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Abstract 

Background: Determining the spatial patterns of infection among young children living in a malaria‑endemic area 
may provide a means of locating high‑risk populations who could benefit from additional resources for treatment and 
improved access to healthcare. The objective of this secondary analysis of baseline data from a cluster‑randomized 
trial among 1943 young Ghanaian children (6–35 months of age) was to determine the geo‑spatial factors associated 
with malaria and non‑malaria infection status.

Methods: Spatial analyses were conducted using a generalized linear geostatistical model with a Matern spatial cor‑
relation function and four definitions of infection status using different combinations of inflammation (C‑reactive pro‑
tein, CRP > 5 mg/L) and malaria parasitaemia (with or without fever). Potentially informative variables were included 
in a final model through a series of modelling steps, including: individual‑level variables (Model 1); household‑level 
variables (Model 2); and, satellite‑derived spatial variables (Model 3). A final (Model 4) and maximal model (Model 5) 
included a set of selected covariates from Models 1 to 3.

Results: The final models indicated that children with inflammation (CRP > 5 mg/L) and/or any evidence of malaria 
parasitaemia at baseline were more likely to be under 2 years of age, stunted, wasted, live further from a health facility, 
live at a lower elevation, have less educated mothers, and higher ferritin concentrations (corrected for inflammation) 
compared to children without inflammation or parasitaemia. Similar results were found when infection was defined as 
clinical malaria or parasitaemia with/without fever (definitions 3 and 4). Conversely, when infection was defined using 
CRP only, all covariates were non‑significant with the exception of baseline ferritin concentration. In Model 5, all infec‑
tion definitions that included parasitaemia demonstrated a significant interaction between normalized difference 
vegetation index and land cover type. Maps of the predicted infection probabilities and spatial random effect showed 
defined high‑ and low‑risk areas that tended to coincide with elevation and cluster around villages.

Conclusions: The risk of infection among young children in a malaria‑endemic area may have a predictable spatial 
pattern which is associated with geographical characteristics, such as elevation and distance to a health facility.

Original trial registration clinicaltrials.gov (NCT01001871)

Keywords: Spatial, Infection, Malaria, Children, Geostatistical modelling, Bayesian inference

© 2016 The Author(s). This article is distributed under the terms of the Creative Commons Attribution 4.0 International License 
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, 
provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, 
and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/
publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Background
According to the World Health Organization (WHO), the 
leading causes of death in children under 5 years of age 
are infection-related—primarily pneumonia, diarrhoea 

and malaria—and approximately 45  % of all deaths are 
associated with malnutrition [1]. Child mortality rates are 
highest in low- and middle-income countries (LMICs), 
particularly in sub-Saharan Africa where the risk of death 
is 15 times greater than in high-income regions [1]. Mal-
nourished children are more vulnerable to infections, 
primarily due to compromised immune function and 
epithelial integrity and inflammation [2]. For example, 
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Muller et al. [3] reported a positive association between 
malaria morbidity and the degree of protein-energy mal-
nutrition among children in West Africa. Micronutrient 
deficiencies also have a compromising effect on immune 
function, which can usually be improved through diet 
changes, food fortification or supplementation [4]. How-
ever, for iron nutrition, the relationship between iron 
deficiency and infection risk is less clear. Evidence sug-
gests that providing iron as a supplement or through for-
tification to children with high infection exposure may or 
may not increase the risk of infection-related morbidity 
and mortality [5–8]. Conversely, inflammation due to 
infection can affect iron homeostasis [9] and the risk of 
iron deficiency [10], particularly in cases of prolonged 
or chronic infection. Assessing the risk of infection is 
an important first step in developing safe and effective 
means of administering iron to children in LMICs where 
iron deficiency and anaemia are prevalent.

Infection status can be assessed using biomarkers such 
as C-reactive protein (CRP), an acute phase protein that 
becomes elevated in response to the early phase of the 
inflammatory response (approximately 24–48  h) [11]. 
The feasibility of measuring such indicators among chil-
dren in a low-resource context is limited, especially at 
a population level, as they may require relatively large 
blood samples and sophisticated analytical methods with 
laboratory equipment. As such, there are clear advan-
tages in identifying indicators or risk factors associated 
with infection in LMICs that are not invasive or costly 
to measure, and thus provide a more feasible means of 
identifying high-risk populations. This need could be 
addressed with geographical factors (or ‘geo-indicators’), 
as the environmental or spatial characteristics of a village 
or region could provide insight into the dynamics and 
distribution of infection risk among children. Collecting 
geo-spatial data is non-invasive and less costly compared 
to biological measures and they are often publicly avail-
able, which improves the access to and comparability of 
population-level statistics across regional and national 
borders.

There is mounting evidence to support the use of geo-
graphical information systems (GIS) and spatial analysis 
methods for conducting disease surveillance and risk 
analysis, assessing health system access and informing 
health system planning [12–15]. In terms of infectious 
disease research, there are several examples where geo-
statistical methods have been used to investigate the 
spatial patterns and associated risk factors of malaria or 
other infections among children in LMICs [16–18]. What 
is lacking, however, is an investigation of the spatial fac-
tors associated with childhood morbidity, defined using 
a combination of malaria infection and inflammatory 
biomarkers. Even fewer studies have used spatial analysis 

to link the geographical variation of infection with iron 
deficiency risk among children in low-resource settings 
[19]. Soares Magalhaes and colleagues used survey data 
to build Bayesian geostatistical models to determine the 
relative contribution of parasitic infections (malaria and 
helminth) to the spatial variation of anaemia risk among 
children (≤15 years of age) in northern Angola [19]. The 
authors found that anaemia, Plasmodium falciparum 
and Schistosoma haematobium tended to cluster around 
inland bodies of water, and estimated that approximately 
15.6 and 9.7 % of the spatial variation of anaemia risk was 
attributable to malaria and schistosomiasis, respectively 
[19]. While Soares Magalhaes and colleagues provided a 
good starting point for the integration of infection con-
trol programmes with iron supplementation, a drawback 
of their analyses was the use of anaemia as an indicator of 
iron status rather than a more specific biomarker, such as 
ferritin concentration. There are many causes of anaemia 
in addition to iron deficiency [20].

Considering the bi-directional relationship between 
infection and iron homeostasis, the ability to describe 
the spatial variation of infection risk while accounting 
for iron status may allow us to more confidently identify 
areas where integrated infection and iron deficiency con-
trol programmes are most needed. The objective of the 
current analysis was to determine the geo-spatial factors 
associated with malaria and non-malaria infection risk 
among children with varying levels of iron sufficiency in 
rural Ghana. The sections that follow include a summary 
and interpretation of the results of this analysis, as well as 
a discussion of their contribution to, and implications for, 
global health research.

Methods
Study population
The data used in these analyses were generated from 
the baseline survey of a community-based, cluster-ran-
domized trial conducted in 2010 in Wenchi and Tain 
districts of the Brong-Ahafo region, a substantially rural 
area of Ghana [6]. At the time there were an estimated 
7.2 million cases of malaria per year in Ghana, and the 
prevalence of anaemia among preschool-aged children 
was 76.1  % (95  % CI 73.9–78.2  %) [21, 22]. Briefly, the 
aim of the randomized trial was to determine the effect 
of providing iron with other micronutrients in powder 
form for 5  months during the rainy season (March–
November) on the incidence of malaria among 1958 
children aged 6–35  months (representing 1552 clus-
ters and 22 villages) (Fig.  1) [6]. A village was eligible 
for inclusion in the study if the inhabiting households 
had at least one child between 6 and 35 months of age. 
Potentially eligible participants were screened, begin-
ning with villages near the north-east border of Wenchi, 
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then moving to adjacent villages along the main road net-
work. Eligible children were aged 6–35  months, eating 
solid foods, and living in the study area for at least the 
following 6  months. Exclusion criteria included severe 
anaemia (haemoglobin  <7.0  g/dL), severe malnutrition 
(weight-for-length z-score < −3.0), receipt of iron supple-
ments within the past 6  months, or chronic illness (e.g. 
congenital abnormalities). The geographical layout of the 
trial area (covering approximately 3800  km2), including 
study compounds, health facilities and road networks, is 
depicted in Fig. 2.

Secondary measures from trial data
At baseline, biological samples were collected and ana-
lysed for biochemical indicators of iron and infection sta-
tus, including serum ferritin, C-reactive protein (CRP), 
and malaria parasite density. Plasma CRP was measured 

using an immunoturbidimetric method (QuickRead CRP, 
Orion Diagnostica, Espoo, Finland), and serum ferritin, 
an enzyme immunoassay (Spectro Ferritin S-22, Ramco 
Laboratories Inc, Stafford, USA). Thin and thick smears 
were prepared for malaria parasite speciation and count 
via microscopy (see Zlotkin et  al. [6] for a complete 
description of biochemical and infection measures). 
Demographic and nutrition-related information was col-
lected at the household and individual levels, including 
household assets, maternal education, feeding practices, 
and child body weight and length. Z-scores for weight-
for-length, length-for-age were calculated using the 
WHO Child Growth Standards [23].

Geographical coordinates
Handheld global positioning system (GPS) units were 
used to collect geographical coordinates for over 95  % 

22 Villages Screened (n=2220)
Met exclusion criteria (n=200)

Absent for enrolment (n=62)

Enrolled and Randomized 

(n=1958; clusters=1552;)

Iron Group
(n=967; clusters=780 )

No-iron Group
(n=991; clusters= 772) 76 did not have 

follow-up:
6 unknown, 22 

moved out, 2 died, 
46 temporarily 

absent

67 did not have 
follow-up: 

4 unknown, 17 
moved out, 3 died 

43 temporarily 
absent No-iron Group

(5-month follow-up)
(n=915; clusters= 723)

Iron Group
(5-month follow-up)

(n=900; clusters=740 )

Baseline spatial analyses 981 
Subjects with geocoded

compounds (clusters=757)

Baseline spatial analyses 962 
Subjects with geocoded

compounds (clusters=777)

Ghana trial

Secondary 
analysis

1: Study flow
Fig. 1 Study flow. Flow of participants through the Ghana trial (top section) and secondary analyses (bottom section). Out of the 1958 participants 
from the Ghana trial, a total of 1943 with geocoded compounds were included in the baseline secondary spatial analyses (13 compounds were 
untraceable, corresponding to 15 participants not included in the secondary analyses)
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of the study compounds (representing 1943 trial par-
ticipants), as well as 22 study villages, and surrounding 
health facilities and road networks. The GPS coordinates 
were measured using the WGS 1984 coordinate system 
and transformed using a universal transverse Mercator 
(UTM) Zone 30 N projection (EPSG code: 32,630).

Satellite‑derived data
Elevation data were downloaded from the US Geologi-
cal Survey (USGS) [24], with a spatial resolution of 3 arc-
seconds (approximately 90  m). Normalized difference 
vegetation index (NDVI) data, obtained from the Land 
Processes Distributed Active Archive Center (LPDAAC) 
[25], were produced by a spectroradiometer that uses 
blue, red and near-infrared reflectance to determine veg-
etation indices for 16-day intervals with a 250-m spa-
tial resolution. Land cover (LC) data (downloaded from 
worldgrids.org) had a spatial resolution of 500  m, and 
consisted of 17 land cover classes sub-grouped into three 
categories: natural vegetation (11 classes), developed and 
mosaic land (three classes), and non-vegetation (three 
classes) [26].

Spatial modelling
The data were analysed using generalized linear geosta-
tistical models (GLGM) [27, 28]. Four definitions of base-
line infection status served as the dependent variables: 
(1) inflammation (CRP > 5 mg/L) and/or malaria parasi-
taemia; (2) inflammation (CRP > 5 mg/L) without parasi-
taemia; (3) parasitaemia with measured concurrent fever 
(axillary temperature  >37.5  °C) or reported history of 
fever within 48 h (i.e., clinical malaria); and, (4) parasitae-
mia with or without concurrent fever or history of fever. 
All dependent variables were binary-valued (coded as ‘1’ 
for positive infection status), and analysed using a logistic 
model. The four different outcomes were modelled sepa-
rately in order to explore whether observed geo-spatial 
associations were influenced by the way infection was 
defined, and how much of this influence may have been 
driven by malaria versus non malaria infection types. 
Geo-spatial and non-spatial variables were chosen for 
inclusion in the final models based on expert opinion and 
a review of the literature pertaining to spatial risk factors 
of malaria and anaemia among young children in low- 
and middle-income countries [18]. Variables were eligible 

Fig. 2 Geographical layout of the trial area. a Wenchi and Tain Districts (red) in the Brong‑Ahafo Region of Ghana. b Location of Ghana study com‑
pounds (black points) and health facilities (red squares)
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for inclusion if they were considered to be direct or indi-
rect antecedent factors associated with infection (e.g., 
elevation), and excluded if they were potential outcomes 
of infection (e.g., anaemia).

The models were fit using Bayesian inference via an 
integrated nested laplace approximation (INLA) algo-
rithm [29]. Given the exploratory nature of the analyses, 
weak or uninformative priors were used for all model 
parameters with the exception of the Matern shape 
parameter, which was fixed at 2. Spatial predictions were 
made on a 100-cell grid covering the study area. The 
Matern correlation, approximated by a Markov random 
field [30], extended an additional 3000 m in each direc-
tion. Infection probabilities, after transformation with 
a logit link function, were modelled as the sum of the 
contributions of the explanatory variables, as well as 
spatially correlated and compound-level random effect 
terms. The posterior medians of the odds of infection 
were computed, assuming baseline values for individ-
ual-level covariates and location-specific values for the 
spatial covariates. A spatially continuous (or geostatisti-
cal) model was used for the spatial random effect term, 
where the correlation between the log-odds of infection 
of two individuals was given by a Matern spatial correla-
tion function and applied to the distance separating their 
respective compounds. All spatial modelling was con-
ducted using the glgm function from the ‘geostatsp’ pack-
age in R [31, 32].

In order to gain additional insight into the variable 
relationships of interest, five different combinations of 
selected candidate variables were modelled separately 
for each outcome. Models 1–3 included independ-
ent variables grouped by measurement level. Model 1 
included individual-level variables only: baseline child 
age, sex, weight-for-length z-score and length-for-age 
z-score, and baseline iron status (ferritin concentration). 
Age in months was calculated using the reported date 
of birth and trial enrolment date. The age variable was 
included in all models with a change point at 24 months, 
as this was the closest half-year to the mean age of 
those children who were no longer receiving breast milk 
(mean = 26.8 months ± 5.8, n = 746). Similar age vari-
able definitions have been used in other studies of iron 
deficiency and anemia in children [33, 34].

Model 2 included only household-level variables: asset 
score, maternal education, and distance from each com-
pound to the nearest health facility. Household asset 
score was generated using a principal component analy-
sis of six economic indicators (farm ownership, size 
and type of crops grown, type of toilet facility, house 
ownership). For descriptive purposes, asset score was 
dichotomized at the median; however, it was modelled 
continuous variable. Maternal education was included 

as a binary variable, representing ‘none’ (0) versus ‘any’ 
(1) level of education (e.g., primary, middle, secondary or 
higher). Distance to the nearest health facility (an indica-
tor of access to the health care system) was measured ‘as 
the bird flies’ (straight-line or Euclidean distance) using 
the near table tool in ArcMap (ArcGIS 10.2, Environ-
mental Systems Resource Institute, Redlands, CA, USA).

Five satellite-derived variables were included in Model 
3: elevation, land cover type (LC), NDVI, and two NDVI-
LC interaction terms. Elevation was included as a proxy 
for temperature [35], and ranged across the trial area 
from 116 to 530  m. elevation values were centred by 
subtracting 250  m before including them in the analy-
ses. Land cover type was a discrete categorical variable 
consisting of three values: woody savannah (LC  =  8, 
n  =  21/1943 observations), urban and built-up land 
(LC = 13, n = 243/1943 observations), and cropland/nat-
ural vegetation mosaic (LC = 14, n = 1679/1943 obser-
vations). In all analyses, the largest category (cropland/
natural vegetation mosaic) was used as the reference. 
Given that the Ghana trial was conducted during the 
rainy season, rainfall was not expected to vary substan-
tially across the study area, and thus was not included 
as a spatial variable. Rather, NDVI (a measure of ‘green-
ness’) was included as an indicator of water accumulation 
potential or soil moisture [16]. NDVI values were aver-
aged over the year that the study was conducted (2010) in 
a single raster file, and ranged from 0.22 to 0.62. An inter-
action term for NDVI and LC was created by, first, using 
the NDVI raster to mask the LC raster except in areas 
where LC had a cell value of 8 (woody savannah). The 
unmasked cells were then given a value of 0. The same 
method was also used to create the NDVI-LC interaction 
term for LC values of 13 (urban and built-up land). The 
new rasters for the interaction terms were then included 
in the analyses to investigate whether the association 
between the dependent variable (infection status) and 
vegetation (or soil moisture) varied across areas with or 
without a woody savannah or urban/built-up land cover 
type.

The final model (Model 4) combined selected variables 
from Models 1–3, including age, sex, weight-for-length 
z-score, length-for-age z-score, baseline iron status 
(serum ferritin corrected for CRP using the regression 
method and re-scaled by multiplying each corrected 
value by the inverse of the inter-quartile range), asset 
score, distance to the nearest health facility, and eleva-
tion. Variable selection was informed by exploratory 
descriptive analyses using generalized additive models, 
linear regression modelling, and simulation analyses. As 
a confirmatory modelling step, a ‘maximal’ model (Model 
5) was also developed and included the same variables as 
the final model with the addition of maternal education, 
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NDVI, LC, and the two NDVI-LC interaction terms. The 
maximal model provided an opportunity to investigate 
variable relationships of interest that were not included 
in the final model in order to preserve statistical power. 
As such, there was a higher risk of over-parameterization, 
and thus the findings from Model 5 were interpreted with 
caution and used mainly for hypothesis-generation.

In all models with individual-level variables, ferritin 
concentration was corrected for CRP using a regres-
sion-based method (Namaste et  al., pers. comm.). The 
advantage of the regression method is that it can cor-
rect ferritin for CRP without requiring the use of pre-
determined cut-offs (which can vary across the literature 
partly due to the detection limits of analytical equipment 
used) and, therefore, better accounts for the linear rela-
tionship between inflammation and ferritin. The first step 
in the correction approach was to natural logarithm (ln)-
transform ferritin, and CRP concentrations to approxi-
mate a normal distribution. Zero values for CRP were 
replaced with a constant, near-zero value (0.02  mg/L) 
before ln transformation. A linear regression coefficient 
for CRP was obtained using univariate modelling with 
ferritin as the outcome. A reference value of 0.104 mg/L, 
representing little or no inflammation, was subtracted 
from the ln-CRP concentrations in the regression equa-
tion. The reference value was obtained from a meta-anal-
ysis of data from the Biomarkers Reflecting Inflammation 
and Nutrition Determinants of Anemia (BRINDA) study, 
involving 27,865 pre-school aged children across 15 
countries [36]. The correction was then applied only to 
ln-CRP values that were greater than the ln-CRP refer-
ence in order to avoid over-adjustments. The adjusted 
ferritin equation was calculated by subtracting the influ-
ence of CRP as follows:

where ‘NB’ is the actual value of ferritin, β1 is the CRP 
coefficient, ‘obs’ is the raw observations for CRP, and ‘ref ’ 
is the reference value.

Maps of predicted infection probabilities (odds ratios) 
and residual spatial variation from the final model (Model 
4) were plotted and overlaid with a base map of the trial 
area. The residual spatial variation plot represented the 
posterior mean of the spatial random effect, correspond-
ing to the difference between the predicted and expected 
odds of infection at each location (given the spatial 
covariate at each location). Individual-level non-spatial 
variables and effect sizes did not contribute to the plots. 
For example, an odds ratio of 1.5 indicated that all indi-
viduals living at a particular location had a 50 % higher 
risk of infection compared to similar individuals (e.g. in 

Adjusted ferritin = NB ·max

(

CRPobs

CRPref
, 1

)

−β1

terms of age, sex, iron status) living in an area where the 
relative risk was 1.0. On the other hand, if two dissimi-
lar individuals (e.g. with different ages) lived at the same 
location, they had different infection risks; however, both 
ratios (e.g. risk divided by ‘typical risk’ for their respective 
ages) were identical. All model output plots had a spatial 
resolution of 380 m by 380 m per cell. These plots were 
visually compared to each other and to relevant satellite-
derived maps (e.g., elevation) in order to generate poten-
tial explanations for the spatial patterns observed.

Results
Table  1 shows the baseline characteristics (biochemi-
cal measures, anthropometrics, demographics) of 1943 
children with geocoded compounds, who were included 
in this secondary analysis (Fig.  1). The mean age at 
enrolment was 19.2  months, with 69  % (1348/1943) 

Table 1 Baseline characteristics of the Ghana trial partici-
pants

a Inflammation and/or parasitaemia = CRP > 5 mg/L and/or any malaria 
parasitaemia
b Inflammation without parasitaemia = CRP > 5 mg/L without malaria 
parasitaemia
c Parasitaemia with fever = any malaria parasitaemia with concurrent fever 
(axillary temperature > 37.5 °C) or history of reported fever (within 48 h)
d All parasitaemia = any malaria parasitaemia with/without fever
e Measured at baseline; z-scores estimated using the WHO Child Growth 
Standards [23]
f  Measured at baseline only; total n = 1752 (74 respondents were not mothers, 
117 missing due to incomplete surveys)
g  Measured at baseline only; reduced sample size (approximately 1825) due to 
incomplete surveys and ‘unknown’ responses

Trial participants with a geo‑coded residence (n) 1943

Males (%) 992 (51.1)

Age at enrolment (months), mean (SD) 19.2 (8.5)

Serum ferritin (µg/L), geometric mean (SD) 35.1 (3.65)

Infection status

 C‑reactive protein (mg/L), mean (SD) 3.34 (4.96)

 Parasite density (count/µL), geometric mean (SD) 3003.0 (5.35)

 Inflammation and/or parasitaemiaa, n (%) 719 (37.0)

 Inflammation without parasitaemiab, n (%) 272 (14.0)

 Parasitaemia with feverc, n (%) 150 (7.72)

 All parasitaemiad, n (%) 447 (23.0)

Anthropometric statuse

 Weight‑for‑length z‑score, mean (SD) −0.63 (0.97)

 Length‑for‑age z‑score, mean (SD) −0.81 (1.21)

Maternal educationf, n (%)

 None 586 (33.5)

 Any 1166 (66.5)

Household asset scoreg, n (%)

 Low 866 (47.5)

 High 957 (52.5)

Distance to the nearest health facility (km), mean (SD) 2.57 (2.99)
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of participants aged below 24  months. After correct-
ing ferritin concentration for inflammation (CRP) using 
the regression method, the prevalence of iron defi-
ciency (ferritin <12 µg/L) was 21.4 % (415/1943) at base-
line. According to CRP measures and parasite counts, 
approximately one-third of all children had an infection 
at baseline (719/1943, 37.0  %). The prevalence of wast-
ing (< −2SD for weight-for-length z-score), and stunting 
(< −2SD for length-for-age z-score) was 8.1 % (158/1942) 
and 13.8 % (267/1934), respectively.

The results from Models 1–3 have been included in an 
additional file (see Additional file 1). Briefly, the definition 
of infection that included both CRP and parasitaemia 
seemed to be the most sensitive to covariate associations. 
In Model 1, age (6–23 months), and baseline iron status 
were positively associated with infection (CRP > 5 mg/L 
and/or parasitaemia), while length-for-age z-score, and 
weight-for-length z-score were negatively associated 
with infection status (Additional file  1: Table S1). In 
Model 2, lower maternal education and greater distance 
to the nearest health facility were associated with posi-
tive infection status (Additional file 1: Table S2). The only 
satellite-derived spatial variable associated with infection 
in Model 3 was elevation, indicating that lower eleva-
tion corresponded with higher infection risk at baseline 
(Additional file 1: Table S3).

Results from the final models (Model 4) indicated that 
children with inflammation (CRP > 5 mg/L) and/or any 
evidence of malaria parasitaemia at baseline were more 
likely to be between 6 and 23  months of age (OR 1.03, 
95  % credible interval (CrI) 1.01, 1.05), approximately 
10  % more likely to be stunted or wasted (OR 0.92 for 
length-for-age z-score and 0.89 for weight-for-length 
z-score), live farther from a health facility (11 % increased 
odds of infection for each km) and at a lower elevation 
(7 % increased odd of infection for every 10 m), and/or 
have higher ferritin concentration (OR 1.15, 95  % CrI 
1.07, 1.24) compared to children without inflammation 
or parasitaemia (Table  2). Similar results were found 
when infection was defined as clinical malaria or parasi-
taemia with/without fever (definitions 3 and 4); however, 
the magnitude of the association with distance to a health 
facility increased up to a 20 % greater likelihood of infec-
tion with each km of separation. Conversely, when infec-
tion was defined using CRP only (without parasitaemia), 
all covariates were non-significant.

The predicted infection probabilities (odds) and resid-
ual spatial variation from all final models are illustrated 
in Figs. 3, 4, 5, 6. For infection status defined using para-
sitaemia (Figs. 3a, 5a, 6a), the relationship between infec-
tion risk and elevation was apparent particularly when 
compared to an elevation map of the study area (Fig. 7). 
For infection defined using CRP only, there appeared to 

be well-defined high- and low-risk areas that tended to 
cluster around villages (Fig. 4a). Unlike the infection defi-
nitions using parasitaemia, however, the plot of the spa-
tial random effect for CRP only (Fig.  4b) was similar to 
that of the predicted odds (Fig.  4a), further supporting 
the observation that the covariates included in this final 
model did not explain a large amount of spatial variation 
in non-malaria infection.

Overall, the results from Model 5 confirmed those of 
Model 4, with the addition of maternal education being 
negatively associated with inflammation and/or parasi-
taemia (OR for ‘any’ education 0.79, 95 % CrI 0.63, 0.99), 
as well as parasitaemia with or without fever (OR 0.67, 
95  % CrI 0.51, 0.87) (Table  3). All maximal models that 
included parasitaemia as part of the outcome definition 
also had a significant NDVI-LC interaction term, sug-
gesting that outside of urbanized and built-up areas, 
each 0.1 ‘unit’ increase in greenness (with units ranging 
between 0.22 and 0.62) was associated with increases in 
the odds of infection of greater than 40 %.

Most models demonstrated significant spatial ran-
dom effects, indicating that there was residual variation 
in the odds of baseline infection across the study area, 
particularly when infection was defined as inflamma-
tion without parasitaemia. Comparatively, the compound 
random effects tended to be small with narrow 95  % 
CrI, indicating relatively low variability in infection risk 
between compounds. The range parameter from each 
model indicated that the distance at which the intervari-
able relationships started to decay (decreased covariance) 
ranged from 3.37 (95 % CrI 1.55, 6.82) to 7.55 (95 % CrI 
3.08, 14.6) km in the final models (Model 4 set), and 4.52 
(95 % CrI 1.49, 10.3) to 6.99 (95 % CrI 2.16, 16.6) km in 
the maximal models (Model 5 set).

Discussion
The geostatistical analyses presented herein are the first 
to demonstrate spatial relationships for the risk of malaria 
and non-malaria infection, using standard and novel defi-
nitions, among children living in a malaria-endemic area 
with varying levels of iron status. In particular, elevation 
and distance to the nearest health facility were consist-
ently associated with infection when it was defined using 
parasitaemia, either alone or in combination with CRP or 
fever. For example, in a final model, children with inflam-
mation (CRP  >  5  mg/L) and/or malaria parasitaemia at 
baseline were more likely to live farther from a health 
facility and at a lower elevation. Access to a healthcare 
system is generally considered to be a positive predic-
tor of health, and this relationship is supported by other 
studies in malaria-endemic areas [16, 37, 38]. Assuming 
that malaria was the largest contributor to the preva-
lence of infection in this study’s population of Ghanaian 
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Table 2 Results from the final spatial models (Model 4) of baseline infection status among 1943 Ghanaian children (2010)

Covariates Odds ratios  
(95 % CrI)

Range parameter  
in km (95 % CrI)

Standard deviations of random effects 
(95 % CrI)

Spatial Compound

(1) Inflammation and/or parasitaemia

 Intercept 0.504 (0.298, 0.874) 4.559 (1.943, 8.945) 0.506 (0.310, 0.856) 0.007 (0.004, 0.028)

 Age per month (months)

  6–23 1.032 (1.011, 1.054)

  24–35 0.963 (0.927, 0.999)

 Sex (male reference) 1.104 (0.902, 1.351)

 Length‑for‑age z‑score 0.915 (0.836, 1.001)

 Weight‑for‑length z‑score 0.886 (0.795, 0.987)

 Asset score 1.041 (0.931, 1.164)

 Distance to health facility (km) 1.107 (1.008, 1.218)

 Elevation (m) 0.993 (0.987, 0.998)

 Baseline iron status 1.150 (1.070, 1.241)

(2) Inflammation without parasitaemia

 Intercept 0.168 (0.095, 0.301) 7.120 (2.691, 15.54) 0.447 (0.231, 0.871) 0.007 (0.004, 0.028)

 Age per month (months)

  6–23 0.995 (0.969, 1.022)

  24–35 0.967 (0.916, 1.018)

 Sex (male reference) 1.163 (0.889, 1.521)

 Length‑for‑age z‑score 1.007(0.893, 1.135)

 Weight‑for‑length z‑score 0.909 (0.789, 1.046)

 Asset score 0.989 (0.859, 1.139)

 Distance to health facility (km) 0.916 (0.825, 1.006)

 Elevation (m) 0.999 (0.993, 1.004)

 Baseline iron status 1.047 (0.947, 1.145)

(3) Parasitaemia with fever

 Intercept 0.037 (0.014, 0.088) 7.548 (3.080, 14.61) 0.823 (0.452, 1.522) 0.007 (0.028, 0.004)

 Age per month (months)

  6–23 1.040 (1.002, 1.081)

  24–35 0.924 (0.856, 0.992)

 Sex (male reference) 1.179 (0.812, 1.716)

 Length‑for‑age z‑score 0.944 (0.796, 1.116)

 Weight‑for‑length z‑score 0.812 (0.659, 0.997)

 Asset score 1.058 (0.849, 1.316)

 Distance to health facility (km) 1.162 (0.993, 1.365)

 Elevation (m) 0.991 (0.981, 0.999)

 Baseline iron status 1.213 (1.098, 1.330)

(4) All parasitaemia

 Intercept 0.217 (0.110, 0.425) 3.374 (1.552, 6.818) 0.684 (0.433, 1.071) 0.007 (0.004, 0.028)

 Age per month (months)

  6–23 1.054 (1.027, 1.081)

  24–35 0.973 (0.932, 1.016)

 Sex (male reference) 1.015 (0.797, 1.293)

 Length‑for‑age z‑score 0.876 (0.785, 0.977)

 Weight‑for‑length z‑score 0.898 (0.787, 1.024)

 Asset score 1.069 (0.927, 1.232)
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children, the inverse relationship observed between ele-
vation and infection status is consistent with other stud-
ies conducted in malaria-endemic areas showing a lower 
prevalence of malaria among populations living at higher 
elevations [39–42]. The prediction raster plots for the 
final models (Model 4 set) especially illustrate this rela-
tionship when compared to an elevation map of the 
study area (Fig. 7). The association between malaria and 
elevation is related to temperature, as the early stages 

of parasite development are sensitive to temperature 
and will be delayed or inhibited in colder environments, 
which are found at higher altitudes [35].

In terms of individual-level risk factors, children with 
parasitaemia (with or without high CRP) were more 
likely to be under 2  years of age, be stunted or wasted, 
and/or have higher ferritin concentration at baseline 
compared to children without infection. Infants tend to 
be at higher risk of infection due to immature immune 

Infection status definitions

1) Inflammation and/or parasitaemia (binary): 1 = CRP > 5 mg/L and/or any malaria parasitaemia, 0 = CRP ≤ 5 mg/L and absence of parasitaemia

2) Inflammation without parasitaemia (binary): 1 = CRP > 5 mg/L without malaria parasitaemia, 0 = CRP ≤ 5 mg/L without parasitaemia

3) Parasitaemia with fever (binary): 1 = any malaria parasitaemia with concurrent fever (axillary temperature > 37.5 °C) or history of reported fever (within 48 h), 
0 = any malaria parasitaemia without concurrent fever or history of reported fever

4) All parasitaemia (binary): 1 = any malaria parasitaemia with/without fever, 0 = absence of parasitaemia with/without fever

Model prior shape = 1.117, model prior rate = 0.157

Baseline iron status = iron status at baseline, defined as serum ferritin concentration (µg/dL) corrected for CRP using the regression method and re-scaled by 
multiplying each corrected value by the inverse of the inter-quartile range

CrI credible interval

Table 2 continued

Covariates Odds ratios  
(95 % CrI)

Range parameter  
in km (95 % CrI)

Standard deviations of random effects 
(95 % CrI)

Spatial Compound

 Distance to health facility (km) 1.200 (1.066, 1.360)

 Elevation (m) 0.992 (0.985, 1.000)

 Baseline iron status 1.149 (1.064, 1.241)

Fig. 3 Plots from the final spatial model (Model 4) of inflammation and/or any parasitaemia. a Predicted odds of inflammation (CRP > 5 mg/L) 
and/or any malaria parasitaemia at baseline from the final model (Model 4). b Residual spatial variation of inflammation (CRP > 5 mg/L) and/or any 
malaria parasitaemia at baseline from the final model (Model 4). Darker colour indicates higher risk. Background © Stamen Design
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Fig. 4 Plots from the final spatial model (Model 4) of inflammation without parasitaemia. a Predicted odds of inflammation (CRP > 5 mg/L) without 
malaria parasitaemia at baseline from the final model (Model 4). b Residual spatial variation of inflammation (CRP > 5 mg/L) without malaria parasi‑
taemia at baseline from the final model (Model 4). Darker colour indicates higher risk. Background © Stamen Design

Fig. 5 Plots from the final spatial model (Model 4) of parasitaemia with fever. a Predicted odds of malaria parasitaemia with concurrent fever 
(axillary temperature >37.5 °C—or history of reported fever within 48 h) at baseline from the final model (Model 4). b Residual spatial variation of 
malaria parasitaemia with concurrent fever at baseline from the final model (Model 4). Darker colour indicates higher risk. Background © Stamen 
Design



Page 11 of 16Aimone et al. Malar J  (2016) 15:349 

systems [43], particularly at later stages of infancy when 
they begin to explore their environment, which increases 
the risk of exposure to pathogens. Both stunting (low 
length for age) and wasting (low weight for length) have 
also been associated with a higher risk of infection-
related morbidity and mortality among children under 
5 years of age in low- and middle-income countries [44, 
45]. The only individual-level variable that remained sig-
nificant across all definitions of infection in both Model 

sets 4 and 5 was baseline iron status. The relationship in 
all models was also positive, indicating that those with 
higher serum ferritin concentrations were more likely to 
have high CRP and/or parasitaemia. This is not surprising 
considering the well-known up-regulating effect of infec-
tion or inflammation on acute phase proteins like ferri-
tin. Although baseline ferritin values were corrected for 
the effect of inflammation (using the regression method), 
the only biomarker available for this was CRP. During the 
early phase of the inflammatory response, CRP reaches 
its peak concentration within 24–48  h [11]. When the 
concentration of CRP declines, ferritin tends to remain 
elevated. Therefore, for more complete ferritin correc-
tion, an additional acute phase protein that corresponds 
to the late phase of the inflammatory response, such as 
alpha-1-acid glycoprotein (AGP), is needed [11]. In this 
case, it is possible that the prevalence of inflammation 
was underestimated, resulting in incomplete correction 
of ferritin and residual confounding.

Similar to Model 4, among the Model 5 set, infection 
defined using parasitaemia was the most informative in 
terms of identifying environmental and non-environ-
mental relationships. Maternal education was negatively 
associated with infection status, which agrees with the 
generally reported finding that parental schooling has 
a positive influence on child health and nutrition status 
[46]. The significant NDVI-LC interaction term may be 
explained by the effect of land cover and land use on the 

Fig. 6 Plots from the final spatial model (Model 4) of all parasitaemia (with/without fever). a Predicted odds of all malaria parasitaemia (with or 
without fever) at baseline from the final model (Model 4). b Residual spatial variation of all malaria parasitaemia (with or without fever) at baseline 
from the final (Model 4). Darker colour indicates higher risk. Background © Stamen Design

Fig. 7 Plot of elevation changes (meters) across the study area. Green 
colour indicates lower elevation. Black dots represent trial compounds. 
Lines represent major roads
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Table 3 Results from the maximal spatial models (Model 5) of baseline infection status among 1943 Ghanaian children 
(2010)

Covariates Odds ratios  
(95 % CrI)

Range parameter  
in km (95 % CrI)

Standard deviations of random effects 
(95 % CrI)

Spatial Compound

(1) Inflammation and/or parasitaemia

 Intercept 0.252 (0.118, 0.543) 4.727 (1.971, 9.440) 0.420 (0.247, 0.733) 0.007 (0.004, 0.028)

 Age per month (months)

  6–23 1.032 (1.010, 1.054)

  24–35 0.976 (0.939, 1.014)

 Sex (male reference) 1.116 (0.908, 1.372)

 Length‑for‑age z‑score 0.915 (0.834, 1.003)

 Weight‑for‑length z‑score 0.876 (0.785, 0.977)

 Asset score 1.032 (0.920, 1.156)

 Maternal education 0.791 (0.632, 0.991)

 Distance to health facility (km) 1.152 (1.053, 1.262)

 Elevation (m) 0.995 (0.990, 1.000)

 Urban/built up land (LC13) 0.965 (0.537, 1.718)

 Woody savannahs (LC8) 0.770 (0.258, 2.218)

 NDVI 0.628 (0.129, 2.972)

 NDVI*LC8 0.629 (0.249, 1.574)

 NDVI*LC13 5.237 (1.118, 26.00)

 Baseline iron status 1.128 (1.048, 1.217)

(2) Inflammation without parasitaemia

 Intercept 0.141 (0.054, 0.353) 6.653 (2.576, 14.22) 0.489 (0.250, 0.961) 0.008 (0.004, 0.029)

 Age per month (months)

  6–23 0.994 (0.967, 1.022)

  24–35 0.974 (0.921, 1.028)

 Sex (male reference) 1.168 (0.889, 1.535)

 Length‑for‑age z‑score 1.007 (0.892, 1.137)

 Weight‑for‑length z‑score 0.904 (0.783, 1.042)

 Asset score 0.994 (0.859, 1.149)

 Maternal education 1.126 (0.831, 1.539)

 Distance to health facility (km) 0.914 (0.810, 1.022)

 Elevation (m) 0.999 (0.993, 1.005)

 Urban/built up land (LC13) 1.035 (0.532, 1.988)

 Woody savannahs (LC8) 0.925 (0.152, 3.759)

 NDVI 1.172 (0.171, 7.074)

 NDVI*LC8 0.842 (0.270, 3.094)

 NDVI*LC13 1.038 (0.192, 6.405)

 Baseline iron status 1.043 (0.940, 1.145)

(3) Parasitaemia with fever

 Intercept 0.006 (0.001, 0.023) 6.992 (2.160, 16.56) 0.675 (0.315, 1.387) 0.008 (0.004, 0.030)

 Age per month (months)

  6–23 1.046 (1.006, 1.089)

  24–35 0.929 (0.859, 0.999)

 Sex (male reference) 1.276 (0.869, 1.877)

 Length‑for‑age z‑score 0.911 (0.763, 1.084)

 Weight‑for‑length z‑score 0.793 (0.639, 0.979)

 Asset score 1.042 (0.827, 1.312)

 Maternal education 0.917 (0.609, 1.392)
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survival and breeding behaviors of mosquitoes. Relation-
ships between infection risk and vegetation type have 
been reported by others investigating the spatial risk 
factors of malaria in Ghana [47] and Indonesia [48]. For 
example, Krefis and colleagues found a lower incidence 
of malaria among children living in forested areas of rural 
Ghana (RR =  0.53), while those living in close proxim-
ity to cultivation had a higher risk of malaria [47]. Forest-
type vegetation may be less likely to collect water where 
mosquitoes could breed and more easily infect those who 

live nearby [49]. On the other hand, areas that have been 
cleared or cultivated may be more likely to have standing 
water due to irrigation, certain topographical character-
istics (e.g., slope), or poor drainage [39, 41, 50]. Appawu 
and colleagues demonstrated higher malaria transmis-
sion rates in irrigated communities compared to non-irri-
gated areas of the Kassena Nankana District of northern 
Ghana, where the land is primarily used for subsistence 
farming [50]. In the western highlands of Kenya, Cohen 
and colleagues found that households with confirmed 

Infection status definitions

1) Inflammation and/or parasitaemia (binary): 1 = CRP > 5 mg/L and/or any malaria parasitaemia, 0 = CRP ≤ 5 mg/L and absence of parasitaemia

2) Inflammation without parasitaemia (binary): 1 = CRP > 5 mg/L without malaria parasitaemia, 0 = CRP ≤ 5 mg/L without parasitaemia

3) Parasitaemia with fever (binary): 1 = any malaria parasitaemia with concurrent fever (axillary temperature > 37.5 °C) or history of reported fever (within 48 h), 
0 = any malaria parasitaemia without concurrent fever or history of reported fever

4) All parasitaemia (binary): 1 = any malaria parasitaemia with/without fever, 0 = absence of parasitaemia with/without fever

Model prior shape = 1.117, model prior rate = 0.157

Baseline iron status = iron status at baseline, defined as serum ferritin concentration (µg/dL) corrected for CRP using the regression method and re-scaled by 
multiplying each corrected value by the inverse of the inter-quartile range

CrI credible interval, NDVI normalized difference vegetation index, averaged over the year 2010, centred by dividing by 1000 and subtracting 4, NDVI8 interaction term 
between NDVI and LC = 8, NDVI13 interaction term between NDVI and LC = 13

Table 3 continued

Covariates Odds ratios  
(95 % CrI)

Range parameter  
in km (95 % CrI)

Standard deviations of random effects 
(95 % CrI)

Spatial Compound

 Distance to health facility (km) 1.307 (1.114, 1.555)

 Elevation (m) 0.996 (0.987, 1.005)

 Urban/built up land (LC13) 1.227 (0.275, 4.872)

 Woody savannahs (LC8) 2.023 (0.300, 9.713)

 NDVI 0.128 (0.004, 3.152)

 NDVI*LC8 1.004 (0.235, 4.548)

 NDVI*LC13 32.80 (1.085, 1542)

 Baseline iron status 1.226 (1.104, 1.350)

(4) All parasitaemia

 Intercept 0.093 (0.035, 0.241) 4.520 (1.494, 10.30) 0.519 (0.280, 0.953) 0.008 (0.004, 0.030)

 Age per month (months)

  6–23 1.055 (1.028, 1.083)

  24–35 0.984 (0.941, 1.028)

 Sex (male reference) 1.026 (0.801, 1.313)

 Length‑for‑age z‑score 0.874 (0.781, 0.977)

 Weight‑for‑length z‑score 0.890 (0.779, 1.017)

 Asset score 1.065 (0.921, 1.230)

 Maternal education 0.665 (0.512, 0.866)

 Distance to health facility (km) 1.259 (1.130, 1.417)

 Elevation (m) 0.995 (0.988, 1.001)

 Urban/built up land (LC13) 0.729 (0.290, 1.733)

 Woody savannahs (LC8) 0.751 (0.217, 2.362)

 NDVI 0.375 (0.039, 3.146)

 NDVI*LC8 0.607 (0.223, 1.644)

 NDVI*LC13 11.19 (1.204, 127.0)

 Baseline iron status 1.129 (1.044, 1.222)
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malaria cases tended to be closer to areas with high wet-
ness indices (predicted water accumulation), which were 
generated using hydrologic modelling of land surface 
water flow [39]. In the present analyses, the interaction 
between vegetation or greenness (NDVI) and ‘urbanized 
or built-up’ land cover type may reflect the differentiation 
between forested and cultivated land, and thus corre-
sponding propensities for water to accumulate and create 
breeding grounds for Anopheles mosquitoes.

The significant spatial random effects observed in all 
models suggest that geographical distribution may be 
important to consider when assessing infection risk in a 
population. This was especially apparent when the final 
model outputs were plotted and compared to an eleva-
tion map, further demonstrating the utility of GIS and 
spatial analysis in exploring and communicating popula-
tion health risks and characteristics. In some cases, par-
ticularly for infection defined using CRP only, mapping 
the spatial random effect from the final model suggested 
that the factors included in the analysis may not have fully 
explained the variation observed. While a larger sample 
size and/or geographical coverage may have allowed an 
additional insight into potential sources of spatial varia-
tion, this may also increase the risk of a type I error. An 
additional limitation pertains to CRP and its inability to 
capture the late phase of the inflammatory response (i.e., 
after 48  h), as this may have led to underestimation of 
non-malaria infection prevalence and thus an incomplete 
picture of spatial variability.

Similar to the spatial random effects, the model range 
remained relatively constant across models, although 
quite a bit smaller compared to other spatial analyses of 
malaria prevalence in sub-Saharan Africa. Ashton and 
colleagues used spatial modelling with a Bayesian frame-
work to assess the spatial variation of malaria (Plasmo-
dium falciparum and Plasmodium vivax) among 5914 
school children in Oromia Regional State, Ethiopia [51]. 
They described range as the distance at which similari-
ties in climatic factors and ecology would be expected, 
and found that it was approximately 45 km in the P. fal-
ciparum model [51]. Although the outcome assessed by 
Ashton and colleagues was similar to that of the Ghana 
trial (P. falciparum parasitaemia), the range from each 
study may have been less comparable due to differences 
in key study characteristics. These included the measure-
ment methods used (e.g., enzyme-linked immunosorbent 
assay versus microscopy in the Ghana trial for assessing 
malaria seroprevalence), the covariates included in the 
spatial models (e.g., environmental factors only versus a 
combination of environmental, individual- and house-
hold-level factors in the Ghana trial), and the size of the 
study area (284,500 km2 in Ethiopia versus 3200 km2 in 
Ghana).

Unlike the spatial random effects, the compound ran-
dom effect observed in all models tended to be relatively 
small, suggesting that there was low additional variabil-
ity in the outcome (infection status) across compounds. 
Since a compound may have consisted of more than one 
household, some spatial clustering of the outcome at the 
compound level was expected. Potential explanations for 
why this was not observed include: (1) the compounds 
within a village were in close proximity to each other, 
resulting in clustering at the village level rather than 
between compounds; and, (2) the small number of obser-
vations per compound reduced the opportunity for the 
outcome to cluster within compounds. Considering that 
the average cluster size was 1.3, the latter explanation was 
the more likely scenario.

A potential limitation of the present analyses was the 
use of straight-line (Euclidean) distance to estimate prox-
imity to a health facility rather than an indicator of access 
by road, such as network distance. While, network dis-
tance may have more appropriately accounted for travel 
distance by vehicle or bicycle, it was not possible to cal-
culate due to incomplete or missing vector information 
(e.g., misaligned junctions, missing or disconnected 
road segments). Another study conducted in the Brong-
Ahafo region of Ghana, by Nesbitt and colleagues, com-
pared different measures of travel impedance to estimate 
access to delivery care [52]. The authors encountered 
similar challenges with calculating network distance, and 
found that it was as informative as straight-line distance 
for determining geographical access in this area of rural 
Ghana [49]. In light of these findings, the use of Euclid-
ean distance in the present analyses was considered to 
be justified. An additional limitation of the analyses pre-
sented here is the cross-sectional nature of the data, as 
it does not allow causality to be inferred or eliminate the 
risk of reverse causality. Further, the prevalence of pro-
tective behaviours (e.g. the use of insecticide treated nets 
or indoor residual spraying) was not assessed at baseline, 
and may have represented a source of unmeasured spatial 
variation.

Conclusions
Determining the spatial dynamics of infection among 
children in a malaria-endemic area, without the use of 
invasive and costly measurement methods, may provide 
a means of locating high risk populations and identifying 
geographical areas where treatment and prevention strat-
egies should be focused. Furthermore, considering the 
relationship between inflammation and iron homeosta-
sis, the maps of infection risk presented here could also 
inform the geographical distribution of iron deficiency 
risk, or at least help to identify areas where extra cau-
tion should be used when providing iron interventions 
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to infants and young children. Future research should 
include longitudinal analyses to examine the co-variation 
in geo-spatial factors associated with infection status 
over time, and to further explore the potential impor-
tance of baseline effects.
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