controlled trial; Zambia (2016–Dec 2017); Akros

• Assess the micro-epidemiology of resistant falciparum malaria in SE Asia and to perform and evaluate

an intervention with targeted chemo-elimination through a modified mass drug administration approach

(Cambodia, Myanmar, Thailand, Vietnam); Cambodia, Myanmar, Thailand, Vietnam (2014–Oct 2016);

Mahidol Oxford Tropical Medicine Research Unit (MORU)

• Evaluation of the impact of seasonal malaria chemoprevention delivered by district health services in

southern Senegal; Senegal (2013–2018); Cheikh Anta Diop University, Senegal

IRS, indoor residual spraying; LLIN, long-lasting insecticidal net; SE, Southeast.

https://doi.org/10.1371/journal.pmed.1002453.t002

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002453 November 30, 2017 9 / 27

https://doi.org/10.1371/journal.pmed.1002453.t002
https://doi.org/10.1371/journal.pmed.1002453


and causes; identify and eliminate residual foci; prevent, detect, and contain imported malaria;

and demonstrate the attainment and maintenance of zero malaria transmission [97]. As trans-

mission declines, modification of data collection and reporting systems requires substantial

investment and coordination across the malaria programmes and the surveillance manage-

ment unit. Designing the necessary flexibility into a surveillance system to allow for adaptation

to an elimination context will be critical.

There is an opportunity to use modelling to define the required components of surveillance

systems depending on the stage of the elimination programme. This requires quantification of

the detrimental effects of inaccurate, insufficient, or untimely surveillance and the beneficial

effects of adding new measures to the surveillance system [25]. Modelling could also be used to

Table 3. Consensus across multiple groups from modelling analyses conducted by each of the

Malaria Modelling Consortiuma groups, which assessed impact on malaria transmission of combin-

ing multiple interventions or multiple methods of using a single interventionb.

Vector control

• Achieving and maintaining high effective coverage of the population with LLINs is consistently predicted to

result in the greatest reduction in transmission in a variety of settings and in many cases enables other

interventions to become more effective and longer lasting [21,23,24,28,30,32,35,37–43,55].

• Other interventions such as IRS are also predicted to be effective and can even be more effective than

LLINs in specific settings, particularly if sustained and optimised through seasonal or spatial targeting

strategies [32,39,42].

• Vector control interventions that maximise killing of adult female mosquitoes are predicted to have the

greatest transmission reducing effect (as opposed to repellents or killing juveniles); however, the optimal

choice of intervention(s) will depend on both the specific bionomics of local vectors and the costs required

to reach high levels of effective coverage with each intervention [21,23,44–46].

Case management and surveillance

• Even before considering elimination, improving access to care has an important role to play in significantly

reducing deaths and severe disease [9,41,47–49].

• While differing considerably in magnitude, all the models agree that levels of access to treatment of

incident malaria cases and the delay in seeking treatment are 2 key measures that influence the endemicity

at baseline (no interventions) and, as such, determine the following:

� what scale of community-based programme will be required to achieve and maintain elimination

[28,30,32]

� what the risk will be of scaling back vector-based interventions post elimination [23,43,50,51]

Mass Treatment

• Short mass treatment campaigns will reduce the parasite reservoir—and consequently, transmission—in

the short term but will have no long-term benefits unless other interventions are scaled up at the same time

and then maintained [18,23,28,31,32,35,42,52–55].

• Treating a large proportion of the population in a single year in at least 1 round is a key determinant of

MDA effectiveness whether it is achieved through high coverage in a single round or through follow-up

rounds that reach new individuals [41,53,55–57]

• The addition of primaquine to MDA with long-lasting ACTs offers a small additional transmission reduction

in the majority of epidemiological settings [18,30–32,42,53,54,57,58].

• Due to the prophylactic effect of treatment, MDA will always be more effective than MSAT or fMDA. If

adherence or drug resistance is included in the model analysis, then this conclusion is more nuanced, and

risk of drug resistance emergence and spread is an area with a lack of clear consensus among existing

models [18,31,35,41].

• The longer-term effectiveness of MDA is highly sensitive to the population size of the trial area and its

connectedness to other areas [18].

a Imperial College, London, United Kingdom; Institute for Disease Modelling, Seattle, Washington, US;

Mahidol Oxford Tropical Medicine Research Unit, Bangkok, Thailand; Swiss Tropical and Public Health

Institute, Basel, Switzerland; and University of Oxford, Oxford, UK.
b Compiled by Oliver Brady (University of Oxford) and Samantha Galvin (Bill & Melinda Gates Foundation).

ACT, artemisinin-based combination therapy; fMDA, focal mass drug administration; IRS, indoor residual

spraying; LLIN, long-lasting insecticidal bed net; MDA, mass drug administration; MSAT, mass screening

and treatment.

https://doi.org/10.1371/journal.pmed.1002453.t003

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002453 November 30, 2017 10 / 27

https://doi.org/10.1371/journal.pmed.1002453.t003
https://doi.org/10.1371/journal.pmed.1002453


assess the level of hidden/unidentifiable cases/infections that would hinder (or would not hin-

der) elimination (e.g., asymptomatic or individuals with minor symptomology who would not

seek treatment). As transmission declines, the addition of serological measures of past expo-

sure [65,98–102] or active community-based transmission measurements and reactive case

management [103–107] may be considered. Modelling can estimate the incremental benefit of

adding specific surveillance activities to an already established surveillance system and could

examine cost-effectiveness issues [48,108], specific epidemiologic aspects of contract tracing

[109], and the target product profile of diagnostics [25,65,66] in case-investigation or foci-

investigation settings.

Parasite and vector resistance

As efforts to reduce transmission are intensified, the risk and impact of parasite drug resistance

and vector insecticide resistance becomes a key concern [110–112]. Modelling has been used

to investigate the effects of resistance [25,26,30,32,113–116], and there have been some studies

examining risk factors for resistance and drug failure [114,117–119]. Geostatistical models are

also being developed to predict localities where resistance might be present in order to target

surveillance activities, for example, mapping artemisinin-resistance in Southeast Asia [120].

The biology and natural history of mosquito vectors and malaria parasites tells us that the

development and evolution of resistance will continue, given the pressure of insecticides and

drugs. In terms of drug treatments, with artemisinin-based combination therapies (ACTs)

globally recommended for malaria treatment, the focus must be on investigation of artemisi-

nin and partner drug resistance, in terms of how this can be contained within the Greater

Mekong subregion [111], and how its emergence or importation can be avoided in other

regions [25,115]. Note that as transmission declines, the remaining parasites are those most

likely to harbour resistance. Thus, even as malaria cases decline, continued field studies and

modelling must be supported to address the efficacy and effectiveness of intervention tools

critical for elimination programming. The next steps are to investigate how packages of inter-

ventions can be modified to mitigate the effects of resistance on existing interventions

[30,121–123], how resistance can be contained [32], and how resistance can be avoided, partic-

ularly for new drugs and insecticides [124,125].

Human immunity

A gradual decline in human immunity to malaria across the population is an inevitable conse-

quence of reducing malaria transmission and contracting parasite diversity [126,127]. The

resulting delay in acquiring immunity likely will alter the age distribution and severity of

malaria infections [126,128,129]. Understanding these changes is necessary to identify the

most vulnerable populations or those most likely to need an intervention [128,130]. Models

already include age-dependent immune factors and have dynamic modulation of immunity as

a function of entomological inoculation rate [128,131], though additional temporal data could

help reduce the uncertainty surrounding these functions. Gaps remain in our understanding

of immunity in areas of long-standing low transmission (e.g., Haiti), where the level of asymp-

tomatic infections is much higher than previously thought [132].

Modelling to inform policy

Strategic decisions are already being taken as part of elimination planning in a number of

countries. There are numerous opportunities for modelling to inform these decisions—for

example, scenario planning. An Elimination Scenario Planning (ESP) toolkit was published by

WHO in 2014 following field testing using data from The Gambia and Senegal [14]. The
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manual is linked to software that models malaria transmission (currently limited to P. falcipa-
rum in Africa), which allows users to explore the effect of a range of combinations of malaria

control interventions in order to achieve elimination. Such an approach has wide application

and could be extended to P. falciparum outside Africa or P. vivax settings in the future. A key

consideration is that malaria policy will need to respond to climate change. Historical data

may become less reliable as seasonal patterns of rainfall and land use alter. Mapping climate

change effects and possible scenarios following the varied consequences of climate change for

human and vector population distributions has been investigated at continental and national

levels, but incorporating this into policy is more challenging [133–151].

Mathematical models can provide a framework for exploring the relationship between pop-

ulation movement, heterogeneous transmission, and the deployment logistics of a national or

regional elimination strategy. To carry out such analyses, new model frameworks should be

developed that benefit from new field and genetic data characterising and measuring spatially

and temporally dynamic transmission routes.

There is an increasing demand from NMCPs for pertinent and prompt mathematical

modelling analyses to support their malaria elimination strategies. Established modelling

groups have engaged in local capacity building. Also, malaria modelling research is being pub-

lished by research groups from malaria-endemic countries [33,34,62,89,152–154], and this

trend could be supported to the benefit of NMCPs.

Modelling to maintain zero

As noted above, when transmission becomes rare, models are increasingly challenged in

informing policy and intervention choices; similarly, when there is no transmission, the evalu-

ation of risk for the reintroduction of infection (vulnerability) and the risk of propagating local

transmission given its reintroduction (receptivity) can present challenges to models designed

to answer questions at high endemicity levels. A new class of highly heterogeneous, stochastic

malaria models is being developed to inform the design of an elimination surveillance system.

Vulnerability (risk of introduction or reintroduction). Measuring vulnerability to

malaria reintroduction requires pairing up-to-date maps of national and international parasite

prevalence with human movement models. Both of these fields have advanced in recent years

[33,34,117,155–160]. Human movement models, paired with travel survey and microcensus

data, have improved their description of routine human movement (e.g., holiday season travel)

[159,161]. Increasing use of mobile phones has enabled the tracking of human movement and

permitted distribution advice on infection avoidance [159,162–164]. However, many national

and international seasonal migrations remain difficult to predict, and their direct relationship

to moving malaria infections requires additional investigation.

Receptivity (risk of transmission given introduction). In order to direct interventions,

models must incorporate both the risk of importation and the risk for the reestablishment of

local transmission [165–173]. The risk of malaria transmission reestablishment can be mea-

sured as a function of selected host, vector, and environmental data [156,170,171, 174]. For

example, measures might include human use of insecticide-treated bed nets or indoor residual

spraying, mosquito habitat suitability and its link to abundance, and climatic conditions (e.g.,

temperature, rainfall, and vegetation index measures) that support or accelerate vector and

parasite development. If such data are collected widely enough, models can be validated using

the occasional areas that do experience local transmission. Deciding which environmental and

entomological data would be most valuable to collect could be iteratively informed by testing

hypotheses based on longitudinal data from areas that have recently eliminated malaria, for

example, Sri Lanka. The next step is to translate risk mapping into programmatic actions, such
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as better allocation of human resources, and maintenance and targeting of vector control

[50,175]. This will become increasingly important as more countries reach elimination.

Challenges

Residual transmission

Variable human and vector behaviours may enable sustained transmission in highly seasonal,

heterogeneous environments, despite high intervention coverage [176]. The magnitude and

importance of residual transmission in different settings require further field studies. In partic-

ular, human sociobehavioural data including human behaviour’s relevance for compliance

and entomological data investigating the contribution of outdoor transmission are needed to

develop models testing novel strategies and tools [102].

Low transmission and incorporating heterogeneity

Models have mostly been used to examine sub-Saharan Africa high transmission contexts with

P. falciparum and relevant vector species, though they may be parameterised across the full

spectrum of transmission. When modelling an isolated homogeneous population, it can be dif-

ficult to sustain transmission much below the 1% parasite prevalence level (though the precise

level depends on the model), with the model becoming unstable, leading to ‘stochastic extinc-

tion’, i.e., the extinction of parasites based on random effects within the model, an effect that is

compounded with increasing heterogeneity [177]. This suggests that importation of infections

and local heterogeneities in host, vector, and parasite dynamics and in health service delivery

systems are likely to play an important role in sustaining malaria in low transmission settings

[178].

As a country progresses to very low levels of malaria transmission, the spatial and temporal

heterogeneity of transmission increases in importance. In these contexts of varying historical

transmission intensity, intervention coverage, human movement, and access to health system

resources, malaria will tend to persist in the most remote regions and the poorest and most

vulnerable populations [179,180]. While this issue may not require new models per se, hetero-

geneity will need to be better captured as transmission declines. Spatial heterogeneity is proba-

bly least well developed, and the required level of spatial granularity and relevant metrics for

answering specific questions in low transmission settings requires definition [181,182]. How-

ever, at some point heterogeneity will exceed the ability of models to establish granularity, and

decision making will require local health system and entomological data.

Modelling malaria at borders

When malaria transmission is moderate to high and similar on both sides of a border, often lit-

tle attention is paid to border areas for specific disease interventions; however, this changes

when one nation may be markedly reducing transmission and the other is not. Border areas

present particular difficulties for malaria control and elimination efforts [183–187]. The com-

plexity of human movements for trade, business, and visiting family, sometimes including vul-

nerable populations [188], and the coordination of efforts between different political and

organisational frameworks increase the complexity of malaria control [184]. Some of the issues

relate to spatial and temporal heterogeneity and could possibly be addressed with greater data

on human cross-border movement and parasite genetics [189–191]. However, human factors,

such as local conflicts, poverty, and the disenfranchisement of particular ethnic groups, can be

highly variable in time and place and are more challenging to incorporate into transmission

models [192,193]. Alternative complementary approaches include mapping malaria risk, for
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better targeting of resources, plus goal setting by modelling what could potentially be achieved

with coordinated versus independent elimination campaigns [33,185,194,195]. Once the

potential benefits are understood, the barriers to reaching these goals can be researched and

the feasibility of overcoming them explored.

Iteration and validation

Finally, models directed at assessing combination interventions must embrace a process of

iteration with field data. In particular, data are needed from low to near-zero transmission set-

tings. Such data needs might include high-resolution geographic information on cases, fre-

quency and location of associated secondary cases, travel history identifying infection sources,

vector-associated data, climate, and environmental parameters [109]. The requirement for

field data to validate models remains problematic, as field data on intervention efficacy and the

diverse parameters noted above can be difficult to assemble. When developing models, valida-

tion requirements should be clearly defined and data should be feasible to obtain. Amidst

these challenges, modellers then need to consider how to best contribute to and bear responsi-

bility for the assembly of required field data. Although capacity building and integration of

modellers into NMCPs may address this at a local scale, there is a need for innovative mecha-

nisms to allow increased exchanges in malaria elimination research, to allow better access to

field empirical data for modellers.

Conclusions

Given the ongoing social and economic impact of malaria-related mortality and morbidity

and the inevitable resource constraints for national malaria programmes, identifying the most

timely and most cost-effective path to malaria elimination is a priority. Box 3 presents a

research and development agenda for combination interventions and modelling in malaria

elimination. Modelling affords a feasible and practical means of investigating rational combi-

nations of interventions and the most appropriate setting for their deployment. Nevertheless,

without a substantive dataset from operations research, the construction of meaningful models

Box 3. Research and development agenda for combination
interventions and modelling.

• Determine which combinations of interventions to use in which sequence and in

response to which triggers throughout elimination

• Identify the circumstances in which time-limited elimination acceleration interven-

tions, such as mass drug administration (MDA), are appropriate and what needs to be

done to retain the gains in transmission reduction following their withdrawal

• Model the effect of parasite drug and vector insecticide resistance on combination

interventions and how resistance might be avoided or contained

• Understand human immunity in areas where transmission has always been low and

parasite diversity very low and modelling the effect of changes in human immunity as

transmission declines

• Identify which additional data would be most useful for validating or changing model

predictions in order to drive iterative development and decision making
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is not possible. Models must also be continuously validated against field data, through pro-

grammatic experience and against clinical trials, with measures and outcomes data relevant to

the transmission setting identified and collected for use in further model refinement. This is

Surveillance as an intervention

• Model the target product profile of an elimination-specific surveillance system

• Determine the threshold at which reactive case strategies become feasible

Strategic modelling

• Estimate the long-term costs of elimination in different settings and with different

intervention packages

• Assess the potential duration of an elimination campaign in various settings to help

define the investment case and financing needs for elimination

• Estimate the maximal impact of currently available tools on elimination in various

settings

• Determine the counterfactual to elimination, i.e., the effect of continuing current

interventions in various settings

• Support capacity building of modellers embedded in National Malaria Control Pro-

grammes (NMCPs)

Modelling to maintain zero

• Investigate how vulnerability and receptivity measures can be translated into specific

programme actions

Addressing transmission

• Apply models to low transmission settings, incorporating all relevant parasites/vectors

• Investigate the importance of residual transmission in different settings and what new

strategies or novel tools are needed to overcome it

Incorporating heterogeneity

• Determine the relevance of spatial and temporal heterogeneity in transmission in dif-

ferent settings

• Investigate how much heterogeneity in transmission needs to be captured by models

to make predictions in elimination settings

Iteration and validation

• Determine which measures of transmission or other metrics are most appropriate for

guiding programmatic decisions in low transmission to maintaining-zero settings

• Define which new data need to be collected from low transmission to maintaining-

zero settings in order to increase confidence in model predictions
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especially the case as we increasingly encounter transmission settings that are shrinking in size

and number and becoming more focal and heterogeneous and for which there are fewer field

data. Thus, there is a codependency between modelling and field data, and the quality of both

must be assured for findings to be valid and impactful. Since malERA 2011, there has been sig-

nificant progress in aligning modelling with programmatic requirements and more effective

communication with policy makers. This ongoing dialogue will ultimately determine the rele-

vance of modelling to policy decision and its contribution towards achieving and maintaining

malaria elimination.
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