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Abstract 

 

As malaria endemic countries progress towards elimination, accurately measuring community-

level transmission is critical for monitoring control strategies and the design of efficacy trials. 

However, measuring malaria transmission often faces challenges in pre-elimination settings due 

to the complexity of human immunity and its interaction with vector and parasite dynamics. This 

study evaluates current and emerging epidemiological measures of malaria transmission, and 

explores the use of novel serological markers of malaria infection as metrics in surveillance and 

cluster-randomised trials (CRTs).  

The relative sensitivity of commonly used surveillance diagnostics - polymerase chain reaction 

(PCR), rapid diagnostic tests (RDTs), and microscopy – are cross-compared with respect to their 

accuracy in quantifying cluster-level prevalence of malaria infection. These are further evaluated 

against immunological measures of transmission based on antibody responses to two malaria 

parasite antigens - PfMSP119 and PfAMA1 - used extensively in serological surveillance for the last 

decade. 

To investigate novel serological markers of malaria infection, a multiplexed immunoassay was 

used to characterise post-infection antibody dynamics to 20 Plasmodium falciparum antigens. 

This was based on a subset of 192 individuals from an all-age longitudinal cohort study in The 

Gambia. Antibody responses against several antigens showed accuracy in detecting infection in 

the preceding six months. These may have potential utility in measuring time since infection or 

short-term changes in transmission. However, variations in immune response by age and 

transmission intensity were observed and should be taken into consideration for future 

optimisation of serological assays. 

Antigens identified as the most promising biomarkers of recent infection were used to estimate 

cluster-level transmission in four villages in The Gambia. Serological responses are compared 

between dry and wet season and geographical regions of low and high transmission intensity. 

Their application was also extended to compare study arms of a cluster-randomised trial in the 

Zambezi Region, Namibia, comparing the effectiveness of reactive focal case detection, reactive 

focal mass drug administration, and reactive vector control.  

These findings may help to inform the development of new serological diagnostic assays for 

malaria, their use in future malaria surveillance and elimination strategies, and the design of 

cluster-randomised trials in low transmission settings.  
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IgG   Immunoglobulin 
IHA   Indirect haemagglutination assay 
IPT   Intermittent preventive treatment 
IRR   Incidence rate ratio 
IRS   Indoor residual spraying 
ITN   Insecticide-treated bed net 
ITT   Intention-to-treat 
LAMP   Loop-mediated isothermal amplification 
LDH   Lactate dehydrogenase 
LFA   Lateral flow assay 
LLINs   Long-lasting insecticidal nets 
LLPCs Long-lived plasma cells 
LOB Limit of blank / background 
Luminex Luminex MAGPIX© 

MAP   Malaria Atlas Project 
MBCs   Memory B cells 
MCMC   Markov Chain Monte Carlo 
MDA / rfMDA  Mass drug administration / reactive focal mass drug administration 
MFI   Median fluorescence intensity 
MICS   UNICEF Multiple Indicators Cluster Surveys 
MIS Malaria Indicators Surveys 
MHC   Major histocompatibility complex 
MOI   Multiplicity of infection 

molFOI   Molecular force of infection 
MSAT / MTAT  Mass screen and treat / mass test and treat 
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MSP119   Merozoite surface protein 1, C-terminal 19-kilodalton region 
NAATs   Nucleic acid amplification techniques 
nPCR   Nested polymerase chain reaction 
OD   Optical density 
OR   Odds Ratio 
PACD   Proactive case detection 
PCD   Passive case detection 
PCR   Polymerase chain reaction 
PMBCs   Peripheral blood mononuclear cells 
PP   Per-protocol 
PR   Parasite rate 
Pf   Plasmodium falciparum 
Pv   Plasmodium vivax 
Pm   Plasmodium malariae 
Po   Plasmodium ovale 
Pk   Plasmodium knowlesi 
PfPR2-10   P.falciparum parasite rate in 2-10 year olds 
PfEMP1   P.falciparum erythrocyte membrane protein 1 
qSAT   Quantitative suspension array technology 
R0 Basic reproductive rate/number 
RC  Basic reproductive rate/number under malaria control measures 
RACD   Reactive case detection 
RAVC   Reactive focal vector control 
RBCs / iRBCs  Red blood cells / infected red blood cells 
RDT   Rapid diagnostic test 
ROC   Receiver operating characteristics 
SCR / SRR  Sero-conversion rate / sero-reversion rate 
SD   Standard deviation 
SE   Standard error 
SMC   Seasonal malaria chemoprevention 
SP   Sero-prevalence 
TBV   Transmission-blocking vaccine 
Th   T-helper cells 
TNF-α   Tumour necrosis factor alpha 
TPE   Targeted parasite elimination 
t0.5   Half-life 
URR   Upper River (Administrative) Region South, The Gambia 
VIMTs   Vaccines interrupting malaria transmission 
WCR   West Coast (Administrative) Region, The Gambia 
WHO   World Health Organization 
μL Micro-litre 
95%CI 95% confidence interval or 95% credible interval (if based on posterior 

distribution of MCMC estimates) 
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 Introduction 
 

1.1 Malaria elimination – past, present and future 
 

“Not only does malaria persist; it thrives.”1  

In fact, the human battle against Plasmodia has endured for millennia.2 In 2007, when Bill and 

Melinda Gates challenged scientists to eradicate malaria in their lifetimes,3 it was not the first 

time the world had made this pursuit. Nonetheless, it signalled a renewed paradigm shift from 

control to elimination in the modern era of malaria. In the years since, consistent financial 

investment and political will have enabled sizeable reductions in malaria at national and regional 

levels. As part of the Global Technical Strategy for Malaria endorsed by the World Health 

Organization (WHO) in 2015, the malaria community set targets to achieve elimination in over 35 

countries by 2030. A number of countries have already been declared no longer endemic or free 

of indigenous cases since 2000,4 and 32 currently endemic countries are pursuing national 

policies for elimination5 (Figure 1.1).  

Yet, perhaps the most distinguishing characteristic of current malaria efforts is the recognition 

that multi-faceted approaches are crucial (Figure 1.2). Countries currently on or considering the 

path to elimination possess a much larger range of intrinsic transmission potential than countries 

that have eliminated since the Global Malaria Eradication Program (GMEP) of 1955-1969.5–9 

These variations are driven by complex environmental, biological, and health system factors.10,11 

Today, a better appreciation for these differences across epidemiological settings means that 

implementing an optimal set of strategies for elimination will require a tailored effort for many 

countries. In light of this, well-designed and consistent methods for measuring malaria 

transmission are needed to assess the effectiveness of strategies in varied settings and to monitor 

progress towards elimination.  

In this chapter, I review strategies for malaria elimination (past and present) and the challenges 

posed by the changing landscape of malaria epidemiology. I will also discuss current and 

emerging diagnostic tools for measuring transmission, including the application of immunoassays 

to serological surveillance. Finally, I describe the history of epidemiology in The Gambia and 

Namibia - two sub-Saharan African countries currently on the path to malaria elimination - and 

how their experience with community-based interventions may help illustrate what is required 

going forward. 
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Figure 1.1 Map of 21 countries with the potential to eliminate malaria by 2020 

As described by Rabinovich, R.N. et al in “malERA: An updated research agenda for malaria elimination and 

eradication.” PLOS Med. 14, e1002456 (2017)12, there are 91 countries and territories with ongoing malaria 

transmission. As of November 2017, analysis by WHO identified 21 countries with the potential to eliminate by 

2020: Algeria, Belize, Bhutan, Botswana, Cabo Verde, China, Comoros, Costa Rica, Ecuador, El Salvador, Iran 

(Islamic Republic of), Malaysia, Mexico, Nepal, Paraguay, Republic of Korea, Saudi Arabia, South Africa, Suriname, 

Swaziland, and Timor-Leste. Countries and territories that have been certified malaria-free since 2007 are the 

United Arab Emirates (2007), Morocco (2010), Turkmenistan (2010), Armenia (2011), Maldives (2015), Sri Lanka 

(2016), Kyrgyzstan (2016), and Paraguay (2018). Argentina has formally requested certification of malaria 

elimination and is in the process. Note that not all countries that have achieved zero indigenous cases for 3 

consecutive years have sought certification from WHO.  

 

 

 

1.2 Strategies for malaria elimination 

The eradication of malaria was first considered a feasible objective after the development and 

application of dichloro-diphenyl-trichloroethane (DDT) in the 1940s as a long-lasting residual 

insecticide. Numerous field trials and the integration of DDT spraying into national malaria 

control programmes demonstrated that it was extremely effective in interrupting 

transmission.13,14 Furthermore, the early work of Ronald Ross and George Macdonald on 

mathematical models of mosquito-borne pathogens brought to the centre stage principles of 

vectorial capacity, methods for measuring mosquito-driven transmission, and quantitative 

theories of vector control.15,16  

Consequently, GMEP interventions were based entirely around indoor residual spraying (IRS) 

with DDT and other insecticides, abandoning other methods of malaria control such as 
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prevention of mosquito biting and the destruction of vector breeding sites. Even the use of 

antimalarial drugs was initially considered unnecessary. The campaign’s emphasis on 

intervention coverage and operational efficiency galvanised countries with the existing 

infrastructure and resources to eliminate regionally. The impact on the global burden of malaria 

was clear; the geographical distribution of malaria shrank, albeit primarily due to reduction in 

areas with strong control programmes.17,18  

As with any disease elimination effort, however, GMEP eventually faced diminishing returns. The 

importance of reported treatment failures and the documentation of chloroquine resistance in 

Venezuela and Thailand as early as the 1950s was overlooked, and evidence of vector avoidance 

of insecticide contact in Mexico also emerged. By the 1960s, a number of areas failed to reduce 

malaria at rates originally predicted, and other regions experienced unexpected resurgences 

after long periods of interrupted transmission. As countries began to revert from “consolidation” 

to “attack” phase (Figure 1.3) and financial constraints grew, the global eradication campaign lost 

momentum.19 The 1968-1969 epidemic in Sri Lanka, the poster child for malaria research and 

control at the time, may have foreshadowed what was to come - formal recognition by the WHO 

in 1969 that short-term eradication in many countries was not feasible.20 

 

Figure 1.2 Framework for malaria elimination established by the WHO in 2017 

As described by the WHO Global Malaria Programme in “A framework for malaria elimination” (2017)4, the figure 
below illustrates a package of intervention strategies that can be adapted for different geographical areas in a 
country. It is recommended that the choice of interventions be based on transmission intensity (from “high” to 
“very low” to zero and maintaining zero) and also on operational capacity and system readiness. The diagram is 
presented as illustrative rather than prescriptive, as the onset and duration of interventions depends on local 
circumstances. Shading of boxes indicates enhancements and quality required as programmes progress towards 
elimination, with more intense actions indicated with darker colours and shading from light to dark indicating 
enhancement of quality and scale or focus of work. 
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Figure 1.3 Phases of the Malaria Eradication Campaign as established by the WHO in 1963 

As described in the report of the World Health Assembly “Re-examination of the global strategy of malaria 
eradication” published in 196919, the figure below illustrates the phases of malaria control and elimination under 
the Global Malaria Eradication Programme (GMEP).  

 

 
 
 

Today, there are a number of elimination strategies and interventions aimed at community-based 

reduction of transmission (Table 1.1). These range from vector control, surveillance, and case 

management to the development of novel drugs and vaccines to reduce human-to-mosquito 

transmission. All of them will require robust methods for measuring transmission, either as a 

means of focally targeting interventions or tracking impact over time.  

 

Table 1.1 Elimination strategies and interventions for reducing malaria transmission  

 
*Interventions discussed in subsequent research-specific chapters are underlined for emphasis. 
 

Intervention Description 

 
Vector control 

 
Long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) 
have been the mainstay of malaria control and elimination, accounting for 
an estimated 78% of malaria cases averted globally since 2000.21 However, 
new vector control products and methods will need to address insecticide 
resistance, outdoor resting and biting species, and other constraints.  
 
Potential innovations and strategies include (but are not limited to) 
improved larval source management, ground or aerial spray delivery of 
insecticides, housing modifications such as window screening, sealed eaves 
and closed ceilings, insecticide treated clothing, odour- or sugar-baited 
traps, and veterinary insecticides to target livestock feeding vectors.22  
 
Studies are also on-going on the mass drug administration of ivermectin as 
both vector control and a sporontocidal transmission-interrupting drug.23,24 
 
Reactive vector control (RAVC). Vector control measures can also face 
coverage challenges or risk of resistance if insecticides are not rotated. 
Reactive vector control is one strategy for spatially targeting households 
with increased risk of infection based on entomological or clinical 
surveillance data.  
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Population-wide 
drug-based 
strategies 
 

 
Mass drug administration (MDA). Studies have suggested that in 
populations with a large proportion of low-density asymptomatic infections 
below the detection limit of microscopy and rapid diagnostic tests (RDTs), 
mass screen and treat (MSAT) is not effective in reducing transmission.25,26 
This has renewed the interest in the administration of chemoprophylaxis to 
entire populations to prevent transmission. Due to concerns over safety and 
drug resistance, variations also include presumptive treatment directed at 
potentially high-risk populations or targeted parasite elimination (TPE).27 
 
Reactive focal mass drug administration (rfMDA). If population-wide MDA 
is not feasible or unpopular due to the risks associated with treating 
uninfected populations or the potential for drug resistance, 
chemoprophylaxis can be administered only to individuals with increased 
risk of infection based on proximity to passively-detected index cases from 
the health facility.  
 
Seasonal malaria chemoprevention (SMC). In areas where malaria 
transmission is highly seasonal, SMC has been used to provide preventive 
treatment specifically during months of peak transmission. Studies have 
shown that this is highly effective in reducing clinical incidence in young 
children28–30 and, in 2012, the WHO recommended implementation in 
children under age five in countries of the Sahel sub-region of Africa.31 SMC 
is used primarily for malaria control and reduction of morbidity and is 
contra-indicated in areas with low or perennial transmission, though it is 
currently being implemented in countries with large heterogeneities in 
transmission and may impact on bordering areas being targeted for 
elimination sub-nationally (e.g., Senegal, The Gambia).  
 
Studies have also suggested that SMC is effective when administered to 
individuals up to 10 years of age, though this is not yet recommended by the 
WHO.32 It is also not yet recommended for use in southern or eastern Africa 
due to high levels of resistance to amodiaquine and sulfadoxine-
pyrimethamine and lack of efficacy and safety data on the use of other 
antimalarials in SMC.33  
 

 
Enhanced 
surveillance and 
case management 

 
Case management through passive and active case detection. Passive case 
detection (PCD) based on health facility cases is used for malaria surveillance 
at all transmission intensities. For malaria-eliminating countries, however, 
clinical cases are increasingly rare, and active case detection (ACD) by health 
workers is used to identify infections in the community or households that 
may not present directly to the health systems. It is used primarily as a 
strategy for targeting asymptomatic reservoirs of infection.34  
 
Mass screening and treatment (MSAT) / Mass testing and treatment 
(MTAT). This strategy involves screening for risk factors or symptoms (in the 
case of MSAT), following by testing and treating (MTAT), of an entire 
population. The objective is to target the parasite reservoir in areas of low 
parasite prevalence or where MDA is not feasible or acceptable.  
 
Reactive case detection (RACD) and focal screening/testing and treatment 
(FSAT/FTAT). Focal and reactive strategies are a subset of MSAT/MTAT 
strategies, where interventions are in limited geographical areas or 
communities. RACD, also referred to as reactive case investigation34, 
involves the screening and/or testing of household members, neighbours, 
and other contacts - typically with RDTs - around a passively detected case 
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and treating those who are positive, while FSAT/FTAT may be based on 
known high-risk areas or foci. This is motivated by evidence in multiple 
settings that malaria cases tend to be spatially clustered35–39, but limited 
impact studies are available. 
 
Pro-active case detection (PACD). Also a form of MSAT/MTAT, PACD is not 
prompted by an index case, but focused on populations with limited access 
to the health system, poor health-seeking behaviour, or in particularly high-
risk groups (e.g., migrants and refugees, forest or mine workers). Compared 
to FSAT/FTAT, it is similar to a form of ACD conducted periodically (weekly 
or monthly) during high transmission season.  
 

 
Transmission-
blocking 
pharmaceutical 
products 

 
Transmission blocking drugs. Human-to-mosquito transmission involves 
the uptake of gametocytes, the sexual stage of the parasite. Single low-dose 
primaquine has been shown to be active against this stage. This regimen was 
recommended for addition to artemisinin-based combination therapies 
(ACTs) by the WHO in 2012.40 Research has shown that this can reduce 
infectiousness to mosquitoes, but there are limited studies that 
demonstrate a reduction of malaria transmission in communities.41 
 
 
Vaccines interrupting malaria transmission (VIMTs). To date, most vaccines 
have focused on reducing morbidity and mortality, with only one vaccine 
candidate, RTS,S/AS01, reaching phase III clinical trials. VIMTs typically refer 
to “classical” transmission-blocking vaccines (TBVs) that directly target 
sexual or mosquito stage parasite antigens, but may also include pre-
erythrocytic or asexual stage vaccines that inhibit parasite densities enough 
to indirectly reduce the presence of gametocytes.42,43 There are a limited 
number of candidate-TBVs in early stage R&D,44 with leading candidates 
based on Pfs2545 as well as Pfs48/45, Pfs23046, Pfs28, and APN1. 
 

 
Other strategies 
 

 
Surveillance as an intervention. There has been an increased emphasis on 
strategies to detect all infections as early as possible. Therefore, the strength 
of health systems to identify, investigate, classify, and manage foci more 
efficiently has been highlighted as critical for countries aiming to eliminate. 
 
Testing of co-travellers. This strategy is similar to RACD, but focused on 
imported cases or those that occur outside the household, such a forest-
workers.  
 
Border screening. To reduce the risk of imported malaria to eliminating 
countries, the screening and/or testing of any individuals entering 
eliminating countries from endemic areas has been suggested, but there 
have not been formal impact evaluations of this strategy. 
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1.3 The challenge of measuring malaria transmission for elimination 
 

Getting to zero – a matter of debate (and definitions)? 

The difference between global eradication, elimination, and control has been described as “the 

difference between absolute zero, nearly zero, and low.”47 Eradication is the permanent 

reduction to zero of worldwide incidence of all human malaria parasite species. On the other 

hand, elimination has been more difficult to delineate. Formally, the WHO defines elimination as 

the interruption of local transmission of a specified malaria parasite species in a defined 

geographical area. Certification requires proof of zero incidence of indigenous cases for at least 

three consecutive years.4  

However, elimination has also been described as a state of interrupted endemic transmission 

below a threshold at which risk of re-establishment is minimised.47 This relates to the concept of 

“malariogenic potential”, a combination of an ecosystem’s receptivity to malaria transmission 

(e.g., presence of competent vectors, a suitable climate, and a susceptible population) and 

vulnerability or “importation risk” due to the influx of infected individuals, groups, and/or 

infective mosquitoes.4,47 Debates around the qualitative and quantitative concept of elimination 

are not purely academic, but critical for both policy and research. The subtleties of various 

definitions imply that elimination is linked to risk of transmission, and must therefore involve 

much more than monitoring of infections or cases, as WHO certification requirements imply.  

The epidemiology of malaria in a landscape of declining transmission 

What is clear in recent decades is the rapidly changing epidemiology of malaria. There are five 

Plasmodium species known to infect humans [P.falciparum (Pf), P.vivax (Pv), P.malariae (Pm), P. 

ovale (Po), and P.knowlesi (Pk)]48. Pf, which this report exclusively focuses on, is most associated 

with severe disease, clinical symptoms, and mortality, particularly in sub-Saharan Africa49. It also 

has the greatest global distribution. Geospatial methods developed by the Malaria Atlas Project 

(MAP) have utilised malariometric information from multi-year national surveys, routine health 

facility data, and a range of environmental covariates. In 2010, they estimated that 2.57 billion 

people worldwide were at risk of Pf transmission. Of these, 1.13 billion lived in areas of unstable 

and very low transmission (where case incidence is unlikely to exceed 10,000 per annum), 

primarily in Asia (91%). In the same year, 1.44 billion people still resided in areas of stable 

transmission, with the majority located in Africa (52%) or Central, South and East Asia (46%).50 

Within sub-Saharan Africa, updated geospatial estimates in 2015 (Figure 1.4) reported a 50% 

reduction in Pf parasite rate in children aged 2 to 10 (PfPR2-10) since 2000, with three-quarters of 
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the decline occurring between 2005 and 2015 alone.21 The population of stable endemic Africa 

experiencing PfPR2-10 less than 1% also increased six-fold in that time (faster that the underlying 

rate of population growth). Based on these figures, Bhatt et al suggest that 121 million people 

are currently living in areas where elimination campaigns are feasible.21 They attribute these 

changes in prevalence to the distribution of insecticide treated bednets (ITNs), estimated to 

account for 62-72% of PfPR declines, while access to artemisinin combination therapies (ACTs) 

and IRS have also contributed, but to a lesser degree (15-24% and 11-16% respectively). In 2014, 

based on spatial temporal analysis of Pf parasite prevalence, Noor et al also observed a shift 

towards populations residing in areas of lower transmission intensity across Africa between 2000 

and 2010 (Table 1.2).51 

 

Figure 1.4 Changing infection prevalence in Africa 2000-2015 

As described by Bhatt, S et al in “The effect of malaria control on Plasmodium falciparum in Africa between 2000 
and 2015.” Nature 526, 207-2011 (2015)21, the figure below includes (a) PfPR2–10 for the year 2000 predicted at 
5×5 km resolution, (b) PfPR2–10 for the year 2015 predicted at 5×5 km resolution, (c) absolute reduction 
in PfPR2–10 from 2000 to 2015, and (d) smoothed density plot showing the relative distribution of endemic 
populations by PfPR2–10 in the years 2000 (red line) and 2015 (blue line).  
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Table 1.2 2010 population (millions) in malaria endemic countries in Africa by the Plasmodium 
falciparum parasite rate endemicity class in 2000 and 2010  

As described by Noor, A.M. et al in “The changing risk of Plasmodium falciparum malaria infection in Africa: 2000-

10: a spatial and temporal analysis of transmission intensity.” Lancet 383, 1739-1747 (2014)51, the table below 

includes green shaded cells showing the number of people (millions) in 2010 who lived in areas where malaria 
endemicity declined least one level from 2000. Pink shaded areas are where endemicity increased by at least one 
level from 2000. Estimates do not include Burundi, Central African Republic, Congo, Mauritania, and Niger, for 
which there was insufficient data to predict change. PAR=populations at risk. PfPR2–10=community Plasmodium 
falciparum parasite rate standardised to the age group 2–10 years. 
 

 

 

Heterogeneity in malaria transmission 

It is easy to making sweeping generalisations at the global or regional level, especially when gains 

have been impressive. However, as a caveat to their estimates, Noor et al describe a central 

challenge to malaria elimination: “Why the intensity of malaria has changed so dramatically in 

some areas and seems to be intractable in others over the past decade is a fundamental question 

for future investment in malaria control in Africa.”  One reason may be our limited understanding 

of the malaria ecotypes that correlate most with the feasibility of interrupting transmission, but 

more importantly, the risk of resurgence. In fact, the most recent World Malaria Report suggests 

that progress in malaria control may be stalling, with 5 million more cases in 2016 than 2015 

(though this may potentially be an artefact of improved surveillance).  

Following GMEP, malaria resurgence was experienced widely in sub-Saharan Africa (Kenya, 

Nigeria, Sudan, Mauritius, Madagascar, and Swaziland), Asia (India, Pakistan, Sri Lanka, Thailand, 

Indonesia), and Latin America (Brazil, Mexico, Peru, Colombia). Causes have been attributed to 

the cessation of pilot programmes and control activities, increased human or mosquito 

movement, development and land-use changes, as well as war and civil strife and the associated 

worsening of socio-economic conditions.52 

Terms classically used to describe malaria transmission are hypo, meso, hyper, and holo-endemic 

based on spleen and parasite rate. Today, transmission intensity is similarly defined as high, 

moderate, low, and very low, based on annual parasite incidence (API) and parasite prevalence 

(Figure 1.2).4 Despite advancements in geospatial mapping described above, not explicitly 
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embedded in these categories are geographical and socio-demographic characteristics that 

determine the rate of change in transmission intensity. Ecology-based classifications of malarious 

zones fell out of popularity during GMEP. This was largely due to the fact that control and 

elimination in sub-Saharan Africa - which exhibits a diversity of environments and, therefore, 

malariogenic potential - was largely ignored. However, francophone scientists working in tropical 

Africa at the time did develop categories of faciès épidèmiologique, based on: 

 Natural regions 
o Equatorial with forest or savannah - perennial transmission 
o Tropical and humid savannah - transmission season exceeding 6 months 
o Sahelian with dry savannahs - transmission season lasting less than 6 months 
o Desert – short or absent transmission season 
o Southern (plateaus of southern African) – seasonal transmission interrupted 

with winter 
o Highland (1000-2000m altitude) – highly variable transmission limited by 

temperature and surface declination 

 Secondary factors 
o Natural - landform, water bodies, soil characteristics 
o Anthropic factors - modification of vegetation, water bodies, urbanisation, 

habitat of humans and cattle 
o Dynamic factors – natural disasters, climate change, malaria control, population 

movement, development of transport networks 

 
Malaria ecotypes are most useful if they can demarcate areas most responsive to intervention 

strategies and if there are methods for measuring risk factors as they change. Heterogeneity and 

hotspots of transmission are increasingly common as malaria burden declines in many regions 

(Figure 1.5). Micro-epidemiological variations in malaria infection are frequently observed in 

areas of low to moderate transmission intensity.53–56 Here, large proportions of the population 

may remain malaria free for years, while subpopulations experience multiples episodes.54,55,57 

For example, a study in Kilifi, Kenya found that 20% of homesteads experiencing a febrile case of 

malaria during the dry season later experienced 65% of all febrile malaria episodes the following 

year.58 Malaria hotspots have been described previously as a geographical area where 

transmission intensity exceeds the average level, and, in fact, several hotspots of malaria 

transmission can occur in a single defined region,55,56 resulting in much higher localised 

reproductive rate (R0) estimates compared to broader intervention focus areas.59  
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Figure 1.5 Malaria heterogeneity across the transmission continuum 

As described by the WHO in “Malaria surveillance, monitoring & evaluation: a reference manual” (2018)60, the 

schematic below illustrates the increasingly focal nature of malaria as transmission decreases, requiring increased 
intensity and frequency of reporting from large geographical areas (e.g., district) to reporting near-real-time 
individual case data in small areas.  
 

 
 

1.4 Implications for surveillance and the evaluation of transmission-
reducing interventions 
 

A major shortfall of GMEP was the lack of strong surveillance systems and strategies for detecting 

the last remaining cases. Many health systems lacked the geographical coverage required to 

achieve effective surveillance for elimination.61 In fact, the resurgence of malaria in Sri Lanka is 

credited to the failure of the surveillance system to respond to decades of evidence on the 

periodic nature of epidemic risk in the country. One underlying principle behind other eradication 

campaigns, such as smallpox and polio, is a focus on outbreak investigation or clustering of cases, 

before attempting to identify individual cases.17  

The current epidemiology of malaria poses several challenges for surveillance. These include the 

changing demographics of high-risk populations or occupations (e.g., forest and mine workers), 

increased migration and imported malaria, hard to reach populations, and the increasing 

prevalence of asymptomatic low-density infections.62 The latter of these may also vary at the sub-

national and regional level. This has implications for the effectiveness of intervention packages 

that need to adapt to the diversity of transmission intensity. The WHO framework for malaria 

elimination suggests that stratification to differentiate transmission risk can be thought of in 

sequential stages (Figure 1.6): 

 
1. Receptive and non-receptive areas 

2. Receptive areas with and without ongoing transmission 

3. Transmission with or without foci 

4. Degree of transmission in diffuse or focal areas 
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In many instances, a number of elimination strategies and interventions described above (Table 

1.1) have provided valuable data via health-facility surveillance and active household surveys. 

This surveillance data in various forms has allowed evidence-based stratification or identification 

of transmission foci for targeted community-interventions.63,64 

 

Figure 1.6 Sequential stratification according to receptivity and transmission intensity  

As described by the WHO in “A framework for malaria elimination” (2017)4, the schematic below illustrates the 
geographically focal or diffuse nature of transmission in areas targeted for malaria elimination.  
 

 

 

Challenges facing cluster randomised trials for transmission-blocking interventions 

Testing the effectiveness of transmission interrupting interventions (drug, vaccine, or vector 

control) requires measuring the indirect reduction of infection at the community level to evaluate 

herd effects. In low transmission settings, measuring clinical incidence may require large samples 

sizes. Furthermore, active surveillance may have the effect of altering patterns of clinical 

disease.65 

Cluster randomised trials (CRTs) are practical for measuring the indirect and/or herd immunity 

effects of interventions, and they have been used previously to evaluate intermittent preventive 

treatment (IPT),66–69 ITNs70–73 and MDA74,75. CRTs achieve study power by increasing the number 

of clusters rather than increasing cluster size,76,77 which will also be influenced by the 

intervention-independent malaria transmission and risk of infection between clusters. In a CRT, 

the degree of variability between clusters in the outcome of interest has a large impact on the 

precision and power of the trial.76 While conducting a trial across many heterogeneous settings 

may improve the generalisability of the study findings, this will impact on the value of the intra-

cluster coefficient of variation (ICC), which reduces the power and precision at a given sample 

size. One method of accounting for this is to match or stratify study communities with respect to 

the primary outcome.77 The effectiveness of this stratification, however, will depend on the 

accuracy of the metric that is used as the proxy for the expected primary outcome levels.  
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It is also likely that movement of people and/or mosquitoes between clusters will occur during 

the trials and the contamination of infection from control clusters, or spill-over protective effects 

from intervention clusters, may lead to an underestimation of impact. For example, one study 

evaluating the effectiveness of permethrin-treated ITNs in Asembo and Gem, Kenya, showed a 

protective effect against child mortality, moderate anaemia, and high-density parasitaemia in 

control clusters within a particular distance of the intervention clusters.72 A standard analysis of 

the effect of the control vs. intervention clusters without accounting for these spatial spill-over 

effects would have led to an underestimation of the intervention’s community effect. Therefore, 

several cluster designs have been suggested to address this issue that involve the inclusion of 

buffer zones in various forms (discussed further in Chapter 7).65 

Heterogeneity in transmission and hotspots present challenges for both the implementation of 

interventions78 and clinical trial design to evaluate them. If untargeted, residual transmission is 

most likely to persist in these areas.56 Studies have observed instances in which hotspots of 

malaria intensity remained unaltered even after overall transmission is reduced.35,37,79 In the 

context of cluster trials, heterogeneity will exists between and within clusters and needs to be 

accounted for either in the stratification or analysis of trial outcomes. The ability to detect 

heterogeneities will vary depending on transmission intensity and the discriminatory power of 

the metrics used to identify differences in malaria infection. 

Accurate measures of malaria transmission are also essential to the design of CRTs. Firstly, 

baseline measures of transmission intensity can be used to select appropriate trial sites. 

Transmission intensity influences not only the sample size required to demonstrate an 

intervention’s effectiveness, but the choice of diagnostic to be used. Furthermore, these baseline 

measures of transmission intensity can be used to classify clusters into strata to improve study 

power. However, inaccurate measurement can lead to inefficient stratification and an under- or 

over-estimation of intervention effect. Finally, evaluation of an intervention effect on 

transmission requires accurate measures of infection incidence. This can include a combination 

of primary and secondary endpoints. If surrogate entomological endpoints are to be measured 

prior to phase III trials, for example, it may also be important to understand how these relate to 

primary human endpoints. These factors will influence decisions on the frequency of sampling 

and the sample size required for each endpoint. 

 

 

 



29 
 

1.5 Diagnostics and tools for measuring transmission 
 

As best described by Tusting et al, “measuring malaria transmission is intrinsically noisy.”80,81 We 

currently have a wide range of malaria diagnostics at our disposal, but they vary in their suitability 

as metrics of transmission or as endpoints in efficacy trials. Historically, malaria transmission has 

been measured using the entomological inoculation rate (EIR), or the number of infective bites 

per person per unit of time.80 In humans, infection prevalence can be directly measured using 

parasite prevalence, the proportion of individuals with parasitaemia at a given point in time, and 

its accuracy varies depending on the measurement method used.80 These range in sensitivity 

from light microscopy82 and RDTs83 to nucleic acid amplification tests (NAATs), such as 

polymerase chain reaction (PCR)84–87. The relative sensitivity of these measures will be discussed 

further in Chapter 3. 

Active and passive case detection based on clinical cases or annual parasite index (API) are the 

cornerstone of national malaria control programmes.81 More recently, they have also been 

improved and complemented by the widespread use of RDTs in health facilities and large-scale 

surveys such as the Demographic and Health Surveys (DHS), Malaria Indicators Surveys (MIS) and 

UNICEF Multiple Indicators Cluster Surveys (MICS).88 Currently used human and entomological 

metrics are summarised in Tables 1.3 and 1.488, which also describe their discriminatory power 

in different settings. 

Recently, there have been a number of new approaches used to monitor changes in malaria 

epidemiology using both molecular and serological methods (Table 1.588), though they have been 

limited to research settings. For example, molecular force of infection (molFOI) can be estimated 

through the genotyping of individual parasite infections.89–91 Broadly, force of infection (FOI) is 

defined as the number of new infections per person per unit time, while molFOI specifically is the 

number of new parasite clones acquired per unit time.89 These methods can distinguish multiple 

co-infecting parasite clones within one host.89,92,93 Another molecular measure being used is the 

multiplicity of infection (MOI), the number of concurrent parasite clones per parasite-positive 

host.80 Additionally, the use of single nucleotide polymorphism (SNP) barcode assays has been 

suggested for measuring changes in malaria infection in low transmission settings. Studies in 

Senegal have used a 24-SNP barcode assay to correlate parasite population diversity with 

longitudinal changes in disease transmission.94,95  

Serology, which indirectly measures infection using human antibody (Ab) responses to malaria 

parasite antigens, has been used extensively in malaria epidemiology in the last decade, primarily 

through FOI estimates derived from age-dependent measures of sero-prevalence. These and 

other serological methods are discussed in more detail below and in Chapters 4-7. 
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In low transmission settings, the prevalence of asymptomatic infections with parasite densities 

below the detection limit of conventional diagnostics such as microscopy and RDTs has been 

observed. Nearly 50% of infections identified by nested PCR (nPCR) are undetectable by light 

microscopy, and this proportion also varies by endemicity and population groups.96,97 The factors 

influencing the relative sensitivities of these diagnostics, and their relationship with 

asymptomatic infections, are discussed further in Chapter 3.  

 

Table 1.3 Summary of currently available malaria transmission metrics in humans  

As described in “malERA: An updated research agenda for characterising the reservoir and measuring 

transmission in malaria elimination and eradication.” PLOS Med. 14, e1002452 (2017)88, the table 
below outlines currently available metrics for measuring malaria transmission in humans.  
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Table 1.4 Summary of currently available entomological malaria transmission metrics  

As described in “malERA: An updated research agenda for characterising the reservoir and measuring 

transmission in malaria elimination and eradication.” PLOS Med. 14, e1002452 (2017) 88, the table 

below outlines currently available entomological measures of malaria transmission.  
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Table 1.5 Advances in the development of metrics for measuring malaria transmission  

As described in “malERA: An updated research agenda for characterising the reservoir and measuring 

transmission in malaria elimination and eradication.” PLOS Med. 14, e1002452 (2017)88, the table 

below summarises recent advances in the development of new metrics for measuring malaria 
transmission.  
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1.6 Leveraging the human immune response for surveillance 
 
The use of serological data in epidemiological analysis 

Sero-epidemiology, or the measure of population-wide Ab responses in serum, has been widely 

used to study the prevalence of infection for a number of diseases. Sero-prevalence surveys have 

helped to guide vaccination strategies as well as disease control and elimination programmes98 

for polio99,100, measles,101 rubella,102 diphtheria,103 Haemophilus influenza type B (Hib)104, and 

pertussis105. It has been used extensively in tropical infectious diseases such a dengue, trachoma, 

chikungunya, and helminths infections.106–111 

For infections that lead to lifelong or persistent antibodies, the application to sero-epidemiology 

is primarily through measures of Ab prevalence by age in mathematical models used to estimate 

an age-specific FOI112. It is particularly useful for pathogens such as hepatitis B113 and rubella 

where serology is a strong marker for subclinical infections. It is less suitable for infections that 

do not generate stable Ab responses, such as cholera, human papillomavirus (HPV), rotavirus, 

and typhoid.  

In malaria, the use of sero-epidemiology has also focused on measuring age-related sero-

prevalence and FOI through community or household surveys. Over the past 10 years, substantial 

work has shown that serological evaluation of cross-sectional Ab prevalence can provide 

medium- and long-term temporal measures of transmission intensity,114–121 and correlate well 

with within-study estimates of EIR, PR, and clinical incidence.121 In particular, the ability to 

standardise the use of the Pf blood-stage antigens PfAMA1 and PfMSP119 due to their long half-

life, moderate levels of immunogenicity, and limited polymorphisms, has allowed the use of 

immunological assays that measure human Ab responses to these antigens as a practical 

epidemiological tool.  

As a proxy for malaria transmission intensity, age-stratified sero-prevalence data are used to fit 

reverse catalytic models and estimate population-level FOI or a seroconversion rate (SCR) - the 

rate at which sero-negative individuals become sero-positive after infection by malaria 

parasites.122 More recently, new approaches have been applied using serological data to measure 

population Ab responses to malaria. These include adaptations of the reverse catalytic model 

with the use of Ab titre measurements rather than sero-positivity123 and Ab acquisition models124. 

These and other malaria sero-epidemiology models will be discussed in more detail in Chapters 

4 – 7. 

Naturally acquired immunity to malaria 

Most successful vaccines have been against pathogens that induce long-lived protective Abs upon 

a single infection, such as smallpox, measles, and yellow fever.125,126 Pathogens that do not induce 
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sterile immunity, including malaria as well as human immunodeficiency virus type-1 (HIV-1) and 

Mycobacterium tuberculosus (Mtb), are much more challenging for vaccine development.  

Currently, we still have an incomplete understanding of the dynamics of immune responses to 

Pf. While sterilising immunity to malaria is almost never achieved, it is generally understood that 

partial immunity against high-density parasitaemia and clinical disease is developed through 

repeated and cumulative infection (Figure 1.7127). This has been illustrated through studies of 

non-immune individuals challenged with malaria infection128, passive transfer of immune serum 

to malaria-infected children,129,130 and more broadly through epidemiological and clinical 

observations in malaria endemic populations.  

Epidemiological data across medium-high transmission intensities in Africa indicate that clinical 

immunity in these settings is acquired after 10 to 15 years of exposure and severe malaria is rare 

in older children and adults.8,131,132 There is also large variability in disease episodes among 

children within the same transmission setting. At the individual level, studies have shown that 

those repeatedly exposed have lower parasite densities and less frequent clinical episodes.133–140 

In high transmission settings, severe malaria is only generally observed in children under age 

five.8,133 On the other hand, in some low transmission settings, limited exposure has been found 

to result in low effective immunity and higher rates of symptomatic and severe malaria in 

adults.141,142 Several longitudinal studies suggest that “premunition”143, or persistent low-density 

asymptomatic infection, is important for maintaining Ab responses through repeated immune 

boosting.144–150 After the re-emergence of malaria in Madagascar after 30 years of control, 

individuals exposed when transmission intensity was previously higher were more resistant to 

clinical disease than their younger counterparts.151 As transmission declines, shifts in age 

distribution are also observed, with a higher frequency of clinical disease in older individuals 

compared to high transmission settings where symptomatic episodes are primarily experienced 

in children under age 10-15 years.152,153  

What determines the rate at which naturally acquired immunity develops has been a subject of 

debate for some time. One hypothesis is that the slow onset of clinical immunity in holo-endemic 

areas is due to parasite diversity, where cumulative exposure to multiple parasite infections over 

time yields a suitable diverse repertoire of strain-specific immune responses.154–156 One of the 

best examples of Pf polymorphisms are the approximately 60 var genes that encode the 

hypervariable surface protein known as the Pf erythrocyte membrane protein 1 (PfEMP1), critical 

for malaria pathogenesis and immune evasion.157–159  

A competing hypothesis is that immunity is less dependent on parasite-specific exposure, but 

instead due to cross-reactive strain-transcending immune responses associated with age-related 

maturation of the immune system. This is motivated by data from trans-migrants in Indonesian 
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Papua, where malaria-naïve adults initially experienced parasitaemia at the same rates as 

children, but rapidly acquired protective immunity such that age-specific prevalence paralleled 

those of lifelong residents in the area within two years, suggesting innate age-dependent factors 

associated with immunity.160,161 This has also been observed in studies in Tanzania.162,163 

However, the influence of age on the pathophysiology of malaria has also been found to be 

important. It has been observed that, relative to children, adults are more tolerant of chronic 

infection but less able to withstand acute infection. For example, Griffin et al investigated the 

effect of age on different severe malaria syndromes across transmission intensities in Tanzania 

based on mathematical models and found that infection at later ages was associated with a 

higher proportion of cerebral malaria regardless of exposure.164 Field-based studies by Reyburn 

et al found that this age effect was observed primarily in low and moderate transmission 

settings.141 This could be driven by T-cell mediated immune responses or an increased production 

of tumour necrosis factor alpha (TNF-α) by adults in response to primary infection that may wane 

with continued exposure (Figure 1.81).165 What is key is how these biological mechanisms will 

manifest themselves as transmission declines.132 While the overall risk of clinical disease across 

the population will inevitably decline with malaria intensity, empirical studies are conflicting on 

whether a loss of immunity in older children and adults will render a large proportion of at-risk 

individuals more vulnerable to severe and fatal malaria.  

Implications of antibody longevity on serological markers of immunity and exposure 

What is still the subject of on-going research is how the effect of age and exposure on the 

acquisition of immunity differs between antigens. Characterising these dynamics for specific 

target antigens is fundamental to how measures of human immune response can be used 

epidemiologically. Antigens will fall along a continuum of suitability as a biomarker of acute 

infection / recent exposure to a correlate of protective clinical or parasitic immunity.  

While low antibody levels are not protective against malaria, they will increase with age and/or 

exposure and, once it reaches a theoretical threshold to confer protection against clinical disease 

are most suitable as biomarkers of immunity (Figure 1.9166). Conversely, antibody levels below 

the threshold of protection can be useful as biomarkers of previous infection in populations with 

limited exposure, such as young children or areas of low transmission intensity. It may also be 

possible that antibody responses that boost above the threshold of protective immunity, but 

decay rapidly in the absence of infection, can also be used as markers of recent infection. 
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Figure 1.7 The acquisition of immunity to malaria in the context of intense seasonal Pf transmission 

As described by Crompton, P.D. et al in “Malaria immunity in man and mosquito: Insights into unsolved 

mysteries of a deadly infectious disease”. Annu Rev. Immunol. 32, 157-187 (2014)127, the figure below 

seeks to illustrate that in areas of intense malaria transmission, immunity to severe life-threatening 

malaria is generally acquired by the age of five years. Children remain susceptible to repeated 

episodes of febrile malaria into adolescence, eventually acquiring near complete immunity to the 

symptoms of malaria by adulthood, but remaining susceptible to infection by blood-stage parasites. 

The mechanisms of immunity to severe malaria are unclear but may involve the acquisition of “strain-

specific” antibodies that neutralise key P. falciparum variant antigens, which drive the pathogenesis 

of severe disease (e.g., subset of PfEMP1s that mediate sequestration), and the induction of “strain-

transcendent” regulatory mechanisms that control excessive P. falciparum-induced inflammation. 

Both of these mechanisms may depend on ongoing P. falciparum exposure to be maintained. In young 

children, P. falciparum-specific antibody responses to acute infection are generally short-lived, but 

with each year of exposure, there is a gradual increase in the breadth of antigen specificity and serum 

levels of P. falciparum-specific IgG that persists in the absence of transmission (i.e., during the dry 

season in the case of seasonal malaria). Protection against malaria symptoms is only conferred when 

an, as yet ill-defined, threshold is surpassed.  
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Figure 1.8 Hypothetical basis of age-dependent inversion of susceptibility to disease with acutve vs. 
chronic exposure in children and adults 

As described by Doolan et al in “Acquired immunity to malaria. “ Clin. Microbiol. Rev. 22, 13-36 (2009)1, 

the figure below illustrates the hypothetical basis of an age-dependent inversion of susceptibility to 

disease with respect to acute versus chronic exposure in children and adults. Th1- and Th2-type 

immune responses are surrogates for immune responses that change with age-dependent exposure 

and play a critical role in infection outcomes. Th1-driven effectors may dominate the immune 

response of children, while Th2-driven effectors may dominate adult immune responses. 
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Figure 1.9 Models of the evolving role of antibodies to Plasmodium falciparum merozoite antigens 
with changing malaria exposure and antibody levels 

As described by Stanisic, D.I. et al in “Acquisition of antibodies against Plasmodium falciparum 

merozoites and malaria immunity in young children and the influence of age, force of infection, and 

magnitude of response.” Infect. Immun. 83, 646-60 (2015)166, the figure below illustrates models of 

the evolving role of antibodies to Plasmodium falciparum merozoite antigens with changing malaria 

exposure and antibody levels, where (a) low antibody levels are not protective against malaria, but as 

antibody levels increase (with age and/or exposure) and reach a theoretical threshold, antibodies 

contribute to protection and serve as biomarkers of malaria immunity, and (b) antibody levels may 

also serve as biomarkers to predict malaria risk or protective immunity by identifying individuals who 

have been exposed to infection. In young children or those with limited exposure, antibodies have a 

high predictive value for increased risk of malaria and poor predictive value for protective immunity. 

As age or cumulative exposure or both increase, the predictive value of antibodies for increased risk 

of malaria declines, reaching a point where antibodies become better markers of protection.  

 

 

 

Only 1% of the roughly 5,000 antigens encoded by the malaria parasite have been studied so 

far.167,168 Blood stage infection is the primary target of acquired human immunity and antigens 

expressed by the merozoite, the erythrocyte infecting extracellular form of Plasmodium, are 

particularly important immune targets and vaccine candidates.169,170 These are assumed to be 

humoral responses because human leukocyte antigen (HLA) class I and II molecules associated 

with cell-mediated immune responses are absent from the surface of the parasite and infected 

red blood cells (RBCs).167  
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The invasion of erythrocytes is a multi-step process involving several interactions with proteins 

on the merozoite surface as well as those associated with invasion organelles – micronemes and 

rhoptries (a schematic of the specific proteins investigated in this thesis are illustrated in Figure 

1.10).171 Due to their direct exposure to the host immune system and their roles in invasion, these 

antigens are major targets for protective Abs, which can act either by inhibiting parasite 

replication (opsonising merozoites for uptake by phagocytes and antibody-dependent cellular 

inhibition), blocking binding of merozoite ligands to their receptor or binding partners, or 

blocking processes required for parasite function.170,172–178 Developments in genomics, 

proteomics, and innovations in protein expression have allowed a much wider identification and 

expression of antigens that may be potential vaccine candidates, but also markers of immunity 

or exposure.179,180 However, gaps still remain between the expression of recombinant proteins 

and natural antigens. 

Upon initial exposure and binding to parasite antigens, naïve B cells begin to differentiate into 

either short-lived plasma cells that function to control initial infection or long-lived plasma cells 

and memory B cells (MBCs) that contribute to the maintenance of sustained antibody-based 

immunity.125,181 Research suggests that short-lived plasma cells secrete primarily 

immunoglobulin-M (IgM), while long-lived plasma cells and MBCs secrete immunoglobulin-G 

(IgG) and immunoglobulin-A (IgA).182 Given that IgM only persists for several days to a month, 

IgG antibodies are typically used to measure historical transmission intensity as they tend to be 

associated with protective immunity and are detectable for a longer period, replacing IgM once 

parasite load begins to fall.  
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Figure 1.10 Plasmodium falciparum parasite life cycle and antigens as potential biomarkers of malaria 
exposure 

Adapted from Winzeler et al in “Applied systems biology and malaria.” Nat. Rev Microbiol. 4, 145-151 (2006)183 

and Cowman et al in “Invasion of red blood cells by malaria parasites.” Cell 124, 755-766 (2006)171. Original figures 

have been modified to include specific antigens discussed in following chapters of this report (blue boxes).  

 

 

1.7 The role of multiplex immunoassays  
 

Several types of assays have been used to quantify Ab responses to malaria and other infectious 

pathogens. As early as the 1900s, Ab quantification methods were found to be more sensitive 

than microscopy in detecting current infection in the form of complement fixation and precipitin 

tests184–186. These were designed to photo-metrically measure reductions in complement 

concentrations that are specific or “fix” to target antigen-antibody complexes of interest in serum 

and resulted in an increase of RBC lysis in an indicator system. This was later replaced by the 

indirect haemagglutination assay (IHA)187, where malaria antigen-coated tests reacted with anti-

malarial Abs in serum samples, resulting in agglutination that was measured visually. This method 

allowed improvements in high throughput analysis given that antigen was easily prepared on 

micro-titre plates to test several samples at once.  



41 
 

By the 1960s, Ab quantification tests were modified again in favour of immunofluorescence 

antibody tests (IFAT). Here, antigens of interest (usually whole parasitised RBCs as opposed to 

the antigen extracts used in IHA) are fixed to a glass slide, incubated with human serum samples, 

and a secondary Ab coupled with a fluorescent compound added and reactivity  measured 

visually with a fluorescence microscope. Both IHA and IFAT methods are difficult to standardise, 

however, because reactivity was measured visually and were therefore subjective.119,188  

IFAT tests were widely used in malaria surveillance for some time.189–193 However, in the last 

decade they have been supplanted by enzyme-linked immunosorbent assays (ELISA). Similar to 

IFAT, but rather than glass slides, recombinant antigens are coated to micro-titre plates, which 

are incubated with human sera followed by an enzyme-coupled secondary Ab. Upon addition of 

an enzymatic substrate, a colour change proportional to the amount of antigen-specific Ab in the 

sample is measured with a spectrophotometer.119,188 

More recently, cytometric bead assays (CBA) and protein microarray have been used as multiplex 

platforms to measure responses to multiple antigen-specific responses in a single sample. CBAs 

use measurement techniques similar to fluorescence-activated cell sorting (FACS). Recombinant 

antigens are conjugated to distinctly coloured microspheres or beads (a combination of 

fluorescent dyes), allowing a unique spectral address for each analyte of interest. This allows a 

dual-detection flow cytometer to identify the bead-specific colour and to quantify the associated 

analyte concentration.194 Current CBA platforms allow measurement of up to 500 different 

analytes simultaneously. CBA assays will be discussed in more detail in Chapter 5. 

In a revisit to IFAT methods, protein microarrays bind (or print) recombinant proteins to 

microscopy slides, but with only nano- or pico-gram volumes of antigen. Like CBAs, it has the 

advantages of a larger dynamic range compared to ELISA and multiplexing up to 1,000s of 

antigens at a time. However, high start-up costs make it impractical for field-based surveillance. 

It also suffers from variability in signal between slides and large volumes of data, leading to data 

standardisation and processing challenges. For these reason, it is used primarily for broad 

screening of immune responses or antigen discovery in research settings.188,195 

While ELISA has been the assay of choice for sero-epidemiological studies, the proliferation of 

newer multiplex technologies are allowing surveillance tools to be more refined in the breadth 

of malaria exposure that is measured. However, it also introduces new challenges in assay 

validation and standardisation. Nonetheless, these tools may become increasingly relevant as 

countries move towards malaria elimination, particularly in areas where it may be cost-effective 

to integrate malaria surveillance with other disease surveys. Figure 1.11188 illustrates commonly 

used immunoassay platforms for detection of antibodies against malaria antigens.  
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Figure 1.11 Schematic of immuno-assay platforms 

As described by van den Hoogen and Drakeley in Encyclopedia of Malaria 1-8 (Springer New York, 

2015)188, the figure below illustrates several malaria diagnostic platforms used for antibody detection, 

including the immunofluorescence antibody test (IFAT), enzyme-linked immunosorbent assay (ELISA), 

the cytometric bead array (CBA), and protein microarray. From left to right, the number of identified 

antigenic targets increases in relation to the number of individuals per test (i.e., per microscope slide 

or 96-well plate).  

 

 

1.8 The history of malaria epidemiology in two pre-elimination settings 
in sub-Saharan Africa 
 

The two countries explored in the research presented in this thesis are examples of 

epidemiological settings where elimination may not be easily achieved without intensified 

efforts, and, hence, where research into tailored strategies is necessary. Most countries that have 

eliminated are areas with robust surveillance systems and rural public health services, relatively 

rich and tourism-oriented islands with strong mosquito control programmes, or areas that are 

not intrinsically malarious or with highly focal endemicity (Table 1.6).17 Historically, elimination 

efforts in sub-Saharan regions were limited – by 1964, GMEP activities had only covered 3.2% of 

the population at-risk in Africa due to concerns about operational and technical challenges.47,196 
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Table 1.6 Countries and regions certified malaria free up to 2010 

As described by Najera, J.A. et al in “Some lessons for the future from the Global Malaria Eradication 

Programme (1955-1969), PLOS Med. 8, e1000412 (2011).17  

 

 

The Gambia 
 

As the smallest country in mainland Africa, The Gambia has contributed more to our 

understanding of malaria biology and epidemiology than would be expected. It experiences a 

typical West African savannah climate - an intense and short rainy season between June and 

October followed by a longer dry season. The majority of malaria transmission occurs during this 

wet season (and the period immediately after).197 The predominant malaria parasite is Pf, but Pm 

and Po are also observed. Prevalence of Pv, however, is not high given that the RBC Duffy antigen 

required for parasite invasion is largely absent from the population. The main mosquito vector is 

Anopheles gambiae,198 named after their identification by Frederick Theobald and Col. George 

M. Giles from samples collected in and around the River Gambia,199,200 where a number of 

important studies on vector ecology and behaviour and its contribution to variation in malaria 

transmission would later be conducted.136,198,201–205 

During an expedition to The Gambia by the Liverpool School of Tropical Medicine and Medical 

Parasitology in 1902, Dr. J. Everett Dutton was one of the first to observe that the prevalence of 

spleen enlargement and parasitaemia, as well as parasite density, was lower in older children, 

suggesting the development of partial immunity to malaria through repeated infections.206 Fifty 

years later, studies led by Sir Ian McGregor in Keneba (part of the recently established UK Medical 

Research Council Unit in The Gambia), demonstrated that gamma globulin prepared from malaria 

immune adult Gambians given to malaria-infected Gambian children reduced parasite count 

within days.129 This provided strong evidence that components of immune serum, likely 

antibodies, could impede the replication of malaria parasites. Subsequent studies in both The 

Gambia and Tanzania showed variability in immune responses in children to immune sera from 

adult Gambians. This was some of the first research to suggest strain specific immune responses 

to malaria infections due to antigenic variation.130,207 

Since then, the transmission patterns and seasonality of The Gambia have enabled pivotal 

research on immunity to malaria, including the correlation of Ab concentrations to protection 

against clinical malaria (later associated with the blood stage antigen PfEMP1),208,209 community 
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cohort studies identifying merozoite antigens as targets of protective Abs,210,211 and longitudinal 

studies on the duration of immune response in the absence of re-infection.212 Later, key 

epidemiological studies were conducted on the role of gametocytes, asymptomatic infections, 

and host factors that drive human infectiousness.213,214 Further work on immune responses to 

the sexual stages of the parasite focussed on gametocyte antigens as potential vaccine 

candidates.215 These studies built a more complete understanding of immunity throughout the 

parasite life cycle and the dynamics that influence human-to-mosquito transmission at the 

individual and population level.  

The Gambia was also one of the first African countries to document clear declines in malaria 

burden in recent decades. Between 2003 and 2007, the proportion of malaria positive 

microscopy slides decreased by 74%, while malaria hospital admissions fell by 81% (Figure 

1.12).153,216 Malaria incidence and mortality continued to decline by 60% between 2010 and 

2016.217 Political and financial investment in malaria control has allowed high coverage of LLINs 

(>60%), treatment with ACTs and chemoprophylaxis through intermittent prevention therapy in 

pregnancy (IPTp).217 
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Figure 1.12 Changing epidemiology of malaria incidence and mortality in The Gambia between 2003 
and 2007 

As described by Ceesay, S.J. et al in “Changes in malaria indices between 1999 and 2007 in The Gambia: a 

retrospective analysis.” Lancet. 372, 1545-54 (2008)216 , the figure below illustrates monthly numbers (left panel) 

and yearly proportions (right panel) of (a) malaria hospital admissions, (b) death, and (c) positive slides in 

outpatients at the Medical Research Council in Fajara from January 1999 to December 2007. Monthly and yearly 

rainfall in the Greater Banjul Area over the period is also shown (d).  

 

 

Despite these gains and the potential for elimination, malaria transmission in The Gambia is still 

on-going across the country and markedly heterogeneous.218,219 Variations in the proportion of 

sub-microscopic infections between regions and villages have also been observed.218 The 

increasing malaria prevalence documented from west to east may be due lower LLIN usage 

amongst individuals sleeping outdoors alongside a higher proportion of Anopheles arabiensis (An. 

arabiensis) and Anopheles coluzzii (An. coluzzii), an exophilic outdoor biting mosquito species 

adapted to semi-arid conditions and potentially more efficient in transmitting infection.220,221 

Today, The Gambia continues to be an important research site for the evaluation of malaria 

control strategies given the challenges it still faces to achieve elimination. Ongoing research on 

vaccines, drugs, and community interventions there will be critical not only for the West African 

region, but other countries with similarly heterogeneous malaria epidemiology as transmission 
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declines. The current state of malaria control and elimination in The Gambia will be discussed in 

more detail in Chapter 6. 

Namibia 
 

Namibia is one of a number of southern African countries, including South Africa, Swaziland and 

Botswana, targeting malaria elimination by 2020, and the Elimination 8 initiative was created in 

2009 to support these goals.217,222 Namibia experienced a remarkable epidemiologic transition 

between 2001 and 2011, during which clinical cases of malaria fell by 97.4% and malaria-

attributable deaths by 98%, owing largely to policies for universal bed-net coverage and IRS in 

endemic areas, RDT-based case management, and access to ACTs.223–226 

Overall, climate across this large and sparsely populated country varies considerably from semi-

arid to subtropical and temperatures ranging from 5°C and 40°C. The ten northern regions, where 

65% of the country’s population reside, are categorised as malaria endemic and experience an 

ecosystem of high temperatures, rainfall and humidity.227 Malaria risk is driven by rainfall 

patterns, occurring seasonally with periodic outbreaks in the northwest and more perennially in 

the northeast.226 Pf accounts for 97% of malaria infections and primary vector is An. arabiensis, 

which are able to breed in “iishanas” or flat, low-lying areas that collect water during the rainy 

season.223,226 The Kavango and Zambezi regions have the highest endemicity, while receptivity 

remains high in Kunene, Omusati, Ohangwena regions. The southern coastal regions of Erongo, 

Hardap, Khomas and Karas are largely arid and malaria-free (Figure 1.13).225,228  
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Figure 1.13 Map of Namibia and Plasmodium falciparum transmission receptivity 

As described by Noor, A.M. et al in “Malaria control and the intensity of Plasmodium falciparum transmission in 

Namibia 1969-1992). PLOS One 8, e63350 (2013)225, the figure below illustrates the receptive risks of P. 

falciparum parasite rate for ages 2-10 years (PfPR2-10), computed as the maximum mean population adjusted 

PfPR2-10 predicted for years 1969,1974, 1979, 1984 and 1989 for each health district.  

  

 

 

The National Vector-borne Diseases Control Programme (NVDCP) of Namibia launched a 

campaign for elimination in 2010, with the aim to reduce incidence to less than one case per 

1,000 individuals in all districts by 2016 and zero local malaria cases by 2020.223 DDT-based IRS 

has been the primary component of the Namibian malaria control programme since the 1960s229 
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and is typically conducted between October to January before the start of the rainy season 

(November to April). There have been reported coverage issues (falling to as low as 5.0% of the 

population at risk in the Ohangwena region) due to delayed procurement of insecticides, 

community acceptance of DDT, and difficulty reaching mobile pastoral populations.223 IRS has 

also been periodically supplemented with other vector controls measures. In 2005, the policy of 

LLIN distribution targeted mainly at-risk groups (children under five years of age and pregnant 

women), but in 2012, aimed to achieve 95% coverage of the entire population in at risk regions. 

Free and subsidised LLIN distribution has mainly been supported by the Global Fund and other 

non-governmental organisations. In 2013, nearly 90 thousand LLINs were distributed, targeting 

villages with highest malaria burden in Zambezi, Kavango, and Omusati.223 In 2013, LLIN coverage 

in the Zambezi region was 17.4% (Namibia Malaria Strategic Plan 2010-2016, Ministry of Health 

and Social Services). 

Due to frequent population movement from neighbouring countries, particularly along the 

borders with Angola, Zambia and Botswana, low to moderate transmission has been sustained 

and receptivity remains high. Recent studies in Namibia have found that young male travellers to 

Angola in particular were disproportionately at risk of malaria, as well as populations living within 

15km of the Angolan border, which may be due to mosquito or human movement.224 The Trans-

Kunene Malaria Initiative (TKMI) has aimed to reduce malaria cases in five border regions 

(Ohangwena, Omusati and Kunene in Namibia and Cunene and Namibe in Angola).230 The Trans-

Zambezi Malaria Initiative (TZMI) also involves Angola, Botswana, Zambia and Zimbabwe. 

Historically, Namibia’s war for independence from 1975 to approximately 1988 is also an 

illustration of how easily gains in malaria control can be lost during political instability. 

Widespread fighting in the areas around Caprivi hampered scale-up and coverage of 

interventions such as IRS and presumptive treatment. Additionally, large cross-border 

movements occurred as Namibian fighters engaged South African troops from Angolan bases, 

which likely blunted the impact of control efforts on the Namibian side. This manifested itself in 

large malaria rebounds in eastern Kavango and Caprivi by 1989 (increases in PfPR2-10 ranging from 

4 to 12% compared to levels in 1969).225 

Today, there have been a limited number of research and capacity building activities Zambezi and 

neighbouring regions since 2014, in addition to a cluster randomised trial on reactive focal MDA 

and vector control (the topic of Chapter 7). This includes the Malaria Risk Factor Assessment Tool 

(MERFAT), developed as part of a case control study that aimed to identify risk factors for malaria 

in Zambezi by comparing malaria positive and negative cases from the health facility. As part of 

a 2015 cross-sectional survey, a geographical reconnaissance system was set up that geo-located 

8,000 households in the area. This also included a spatial decision support system established via 
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local health facilities with surveillance data, graphical maps, and tablet-based reporting for use 

in active case detection and spatially targeted interventions.  

Despite progress in reducing malaria burden, outbreaks have been observed in recent years. The 

areas of northern Namibia have been subject to malaria epidemics in 2004 and 2013, causing 

high levels of morbidity and mortality (Namibia Malaria Strategic Plan 2010-2016, Ministry of 

Health and Social Services). In the 2016 malaria season, cases in the country overall were nearly 

3-fold higher the annual average in previous years (personal communication Immo Kleinschmidt, 

Elimination 8). These periodic spikes in incidence have created unexpected challenges for the 

planning of elimination efforts and case investigations for targeted interventions.  

 

Remaining challenges in malaria elimination and surveillance 

The experiences of both The Gambia and Namibia illustrate the many epidemiological and 

programmatic challenges associated with elimination efforts. In many ways, we are blessed to 

work on malaria at a time when political commitment is high and there is an arsenal of diverse 

tools at our disposal with which to target and measure transmission. However, how these tools 

will be implemented to achieve reductions in transmission and maintain them is still a work in 

progress. The main challenge addressed in this thesis is the investigation of more sensitive 

measures of malaria transmission and how they can be applied and standardised for use in 

surveillance and the evaluation of efficacy trials for elimination.   



50 
 

 Aims and Objectives 
 

The research presented in this thesis seeks to develop improved methods for measuring malaria 

transmission based on serological endpoints for use in epidemiological surveillance and cluster 

randomised trials in elimination settings. The work described has the following aims: 

 

Aim 1. To estimate the relative sensitivities of diagnostics currently used to measure malaria 

infection in humans at the community or cluster level. Specific objectives include: 

1. To quantify the comparative sensitivity of existing diagnostics (microscopy, RDTs, PCR, 

and serology) for the detection of patent and asymptomatic P.falciparum infection. 

2. To evaluate whether relative diagnostic sensitivities vary by age, geographical region, 

and transmission intensity. 

These objectives are addressed by the work described in Chapters 3 and 4. 

 

Aim 2. To assess the suitability of novel P.falciparum recombinant antigens as candidate 

serological biomarkers of previous malaria infection. Specific objectives include: 

1. To estimate the predictive power of candidate biomarkers for measuring previous 

malaria infection and time since last infection. 

2. To evaluate whether the strength of association of novel serological biomarkers varies 

by age, geographical region, transmission intensity, and other covariates. 

3. To select an optimal subset of serological biomarkers for use in measuring short-term 

changes in malaria transmission at the cluster level. 

These objectives are addressed by the work described in Chapter 5. 

 

Aim 3. To investigate the use of novel candidate serological markers of previous malaria infection 

for use in malaria surveillance and cluster randomised trials. Specific objectives include: 

1. To estimate cluster-level antibody responses between transmission seasons and 

geographical region in The Gambia and between study arms in a cluster randomised trial 

in Zambezi Region, Namibia. 

2. To develop standardised methods for evaluating differences in malaria transmission 

between clusters or study arms in efficacy trials based on novel serological endpoints. 

These objectives are addressed by the work described in Chapters 6 and 7.  
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 Comparison of diagnostics used to measure 
cluster-level parasite prevalence 
 

As introduced in Chapter 1, the accurate identification of asymptomatic human infections, which 

can sustain a large proportion of transmission, is a vital component of control and elimination 

programmes. This chapter explores the relationship across common diagnostics used to measure 

malaria prevalence — polymerase chain reaction, rapid diagnostic tests, and microscopy — for 

the detection of Plasmodium falciparum infections in endemic populations based on a pooled 

analysis of cross-sectional data.  

This study was published in 2015 (https://www.nature.com/articles/nature16039) as part of a 

Nature Supplement on the role of diagnostic tools for infectious disease control and elimination 

in resource poor settings, and the published version is included here. 

  

https://www.nature.com/articles/nature16039
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 Correlating estimates of malaria sero-
prevalence with parasite prevalence 
 

In Chapter 3, the relationship between parasitological measures of malaria infection - rapid 

diagnostic tests, microscopy, and polymerase chain reaction – was estimated based on cluster-

level estimates of prevalence. This chapter aims to extend this cross-metric analysis to serological 

measures of malaria exposure, using a large dataset of paired cluster-level sero-conversion rates 

and parasite prevalence estimates. 
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4.1 Background 
 

Accurate field-deployable diagnostic tools for the characterisation of malaria transmission will be 

the hallmark of any successful surveillance system in elimination settings. As introduced in 

Chapters 1 and 3, malaria transmission is typically measured as the prevalence of infection, also 

known as the parasite rate (PR), based on RDT or microscopy slide positivity, or the entomological 

inoculation rate (EIR).80,231 However, as transmission declines and becomes more heterogeneous, 

classical surveillance tools often fail to fully detect the asymptomatic reservoir or capture 

fluctuations in population prevalence over time.232–237 Even nucleic-acid amplification techniques 

(NAATs) such as quantitative PCR (qPCR), which are sensitive enough to detect low-density 

parasitaemia86,238, are limited to measuring current infections at a single point in time.  

In areas where transmission is temporally and spatially heterogeneous or where there is a 

potentially large reservoir of asymptomatic infections, reliance on intermittent cross-sectional 

surveys239 or reactive case detection may be inadequate to fully characterise transmission 

risk.240,241 On the other hand, large-scale routine monitoring with currently available technologies 

can be costly or logistically burdensome for most health systems. Mathematical models suggest 

that RC, the basic reproduction number under malaria control measures, should be less than 0.5 

to interrupt endemic transmission within a reasonable time frame.242 Given these quantitative 

thresholds, sensitive laboratory assays or field-based point-of-care tests such as lateral flow 

assays (LFAs) are needed to define and stratify transmission at a finer-scale to guide operational 

strategies and track progress towards elimination. 

Serology is a potentially more sensitive measure in elimination settings where PR and EIR are less 

robust.243 With markers that can detect previously exposed (but not necessarily currently 

infected) individuals, cross-sectional serology data can be used to characterise exposure history 

over a longer window of time. Therefore, unlike cross-sectional PR data, it can be more easily 

used to estimate a force of infection and relate to RC  as a measure of transmission over a relevant 

time scale. As discussed in Chapter 1, the ability to standardise the use of Pf blood-stage antigens 

PfAMA1 and PfMSP119 (due to their long half-life, moderate levels of immunogenicity, and limited 

polymorphisms) has allowed the use of immunological assays as practical epidemiological tools. 

Antibody responses to these antigens are used as a proxy for malaria transmission intensity. More 

specifically, age-stratified sero-prevalence data are used to fit reverse catalytic models and 

estimate a population-level force of infection or seroconversion rate (SCR) - the rate at which 

seronegative individuals become seropositive after exposure to malaria parasites.122 

Evidence suggests that serology could be a powerful addition to the existing repertoire of 

surveillance tools.244 In its infancy, the epidemiological application of malaria serology was 
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limited to a handful of research studies. With the greater availability of serological data as well 

as standardised reagents and protocols, it is now possible to compare results across a broader 

range of settings and antigens.  

This chapter aims to harmonise serological estimates of transmission (i.e., force of infection / 

SCR) through a pooled analysis of datasets with PfMSP119 and PfAMA1 sero-prevalence and 

parasite prevalence as measured by PCR, RDT or microscopy. It estimates a relationship between 

SCR and PR, and also compares this against previously measured relationships between PR, EIR 

and clinical incidence. For use in epidemiological studies, one goal is to determine where (or 

within which populations), sero-conversion rates are most consistent and aligned with other 

measures, potentially allowing the selection of sentinel populations where sampling could be 

more efficient and informative. It is also important to determine if serology can provide a more 

granular measure in settings where other endpoints are limited in their ability to discriminate 

between transmission intensities or simply impractical to measure operationally. Finally, it is 

important to identify settings where data are too sparse (e.g., limited coverage geographically, 

over time, or across transmission intensities) to understand the relative relationship between 

serology and other metrics. These may be particularly important where the population dynamics 

of human immunity are variable.  

4.2 Methods 
 

Data 

Serology 

Data from 102 clusters, representing 15 countries, were compiled from 32 different cross-

sectional surveys that had paired measurements of antibody response and parasite rate for P. 

falciparum. Clusters (i.e., sample size and geographical radius) were defined according to study 

specific protocols, but are commonly done according to enumeration area. This varied according 

to study design, which included both cross-sectional surveys and efficacy trials. Studies were 

selected if they i) included concurrent estimates of antibody responses  (PfMSP119   and/or 

PfAMA1) and parasite positivity detected by RDT, microscopy, or PCR and ii) both diagnostic 

endpoints were measured in the general community and not selected based on clinical 

symptoms, diagnostic test results, or patient sub-groups.  

All surveys were all-age cross-sectional samples, with the exception of three studies: Sudan 2012 

clusters were study arms in an intervention trial evaluating the effectiveness of LLINs and IRS; 

Yemen 2012 clusters included only individuals under the age of 15 years; and Tanzania 2007 

clusters were surveys conducted after the implementation of intermittent preventive treatment 
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infants (IPTi), where participants were recruited based on attendance at district health facilities 

for any reason including accompanying a patient (Appendix 4.1). 

For all studies, antibody response was quantified using enzyme linked immunosorbent assays 

(ELISA). Final antibody response was measured either as an optical density (OD) or converted to 

arbitrary antibody titres using a standard curve. Sero-positivity was determined using study- and 

antigen-specific thresholds. That is, for each study, the distribution of antibody titre values (or 

normalised optical (OD) values if titre values were not available) was fitted to a two-component 

Gaussian mixture model using maximum likelihood methods.245 For each antigen in the study, 

the sero-positivity threshold was defined as the mean titre (or OD) value of the seronegative 

population plus 2 (or up to 5) standard deviations, where the number of standard deviations used 

varied between studies. For the purposes of this pooled analysis, sero-positivity values previously 

assigned by the original study were used and not re-calculated here.  

Data were limited to study clusters with a sample size greater than 100 and where sero-

prevalence was greater than zero. Study clusters from Cambodia 2004 and 2007 Malaria Indicator 

Surveys (MIS), where the majority were less than 100 individuals, were aggregated based on risk 

zones (based on expert opinion, but approximately defined as proximity to forest areas). A 

schematic and table of the studies included in the pooled analysis are summarised in Figure 4.1 

and Appendix 4.1.  

Figure 4.1 Study sites included in serology meta-analysis by country, survey year, sample size, and 
antigen 

Study clusters measuring MSP119 (green) and AMA1 (blue) shown as points along a horizontal axis indicating 
survey year. Point diameters vary based on cluster size (<500, 500-1000, 1000-2000, >2000) and are jittered so 
overlapping points are easily viewed. 
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Clinical incidence and entomological inoculation rate 

To benchmark the use of serology with other measures of transmission, datasets were compiled 

from previous studies modelling parasite rate with clinical incidence and EIR. 

Studies with concurrent estimates of EIR and PR were taken from Smith et al246, where the best 

fit relationship between the two measures is described by  𝑃𝑅 = 1 − (1 + 1.89 ∗ 𝐸𝐼𝑅)4.2 . 

However, the credible intervals of the model are not published, and therefore, results presented 

here only show the empirical point estimates from the study and not their fitted relationship. A 

total of 127 study clusters were included, covering 15 countries. All studies were from countries 

in sub-Saharan Africa and in children under 15 years of age. 

Concurrent estimates of parasite rate and clinical incidence were taken from Battle et al 2015,247 

excluding studies where empirical estimates of PR were not available or where the PR data were 

not age matched to clinical incidence data. Modelled or age-adjusted data were excluded as this 

study aims to analyse the granularity of data that can be collected operationally through routine 

surveys as a comparison against similarly collected data for serology rather than inferred 

estimates. After these exclusions, 693 study clusters were included in the analysis of clinical 

incidence and EIR, covering 30 countries globally with a variety of age ranges across studies. 

Estimates of the relationship between clinical incidence and PR are inclusive of modelled and 

age-standardised data and are therefore not included here for analysis. 

 

Statistical analyses 

 

Sero-catalytic models – estimating force of infection from sero-prevalence as a measure of 

cluster level transmission 

 

We estimated a force of infection (SCR) in each cluster by fitting reverse catalytic models to age-

adjusted sero-prevalence data. Infants under 1 year of age were excluded to avoid the influence 

of maternally derived antibodies. We fit variations of the reverse catalytic model, which has been 

described in the context of malaria by Corran et al121, Drakeley et al248, and Sepulveda et al122. 

Data are first fit assuming no change in malaria transmission over time and no difference in 

exposure by age. Where cluster sizes and expected value of seroconversion rate (𝝀) are too small 

to accurately estimate sero-reversion rate ( 𝝆 ) (based on sample size estimates previously 

published by Sepulveda et al),249 region-specific 𝝆 is used (see regions below). Out of a total of 

102 clusters, 55 clusters did not have adequate sample size to estimate a cluster-specific 𝝆 for 

PfMSP119 and 63 did not have adequate sample size for PfAMA1 (Appendix 4.1). Therefore, a 

region-specific 𝝆 was used to fit the model for these clusters. 
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Models that allow for changes in transmission over time or by age were also tested, and the 

seroconversion rate from the best fit model (based on likelihood ratio tests) is used as the SCR 

data point included for the final analysis the SCR:PR relationship. It should be noted that it is not 

possible to determine from the model alone whether changes in sero-conversion rate occur due 

to the effect of time, age, or both. In settings where differences in transmission are likely due to 

temporal changes (e.g., following intervention campaigns in most sub-Saharan African countries), 

the 𝝀 experienced by children is assumed to reflect the most recent transmission level. In settings 

where differences in seroconversion rates are hypothesised to be due to behaviour (e.g., adult 

forest workers in South East Asia and the Americas), the 𝝀 describing the transmission intensity 

experienced by the highest-risk population is used in the SCR:PR model fit. For this dataset, this 

was relevant for any clusters exhibiting a change in SCR in Cambodia (6 clusters for PfMSP119 and 

15 clusters for PfAMA1), Myanmar (1 cluster for both PfMSP119 and PfAMA1), and Brazil (1 cluster 

for both PfMSP119 and PfAMA1) (Appendix 4.1). Similarly, where cluster size is too small to 

accurately estimate a change in transmission (based on previous analysis by Sepulveda et al249), 

a model with no change in 𝝀 is used. Out of a total of 102 clusters, 13 had sample sizes adequate 

to estimate a change in PfMSP119 SCR and 18 for PfAMA1 (Appendix 4.1).   

 Reverse Catalytic Model 1: Constant sero-conversion rate (𝝀), cluster specific sero-

reversion rate (𝝆) 

𝑝𝑆+(𝑡) =  
𝜆

𝜆+𝜌𝑐
 (1 − 𝑒−(𝜆+𝜌𝑐)𝑡)    (4.1) 

Model 1 fits cluster specific sero-reversion and constant sero-conversion rates, where 𝑝𝑆+(𝑡) 

represents the probability of an individual being seropositive at age t, and 𝜌𝑐  represents the 

cluster-specific sero-reversion rate. 

 Reverse Catalytic Model 2: Constant sero-conversion rate (𝝀), region-specific sero-

reversion rate (𝝆) 

𝑝𝑆+(𝑡) =  
𝜆

𝜆+𝜌𝑟
 (1 − 𝑒−(𝜆+𝜌𝑟)𝑡)   (4.2) 

Model 2 uses a fixed sero-reversion rate, which is calculated for each geographical region (Africa 

& Middle East, Asia, and the Americas), where 𝑝𝑆+(𝑡) is the probability of an individual being 

seropositive at age t (same as equation 4.1), and 𝜌𝑟 represents the region specific sero-reversion 

rate. The regional sero-reversion rate is estimated by running Model 1, but treating all clusters 

within a geographical region as a single cluster. The rationale behind using a regional 𝜌𝑟 is that 

sero-reversion rate (or the rate of antibody decay) is usually governed by population genetics in 

a broad geographical region and is unlikely to have micro-epidemiological variations at the cluster 

level. 
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 Reverse Catalytic Model 3: Change in 𝝀 

𝑝𝑆+(𝑡) = {

𝜆2

𝜆2+𝜌
 (1 − 𝑒−(𝜆2+𝜌) 𝑡)                                                                                ∶ 𝑡 ≤ 𝜏

𝜆2

𝜆2+𝜌
 (1 − 𝑒−(𝜆2+𝜌) 𝜏)   +  

𝜆1

𝜆1+𝜌
 (1 − 𝑒−(𝜆1+𝜌) (𝑡 − 𝜏)) 𝑒−(𝜆2+𝜌) 𝜏   ∶ 𝑡 > 𝜏

      (4.3) 

Model 3, previously described by Sepulveda et al122, allows for a change in transmission intensity 

from 𝝀𝟏 to 𝝀𝟐 at time or age 𝝉. Individuals born after the change in transmission (𝒕 ≤ 𝝉), will 

have a probability of being sero-positive under conditions with constant transmission (Models 1 

and 2) subject to the most recent seroconversion rate 𝝀𝟐. Individuals born before the change in 

transmission (𝒕 > 𝝉) will have a probability of being sero-positive that is a function of both sero-

conversion rates. The 𝝆 value included in Model 3 is a fixed value chosen from either Model 1 or 

Model 2 (based on the model with the highest log likelihood).   

Association between seroconversion rate and parasite rate (SCR:PR Model) 

Once seroconversion rates are estimated for all clusters, a comparison against other measures of 

transmission is feasible. To analyse the association between seroconversion rate (𝜆) and parasite 

rate (PR), a linear relationship was fitted between the log of seroconversion rate and the log odds 

of parasite prevalence.  

 SCR:PR model unadjusted 

𝜃𝑆𝑖 =  𝛼0 +  𝛼1(𝜃𝑃𝑖 −  𝜃̅𝑃)      (4.4) 

𝜆𝑖~ 𝒩(𝑒𝜃𝑆𝑖 , 𝜎𝑖
2)      (4.5) 

𝜃𝑆𝑖 is the log of the seroconversion rate (𝜆𝑖) measured in cluster i, 𝜃𝑃𝑖 is the log odds of the PCR 

prevalence in cluster i, and 𝜃̅𝑃  is the mean log odds of PCR prevalence across all clusters. 𝛼0 

represents the expected log seroconversion rate when log odds of the PCR prevalence in cluster 

i is equal to the mean across all clusters, and 𝛼1  is the regression coefficient. The model 

accounts for the influence of sample size and sampling variation across surveys in a few ways. 

For parasite rate, prevalence (on a scale of 0 to 1) is assumed to be beta distributed (which allows 

for propensity of infection to change according to variables such as age), and the probability of 

an individual being parasite-positive is assumed to be binomially distributed based on the 

number of individuals that were parasite positive out of those tested in each cluster and defined 

as 
𝑒(log 𝑜𝑑𝑑𝑠)

1+𝑒log 𝑜𝑑𝑑𝑠 and log odds = log𝑒(
𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒

1−𝑝𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒
). All clusters observed at least one parasite positive 

individual by either PCR, RDT, or microscopy, and therefore all could be fit into a logistic model 

without continuity correction or other methods to adjust for PR values of zero. For SCR, log 

seroconversion rate is assumed to be normally distributed about a mean of 𝑒𝜃𝑆𝑖  and variance 𝜎𝑖
2, 

where 𝜎𝑖
2 is the cluster-specific variance of the SCR fitted with the reverse catalytic model for 
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cluster i. The models were fitted using Bayesian Markov Chain Monte Carlo methods in JAGS 

version 3.4.0. 

To ensure that the model fit across PR and SCR ranges was not dominated by clusters in a 

particular transmission setting, separate relationships were fit to clusters with PCR prevalence 

<20% and >20%. We could not further stratify in the lower transmission settings because the 

large number of clusters with a parasite prevalence of zero does not allow the model to be fit 

accurately at this prevalence range.   

When measuring PR, sentinel populations such as school-aged children are often used as a 

convenience sample when all-age surveys are logistically challenging. Therefore, the SCR:PR 

model was also fit using PR based on different age cohorts: 2-10 year olds and 5-15 year olds. 

This used only data from Africa given that the at-risk populations in Asia and the Americas are 

typically adults rather than children250–253.  

To account for geographical variation in population level immune responses, the model was 

also fit including a covariate for each region (Americas, Africa & Middle East, Asia).  

 

 SCR:PR model by geographical region 

𝜃𝑆𝑖 =  𝛼0 +  𝛼1(𝜃𝑃𝑖 −  𝜃̅𝑃) +  𝛽1 + 𝛽2 +  𝛽3      (4.6) 

𝜆𝑖 ~ 𝒩(𝑒𝜃𝑆𝑖 , 𝜎𝑖
2)      (4.7) 

𝛽1, 𝛽2 and 𝛽3 are dummy variables (0/1) for the effects of clusters being located in either Africa 

& Middle East, Asia, or the Americas respectively. To assess the significance of each region as a 

covariate, the 95% credible intervals of the  𝛽  parameters were assessed, with values that did 

not include zero deemed significant. It should be noted this is not entirely comprehensive as the 

𝛽 specific estimates do not reflect posterior distribution of the entire model fit. A comparison of 

the 95% credible intervals of the model with and without regional covariates was not done, but 

can potentially be explored in future adjustments to the analysis. This model by region was also 

fit separately for different PCR prevalence ranges, as described above. 

Data transformations and model validation 

Serology is expected to detect differences in transmission at PR ranges below the detectability of 

RDT and microscopy. Therefore, the model is fit using a prevalence scale based on PCR-measured 

PR. Studies with PR measured by RDT or microscopy, but no PCR data, were transformed to units 

on the PCR prevalence scale using previously modelled relationships between RDT and PCR from 

Wu & van den Hoogen (Chapter 3) and microscopy and PCR from Okell et al234. This allows all 

studies to be combined in a single dataset and fit on the same parasite rate scale.  Data used for 
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paired clinical incidence and PR clusters from Battle et al is comprised primarily of PR measured 

by microscopy or RDT. Therefore, data from these studies were also transformed to the PCR PR 

scale as described above. However, information on the specific diagnostic used to measure PR 

was not reported in the Smith et al study, therefore this adjustment could not be made and PR 

values are assumed to be based on PCR to avoid extra data transformations. 

The ability to accurately predict PR based on the modelled SCR:PR relationships and to evaluate 

whether any level of data over-influenced the fit of the model, leave-one-out analysis was 

conducted at the study, country, and cluster level. 

 

4.3 Results 
 

Global estimates of parasite rate and sero-conversion rates by geographical region and country 

Sero-conversion rates varied across geographical regions, countries and study clusters (Figure 

4.2). Data from the Americas and Asia were sparse, comprising clusters from only one country in 

the Americas (Brazil) and three countries in Asia (Cambodia, Myanmar, Vanuatu). In Asia, the 

large majority of clusters were from two Malaria Indicator Surveys (MIS) in Cambodia, so may not 

be representative of the South East Asian region generally. All clusters in the Asian region had a 

parasite rate below 40% and all clusters in Brazil were below 20%. Therefore, it was not possible 

to evaluate a PCR prevalence specific model fit at the higher transmission range for these regions. 

Clusters in Africa had a more dynamic range of parasite rate values, allowing evaluation of the 

model fit at PCR prevalence ranging from zero to 75%. 

A much larger range of SCRs based on PfAMA1 was observed, with a mean SCR of 0.076 

(SD=0.112), compared with PfMSP119 where mean SCR was 0.033 (SD=0.032), due to the stronger 

immunogenicity of PfAMA1. In Africa and the Middle East, mean SCR for PfMSP119 was 0.047 

(SD=0.034), compared to mean SCR of 0.104 for PfAMA1 (SD=0.103). In Asia, mean SCR for 

PfMSP119 was 0.022 (SD=0.026) and 0.066 (SD=0.120) for PfAMA1. In the Americas, which only 

included data from Brazil, the mean SCR for PfMSP119 was 0.019 (SD=0.022) and 0.005 (SD=0.005) 

for PfAMA1.  

The range of SCRs observed at the country level indicate areas with consistently low transmission 

(e.g., Somaliland, Sudan, Vanuatu, Brazil) and others with greater heterogeneity in transmission 

(e.g., Uganda, Tanzania, Kenya, Yemen, Cambodia). However, datasets in the pooled analysis 

include surveys conducted in different years with a variety of sampling strategies, in select 

geographical regions, or before and after roll-out of malaria control programmes. Therefore, they 

may not be representative of overall country level transmission or the current levels of 

transmission. The precision of the seroconversion rate estimate varied by cluster as it is 
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dependent on sample size and age distribution.249 For all clusters, model fits using the reverse 

catalytic model to calculate the final seroconversion rate used to estimate the SCR:PR 

relationship can be found in Appendix 4.2.  

 

Figure 4.2 Seroconversion rate (SCR) estimates by region and study cluster 

Listed alphabetically by country, survey/study, and sero-conversion rate in ascending order.  
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Relationship between seroconversion rate and parasite rate 

Overall, SCR was observed to be positively associated with PR for both PfMSP119 and PfAMA1, 

based on estimates for 1 (Figure 4.3, Table 4.1). For PfMSP119, statistical evidence for a positive 

correlation between SCR and PR was weaker at PCR prevalence ranges below 20%, based on the 

95% credible intervals of the posterior distributions for 1 (Appendix 4.3). However, this is likely 

due to the fact the model is less precise when the model is fit separately for these prevalence 

ranges. The model was also less precise for PfAMA1 when splitting the dataset by prevalence. 

This may reflect the large number of clusters with PCR prevalence of zero, but where a large 

range of SCR values is still measurable.   

Overall, SCRs based on PfAMA1 were higher for equivalent PR values than SCRs based on 

PfMSP119, reflecting the greater immunogenicity of PfAMA1. PfAMA1 SCR also increases at a 

greater rate as PCR prevalence increases (1=0.28 for PfMSP119, 1=0.71 for PfAMA1), indicating 

a non-linear increase in population immune response as transmission increases.  

Fitting the model separately by PCR prevalence had an influence on the 1 estimates (Table 4.1, 

Appendix 4.3). For clusters below 20% PCR prevalence, PfMSP119 SCR values increase at a slower 

rate with respect to PR [1= 0.09 (95%CI -0.02,0.25), Appendix 4.3] compared to clusters with 

>20% PCR prevalence [1 = 0.28 (95%CI 0.13, 0.41)], but 95% credible intervals do not suggest 

this difference is statistically strong (Figure 4.4a-b). For PfAMA1, on the other hand, SCR values 

increase faster with respect to PR at PCR prevalence <20% [1 = 0.98 (95%CI 0.92, 1.00)] 

compared to clusters with >20% PCR prevalence [95%CI 1 = 0.83 (95%CI 0.75, 0.92)] and 

statistical strength for this difference appears more robust (Figure 4.4c-d, Appendix 4.3).  

However, after adjusting for region, the difference between the PCR prevalence ranges for 

PfAMA1 were less statistically different [1 = 0.71 (95%CI 0.57, 0.87) at PCR prevalence <20% vs. 

1 = 0.76 (95%CI 0.68, 0.88) at PCR prevalence >20%] (Table 4.1, Appendix 4.3), though this is 

driven primarily by clusters in Africa (Figure 4.6c-d).  

In low transmission settings in Africa, clusters experienced higher than average PfAMA1 SCRs 

compared to clusters in equivalent PCR prevalence ranges in Asia and the Americas (𝛽1 = 1.32 

95%CI 0.27 – 1.97, Figure 4.6c-d, Appendix 4.3). Statistical evidence for a different relationship in 

other regions and transmission intensities for PfAMA1 and across all regions and transmission 

intensities for MSP119 was weak (i.e., based on 95% credible intervals for 𝛽 values) (Appendix 4.3, 

Figures 4.5 – 4.6). However, median estimates suggest that for both antigens, clusters in Africa 

experience higher SCRs, followed next by Asia, and the lowest SCRs observed in the Americas 

(Table 4.1). 
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Table 4.1 Best fit relationships between sero-conversion rate (SCR) and parasite rate (PR)  

Listed by geographical region and PCR prevalence. Region-specific estimates are based on β values (Appendix 4.3) 
of models fit separately for clusters <20% vs >20% PCR prevalence. 
  

Prevalence band (PCR parasite rate) 

Antigen / Region < 20 % > 20% 

PfMSP119     

Overall log SCR = -2.66 + 0.28 * log odds PR 

Africa & Middle East log SCR = -3.06 + 0.09 * log odds PR log SCR = -2.66 + 0.28 * log odds PR 

Asia log SCR = -3.50 + 0.09 * log odds PR log SCR = -2.18 + 0.28 * log odds PR 

Americas † log SCR = -4.27 + 0.09 * log odds PR -- 

PfAMA1     

Overall log SCR = -1.50 + 0.71 * log odds PR 

Africa & Middle East log SCR = -0.18 + 0.71 * log odds PR log SCR = -1.61 + 0.76 * log odds PR 

Asia  † log SCR = -1.43 + 0.71 * log odds PR -- 

Americas † log SCR = -2.90 + 0.71 * log odds PR -- 

† Limited study sites (≤ 2 clusters) with >20% PR, so SCR:PR relationship for <20% PR only shown 

 

Figure 4.3 Sero-conversion rate vs. PCR parasite rate overall  
Parasite rate measured by PCR, RDT and microscopy on a PCR-prevalence scale (red=empirical PCR prevalence, 
blue=PCR-prevalence derived from microscopy prevalence, yellow=PCR-prevalence derived from RDT 
prevalence). Model fit weighted by cluster size and inverse log variance of SCR (95%CI lambda) estimated in 
reverse catalytic model. Solid line is the best fit line and shaded area is 95% credible interval. Point diameters are 
relative to increasing cluster size and crosshairs represent 95% confidence intervals for parasite rate (horizontal) 
and SCR (vertical) 
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Figure 4.4 Sero-conversion rate vs. PCR parasite rate by PCR prevalence range (<20% and >20%) 
Parasite rate measured by PCR, RDT and microscopy on a PCR-prevalence scale (red=empirical PCR prevalence, 
blue=PCR-prevalence derived from microscopy prevalence, yellow=PCR-prevalence derived from RDT 
prevalence). Model fit weighted by cluster size and inverse log variance of SCR (95%CI lambda) estimated in 
reverse catalytic model. Solid line is the best fit line and shaded area is 95% credible interval. Point diameters are 
relative to increasing cluster size and crosshairs represent 95% confidence intervals for parasite rate (horizontal) 
and SCR (vertical) 
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Figure 4.5 PfMSP119 sero-conversion rate vs. parasite rate (PCR prevalence)  

By geographical region (Americas - yellow, Africa & Middle East - blue, and Asia - red), and PCR prevalence (<20% and >20%). Solid line is the best fit line and shaded area is 95% credible interval. 
Point diameters are relative to increasing cluster size and crosshairs represent 95% confidence intervals for parasite rate (horizontal) and SCR (vertical) 
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Figure 4.6 PfAMA1 sero-conversion rate vs. parasite rate (PCR prevalence)  

By geographical region (Americas - yellow, Africa & Middle East - blue, and Asia - red), and PCR prevalence (<20% and >20%). Solid line is the best fit line and shaded area is 95% credible interval. 
Point diameters are relative to increasing cluster size and crosshairs represent 95% confidence intervals for parasite rate (horizontal) and SCR (vertical) 
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Comparisons against clinical incidence and entomological inoculation rate 

A comparison of the SCR:PR relationship to previously explored relationships between EIR vs. PR 

and clinical incidence vs PR indicate that (Figure 4.7) data for EIR is most widely available at ranges 

of PCR prevalence above 20%, likely due to the large sample sizes required to measure EIR in low 

transmission settings. SCR values for both PfMSP119 and PfAMA1, on the other hand, show the 

most resolution below 10% PCR prevalence and begins to saturate at transmission levels above 

this.  

This suggests that serology may be capable of discriminating fine-scale differences in 

transmission at levels where PCR prevalence is below 10% and in particular, where estimated PCR 

prevalence is close to zero (and RDT/microscopy is also likely to be zero), as seen by the wide 

range of SCR values along the y-axis. However, in the absence of a gold standard, it is not clear 

whether this range of SCR values at low PR prevalence reflects increased sensitivity of serological 

measures for current transmission or lack of specificity due to residual immune responses and a 

longer historical period of malaria transmission. The relationship between clinical incidence and 

PR is variable, with a large range of clinical incidence values at all levels of PR, suggesting relatively 

weaker precision of this metric compared to serology. However, it should be noted that these 

endpoints are not directly comparable due to the different biological endpoints they measure. 

Here, they are plotted together primarily to show their relative precision across transmission 

intensities. 

Figure 4.7 Relationship of three measures of transmission (sero-conversion rate, clinical incidence, 
and entomological inoculation rate) with PCR parasite rate  

Clinical incidence and SCR are reported as cases or seropositive individuals per 1000 person-years observed (PYO) 
compared to annual Pf EIR (aPfEIR) per 1000 PYO or (aPfEIR x 1000) 
 

 



81 
 

 

Despite the fact that PfMSP119 and PfAMA1 SCRs show the best resolution below 10% PR, 

maximum PfMSP119 SCR values are smaller compared to PfAMA1 and saturate at lower levels of 

transmission, while AMA1 SCR values continue to increase and show discriminatory ranges above 

20% PR. This dynamic is most evident amongst clusters in the African and Middle East regions, 

where the majority of the high PCR prevalence data is from. At the lower PR range, however, 

clusters in Asia illustrate the tendency for PfAMA1 SCR values to increase rapidly with parasite 

prevalence. This may be due to the relatively larger size and epitope diversity in the PfAMA1 

recombinant antigen fragment used in these assays compared to PfMSP119, allowing 

measurement of a greater breadth of response in the population. 

Influence of age in estimating parasite rate 

Model fits using different age groups suggest that PR based on children aged 2-10 years are higher 

for equivalent PfMSP119 SCR values in the overall population or children ages 5-15, which likely 

reflects that infections in younger age groups will tend to be more common than the general 

population. However, for PfAMA1, the opposite is observed, where PR values for children aged 

2-10 are actually lower for equivalent SCR values compared to the overall population or children 

aged 5-15. However, the SCR:PR estimate for PfAMA1 is less precise, making it difficult to draw 

conclusions on the effect of the PR age cohort. Furthermore, for both antigens, any differences 

between age cohorts are primarily at prevalence of 1% or lower (though 95% credible intervals 

suggest these are not statistically different). This may indicate that SCR has the potential to be a 

robust measure of transmission if it correlates consistently across different age demographics 

used to measure PR. However, this may simply reflect that, for data clusters included in the 

analysis, when considering clusters across all prevalence ranges, PR according to different age 

subsets do not differ substantially from all-age parasite rate, as seen in Figure 4.8.  
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Figure 4.8 Best fit relationship between sero-conversion rate and parasite rate by age subset  
All age seroconversion rate vs. PCR parasite rate based on different age subsets (African clusters only). Grey = all 
ages, yellow = ages 2-10 year olds, red = 5-15 year olds. Solid line is the best fit line and shaded area is 95% 
credible interval. 
 

 

 

Model validation and predictive power of seroconversion rate 

Leave-one-out analysis at the cluster level (i.e., leaving out a single cluster at a time) did not 

strongly influence the model. However, bootstrapping by country and study showed a tendency 

for SCR to overestimate PR for all clusters (Figure 4.9). It should be noted that certain countries 

had a particularly large number of studies and/or clusters (i.e., Cambodia). Separate model 

validation was not conducted with the region-specific model, so the overestimation at country 

and study level may be due to differences in the best fit relationships by region. 
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Figure 4.9 Comparison of observed vs. predicted PCR parasite rate (example of PFMSP119) 
Based on best fit model of PfMSP119 SCR:PR overall, using leave-one-out analysis at study, country, and cluster 
level. Best fit model is based on SCR:PR overall and not by geographical region or PCR prevalence. 
 

 

 

4.4 Discussion 
 

Global patterns in sero-conversion rates 

The analysis in this chapter describes a wide range of SCRs within country and region, which may 

reflect heterogeneities in transmission in these areas. This could be driven by a number of factors, 

depending on the country. The highest SCRs on average for both PfMSP119 and PfAMA1 were 

observed in Africa and the Middle east, followed by Asia, with the Americas (i.e., Brazil) having 

the lowest mean SCRs. However, these values may not be geographically representative of the 

regions overall, nor are they necessarily based on recent estimates as studies in this analysis 

range from years 1988 to 2014.  

Due to the longevity of antibodies to PfAMA1 and PfMSP119, it may be that, depending on how 

recently a region has undergone changes in transmission, the impact of malaria control 

programmes or natural reductions in malaria transmission will be reflected in more immediate 

reductions in PR while changes in SCR are subject to a time lag. While we aimed to explicitly 

model this by testing for a change in force of infection over time, the size or age distribution of 

the sample did not always allow this, which may be the reason for the weakness of the model in 

some regions or countries. The precision of the fit is often dependent on adequate sampling 

around the age or time of presumed change in transmission, and profile likelihood plots of 

estimated change points can often have very large confidence intervals if this is not the case. Due 
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to the limited number of clusters in this analysis where a change in transmission could be 

detected, not enough data is available to explore the impact of recent changes in transmission 

on the SCR:PR relationship.  

Relationship between sero-conversion rate and parasite prevalence by geographical region and 

transmission intensity 

While a number of studies have observed that SCR is positively correlated with parasite rate at 

the study level, the analysis here confirms this association regionally and globally based on a 

pooled analysis of available serological studies to date. However, the nature of this association 

was observed to differ slightly by geographical region and by transmission intensity. SCRs were 

found to increase at a faster rate relative to PR at PCR prevalence less than 20%, while increasing 

more gradually at PCR prevalence values above 20%. This effect was more distinct for PfAMA1 

compared to PfMSP119 (where the SCR:PR relationship at low vs high PCR prevalence were not 

statistically strong). This is consistent with previous studies that have found that sero-prevalence 

to PfAMA1 saturates quickly across a range of transmission intensities.254,255 

Consistent with estimates of average SCR values by region, studies in Africa and the Middle East 

were observed to have higher SCRs for both antigens compared to clusters with equivalent PR 

values in Asia and the Americas. The Americas had the lowest SCRs across all transmission 

intensities. However, statistical evidence that the model including regional covariates differed 

from the general model was weak (with the exception of higher PfAMA1 SCRs observed in low 

transmission African settings). This may reflect a lack of enough data to fit the model with 

precision, and updating these estimates as countries continue to monitor transmission based on 

serological endpoints will be useful.  

However, the higher levels of antibody response in African settings could reflect historical 

patterns of transmission intensity that are not captured in parasite rate. Residual immune 

responses in this population may still be measurable if changes in transmission have been very 

recent, as opposed to the longer period of low Pf infection rates in Asia and the Americas that 

may have resulted in some loss of immunity over time. It is not clear how this might be affected 

by the relatively higher levels of P.vivax infection if there is some degree of cross-reactivity with 

PvMSP19 and PvAMA1. 

Differences in range of SCR measured by PfAMA1 and PfMSP119 

It is not surprising that in general PfAMA1 SCR values are higher than PfMSP119, given that it is 

known to be more immunogenic. This may suggest that it is a more useful measure at lower levels 

of transmission, where it would have a larger range of values than PfMSP119. What is surprising 

is the tendency for PfMSP119 SCR values to saturate at lower levels of parasite prevalence, 

whereas PfAMA1 SCRs not only increase faster, but continue to increase even at quite high 

parasite prevalence values. This is contrary to previous studies that have observed that PfAMA1 
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SCR estimates tend to saturate very quickly,248 and that antibodies to PfAMA1 and PfMSP119 are 

both generally very long-lived. While in general, individuals become seronegative to PfAMA1 at 

a similar (or even slower) rate than PfMSP119, sero-reversion rates and antibody half-lives will 

vary by age and children often experience faster decay rates.254  

The increased sensitivity of PfAMA1 to detect transmission differences at higher parasite 

prevalence may be confounded by the age distribution of clusters in the dataset. If the samples 

are over-representative of younger age groups, the population could have a high proportion of 

individuals sero-reverting quickly to PfAMA1 relative to PfMSP119 while experiencing a greater 

number of repeat infections, particularly in high transmission settings. In this context, PfAMA1 

may be better at detecting changes in the sero-conversion / sero-reversion dynamic (i.e., a 

greater frequency of sero-negative to positive conversion events) even within the same 

individual, while PfMSP119 sero-prevalence remains at a steady state for longer once it saturates. 

However, there is not much evidence currently to suggest that the sero-reversion rate differs this 

dramatically to the two antigens. 

Another explanation may be that the relatively larger size of the PfAMA1 recombinant antigen 

and its inclusion of a greater number of epitopes allows it to measure a higher diversity of human 

antibody responses in the population. Conversely, the smaller PfMSP119 fragment used may 

cause saturation at lower SCR values. As transmission intensity increases, the genetic diversity of 

the parasite population also tends to increase, potentially allowing PfAMA1 to measure higher 

levels of sero-prevalence and SCR. Variant-specific immune responses have also been observed 

for other polymorphic antigens such as MSP2, though they are not covered in this analysis 

specifically.256 

Overall, it is not clear whether rapid increases in PfAMA1 SCR are due to its strong 

immunogenicity or a slow rate of sero-reversion. On the other hand, it is also difficult to balance 

these potential causes with the fact that PfAMA1 measures differences in immune responses at 

high levels of parasite prevalence, which could be due to its ability to measure a greater breadth 

of antibody response in the population. 

It should be noted that in this dataset, the high immunogenicity of PfAMA1 may also lead to a 

rapid saturation of sero-prevalence at young ages for clusters in high transmission intensities, 

such as Tororo, Uganda in the PRISM study, which experiences aPfEIR values as high as 340.257 

This highlights the limited utility of certain serological markers at very high transmission 

intensities, where either less immunogenic markers such as PfMSP119 or other measures such as 

clinical incidence and EIR are more suitable. While this single cluster is unlikely to have a large 

influence on the overall model fit, this can be assessed by investigating the cluster level leave-

one-out analysis presented in Figure 4.9 in more detail or by computing a Hat projection matrix 

to estimate the level of influence this cluster or other outliers have on the regression.   
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The effect of age on sero-conversion rate, parasite prevalence, and clinical incidence 

The influence of age on different measures of malaria transmission is only partially explored in 

this analysis. Models fitting sero-conversion rate already account for the effect of age to a degree, 

as force of infection is fit to age-specific sero-prevalence. The effect of age on parasite prevalence 

is only indirectly explored by fitting the SCR:PR model separately with two different age subsets. 

This specifically checks for the effect of age on the relationship between two diagnostic 

measures. Another method would be to define age categories of interest and include them as 

parameters in the SCR:PR model in the same manner that geographical region has been included 

as a covariate. If this method suggests that age has an effect, the SCR:PR relationship could be 

re-calculated based on age standardised PR estimates, for example using the methodology by 

Smith et al.258 However, including age as a covariate in the SCR:PR relationship may not be valid 

if SCR is already an age-derived measure. 

The clinical incidence and PR dataset published by Battle et al also includes age standardised 

estimates using the method by Smith et al. For the purposes of the analysis in this chapter, only 

the datasets where the empirically collected information of PR and clinical incidence cover the 

same age range are included. Comparison between SCR:PR against clinical incidence and PR could 

potentially cover a larger dataset if age-standardised or modelled data points are included. While 

an argument can be made for including the age-standardised data, including all modelled data 

points based on the MAP estimates may need more careful consideration. If the goal is to 

understand the utility of data that can be operationally collected through health facility or 

household surveys, using modelled data may lead one to falsely assume a better precision for 

particular diagnostics/metrics than would occur in practice. 

Future work should consider overall age standardisation of the data, which could be particularly 

helpful when comparing against the EIR:PR data by Smith et al, given that this only includes data 

for ages under 15 years. The fact that this dataset is only based on African settings, however, 

would still need to be taken into account.  

Comparing against EIR and clinical incidence 

Our analysis suggests that SCR may be able to reflect a greater range of values at PR values of 

zero (or close to zero). More specifically, SCR appears to have a greater dynamic range starting 

at PCR prevalence values of 5% and lower. As noted above, while SCR values estimated for the 

antigens analysed here tend to saturate in high transmission settings, EIR data is more likely to 

be available at these higher PR ranges. Meanwhile, estimating PR values based on API or clinical 

incidence does not appear to be precise at any PR prevalence range.  

The point estimates of the different metrics against PR suggest that SCR may have greater 

precision at moderate transmission intensities or have a greater dynamic range at low 

transmission intensities. A limitation to this analysis is the lack of information on credible 
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intervals for the EIR vs. PR or clinical incidence vs. PR best fit relationships. When this is available, 

future analysis could quantitatively compare the precision of the various measures across 

transmission intensities. Additional data that could be included in this analysis are datasets with 

paired estimates of SCR and EIR259 that could allow triangulation of the relationships between 

measures.  

Overall, it is important to note that there is a lack of a gold standard definition for transmission 

in this context. Variation in serological responses at very low PR prevalence could reflect 

heterogeneities in transmission as areas move towards elimination, or, given the longevity of 

immune responses to PfMSP119 and PfAMA1, lack of specificity due to the historical immune 

signatures in the population that may or may not reflect current transmission intensity. 

Therefore, immune responses to malaria antigens that have a shorter antibody half-life may 

provide more precise estimates of current levels of transmission, combined with information that 

PfMSP119 and PfAMA1 provide on either historical levels of transmission or current levels of 

protective immunity.  

In order to make serological markers truly operational, their sensitivity and specificity need to be 

defined for different use-case scenarios, which should no longer be defined based on existing 

parasites in the blood at time of testing, as the sensitivity and specificity of parasite rate or clinical 

incidence are assessed. First, what is the window of time during which infection is 

epidemiologically relevant for assessing risk of malaria infection with regards to asymptomatic 

infection and its contribution to onwards transmission or the potential for increased clinical 

malaria if protective immunity has declined. This will vary by antigen and its relative correlation 

with either exposure of protection. Once these are defined, the next step is to determine the 

relevance of this information for targeting interventions such as focal MDA, focal vector control 

or future transmission blocking vaccines over space and time. Nonetheless, the data presented 

here may help to inform when to incorporate serological measures of transmission to 

complement other measures of malaria exposure. An investigation into novel serological markers 

that may be more associated with recent or current transmission is explored in Chapters 5-7. 

Other data or model limitations 

It should be noted that while parameter values and their 95% credible intervals as well as overall 

model DIC values and effective number of parameters (pD) were computed for each model in 

this chapter (Appendix 4.3), these models could also be compared by structuring them as nested 

models and comparing them using likelihood ratio tests or assessing whether the 95% confidence 

intervals of covariates are significantly different from zero. Alternative criterion, such as the 

Akaike information criterion (AIC) could also be considered given that the models assessed here 

are not overly complex and do not necessarily require effective number of parameters to be 

estimated, as the DIC does. For assessing the effect of transmission intensity, rather than 
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separate models at different PR ranges, non-log-linear relationships could also be tested or 

models that combine all the data but allow for segmented regression or smoothed piece-wise fits 

(i.e., splines at ranges of transmission intensity where there SCR-PR relationship may not be 

clear). All these models could be compared using DIC values or developed as nested models and 

likelihood compared as described above. 

The analysis in this chapter combines PR data as measured using three different diagnostics (RDT, 

microscopy, and PCR). While the modelled relationship between these diagnostics (detailed in 

Chapter 3) can be used for transforming these units so that a combined analysis can be explored, 

it also introduces potential biases in interpretation, given the uncertainty in the RDT/microscopy 

– PCR modelled fit that is not accounted for in the data transformation in Chapter 4. The analysis 

would be improved by incorporating this uncertainty into the model. Alternatively, models could 

be fit for the different diagnostic datasets separately to determine if the regression coefficients 

vary between models. As a combined model, the diagnostic test used can also be included as a 

variable, which would also allow nested model comparison to test for improvements in fit or to 

verify that a bias is not introduced due to data transformation.  

Validation of the model using leave-one-out analysis indicate that the model does not accurately 

predict PR based on the SCR:PR relationship at the country or study level. This is likely due to the 

fact that some countries have a very large number of clusters (e.g., Cambodia) with a wide range 

of SCR values and this may over-influence the model fit. It may also reflect the fact that the 

SCR:PR relationship differs by region. The model validation could be adjusted to check the effect 

of leave-one-out analysis by study or cluster, but using the best fit relationships by geographical 

region instead. Similarly, it could be tested for different PCR prevalence ranges. It may also be 

worth checking how to aggregate clusters for the Cambodia dataset so that they do not comprise 

such a large proportion of point estimates in the model. 

The analysis in here treats PfAMA1 and PfMSP119 separately, but precision could potentially be 

gained by combining these datasets and fitting models based on sero-positivity to either antigen. 

However, assessing the correlation between SCRs for the two antigens separately would also be 

useful to determine precisely at which transmission intensities antibody responses between 

them will differ. 

Other adjustments that could be made are a better estimation of prevalence for clusters 

measuring no parasite positive infections, rather than simply assuming a fixed value close to zero 

as is done in this analysis. This could be done by taking advantage of Bayesian spatial fitting 

methods and the large number of clusters compiled in this study, where a more informative prior 

could be included based on clusters in similar geographical regions with low (but non-zero) 

prevalence values and the influence of sample size on the precision of the estimates. 
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Also, while most serology models define sero-prevalence using a binary threshold for sero-

positivity, some models account for boosting of immunity upon repeat infection by including 

additional sero-positive compartments122,260 or using magnitude of change in antibody 

titres.123,124 These are most relevant in hyper-endemic settings where sero-prevalence may 

saturate at earlier ages. For surveillance purposes in high transmission settings, however, it is 

possible to rely accurately on EIR and PR estimates of prevalence, and serology can serve as a 

validation of these estimates rather than as a primary measure of transmission. 

 

Applications for surveillance and cluster randomised trial design 

As the relationship between different measures of malaria transmission are refined, the use of 

serology is likely to have a number of distinct operational applications. This includes its use as a 

measure of baseline transmission at the community or cluster level for trial stratification, 

identifying geographic or demographic foci of transmission risk or receptivity, as a secondary 

endpoint in cluster randomised trials, or as part of routine surveillance to monitor progress 

towards elimination and to prevent re-introduction after local elimination. 

Once prevalence measures based on PCR, microscopy or RDT approach levels close to zero, it can 

be difficult to achieve statistical power to measure changes in transmission.239 Some alternatives 

have been suggested to deal with these measurement issues in low transmission settings, such 

as a greater emphasis on the basic reproduction number R0 to certify elimination, but this is 

difficult to measure empirically without modelling.261 SCR measures transmission by estimating 

a force of infection, and this relationship with R0 makes it a powerful quantitative metric. It is also 

relatively easier to implement operationally in resource-limited settings compared to other 

equivalently sensitive molecular methods.  

Future surveillance does not have to be limited to one or two antigens, and a multiplexed 

serological platform that can measure the combined response across a number of markers, 

including those more associated with recent or current transmission, could increase the utility of 

malaria serology for a wider range of transmission intensities. This is discussed further in Chapter 

5. Additional studies comparing clonal diversity or the multiplicity of infection and its impact on 

antigen-specific SCR dynamics would be useful analysis to explore this hypothesis and to optimise 

future assay development.  
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Appendix 4.1 List of surveys included in serology meta-analysis 
 

A. Africa 

Region Country 
Survey 

year 
Sampling 
strategy 

Site/Cluster 
Serology sample size 

Parasite rate sample 
size 

Regional SCR* Change in SCR† 

PfMSP119 PfAMA1 PCR RDT Slide PfMSP119 PfAMA1 PfMSP119 PfAMA1 

AFRICA 

Kenya 

2009 
All-age XS 
survey 

XSS1 Kisii 1076 1056 -- 1071 --         

XSS1 Rachuonyo 1047 1045 -- 1046 --         

2009 
All-age XS 
survey 

XSS2 Kisii 1743 -- 1715 1743 --         

XSS2 Rachuonyo 1761 -- 1733 1761 --         

2011 
All-age XS 
survey 

XSS4 Rachuonyo 16627 16627 12229 -- --         

Somaliland 2008 
All-age XS 
survey 

Gebiley1 241 240 241 -- --      

Gebiley2 99 131 105 -- --      

Gebiley3 616 635 616 -- --         

Sudan 2012 
LLIN and IRS trial 
arms, all ages 

Alhoosh 2517 2562 2427 1682 --       

Hag Abdala 2345 2403 2296 1555 --   
 

Galabat 1601 1632 1509 1025 --        

New Halfa 2302 2369 2298 2298 --   
   

Equatorial 
Guinea 

2008 
All-age XS 
survey 

Bioko 
6466 6436 -- 5586 --         

Gambia 

1988 
All-age XS 
survey 

Farafenni 
742 -- -- -- 7         

2008 

All-age XS 
survey 

Basse 
859 -- -- -- 848         

All-age XS 
survey 

Farafenni 
670 -- -- -- 662         

Guinea Bissau 2008 
All-age XS 
survey 

Caio 
769 -- -- -- 750         
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Region Country 
Survey 

year 
Sampling 
strategy 

Site/Cluster 
Serology sample size 

Parasite rate sample 
size 

Regional SCR* Change in SCR† 

PfMSP119 PfAMA1 PCR RDT Slide PfMSP119 PfAMA1 PfMSP119 PfAMA1 

AFRICA 

Tanzania 

2010 
All-age XS 
survey 

Mwanza Cotanda 
2496 2382 2496 -- --         

2007 
Post-IPTi survey Mtwara IPTi 393 -- -- 392 --         

Post-IPTi survey Lindi IPTi 619 -- -- 617 --         

2007 
Health-facility 
patients/attend
ees, post-IPTi 

Korogwe 1746 1746 -- 1746 --         

Same 1670 1713 -- 1006 --         

2007 Lower Moshi 331 -- -- 331 --         

2001 
All-age XS 
survey 

Rombo 1637 1672 -- -- 1636         

Mwanga 1628 705 -- -- 1580         

Same 1670 1678 -- -- 1643         

Lushoto 3747 3820 -- -- 3722         

2009 All-age XS 
survey 

Zanzibar 2185 2170 2181 -- --         

2011 Zanzibar 2014 2010 2014 -- --         

Uganda 

2010 
All-age XS 
survey 

Apac X1 436 463 436 -- --       

Apac X2 426 448 401 212 392       

Apac X3 432 475 427 219 392       

2014 
All-age XS 
survey 

Jinja 552 592 -- 552 552         

Kanungu 753 755 -- 753 753         

Tororo 781 777 -- 780 781         
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B. Asia 

Region Country 
Survey 

year 
Sampling strategy Site/Cluster 

Serology sample 
size 

Parasite rate sample 
size 

Regional SCR* Change in SCR† 

PfMSP119 PfAMA1 PCR RDT Slide PfMSP119 PfAMA1 PfMSP119 PfAMA1 

ASIA 

Myanmar† 2013 All-age XS survey Bago East 1576 1586 1576 -- --     

Vanuatu 

1999 

All-age XS survey 

Aneityum 618 619 493 -- --       

2002 Aneityum 712 719 711 -- --       

2004 Aneityum 590 598 590 -- --      

2007 Aneityum 755 755 755 -- --      

2010 Aneityum 883 876 883 -- --      

Cambodia† 2004 

All-age XS survey 
Clusters combined 
based on risk 
zones (proximity 
to forest) 

1-5, 9 500 499 -- -- 500    

10,11,6,90 332 338 -- -- 332    

7,8,12 305 303 -- -- 305       

32-25 307 340 -- -- 307    

39,40,43 260 257 -- -- 260    

41,42 184 184 -- -- 184    

44-48 445 439 -- -- 445       

49-51 317 276 -- -- 317      

52-55 327 317 -- -- 327       

56,57 197 176 -- -- 197      

58-65 737 686 -- -- 737       

66,67 161 122 -- -- 161      

68,69 172 168 -- -- 172      

70,71 155 152 -- -- 155      

75-78 278 236 -- -- 278       

82-85 358 354 -- -- 358      

86,87 175 168 -- -- 175      
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Region Country 
Survey 

year 
Sampling 
strategy 

Site/Cluster 
Serology sample size Parasite rate sample size Regional SCR* Change in SCR† 

PfMSP119 PfAMA1 PCR RDT Slide PfMSP119 PfAMA1 PfMSP119 PfAMA1 

ASIA 
(continued) 

Cambodia† 2007 

All-age XS survey 
Clusters 
combined based 
on risk zones 
(proximity to 
forest) 

1-6 617 620 610 -- 617        

7,8,9 281 292 281 -- 281       

10,11 133 135 133 -- 133      

12,13 206 207 206 -- 206      

14,15,41 330 341 325 -- 330    

16,17,18 295 295 295 -- 295    

19,20,21 253 255 252 -- 253      

22,23,24 325 300 323 -- 325      

25,26,27 365 350 364 -- 365      

28,29,30 332 335 330 -- 332    

31-33,49 314 288 312 -- 314       

34-40 210 211 208 -- 210      

35,37,38 337 339 252 -- 337     

40,39 219 220 180 -- 219    

42,45 198 219 198 -- 198      

43,44,72 290 324 289 -- 290    

46,47,48 279 279 186 -- 279      

49,50 155 158 154 -- 155      

51,52,53 298 299 298 -- 298    

54,56,57 295 296 294 -- 295    

55,58,59 317 317 317 -- 317    

60 113 114 113 -- 113      

61,62,63 279 284 278 -- 279      

64,65 192 193 192 -- 192      

66,67,68 308 287 306 -- 308      

79,70,71 312 303 312 -- 312    

73 101 102 101 -- 101      

74,75,76 256 256 256 -- 256       
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C. Middle East 

 

D. Americas 

Region Country 
Survey 

year 
Sampling strategy Site/Cluster 

Serology sample 
size 

Parasite rate sample 
size 

Regional SCR* Change in SCR† 

PfMSP119 PfAMA1 PCR RDT Slide PfMSP119 PfAMA1 PfMSP119 PfAMA1 

AMERICAS Brazil† 2007 All-age XS survey 

1 113 113 -- -- 113      

2 171 171 -- -- 171    

3 262 262 -- -- 262      

4 182 182 -- -- 182      

5 204 204 -- -- 204      

6 -- 141 -- -- 253      

7 -- 253 -- -- 499      

 
*For clusters that do not have adequate sample size to estimate a cluster-specific sero-reversion rate (SRR), a region-specific SRR is used in the model.  
† Clusters where differences in sero-conversion rate (SCR) by age represent occupational risk (e.g., forest workers), and the SCR experienced by this higher-risk 
group is used for inclusion in the SCR-parasite rate model. For all other clusters, SCR experienced by the younger age groups is assumed to reflect most recent 
malaria transmission.   

Region Country 
Survey 

year 
Sampling strategy Site/Cluster 

Serology sample size 
Parasite rate sample 

size 
Regional SCR* Change in SCR† 

PfMSP119 PfAMA1 PCR RDT Slide PfMSP119 PfAMA1 PfMSP119 PfAMA1 

MIDDLE 
EAST 

Yemen 2012 
Only age < 15 
years 

3001/3003 340 325 -- 340 340       

3002 195 186 -- 194 195      

3004 181 173 -- 181 181      

3005 188 187 184 188 188      

3006,3009,3011 523 505 -- 523 521      

3007,3012 219 218 115 219 214      

3008 167 160 -- 167 167      

3010 175 160 175 175 175      
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Appendix 4.2 Sero-conversion rate model fits by study cluster 
 

Modelled seroconversion rates (SCR) for PfMSP119 are shown in blue (single SCR for all ages) and green 

(change in SCR between age groups) and for PfAMA1 in red (single SCR) and yellow (change in SCR), 

with shaded area indicating the 95% confidence interval (CI) of the SCR model fit. Observed sero-

prevalence for each age group (split by deciles based on maximum age in study) are shown as black 

points and 95% CI as vertical lines. 
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Appendix 4.3 Parameter estimates for sero-conversion rate vs. parasite rate relationships 
 

A. Overall model - precision of model fit inverse weighted by log variance of SCR estimate from reverse catalytic model 

B. Age subsets - same as model A, but PCR prevalence based on different age subsets (2-10 year olds, 5-15 year olds) 

C. Adjusted for  geographical region - Africa & Middle East (β1) , Asia (β2), Americas (β3) 
 
PfMSP119 
 Description Parameter estimates (95% credible interval) DIC values 

  PfMSP 119 α0 α1 β1 β2 β3 DIC Mean 
Deviance 

pD 

A Overall -2.66 (-2.75, -2.57) 0.28 (0.21, 0.36) -- -- -- -332.6 -342.1 9.543 

PCR prevalence <20% only -3.26 (-3.71, -2.79) 0.07 (-0.05, 0.24) -- -- -- -289.6 -298.5 8.884 

PCR prevalence >20% only -2.65 (-2.75, -2.56) 0.26 (0.12, 0.40) -- -- -- -41.92 -45.08 3.161 

B PCR prevalence based on all 
ages (Africa only) 

-2.70 (-2.81, -2.61) 0.20 (0.13, 0.29) -- -- -- -99.92 -103.5 3.605 

PCR prevalence based on 2-
10 year olds only 

-2.67 (-2.77, -2.59) 0.23 (0.16, 0.31) -- -- -- -115.5 -119.3 3.829 

PCR prevalence based on 5-
15 year olds only 

-2.78 (-2.89, -2.70) 0.16 (0.10, 0.24) -- -- -- -95.06 -98.69 3.63 

C By geographical region -3.34 (-4.59, -1.49) 0.26 (0.17, 0.34) 0.67 (-1.17, 1.92) 0.58 (-1.29, 1.87) -0.58 (-1.94, 1.17) -336.9 -347.7 11.49 

By geographical region (PCR 
prevalence <20% only) 

-3.67 (-5.11, -1.88) 0.09 (-0.02, 0.25) 0.61 (-1.15, 1.94) 0.17 (-1.62, 1.63) -0.60 (-1.94, 1.23) -295.2 -305.5 10.37 

By geographical region (PCR 
prevalence >20% only) 

-2.36 (-4.11, -0.74) 0.28 (0.13, 0.41) -0.30 (-1.92, 1.45) 0.18 (-1.49, 1.89) -0.006 (-1.90, 1.89) -45.3 -49.56 4.259 
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PfAMA1 

 Description Parameter estimates (95% credible interval) DIC values 

  PfAMA1 α0 α1 β1 β2 β3 DIC Mean 
Deviance 

pD 

A Overall -1.50 (-1.57, -1.44) 0.71 (0.65, 0.78) -- -- -- 100.4 74.17 26.21 

PCR prevalence <20% only -0.54 (-0.69, -0.40) 0.98 (0.92, 1.00) -- -- -- -81.23 -100.9 19.71 

PCR prevalence >20% only -1.61 (-1.68, -1.54) 0.83 (0.75, 0.92) -- -- -- 108.9 99.45 9.495 

B PCR prevalence based on all 
ages (Africa only) 

-1.52 (-1.57, -1.46) 0.59 (0.52, 0.66) -- -- -- 193.6 182.9 10.64 

PCR prevalence based on 2-
10 year olds only 

-1.62 (-1.68, -1.56) 0.50 (0.44, 0.57) -- -- -- 140.2 129.3 10.87 

PCR prevalence based on 5-
15 year olds only 

-1.78 (-1.85, -1.71) 0.60 (0.53, 0.69) -- -- -- 67.96 57.12 10.84 

C By geographical region -2.59 (-4.48, -0.94) 0.57 (0.50, 066) 1.07 (-0.59, 1.96) 0.72 (-0.92, 1.66) -0.99 (-1.96, 0.54) 126.5 102.1 24.48 

By geographical region (PCR 
prevalence <20% only) 

-1.50 (-2.29, -0.41) 0.71 (0.57, 0.87) 1.32 (0.27, 1.97) 0.07 (-0.99, 0.79) -1.40 (-1.98, -0.36) -149.1 -168.2 19.08 

By geographical region (PCR 
prevalence >20% only) 

-1.88 (-3.49, -0.31) 0.76 (0.68, 0.88) 0.27 (-1.30, 1.87) -0.40 (-1.91, 1.31) 0.002 (-1.89, 1.91) 113.7 102.1 11.55 
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 Validating serological markers of malaria 
infection using a multiplex immunoassay 
 

Serology is a potentially promising new tool for use in malaria surveillance, but the correlation of 

candidate biomarkers with existing measures of malaria incidence requires validation. Chapter 

5a presents work to standardise laboratory data from the Luminex multiplex immunoassay 

specifically for use in epidemiological evaluation. Chapter 5b assesses the accuracy and precision 

of serological biomarkers in estimating recent P. falciparum infection in endemic settings.  
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5.1 Background 
 

As introduced in Chapters 3 and 4, serology may be a promising diagnostic tool in low-

transmission settings, where clinical and molecular measures of infection have limited 

sensitivity.248 However, currently used assays and serological markers are not optimised to 

measure individual-level or recent infections. Improving serological platforms to address this gap 

could have potential utility in both routine surveillance and cluster-randomised trials.  

P. falciparum presents a diverse array of antigens to the human immune system throughout the 

parasite life cycle, all eliciting antibody responses with varying magnitudes and kinetics. This 

provides a large and diverse set of potential markers for malaria infection from which to select.262 

Correlating existing measures of malaria infection with antibody responses from a variety of Pf 

antigens can guide the selection of biomarkers for use in multiplexed sero-surveillance tools.  

Previous studies based on protein microarray have investigated antibody responses for up to 

thousands of Pf antigens, evaluating their association with malaria infection.262,263 However, 

studies on post-infection antibody kinetics in endemic settings are limited.264 Most describe long-

lived antibody responses to small subsets of antigens or focus on children and pregnant 

women.166,170,212,265–267 These are practical easy-access groups to target for sentinel surveillance, 

but demographic-wide biomarkers of infection may also still have utility, particularly in regions 

where transmission is associated with older ages or other high-risk groups (e.g., forest, mining, 

or fishing industries; displaced or migrant populations)62,268.  

Current estimates of antibody dynamics remain imprecise because kinetics models require 

frequently sampled longitudinal data, reliable data on previous infection, and population 

representative sample sizes.262,265 For the better part of the last 10 years, cost-effectively doing 

so with immunoassays has been limited by the state of the art. The majority of sero-

epidemiological studies measure antibody response by enzyme-linked immunosorbent assay 

(ELISA). While cost-effective for high-throughput analysis of a single antigen (or combined 

response to multiple antigens), the processing time and relatively large sample volumes make it 

less efficient for the evaluation of multiple analyte-specific responses. Conversely, protein 

microarray allows high throughput analysis of thousands of analytes at a time,269,270 but is still a 

prohibitively expensive technology and limited by sample processing time.  

Quantitative suspension array technologies (qSAT), such as the Luminex MAGPIX© (Luminex Corp, 

Austin TX), are now available as affordable mid-high throughput multiplexing platforms. They 

offer several advantages over ELISA and microarray for large-scale epidemiological screening, 

including the simultaneous quantification of 50-500 proteins in a single well and the use of 

standard 96-well plates with as little as 5μl of plasma or serum.271–273 The Luminex assay has also 
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been shown to measure a larger dynamic range of antibody response compared to ELISA,274,275 

though this has yet to be validated for the specific analytes in the work presented here.  

In this study, human antibody responses to 24 Pf antigens were quantified using the Luminex 

platform based on samples from an all-age longitudinal cohort study in The Gambia. The first 

section discusses assay procedures and methods to standardise Luminex data for epidemiological 

analysis based on samples from The Gambia and Namibia. The second section aims to estimate 

the rate of antibody decay after malaria infection and to evaluate how Pf antibody responses can 

be used as estimators of time since previous malaria infection. Subsequent chapters will describe 

the use of these biomarkers to measure cluster-level differences in transmission in The Gambia 

and Namibia. 

  



116 
 

Chapter 5a. Optimisation of Luminex assay procedures and data 
standardisation 
 

5.2 Methods 
 

Laboratory methods 

Antigen panel and microsphere coupling 

A multiplex panel was developed for the Luminex MAGPIX© suspension bead array containing 24 

Pf recombinant proteins (1 sporozoite surface, 23 erythrocytic) (Table 5.1). Antigens were 

selected from an initial screen of 856 candidates on the protein microarray assay based on their 

correlation with previous malaria infection in children.262 Four antigens were excluded from final 

analysis either due to universally low signals below 500 mean fluorescence intensity (MFI) units 

(H101, EPFv1) or because they were redundant fragments of antigens already included in the 

panel (Etramp5.Ag2, Etramp4.Ag1 were non-immunogenic fragments of Etramp5.Ag1 and 

Etramp4.Ag2 respectively). Recombinant antigens were coupled to MagPlex© COOH-

microspheres or ‘beads’ (Luminex Corp., Austin TX) following the protocol described by Luminex 

Corparation.276 Optimal coupling concentration for each antigen was based on the mid-point of 

the dose-response curve (EC50) of a 6-dilution serial titration of the antigen. Glutathione S-

transferase (GST) coupled beads were included as a control to test for GST-specific 

immunoglobulin (IgG) response against GST-tagged fusion proteins (Table 5.1). Beads coupled 

with tetanus toxoid vaccine protein were also included as controls.  

Sample preparation and assay procedures 

Gambian blood samples were eluted from a 6mm dried blood spot (DBS) punch, corresponding 

to 4 μl of whole blood, and shaken overnight at room temperature in 200 μl of protein elution 

buffer containing phosphate buffered saline (PBS) (pH 7.2), 0.05% sodium azide and 0.05% 

Tween-20, yielding an initial 1:50 sample dilution. At least one day prior to assay processing, 

samples were further diluted to a final 1:500 dilution using 10 μl of the 1:50 pre-dilution sample 

and 90 μl of blocking Buffer B to prevent non-specific binding (1xPBS, 0.05% Tween, 0.5% bovine 

serum albumin (BSA), 0.02% sodium azide, 0.1% casein, 0.5% polyvinyl alcohol (PVA), 0.5% 

polyvinyl pyrrolidone (PVP) and 1,500 μg/ml E.coli extract). Negative and positive controls were 

also incubated one day prior in Buffer B, with negative controls prepared at a 1:500 dilution and 

Gambian pooled positive controls in a 6-point 5-fold serial dilution (1:10 – 1:31,250). Two wells 

on each plate containing only antigen-coupled beads and Buffer B, but absent of any human 

serum, were included to measure background signal. For analysis of individual-level antibody 

kinetics, all samples from the same individual were processed on a single plate to remove the 

influence of plate variation when quantifying antibody response over time. The positive control 

was based on a pool of 22 serum samples from malaria hyper-immune individuals in The Gambia, 
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and ten individual plasma samples from European malaria-naive adults were used as negative 

controls.  

For Namibian samples, a 1:50 pre-dilution was made using plasma samples, isolated from 250 l 

of whole blood collected in BD Microtainer tubes with EDTA additive, and diluted to a final 1:400 

sample dilution as described above. A pool of sera samples from 100 hyper-immune Tanzanian 

individuals as well as a WHO malaria reference lyophilised serum reagent (NIBSC 10-198)277 were 

used as a positive controls with a 6-point 5-fold serial dilution standard curve. European malaria-

naïve adults were used as negative controls, as described above. 

General assay procedures were as follows. First, an initial mixture containing 8 μl of each antigen-

coupled microsphere set and 5 ml of Buffer A (1xPBS, 0.05% Tween, 0.5% bovine serum albumin 

(BSA), 0.02% sodium azide) was prepared, yielding approximately 1,000 beads per region per 

well. Next, 50 μl of this combined microsphere mixture was added to a 96-well flat bottom plate 

(BioPlex Pro™, Bio-Rad Laboratories, UK) and washed once with 100 μl of PBS-Tween (1xPBS, 

0.05% Tween-20) on a magnetic washer (Bio-Plex Pro for Gambian samples and BioPlex Magnetic 

Hand Washer for Namibian samples). 50 μl of samples and controls were added to the plate and 

incubated in the dark at room temperature (RT) on a microplate shaker at 500 rpm for 90 

minutes. Following three washes, 50 μl of fluorescent secondary antibody (Jackson Immuno 109-

116-098: Goat Anti-human Fcy-fragment specific IgG conjugated to R-Phycoerythrin (R-PE)), 

diluted to a 1:200 dilution with Buffer A, was added to all wells and incubated for 90 minutes in 

the dark at RT at 500 rpm. After a further three washes, the plate was incubated in 50 μl of Buffer 

A for 30 minutes. Plates had an additional wash and, after a final addition of 100 μl 1xPBS, were 

read using the Luminex MAGPIX© analyser. At least 50 beads per analyte were acquired per 

sample and median fluorescent intensity (MFI) data were used for analysis.
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Table 5.1 Summary of antigens in multiplex Luminex panel 

Antigens that were included in the assay, but not in the final analysis due to low signal (Etramp5.Ag2, Etramp4.Ag1, EPFv1, H101), are not listed.  

Gene ID Antigen name Allele Antigen concentration 
(ng/5000 beads) 

Expression Location Description Reference 

PF3D7_0930300 Pf MSP1.19 Wellcome 16.924 GST Merozoite surface 19kDa fragment of MSP1 molecule  278 

PF3D7_1133400 Pf AMA1 FVO 1.56 Hisx6 Sporozoite / Merozoite Apical membrane antigen 1 279 

PF3D7_1035300 Pf GLURP.R2 F32 3.688 N/A Merozoite Glutamate rich protein R2 280 

PF3D7_0731500 EBA175 RIII-V 3D7 163.328 GST Merozoite Erythrocyte binding antigen-175 281 

PF3D7_0102500 EBA181 RIII-V 3D7 97.76 GST Merozoite Erythrocyte binding antigen-181 281 

PF3D7_1301600 EBA140 RIII-V 3D7 97.62 GST Merozoite Erythrocyte binding antigen-140 281 

PF3D7_0424100 Rh5 3D7 5.48 C-tag Merozoite Reticulocyte binding protein homologue 5 282 

PF3D7_1335400 Rh2.2030 D10 97.72 GST Merozoite Reticulocyte binding protein homologue 2 283 

PF3D7_0424200 Rh4.2 3D7 1.744 Hisx6 Merozoite Reticulocyte binding protein homologue 4 284 

PF3D7_0532100 Etramp5.Ag1 3D7 13.972 GST iRBC/PVM Early transcribed membrane protein 5 285 

PF3D7_0423700 Etramp4.Ag2 3D7 72.004 GST iRBC/PVM Early transcribed membrane protein 4 285 

PF3D7_0402400 GexP18 3D7 250 GST Gametocytes Gametocyte exported protein 18 262 

PF3D7_0501100.1 HSP40.Ag1 3D7 17.016 GST iRBC / Gametocytes Heat shock protein 40, type II 262 

PF3D7_1021800 Pf SEA-1 3D7 8.68 GST Schizont / Maurer’s cleft Schizont egress antigen 1 286 

PF3D7_1002000 Hyp2 3D7 250 GST iRBC / PVM Plasmodium exported protein 262 

PF3D7_0206800 Pf MSP2.Dd2 Dd2 0.116 GST Merozoite surface Merozoite surface protein 2, Dd2 allele 287 

PF3D7_0206800 Pf MSP2.Ch150 Ch150/9 0.076 GST Merozoite surface Merozoite surface protein 2, Ch150/9 allele 287 

PF3D7_1036000 Pf MSP11/H103 3D7 46.88 GST Merozoite Merozoite surface protein 11/H101/MSP3.7 288 

PF3D&_0501300 SBP1 3D7 97.776 GST Schizont / Maurer’s cleft  Skeleton-binding protein 1 289 

PF3D7_0304600 Pf CSP 3D7 107.776 -- Sporozoite surface Circumsporozoite (CS) protein 290 

 -- GST -- 34.396 -- -- GST expression tag  

 -- TT -- 24.608 -- -- Tetanus Toxoid  

*infected red blood cell – iRBC; parasitophorous vacuole membrane – PVM, glutathione S –transferase - GST
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Quality control 

Levey-Jennings charts291 were used to plot the mean MFI values of three concentrations from the 

positive control standard curve (high - 1:10, medium - 1:50, and low - 1:250) as well as the 

background values for each plate (Figure 5.2). The acceptable range of MFI values for inclusion in 

the study was defined as the mean +/- two standard deviations of a subset of ten reference plates 

(selected based on the quality and consistency of their standard curve values). Plates with MFI 

values outside this range for at least two standard curve dilutions and at least three antigens 

were rejected and repeated. Points on the Levey-Jennings plots were ordered by date of plate 

processing to monitor bead stability over time.  

Statistical analyses 

Immunoassay data normalisation 

Analysis of continuous antibody response was conducted in normalised MFI. Standard curves of 

antibody concentrations versus MFIs were fitted using a 4-parameter logistic equation292–294: 

𝑀𝐹𝐼 = 𝑀𝐹𝐼𝑚𝑎𝑥 + 
(𝑀𝐹𝐼𝑚𝑖𝑛− 𝑀𝐹𝐼𝑚𝑎𝑥)

[1+(
𝑐𝑜𝑛𝑐

𝑀𝐹𝐼50
)

𝑠𝑙𝑜𝑝𝑒
]

           (5.1) 

where MFImax is the upper asymptote or maximum MFI response of the standard curve, MFImin is 

the lower asymptote or minimum MFI response of the standard curve, MFI50 is 50% of MFImax, 

conc is the sample concentration from the serial dilution, and slope is Hill coefficient or slope 

factor of the dose-response curve (Figure 5.1). EC50 is the concentration or dilution that 

corresponds to MFI50. 

Figure 5.1 Four-parameter dose-response curve 

 

Data were normalised to adjust for between plate variation using a loess normalisation 

method.295 This involved the selection of ten reference plates based on the quality and 

consistency of their standard curve fits from equation 5.1. For each antigen, a composite standard 
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curve was computed by calculating the mean MFI values for the reference plates for 100 

concentrations between the highest and lowest concentration on the standard curve. For each 

plate, the plate-to-reference standard curve MFI difference (∆MFI) was calculated for these 100 

concentration points and a loess regression fit to ∆MFI as a function of mean MFI. The raw MFI 

data for all samples on the plate were then adjusted by the predicted ∆MFI based on the loess 

regression fit. Data were not corrected for background signal given that the between plate 

variation was already accounted for in the loess normalisation and all background MFIs were 

below 30 and therefore negligible. 

Binary antibody responses were based on antigen-specific sero-positivity thresholds calculated 

using one of two methods. A two-component finite mixture model (FMM) (using the 

normalmixEM command in the mixtools R package) was fitted to log MFI of all cross-sectional 

serology samples from The Gambia (West Coast and Upper River Region, June 2013 and 

December 2013), with the cut-off defined as the mean log MFI plus two standard deviations of 

the ‘sero-negative’ component. Alternatively, for antigens where distinct ‘sero-negative’ and 

‘sero-positive’ components could not be distinguished using the mixture model, sero-positivity 

threshold was based on the mean MFI plus three standard deviations of 71 European malaria-

naïve negative controls (Figure 5.6, Table 5.2).  

Estimating antigen-specific limits of quantification 

Lower and upper limits of quantification (LLOQ and HLOQ respectively) were estimated for each 

plate and antigen using standard curves fit with equation 5.1. The LLOQ MFI was defined as the 

MFI value where the upper 95%CI of the MFImin parameter estimate equals the lower 95%CI of 

the standard curve estimate, and the HLOQ MFI where the lower 95%CI of the MFImax parameter 

estimate equals the upper 95%CI of the standard curve estimate.293 The mean LLOQ and HLOQ 

values were then calculated across all plates as overall LOQ values for the whole batch. 

5.3 Results 
 

Quality control. For samples from The Gambia, a total of 7,868 field blood samples were analysed 

across 96 96-well plates. After quality control assessment based on standard curves, three plates 

fell outside the acceptable range of MFI values and were repeated. Visual inspection of Levey-

Jennings charts suggest there was no clear change in positive control MFI values over time, 

indicating negligible degradation of bead quality after shipment of reagents from the United 

Kingdom to The Gambia and stability of the Luminex MAGPIX© machine during the two months 

of sample processing.  
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For samples from Namibia, a total of 4,125 plasma samples were analysed across 52 96-well 

plates. After quality control assessment, seven plates fell outside the acceptable range of MFI 

values and were repeated. Data for five samples could not be matched to relevant 

epidemiological data and were excluded, yielding a total of 4,120 samples for analysis. Positive 

control MFI values over time appeared consistent based on Levey-Jennings charts and therefore, 

similar to The Gambia data, did not warrant a more formal statistical test (e.g., segmented 

regression) to check for significant changes in MFI signal. 

The response to GST-coupled beads across the entire sampled population was generally low 

(median MFI 163, interquartile range (IQR) 89 – 274 MFI), indicating that non-specific background 

reactivity to GST was extremely low. Therefore, no adjustment for GST signal was conducted, as 

these values were in a range of MFI that are negligible. The use of tetanus toxoid as a positive 

control also showed that there was a standard distribution of antibody responses to TT-coupled 

beads, with a median MFI of 4,161 across the sampled population (IQR 372 – 12,647). The 

variability in MFI response likely reflects both variation in vaccination coverage and/or additional 

booster vaccinations given to women of child-bearing age, according to national policy in The 

Gambia for the prevention of maternal and neonatal tetanus.  

Data normalisation. Proportional differences in plate-specific MFI values compared with mean 

MFI values of reference plates were dependent on the MFI range (Figure 5.3). In other words, 

MFIs in the higher end of responses could show larger between plate variations than MFIs in the 

lower end of responses (or vice versa) and may not be easily adjusted for using one proportional 

factor across the full range of MFI values. These extent of these variations differed by plate and 

antigen. The loess normalisation methods allowed for raw data to be adjusted and weighted 

according to MFI range-specific differences (Figure 5.3).  

Limits of quantification. The MFI and antibody concentration range within the limits of 

quantification (LOQ) varied by antigen (Figure 5.4). For all antigens, the LLOQ was distinguishable 

from the upper limit of blank (LOB), as determined by the mean MFI value of background controls 

across plates (Figure 5.5). However, the range of LOQ for some antigens was small (e.g., 

Etramp5.Ag1 and MSP119), invalidating its practical use for setting sample exclusion criteria as 

more than half of the data would be excluded. Therefore, no LOQs were used to set data 

exclusion criteria for the data in this study. 

Sero-positivity thresholds. Using the FMM method, sero-negative and sero-positive populations 

could not be distinguished for a number of antigens in both The Gambian and Namibian datasets 

(Figure 5.6). Additionally, for some antigens, while a sero-negative population could be 

estimated, the cut-off value based on the mean plus three standard deviations of non malaria-

exposed negative controls was higher than the sero-negative component estimated with the 
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FMM, suggesting either that endemic and non-endemic individuals have similar sero-negative 

thresholds or the FMM model is not an accurate method for determining sero-negative 

populations. Therefore, for these antigens, negative controls were used as a more conservative 

estimate of sero-negativity. The final cut-off values used in analysis for all Luminex serology 

presented are listed in Table 5.2 for The Gambia and Namibia respectively. 

Figure 5.2 Levey Jennings charts for quality control 

Solid points represent the MFI values of positive controls, ordered left to right by date of plate processing. Solid 
horizontal lines represent mean positive control MFI of the reference plates and the dotted lines represent MFI 
values of either one or two standard deviations from the mean.   
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Figure 5.3 Example of loess regression normalisation methods  
Loess regression fit to difference between plate MFI and mean MFI of reference standard curves (left) and raw vs. normalised MFI values (right). On the left, black points represent the observed 
MFI difference between plate-specific standard curve values and mean standard curve values of the reference plates, red line is the loess fit of ∆MFI as a function of reference mean MFIs, and 
blue line is a linear regression fit of ∆MFI as a function of reference mean MFIs. On the right, red diagonal line represent points where the raw and normalised MFI values are equal and black 
points represent the raw MFI value on the x-axis and the normalised MFI value on the y-axis for all samples on a plate.    
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Figure 5.4 Examples of standard curve and limits of quantification estimation  
Black points represent the observed MFI values for serial dilutions of the positive control, black solid line represents the standard curve fit, grey shaded area represents the 95%CI of the standard 
curve fit, blue solid and dotted horizontal lines are the mean and 95%CI estimates MFImin and MFImax, red vertical lines are the estimated LLOQ and HLOQ, and green horizontal lines are the 
background MFI.  
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Figure 5.5 Example of mean limits of quantification across all reference plates  

Solid points are plate-specific LLOQ and HLOQ values, horizontal solid and dotted lines are the mean LOQ values 
and 95%CI across all plates (red = LLOQ, blue = HLOQ, green = background signal).  
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Table 5.2 Sero-positivity thresholds by antigen 
Thresholds determined using either a 2-component finite mixture model (FMM) to identify sero-negative and 
positive populations or mean plus three standard deviations of non malaria-exposed European negative controls. 
 
A. GAMBIA 

Antigen FMM  Malaria naïve cutoff Method used 

PfMSP119 6982 311 FMM 

PfAMA1 2791 260 FMM 

PfGLURP.R2 513 677 Malaria naïve controls 

EBA175 201 898 Malaria naïve controls 

EBA181 185 652 Malaria naïve controls 

EBA140 219 2576 Malaria naïve controls 

Rh5 6082 1935 Malaria naïve controls 

Rh2.2030 1007 945 Malaria naïve controls 

Rh4.2 181 1425 Malaria naïve controls 

Etramp5.Ag1 724 224 Malaria naïve controls 

Etramp4.Ag2 1034 1170 Malaria naïve controls 

GexP18 4949 435 Malaria naïve controls 

HSP40.Ag1 2958 277 Malaria naïve controls 

Hyp2 2354 345 Malaria naïve controls 

SEA-1 3719 949 Malaria naïve controls 

PfMSP2.Ch150 392 138 Malaria naïve controls 

PfMSP2.Dd2 266 1357 Malaria naïve controls 

H103 1453 3223 Malaria naïve controls 

SBP1 524 1206 Malaria naïve controls 

PfCSP 237 283 Malaria naïve controls 

B. NAMIBIA 

Antigen FMM Malaria naïve cutoff Method used 

PfMSP119 1351 311 FMM 

PfAMA1 856 260 FMM 

PfGLURP.R2 1748 677 Malaria naïve controls 

EBA175 908 898 Malaria naïve controls 

EBA181 715 652 Malaria naïve controls 

EBA140 1066 2576 Malaria naïve controls 

Rh5 1443 1935 Malaria naïve controls 

Rh2.2030 5391 945 Malaria naïve controls 

Rh4.2 774 1425 Malaria naïve controls 

Etramp5.Ag1 1664 224 Malaria naïve controls 

Etramp4.Ag2 3155 1170 Malaria naïve controls 

GexP18 2453 435 Malaria naïve controls 

HSP40.Ag1 1089 277 Malaria naïve controls 

Hyp2 1348 345 Malaria naïve controls 

SEA-1 2036 949 Malaria naïve controls 

PfMSP2.Ch150 185 138 Malaria naïve controls 

PfMSP2.Dd2 760 1357 Malaria naïve controls 

H103 2494 3223 Malaria naïve controls 

SBP1 1648 1206 Malaria naïve controls 

CSP 8195 283 Malaria naïve controls 
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Figure 5.6 Sero-positivity threshold estimation compared between methods and regions  

Determined by two-component finite mixture model (FMM) (left) or mean plus three standard deviations of 
non-malaria-exposed European negative controls (right). 
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5.4 Discussion 
 

qSAT platforms have been used for a number of diseases to measure multiple analyte-specific 

responses simultaneously for cytokines293,296 nucleic acids297, and antibodies108,111,273. It is now 

being used increasingly to measure antibody responses across a range of Plasmodium 

antigens106,109,168,243,272,274,275,298–302 and may be a promising addition or replacement to ELISA-

based screening303. Previous studies based on Luminex data and the results from this chapter 

suggest that there are still standardisation issues to be addressed to improve the efficiency and 

comparability of the data for routine epidemiological analysis. 

Nonetheless, the data presented here adds to the growing body of evidence supporting the use 

of Luminex to assess the immuno-epidemiology of malaria. Additionally, it is the first in-country 

implementation of a multiplex serological assay for malaria in The Gambia and one of two known 

malaria serology studies using qSAT in Namibia (though Namibian samples were processed in 

London).  

From an operational standpoint, this study has demonstrated that high-throughput and cost-

efficient screening of field DBS samples using a Luminex protocol developed in London is feasible 

in a West African laboratory setting. This specific protocol has previously been used in East Africa 

(Uganda), Hispaniola (Haiti), and South East Asia (Indonesia, Malaysia, Philippines), though these 

data are not yet published. This study also builds on previous work conducted by Helb et al304 

using protein microarray, but extends similar research questions to the Luminex platform based 

on a rationally down-selected subset of antigens identified as potential markers of recent Pf 

infection. The utility of this will be discussed in more detail in Chapter 5b. An additional advantage 

over existing studies exploring markers of recent infection is the use of recombinant antigens, 

which typically allows better immunogenicity by preserving a protein’s conformational structure 

compared to synthetic peptides. 

Laboratory considerations 

Laboratory experiments to optimise the Luminex protocol was not an objective of this study. 

However, the inclusion of this chapter was motivated by the lessons learned during assay set-up 

in The Gambia and secondary observations made during data cleaning and analysis. 

In The Gambia, high throughput sample processing was efficient and reliable, with approximately 

8,500 samples screened in three months. The main time-limiting step was preparation and quality 

control of eluting serum from DBS related to variability in the number and quality of DBS rather 

than the elution protocol itself. Care was taken here due to the potential for Luminex to be more 

sensitive to differences in serum concentration than ELISA, and previous studies using this 

Luminex protocol were based on plasma.305 Comparing the use of DBS and plasma was not an 
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aim of this study, but previous research suggests that DBS is a suitable alternative to plasma in 

serological studies if there is quality control. The key issue is operational – balancing the 

potentially superior consistency in sample concentration whole-blood derived serum/plasma 

with the ease of DBS field collection and storage.  

Other challenges included the need for quality testing of beads before and during processing to 

monitor the potential impact of interruption to cold-chain during transport. While the assay was 

previously optimised at LSHTM for bead coupling concentration, sample dilution, and positive 

and negative controls, initial tests were run prior to sample processing to ensure the same 

optimisation would produce a similar range of MFI values in The Gambia and for the specific study 

samples being screened.  

As discussed by Vidal et al, the selection of appropriate sample dilutions rests on a number of 

factors such as the demographic and clinical characteristics of the study population (age, level of 

malaria infection, pregnancy, and treatment).168 Optimal sample dilutions for the protocol used 

were chosen based on testing of pooled sera from hyper-immune individuals in Uganda, Tanzania 

and The Gambia. This study confirmed that similar sample dilutions and coupling concentrations 

can be used across different endemic populations and produce measurable results, though this 

was not experimentally tested.  

The immunogenicity of the antigens is also critical, and, therefore, sample dilution and bead 

coupling concentration needs to be well balanced. Several antigens had universally low signals 

across all samples and were excluded from final analysis. This could be the result of sub-optimal 

bead coupling concentration or the construct of the recombinant protein (e.g., native 

conformational structure required to elicit strong immune response). Therefore, while not 

explored in this study, a titration of sample dilutions for different bead coupling concentrations 

that are region specific for The Gambia and Namibia could be beneficial for future studies in these 

countries or to confirm generalisability of results across regions.  

Constraints on time and cost meant that samples and standard curves could not be processed in 

duplicate. Nor were the samples validated against an alternative immunoassay. Though limited, 

several studies have found that antibody responses measured by Luminex correlate well with 

those measured by standard ELISA and often measure a range of antibody responses where 

duplicate samples on ELISA saturate.274,275 Validating the correlation of this data with ELISA 

and/or microarray was outside the scope of this study, but can be explored in future work. 

Sero-positivity thresholds 

Many ELISA-based malaria epidemiology studies have used the FMM approach to determine 

sero-positive threshold values,115,116,219,306 which has also been used in tuberculosis,307 
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measles,308 rubella,309 and trachoma,310 while the majority of commercial ELISA kits will include 

in-built controls.  

The distribution of antibody responses in both The Gambia and Namibia show that - with the 

exception of PfMSP119 and PfAMA1 - defining sero-positivity thresholds with previously used 

methods for ELISA data may not be suitable. For PfMSP119 and PfAMA1, use of FMM has been 

preferred because individuals in endemic settings often retain a higher level of antibodies relative 

to non-endemic controls, even in the absence of being immunologically challenged with a recent 

infection. However, short-lived antibody responses to many antigens investigated in this study 

may drop to the same level as malaria naïve negative controls. This is confirmed by 1) the low 

mean MFI response for the first FMM component relative to the mean MFI of European negatives 

observed across many antigens or 2) the lack of two distinct components at all. For this reason, 

recent Luminex-based malaria studies have tended to use non-endemic negative controls for 

defining seropositive thresholds, which is also common for other disease areas.  

It should also be noted that if antibody responses wane rapidly after infection, as has been 

hypothesised, the FMM model would be highly affected by sampling season or demographic (if 

not representative of overall population structure). Neither are the case in this study where the 

data for cut-offs were based on cross-sectional surveys during transmission season.  

Interestingly, the use of FMM for PfAMA1 and PfMSP119 led to different cut-off values between 

The Gambia and Namibia, which may reflect different baseline levels of immunogenicity between 

the regions or inter-lab variation (which can potentially be confirmed by comparing positive 

standard curve values between the studies). This is one argument for using the FMM rather than 

non-endemic controls, allowing for regionally specific cut-off values to be determined. However, 

this may simply be an artefact of the cross-sectional study in Namibia being conducted at the 

latter end of the transmission season when overall antibody levels may begin to wane slightly, 

even for antigens associated with longer-lived immune responses. 

There are a number of other methods that can be used to determine sero-positivity thresholds 

not yet explored in this dataset. Firstly, the FMM models fitted to this data only assumed normal 

distributed components, but combinations of gamma or other non-Gaussian distributions may 

be appropriate if the data is highly skewed. However, the fact the multiple distributions in the 

data are not visually obvious suggests that searching for distinct components would be more of 

a statistical exercise rather than biologically motivated. Latent class models have also been 

suggested as one method to overcome assumptions about underlying distributions or 

dichotomous cut-off values. 

Irion et al discuss several reasons why thresholds based on mixture models or standard deviations 

may be sub-optimal, particularly for immune-epidemiological data in malaria, regardless of 
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whether the negative controls are an endemic population or not.311 These are illustrated in Figure 

5.7, where 1) the average difference between negative and positive samples can be very small 

(a-c), 2) variability in the difference between negative and positive populations is high, so not all 

positive samples can be distinguished, or 3) the negative control measurements are highly 

variable (high standard deviation) so that even if separation of the populations is clear, many 

positive samples will have measurements below the cut-off. 

 

Figure 5.7 Examples of hypothetical distributions of sero-positive and negative populations 

Comprising a mixture of 80% positive and 20% negative samples. The unshaded peak is the distribution of 

controls, the dark grey corresponds to true negatives samples and the light grey to true positives. The arrow 

indicates the mean + 2 SD cut-off and P is the proportion of test samples with measurements greater than the 

cut-off.  

 

 

The main reasons for these challenges is the absence of a clear gold standard. This could allow 

the use of receiver operating characteristic (ROC) curves to determine cut-off values based on a 

desired level of sensitivity/specificity, which has been explored in studies on trachoma.310 

Another method is measuring fold-change from a known negative baseline used commonly to 

determine post-vaccination sero-conversion for diseases such as influenza312 and rotavirus313. 

The latter assumes that an individual begins from a sero-negative antibody level in the case of 

longitudinal sampling or that there is consistent and known baseline antibody level that can be 
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used across studies. For malaria, this will face the same issues as both the FMM model 

(confirming the sub-population is sero-negative for a given antigen in an endemic sample) and 

the use of non-endemic populations (cut-offs may be too conservative if baseline antibodies level 

in endemic populations are higher even in the absence of reinfection due to either lack of 

exposure or genotypic variations in immune responses compared to Europeans).  

Rather than using statistical approaches that assume that data distributions correlate with 

particular phenotypes in the populations, more directed selection of negative controls could be 

used, such as the selection of individuals from the arid western regions of Namibia that has 

historically experienced little to no malaria transmission. In The Gambia, where reductions in 

malaria transmission have been more recent, identification of a negative population may be more 

challenging. Options may include young children from the urban west coast region, an area of 

recently low transmission. However, instability of immune responses in children may also result 

in large standard deviations and over-estimated sero-positive thresholds. Ultimately, what is 

required is a sensitivity analysis of whether these thresholds affect analysis at the population 

level, depending on the outcomes of interest.  

Data normalisation 

The analysis in this study adapts the loess normalisation method to Luminex data, which has been 

previously used for cDNA microarray data.295 This was motivated by the observation that 

between plate variation was dependent on the range of MFI values, and linear adjustments of 

the data based on a mid-point of the standard curve, as is typically done for PfAMA1 and 

PfMSP119 ELISA data, may tend to over- or under-adjust the data. These inter-plate differences 

at extremes of the standard curve has also been observed in other qSAT based studies.314 The 

data adjustments in this study demonstrate that it can more accurately adjust raw data when 

differences in MFI values between plates vary at extreme values of the standard curve. This is 

particularly important if a large proportion of your dataset falls in this range and analysis is based 

on continuous rather than dichotomous antibody responses.  

The most commonly used for method normalisation is conversion to antibody titre 

concentration. However, this is not yet feasible for most antigens analysed as it requires the 

availability of monoclonal antibodies (mAbs) specific to each antigen to determine exact titres.  

In the absence of mAbs, the standardisation is usually to arbitrary antibody concentration units 

using a standard curve. Without consistency between positive controls, however, this makes 

comparisons between studies difficult.314 Developing mAbs for a panel of malaria antigens of 

interest would therefore be very useful for comparability across labs, study sites, and protocols. 

Future work may be useful to compare loess normalisation methods with transformation of data 
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to arbitrary antibody units using concentration in positive control standard curves to understand 

which epidemiological analyses it will influence the most.  

While also not formally tested during this study, better monitoring of temperature and laboratory 

conditions during each incubation step in the protocol can help to explain why variation in 

standard curves observed in The Gambia were larger than those typically observed in assays 

conducted in London, despite stable temperature readings on the MAGPIX machine itself. This 

may be due to the use of machine rather than manual plate washing, which has shown to have 

an effect on ELISA signals as well.  

Another data normalisation issue not addressed in these data is the influence of non malaria-

specific responses to GST-tagged proteins. This may be important in regions such as The Gambia, 

where schistosomiasis remains prevalent and high GST-signals could be high due to the cross-

reactivity of S.haematobium antibodies with the S.japonicum protein used in the GST-tag. GST-

coupled beads were included in the assay to adjust MFI values if needed.  

While the data shows that GST responses in the population are generally low and may not require 

correction for this background, some methods were explored for future data normalisation. 

Initial adjustments made to the data were based on estimating the log-linear relationship 

between GST-tagged antigen MFIs and GST-only bead MFIs (Figure 5.8). However, this resulted 

in very large shifts in the adjusted sample data, which is likely due to the difference in GST-specific 

bead coupling concentration relative to both the size of the GST-tag in the recombinant protein 

construct and the antigen-specific bead coupling concentration. Therefore, data in this chapter 

have not adjusted for GST, though it is likely that based on a weighted adjustment for MFI values 

using relative coupling concentration, adjustments will be small.  

Another option may be to exclude the GST-tag to avoid the need for data adjustment, but this 

will likely result in poor solubility and recombinant protein yields315 or to reduce the coupling 

concentration of the GST-beads to be more aligned with the relative size and concentration of 

the recombinant protein coupled beads. 
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Figure 5.8 Examples of GST-control adjustment to antigen-specific MFI values 

 

The use of standard curves have many advantages over a single positive-control dilution. Ideally, 

optimal sample and bead coupling concentrations should selected closest to the EC50 point on 

the standard curve for several reasons. First, this reflect the point at which the dose-response is 

linear, avoiding the MFI dependent between-plate variations observed in these datasets. 

However, from an operational standpoint, these data-driven considerations need to be balanced 

against the need to use cost-efficient amounts of recombinant antigens and reagents – critical 

for the application of this technology for high-volume epidemiological studies and developing 

country use. 

 

Limits of quantification 

Defining LOQs for the antigens in this study were explored, but not used as thresholds for data 

exclusion. While only data from The Gambia were used so far to determine LOQs as exploratory 

analysis, preliminary results indicate that defining the LLOQ was more important because most 

MFI values were on the lower extremes of the standard curve.  

Overall, accurately quantifying both the lower and upper thresholds by antigen would be useful 

to define which samples MFIs to exclude from future analysis. When the majority of samples in 

cross-sectional studies have MFI signals that fall below or above the LOQs, it may indicate either 

1) these antigens are not suitable for detecting population variation in antibody responses, 2) 

adjustment should be made to the sample dilution, or 3) bead coupling concentrations are not 

optimal. This data also demonstrates that developing a suitable standard curve can be 

challenging for some antigens. This has knock-on effects for accurately estimating the EC50 point, 

especially if data is to be transformed to arbitrary Ab concentration units, potentially impacting 

final data analysis. 

As mentioned above, laboratory-optimisation of the Luminex protocol was not an objective of 

this research. However, a number of experimental investigations that could be explored in the 
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future. First, additional dilutions on positive control standard curves could allow better 

estimation of LOQs, though caution with high concentrations is required to avoid prozone or hook 

effect.316 Other methods for determining LOQ could also be explored. For example, where a 

percent change in MFI of 1% does not lead to a more than 5% change in dilution antibody 

concentration, as used by Ubillos et al.314 

Immunogenicity may also be compromised due to antibody competition of blocking if antigens 

sharing similar epitopes are included on the same panel.274 Balancing the optimisation of sample- 

and antigen-specific conditions without sacrificing the utility of a multiplexed platform is one of 

the key challenges for Luminex-based studies. Future work to improve on the immunogenicity 

signal detected for certain antigens is to explore the use of multiple sandwich assays, though 

previous work indicates that this also required the testing of multiple titration, leading to a 

potentially length optimisation process.168 

Developing Luminex-based tools for capacity building 

For use in sero-surveillence, developing new malaria biomarkers for use on lateral flow assays 

(LFA) or ELISA-based kits may be the final goal. However, Luminex is becoming more affordable 

for use in some endemic countries and may have potential as a standardised platform in endemic 

country laboratories. If so, future work that can help to enable this may include: 

 Developing standardised methods for bead stability testing after transport and the 

researching the impact of interruptions to cold chain317 

 Between lab standardisation of positive and negative controls317 

 Establishing assay LOQs between labs 

 User-friendly computer packages for data cleaning and analysis 

 Comparability against ELISA and microarray data, as discordance has been observed in 

some studies comparing Luminex and ELISA272,300 
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Appendix 5.1 R functions for Luminex data processing 
 

Function name Description 

Reading in data and merging files 

read.batch Reads multiple plate csv files into R – only keep the median MFI values, trims the 
rest of the luminex file for each plate. Option to include date of plate and/or plate 
number as variables. Saves each plate as a cleaned file. 

read.batch.beads Reads multiple plate csv files into R – only keep the bead count values, trims the 
rest of the luminex file for each plate. Option to include date of plate and/or plate 
number as variables. Saves each plate as a cleaned file. 

read.plate Reads in a single plate csv file into R – only keep the median MFI values, trims the 
rest of the luminex file. Option to include date of plate as a variable. Saves as a 
cleaned file 

read.plate.beads Reads in a single plate csv file into R – only keeps the bead count values, trims the 
rest of the luminex file. Option to include date of plate as a variable. Saves as a 
cleaned file 

join.plates After using “read.batch” function to import multiple plate csv files, this function 
will merge all plates into a single file. 

 Note: before merging the files, user can (and should) check that all the 
antigen column headings are the same and spelled uniformly – see 
functions “ag.match.check” and “ag.column.add” below 

ag.col.print For each plate in a data batch, prints the column names (i.e., the antigen names) 

ag.column.add For a batch of plates, checks if any antigen names (i.e., columns) are missing in any 
plate. Adds this antigen column if it is missing and records the MFI values as NA. 
Allows the file to be merged with other plates that contain values for this antigen. 
Requires function “ag.match.check” below 

ag.match.check For a batch of plates, checks which antigen names are common across all plates 
and which are different or are contained in some plates but not in others (e.g., if 
different runs have different antigens or if there are different spellings). Allows 
the user to make edits so they are uniform 

exclude Removes sample rows for Background, Negative controls and/or Positive controls 

Quality control 

plot.std.curve1 Plots the standard curve for a single plate and antigen. Requires the object 
returned by “get.standard” function below. Option to include a reference curve 
for comparison. 

plot.std.curve2 Plots the standard curve for multiple antigens from a single plate. Option to 
include a reference curve for comparison. Requires the object returned by 
“get.standard” function below 

plot.std.curve3 Plots the standard curve for multiple plates (up to 5 on one plot) and multiple 
antigens. Requires the objects returned by “get.standard” function below 

get.standard Saves the rows that contain the standard curve values for a plate, for all antigens 

bead.check User specifies a minimum bead count. For each antigen on a plate, indicates which 
wells have bead count below the minimum. 
 
For each antigen, prints a table of inadequate bead count samples: 

 Well number 

 Sample ID 

 Bead count 

levy.jennings Displays Levy Jennings plots for a batch of plates. User can specify which dilutions 
on the standard curve they want plotted. Plots display for 4 controls: 

 3 dilutions on the standard curve 

 Background values 
User can specify if points should be ordered according to plate number or date. 
(see option in “read.batch” function) 

view.plate.data Displays data for a single plate and antigen in a 96-well format to view in the R 
console. Variables that can be displayed are: 

 MFI values 

 Sample IDs 

 Bead counts 

plot.plate Plots a single plate and antigen as a heatmap in a 96-well format 
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LOQ Determines plate and antigen specific lower and upper limits of quantification 
(LOQ) based on the 95%CI range of the fitted standard curve and the 95%CI of the 
parameters estimates for the lower and upper asymptotes of the standard curve. 
Computes and average LOQ across all plates in a study batch for each antigen.  

Data cleaning and normalisation 

blank.adjust Calculates the median MFI values for each antigen on a single plate and subtracts 
this value from the sample MFI values. Does not substract from the 
blank/background values 

blank.adjust.batch Same as “blank.adjust” function but does this for a batch of plates (using the data 
object that is returned from the “read.batch” function) 

norm.conc Converts MFI data into arbitrary antibody (Ab) concentration units based on plate 
specific standard curve values.  

norm.frac Normalises MFI data using two methods using the midpoint (3rd most 
concentrated dilution) of the standard curve. 

 Fractional proportion 
o Samples MFI values adjusted by log (plate midpoint MFI) / log 

(average midpoint MFI all plates). Final values are in MFI 

 Percent proportion 
o Sample MFI values divided by plate’s standard midpoint MFI value. 

Final values are in proportion (arbitrary units) 

norm.loess Normalises MFI data by calculating the difference in MFI between each dilution on 
a plate’s standard curve and the average MFI value for the same dilution across all 
plates in a batch. Fits a regression of difference in MFI vs. average MFI and uses 
this regression fit to adjust all sample MFI values in the plate.  

 Regression is fit using either linear regression (lm) or loess. For loess fit, 
MFI values that fall outside the MFI values of the standard curve cannot 
be fit and are adjusted based on the lm fit instead. 

 Function checks for outliers (if a standard curve point falls outside 2 
standard errors from the regression), excludes these points and 
recalculates the regression. 

FMM, cutoffs and sero-positivity 

cutoff Calculates sero-positivity cutoff for all antigens based on FMM using raw MFI and 
log transformed MFI.  
 
User can specify number of standard deviations desired to set cutoff 

sero-pos Assigns sero-positivity based on thresholds calculated in “cutoff” function above 
(requires object returned from this function, which has cutoffs stored). 

 Saves new datafile with sero-positivity variables for all antigens based on 
MFI and logMFI FMM 

MagPIX file prep 

plate2list Using Excel/csv file with plate plans and sample ids recorded in 96-well format, 
reformats to a vertical list of sample IDs for import into xPonent software. csv file 
can contain as many plate plans as desired and each plan will be saved as an 
independent import list for MAGPIX 
 
This allows us to use QR/barcode scanner straight into plate plan during deep well 
preparation, and not have to manually enter sample IDs after Luminex plate run.  
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Chapter 5b. Validating serological biomarkers for the detection of recent 
malaria infection 
 

Previously, work by Helb et al aimed to identify novel serological biomarkers of previous malaria 

infection amongst a panel of 856 Pf antigens on protein microarray. This analysis was based on a 

cohort of 186 Ugandan and 94 Malian children with confirmed Pf infection and identified novel 

antigens that were able to classify individuals infected in the last 30, 90 and 365 days and to 

estimate an individuals’ malaria incidence in the prior year with a high degree of accuracy.304 

The analysis presented here extends the evaluation of these identified markers using the Luminex 

assay, but aims to validate them across all ages and in different geographical regions to determine 

the generalisability of previous study results. Amongst the antigens in the protein microarray 

study included in this study are four of the top ten markers able to classify time since previous 

infection (Hyp2, GexP18, HSP40, Etramp4) and five of the top ten markers highly associated with 

incidence in the prior year (Hyp2, Etramp5, Etramp4, CSP and MSP2). It should be noted that the 

overall panel, in addition to the potential markers of recent infection, includes antigens 

associated with long-lived antibody response as well. The analysis in this chapter does not 

evaluate them separately, but is an initial investigation across all to identify their association with 

previous infection.  

5.5 Methods 
 

Samples 

Serological data for this study were based on a subset of samples from a larger prospective cohort 

study on malaria transmission dynamics and mass drug administration (MDA) carried out in six 

pairs of villages in The Gambia between June 2013 and April 2014, as described by Mwesigwa et 

al.220 Study sites were located in five of seven administrative regions - West Coast (WCR), North 

Bank (NBR), Lower River (LRR), Central River (CRR) and Upper River (URR) Regions (Figure 5.7). In 

the baseline year, surveys were conducted in the last two weeks of each month during 

transmission season (June-December 2013) and an additional dry season survey conducted in 

April 2014 (Figure 5.9). All consenting village residents more than six months of age and present 

at the time of the survey (4,194 individuals) were enrolled. MDA was administered in all study 

villages in 2014 and 2015 between June and August, with monthly surveys conducted from June 

to December and April, as in the baseline year (Figure 5.10).  

Blood samples were collected by finger prick for haemoglobin measurement, malaria diagnosis 

by microscopy, and molecular and serological analysis on dry blood spot (DBS) filter paper 

(Whatman 3 Corporation, Florham Park, NJ, USA). Clinical malaria cases were identified through 
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passive case detection (PCD) at local health facilities or in villages by study nurses and defined as 

history of fever in the previous 24 hours or auxillary temperature ≥ 37.5⁰C and confirmed by a 

positive Rapid Diagnostic Test (RDT) result (Paracheck Pf, Orchid Biomedical System, India). 

A subset of samples collected during the cohort study were selected for serological analysis 

(Figure 5.10) to 1) characterise individual level antibody kinetics over time before and after 

malaria infection and 2) evaluate changes in population antibody responses at the village level 

pre- and post-transmission season and pre- and post-MDA. The analysis in this chapter focuses 

on antibody kinetics, and cluster level analysis using cross-sectional time points will be addressed 

in Chapters 6.  

To quantify individual level kinetics of antibody responses, samples were selected for 200 

individuals with a positive PCR or RDT result during any survey between June – December 2013. 

All available samples for these individuals were included in the study for laboratory processing, 

resulting in 1,747 samples in total. For analysis of antibody decay, samples were included if they 

were a) after the first recorded infection b) less than 150 days after the first recorded infection 

and c) prior to second infection. This resulted in 192 individuals total included in the analysis. 

Table 5.3 summarises the sample size by age group, RDT- or PCR-positivity, and number of post-

infection samples per individual.  
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Figure 5.9 Map of The Gambia and Malaria Transmission Dynamics study villages  

 

Figure 5.10 Sampling timeline of Malaria Transmission Dynamics study  

Monthly samples selected for analysis in Chapters 5 and 6 are indicated in blue (kinetics) and green (cross-sectional cluster analysis). 

 

* MDA cohort study was also conducted in 2015, but is not shown on this timeline as no samples from this year were used for serological analysis.
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Table 5.3 Sample size by age category and number of samples per individual  

Age 

RDT 
positive 

(% of age 
group) 

PCR 
positive 

(% of age 
group) 

No. samples per individual 
(post-infection samples only) Total (%) 

2 3 4 5+ 

1-5 years 17 (36.2) 46 (97.9) 3 11 20 13 47 (24.5) 

6-15 years 43 (52.4) 79 (96.3) 10 22 32 18 82 (42.7) 

>15 years 23 (36.5) 63 (100.0) 7 16 22 18 63 (32.8) 

 

Statistical analyses 

This chapter has two primary aims and multiple analyses are used for each. Approaches are 

briefly outlined here, but detailed further in the text below. 

1. Antibody dynamics after infection. This was characterised to ultimately quantify the rate 

of antibody decay, with the hypothesis that antigens associated with shorter-lived 

antibodies responses will have the strongest sensitivity and specificity for detecting 

recent infection.244,318 Methods include: 

 
a. Unadjusted antibody intensity over time is visualised to confirm whether 

dynamics of boost and decay post-infection are observed generally 
b. Breadth of antibody response by age group and time since infection 
c. Antibody decay rate estimated using  

i. Linear regression 
ii. Cox proportional hazard functions 

 
2. Predictive power of antigens to detect previous malaria infection. The aim was to identify 

the strongest markers of recent Pf infection to be used in surveillance or efficacy trial 

evaluation. Methods include: 

 

a. Identifying a subset of antigens most associated with previous Pf infection 

overall using: 

i. Logistic regression 

ii. Random forest variable importance scores 

b. Receiver operating characteristic (ROC) curves and their Area Under the Curve 

(AUC) values based on logistic regression prediction models using the top 5 

antigens selected from 2a. 

 

All samples were categorised into six ‘time since infection’ categories (pre-infection, <30, 30-60, 

60-90, 90-120 and 120-150 days since infection). Categories were also defined for transmission 

intensities based on village-level PCR prevalence (less than or greater than 10%) and age group 

(1-5 years, 6-15 years, and >15 years).  
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Unadjusted antibody intensity over time 

Antibody intensity data is plotted in several ways to visualise the dynamics of antibody response 

at the individual and population level. First, heatmaps are used to plot Ab intensity over time (as 

a continuous variable) and ordered by antigen according to the mean Ab intensity across all time 

points overall. Next, trajectories of Ab intensity to each antigen over time (continuous) are 

plotted for each individual. Finally, boxplots of mean Ab intensity over time (categorical) by age 

group 

Breadth of antibody response 

Breadth of response was calculated to evaluate whether the number of antigens an individual 

immunologically responds to changes during the course of an infection. Samples were assigned 

a score of 1-4 (increasing intensity) based on the quartiles of MFI antibody response across all 

individuals for each antigen. An antibody breadth score was calculated for each sample by adding 

all antigen-specific intensity scores.319 Breadth of response was also assessed based on binary 

sero-positive responses as a comparison. 

Estimating rate of antibody decay 

Linear regression. First, to assess whether there was evidence of antibody decay over time, mixed 

effects linear regression models were used to fit log MFI against time since infection as a 

categorical variable. Next, to estimate the rate of post-infection antibody decay for each antigen 

based on the slope of the linear regression, time since infection was included as a continuous 

variable to make full use of available data. All models were adjusted for age and transmission 

intensity (PCR prevalence) and allowed for individual-level random effects (intercept-only). 

Models were not adjusted for RDT-positivity given that, in a longitudinal dataset, some 

individuals had both RDT+ and RDT- infections over the course of 6 months that may have been 

due to fluctuating parasitaemia during the course of a single infection. Without parasite 

genotyping, it is not possible to determine if a PCR-positive / RDT-negative result for time points 

following an RDT-positive result is detecting parasite density due to a previous or new infection. 

However, this could be potentially ruled out for individuals confirmed to have received 

treatment. Data for samples on or after a second RDT- or PCR-positive result in the same 

individual were excluded from the kinetics analysis.  

Antigen-specific antibody half-lives can be estimated using the formula: 

𝑡0.5 =  
−𝐿𝑁 (2)

𝑠𝑙𝑜𝑝𝑒
       (5.2) 

Where t0.5 is the estimated half-life and slope is the coefficient of time since infection from the 

regression model. Time to reaching peak antibody response post-infection varies by antigen and 



144 
 

individual. To allow for a lag time during which antibodies are still boosting, average time to peak 

MFI was calculated for each antigen and age group (1-5 years, 6-15 years, and >15 years) and 

data points taken prior to this time point were excluded. Models were fit using the lmer function 

in the ‘lme4’ R package.  

Cox proportional hazard models. Antibody half-life estimates based on linear regression had large 

confidence intervals, therefore Cox proportional hazard models were also explored as an 

alternative method. Models were used to estimate time to sero-negative antibody levels after 

infection and were adjusted for age group. Hazard rates were also used to calculate the half-life 

for each antigen (using equation 5.2, replacing slope with hazard rate). This could then be 

compared against half-life estimates based on decay rates (slope) from linear regression analysis. 

Crude and adjusted survival functions were fit using the survreg function in the ‘survival’ R 

package and coxph function in the ‘OIsurv’ R package. These methods are compared in Table 5.4 

below.  

Table 5.4 Comparison of half-life estimated by linear regression vs. Cox proportional hazard models  

 Linear regression Cox proportional hazard model 

Dependent variable Time since infection, days Time since infection, days 

Outcome variable Antibody intensity (continuous) MFI Time to event (days until sero-negative 
based on antibody thresholds defined in 
Chapter 5a) 

Half-life derivation Slope of linear regression Hazard rate 

Data censoring to 
exclude antibody boost 
period 

Excludes data points prior to mean 
time to peak MFI 

Only visit dates after first recorded 
RDT/PCR + infection included 

 

Evaluating predictive power of antibody response for recent malaria infection 

It is hypothesised that antigens with shorter antibody half-lives will be most associated with 

recent Pf infection. However, it will also be highly dependent on the level of immunogenicity, 

which, as discussed Chapter 1, may vary by age and transmission intensity but also on antigen-

specific factors (e.g., role in infection and pathogenesis, in vivo location and presentation to the 

immune system, and conformational structure of the recombinant antigen construct).  

To assess these factors, the strength of individual level antibody responses to predict days since 

last infection was evaluated using both continuous (normalised median MFI) and binary (sero-

positive or sero-negative) antibody responses. For infected individuals, samples after first 

reported infection based on a positive RDT or PCR result were categorised into ‘time since 

infection’ categories as described above. For individuals with no reported infection for the 

duration of the cohort study that comprised the ‘non recently infected’ population, only samples 

after two months of negative RDT and PCR results were included to exclude the possibility of 

recent malaria infection prior to the start of the study. The importance of each antigen in 

predicting previous infection were evaluated using two methods.  
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Logistic regression to estimate association of each antigen with previous Pf infection.  

A separate logistic regression model was fit for each ‘time since infection’ window to calculate 

the association of each antigen with log odds of infection during that period. Regression models 

also included current RDT/PCR test result, age, and transmission intensity as covariates. Antigens 

that were associated increased odds of previous infection were then ranked according to 1) 

having a p-value less than 0.1 and 2) the strength of the association with odds of previous 

infection in the specified ‘time since infection’ window. 

Random forest variable importance of each antigen in predicting previous Pf infection 

Random forest prediction models have been used in large-scale bioinformatics association 

studies for selecting subsets of genetic markers relevant for disease prediction and prioritising 

them for further study.320,321 Their main advantage is their efficiency in selecting large numbers 

of predictors that may be associated with each other and the disease/outcome of interest in a 

non-linear way.322  

Here, we used a cross-validated random forest model for each time since infection window, age 

category, and infection severity (RDT+ or RDT-), and antigens were ranked based on their variable 

importance score (i.e., a measure of a marker’s contribution to the accuracy of the model 

prediction). Each model was cross-validated, where 30% of dataset was used as a training set and 

bootstrapped over 50 iterations. 

To determine the optimal number of antigens to include in a predictive panel, sensitivity analysis 

was also conducted using random forest models to assess the relationship between the number 

of antigens used and predictive accuracy. The mtry value (i.e., the number of prediction features 

to include in the random forest) was varied between 1 and 21 antigens, and the out-of-bag error 

of the random forest was plotted for each mtry value. Overall, inclusion of more than five 

antigens did not lead to notable reduction in prediction error and was chosen as the optimal 

number of markers to include in a predictive panel (Appendix 5.2, Figure 5.31).  

ROC analysis using cross-validated logistic regression. Cross-validated logistic regression models 

(bootstrapped and iterated as described above) with the top five ranked antigens from the 

logistic regression above were then used to calculate predictive power of these combined 

antibody responses. Models were adjusted for current RDT/PCR test result, age, and transmission 

intensity. Prediction accuracy for these combined antigen panels were evaluated using Receiver 

Operating Characteristic (ROC) curves and Area Under the Curve (AUC) values.  

A correlation matrix was used to assess whether any antigens had highly correlated antibody 

responses, which may need to be taken into consideration when selecting or excluding potential 

markers in a combined panel.323  
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5.6 Results 
 

Antibody dynamics post-infection by age and transmission intensity 

Unadjusted antibody intensity. The age distribution of samples included in the analysis ranged 

from six months to 80 years (Figure 5.11) in line with overall population age distribution in The 

Gambia.324 Samples were also uniformly representative of a range of post-infection time points 

from zero to 150 days (Figure 5.11). Reporting peaks at approximately thirty days are due to 

monthly survey sampling schedule. Passive case detection (PCD) samples are also included in the 

dataset, which may have visit dates outside the monthly sampling schedule. 

Based on unadjusted MFI data visualised in the heat map in Figure 5.12, antibody response tends 

to increase upon infection and decay over time across the entire sample population overall. 

Antigens with the highest antibody intensity across all post-infection samples were PfAMA1, 

PfGLURP, PfMSP119 Rh2.2030 and EBA175, while those with the lowest antibody intensity were 

HSP40.Ag1, H103, SBP1, and Hyp2.  

Clear dynamics of boost and decay are also observed at the individual level at different ages, 

geographical regions and infection severity, illustrated with samples of individual level antibody 

trajectories in Figure 5.13. 
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Figure 5.11 Distribution of age and days since last malaria infection distribution of sampled 
individuals 

 

 

Figure 5.12 Heat map of antibody intensity by antigen and time since infection  

Antigens listed vertically in order of decreasing mean MFI across all samples and post-infection time points, and 

horizontally by increasing time since first recorded PCR- or RDT-positive result.  
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Figure 5.13 Example trajectories of individual antibody dynamics before and after infection  

The data point associated with the first recorded RDT- or PCR-positive test result is set at time since infection = 0 
days. Data are presented in three panels: antigens with maximum antibody responses above MFI 5,000 (left), MFI 
1,000 – 5,000 (middle), and less than 1,000 MFI (right). Filled blue circles represent a concurrent positive RDT test 
result and filled green triangles a positive PCR test result.  
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Figure 5.14 Boxplots of unadjusted MFI by time since infection and age group  
For each age group and time since infection category, solid horizontal lines represent median MFI, shaded boxes represent interquartile range (IQR), dashed vertical lines represent the 95%CI 
and filled circles represent data points outside the 95%CI. 
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Breadth of antibody response 

Mean breadth of antibody response based on both MFI and sero-positivity increased with each 

age group (Figure 5.15). Across all post-infection time points, mean antibody breadth score based 

on binary sero-positivity values was 5.9 (95%CI 5.3 – 6.5) for young children, 8.9 (95%CI 8.4 – 9.4) 

for older children, and 12.0 (95%CI 11.5 – 12.5) for adults. Based on continuous MFI values, which 

better reflects a combination of breadth and antibody intensity, mean antibody breadth score 

was 45.3 (95%CI 43.6 – 47.0) amongst young children, 53.9 (95%CI 52.5 – 55.3) amongst older 

children, and 61.4 (95%CI 60.0 – 62.7) amongst adults. However, linear regression of breadth of 

response with respect to time within each age group did not suggest that breadth of response 

changed significantly within 150 days after infection (analysis not shown).  

Figure 5.15 Breadth of antibody response by time since infection and age group 
Breadth score for continuous antibody responses is based antigen-specific quartiles of MFI values (lowest quartile 
=1, highest quartile =4) and for sero-positivity based on binary values (sero-positive = 1, sero-negative = 0).  
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Period of antibody acquisition after infection 

Mean time to peak antibody response differed by age and antigen, but there was no consistent 

trend between age and time to peak antibody response across antigens (Figure 5.14, Appendix 

5.2 Figure 5.29). However, time to peak antibody response appeared to be longer amongst 

individuals who were RDT-positive (Appendix 5.2 Figure 5.30). 

 

Figure 5.16 Time to peak antibody response, overall and by age  

Mean number of days post-infection to reach maximum MFI before antibody levels begin to decay. Average 

number of days post-infection to reach maximum MFI before antibody levels begin to decay for all ages (blue), 

1-5 years (orange), 6-15 years (grey) and >15 years (yellow). Data excludes individuals with no antibody decay 

during time period of observation. 

 

 

Antibody decay based on linear regression 

Unadjusted linear regression of log MFI versus time since infection as a categorical variable 

suggests that antibody intensity for most antigens decrease within 6 months after infection, 

based on negative slope coefficient values (Appendix 5.2, Table 5.16). However, the magnitude 

of antibody decay is estimated to be small and p-values were less than 0.05 for only three 

antigens (Etramp5.Ag1, Rh5, and SBP1). After adjusting for age group and village-level PCR 

prevalence, however, thirteen antigens showed decreasing antibody response over time and but 

p-values were all greater than 0.1 (Appendix 5.2, Table 5.17).  

Results suggest that for most antigens, antibody response differs between age groups, which is 

consistent with most existing studies that have observed immune responses modulated by age. 

The largest differences in antibody responses were observed between adults  (>15 years) and 

young children (1-5 years) for antigens PfGLURP.R2, PfAMA1, EBA175, EBA181, Rh2.2030, 

EBA140, PfMSP119, and Rh4.2 (Figure 5.12, Appendix 5.2 Table 5.11). However, there were a 

number of antigens eliciting more consistent immune responses between age groups. Antibody 
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intensities were not significantly different between 6-15 year olds and 1-5 year olds against 

antigens Rh5 (p=0.207), Etramp5.Ag1 (p=0.330), Etramp4.Ag1 (p=0.190), GexP18 (p=0.800), 

HSP40.Ag1 (p=0.139), Hyp2 (p=0.145), and SBP1 (p=0.305). Transmission intensity based on 

village-level PCR prevalence was associated with differences in antibody response for all antigens 

(Appendix 5.2, Table 5.11).  

Overall, the precision of antibody decay rates estimated using linear regression was weak given 

that the 95%CI of the decay rate estimate often included negative values (i.e., converting decay 

rate to half-life translated to infinity values, indicating there was no evidence of antibody decay) 

(Table 5.6). This was true for all antigens except for Etramp5.Ag1 but only for ages 6-15 (Figure 

5.17). Nonetheless, the lower 95%CI estimate of antibody half-life in children aged 1-5 years was 

equal to or less than one year for Etramp5.Ag1, SEA-1 and H103 and between 1-2 years for Rh5. 

In children aged 6-15 years, Etramp5.Ag1 had an estimated mean antibody half-life of less than 

6 months, while PfGLURP.R2, Rh5, Rh4.2, Etramp4.Ag2 had estimated mean antibody half-lives 

of less than 2 years. In adults, Etramp5.Ag1 had an estimated mean antibody half-life of between 

1-2 years with a lower 95%CI estimated half-life of less than 6 months. All other antigens had an 

estimated mean antibody half-life of greater than 2 years. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



155 
 

 
 
Figure 5.17 Antibody decay rates estimated with linear regression  
 
Decay rate is the slope coefficient estimated with the linear regression model, and can be expressed as an 
antibody half-life using the formula t0.5 = LN(2)/decay rate. Decay rates were estimated per antigen for A) All ages, 
B) Ages 1-5 years, C) Ages 6-15 years, and D) Ages >15 years. The all-age model adjusted for age group and village-
level PCR prevalence, and age-stratified models adjusted for village-level PCR prevalence. Vertical lines represent 
95%CI of decay rate (slope coefficient) estimate. Horizontal lines represent values where decay rates above the 
line correspond to a half-life equal to or shorter than the time indicated in the legend. Antigens ranked left to 
right in order of decreasing decay rate. 
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Figure 5.18 Estimated population antibody decay  

Solid lines represent antibody decay over time based on mean slope coefficient from linear regression and shaded 
areas represent 95%CI. Post-infection antibody dynamics for two example individuals in black. 
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Antibody decay based on Cox proportional hazard functions 

Compared to linear regression, antibody half-life estimates based on Cox proportional hazard 

models were shorter for the majority of antigens (Figure 5.20, Table 5.6). In young children, 

nearly all antigens had an estimated half-life between 30 and 60 days (H103, Rh4.2, EBA140, 

SBP1, SEA-1, Rh5, EBA181, Hyp2, Etramp4.Ag2, CSP, EBA175, PfMSP2, Rh2.2030, PfMSP2.Ch150 

and HSP40.Ag1), while the remaining antigens had an estimated half-life between 60 and 90 days 

(PfMSP119, PfAMA1, PfGLURP.R2, Etramp5.Ag1 and GexP18). 

In older children, half-life estimates were slightly longer. Eight antigens had half-lives less than 

60 days (H103, Rh4.2, Rh5, EBA140, SBP1, Etramp4.Ag2, and SEA-1), five antigens had half-lives 

between 60 and 90 days (EBA181, Hyp2, MSP2.Dd2, HSP40.Ag1) and either antigens had half-

lives approximately between 90 and 120 days (Rh2.2030, PfMSP119, PfCSP, Etramp5.Ag1, GexP18, 

PfGLURP.R2, PfAMA1, and PfMSP2.Ch150). 

Half-life estimates were longest in adults. Only five antigens had half-lives of less than 60 days 

(SBP1, H103, Etramp4.Ag2, and SEA-1), four antigens had half-lives between 60 and 90 days (Rh5, 

Rh4.2, EBA140, Hyp2), eight antigens had half-lives between 120 days and 6 months 

(Etramp5.Ag1, HSP40.Ag1, PfMSP119, GexP18, PfMSP2.Dd2, Rh2.2030, EBA181, and EBA175), 

while four antigens had half-lives longer than 6 months (PfAMA1, PfMSP2.Ch150, PfCSP, and 

PfGLURP.R2) 

Surprisingly, antigens most associated with a faster time to sero-reversion based on Cox 

regression analysis were not necessarily the same antigens with the fastest antibody decay rates 

based on linear regression (Etramp5.Ag1, PfGLURP.R2, Rh5) (Table 5.6).  

Age was an important factor in post-infection time to sero-reversion for several antigens (Figure 

5.19, Table 5.5). In adults (age >15 years), the hazard ratio of time to sero-reversion compared to 

young children (age 1-5 years) was 0.18 (95%CI 0.10 – 0.32, p<0.001) for PfGLURP.R2, 0.27 (0.17-

0.44, p<0.001) for PfAMA1, 0.36 (0.23-0.55, p<0.001) for EBA181, 0.36 (0.24-0.56, p<0.001) for 

EBA175, 0.40 (0.26-0.62, p<0.001) for Rh2.2030, 0.57 (0.37-0.87, p=0.009) for PfMSP119, and 0.59 

(0.39-0.89, p=0.12) for HSP40.Ag1. However, time to sero-reversion for older children (age 6-15 

years) compared to young children did not differ for as many antigens. Hazard ratios were 0.67 

(0.45-1.00, 0.49) for GLURP and 0.67 (0.46-0.98, p=0.039) for Rh2.2030. 
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Figure 5.19 Cox proportional hazard functions and Kaplan-Meier curves by antigen and age 

Hazard function represents the probability of being sero-positive as a function of days post-infection. Hazard 
functions were estimated per antigen and adjusted for age categories 1-5 years (blue), 6-15 years (green) and 
>15 years (red). Black lines are the Kaplan-Meier survival curves and coloured lines are hazard functions estimated 
with cox proportion model. 
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Figure 5.20 Hazard rates estimated by Cox proportional hazard model  

Hazard rates (to reach sero-negative antibody threshold) estimated per antigen for A) All ages, unadjusted and 

adjusted for age categories B) 1-5 years, C) 6-15 years, and D) >15 years. Antigens ranked left to right in order of 

decreasing hazard rate. Vertical lines represent 95%CI of hazard rate estimate. Horizontal lines represent 

corresponding half-life, with estimates above the line representing half-life equal to or less than the days 

indicated in the legend. 
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Table 5.5 Hazard ratios of antibody decay based on Cox proportional hazard functions, by antigen 
and age category 

Reference is hazard rate for individuals aged 1-5 years.  

Hazard ratio (95%CI) 
 

6-15 years >15 years 

PfMSP119 0.71 (0.48 - 1.05) 0.57 (0.37 - 0.87) 

PfAMA1 0.58 (0.39 - 0.86) 0.27 (0.17 - 0.44) 

PfGLURP.R2 0.67 (0.45 - 1.00) 0.18 (0.10 - 0.32) 

EBA175 0.73 (0.50 - 1.06) 0.36 (0.24 - 0.56) 

EBA181 0.77 (0.54 - 1.11) 0.36 (0.23 - 0.55) 

EBA140 0.83 (0.58 - 1.19) 0.73 (0.50 - 1.06) 

Rh5 0.89 (0.62 - 1.28) 0.81 (0.56 - 1.19) 

Rh2.2030 0.67 (0.46 - 0.98) 0.40 (0.26 - 0.62) 

Rh4.2 0.89 (0.62 - 1.26) 0.76 (0.52 - 1.11) 

Etramp5.Ag1 0.83 (0.56 - 1.24) 0.74 (0.48 - 1.12) 

Etramp4.Ag2 0.90 (0.63 - 1.29) 0.89 (0.61 - 1.30) 

GexP18 0.78 (0.52 - 1.16) 0.70 (0.45 - 1.08) 

HSP40.Ag1 0.75 (0.51 - 1.10) 0.59 (0.39 - 0.89) 

SEA-1 0.81 (0.57 - 1.17) 0.82 (0.56 - 1.19) 

Hyp2 0.77 (0.54 - 1.11) 0.71 (0.48 - 1.04) 

PfMSP2.Dd2 0.77 (0.53 - 1.11) 0.39 (0.25 - 0.60) 

PfMSP2.Ch150 0.52 (0.35 - 0.77) 0.21 (0.12 - 0.35) 

H103 0.89 (0.63 - 1.27) 0.84 (0.58 - 1.22) 

SBP1 0.84 (0.59 - 1.20) 0.90 (0.62 - 1.31) 

PfCSP 0.59 (0.41 - 0.86) 0.18 (0.11 - 0.30) 
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Table 5.6 Antibody half-life estimates based on Cox proportional hazard rate and linear regression  

Cox proportional hazard rate (by antigen and age category) and linear regression (all ages adjusted for age and PCR prevalence). Event in Cox proportional hazard model was defined as having 

a sero-negative antibody level, with cut-off values are based on 2-component finite mixture model (FMM) or mean plus three standard deviations of European malaria naïve controls, as 

described in Chapter 5a. 
 

Cox proportional 
hazard rate (95% CI) 

Linear regression  
slope (95% CI)  

All ages 1-5 years 6 -15 years >15 years All ages 

PfMSP119 85 (72 - 99) 61 (45 - 81) 85 (58 - 126) 106 (70 - 162) ∞  

PfAMA1 115 (97 - 138) 62 (46 - 83) 106 (72 - 158) 226 (139 - 367) ∞  

PfGLURP.R2 132 (110 - 158) 70 (51 - 95) 104 (70 - 156) 390 (219 - 695) ∞ (301 - ∞) 

EBA175 84 (71 - 98) 52 (39 - 70) 72 (50 - 104) 144 (94 - 222) ∞  

EBA181 76 (66 - 89) 49 (37 - 66) 64 (44 - 91) 138 (90 - 212) ∞  

EBA140 56 (49 - 65) 46 (35 - 62) 56 (39 - 80) 64 (44 - 93) ∞  

Rh5 55 (48 - 64) 49 (37 - 65) 55 (39 - 79) 61 (42 - 88) 4,743 (345 - ∞) 

Rh2.2030 87 (74 - 102) 55 (41 - 73) 82 (56 - 119) 13 (89 - 212) ∞  

Rh4.2 54 (47 - 62) 46 (35 - 62) 52 (37 - 75) 61 (42 - 89) ∞ (1,470 - ∞) 

Etramp5.Ag1 87 (74 - 103) 73 (54 - 100) 88 (59 - 130) 99 (65 - 151) 406 (179 - ∞) 

Etramp4.Ag2 55 (48 - 63) 50 (38 - 67) 56 (39 - 81) 57 (39 - 82) ∞ (2,233 - ∞) 

GexP18 95 (81 - 112) 76 (56 - 104) 98 (66 - 147) 109 (71 - 167) ∞  

HSP40.Ag1 79 (68 - 93) 59 (44 - 79) 78 (54 - 115) 99 (66 - 149) ∞  

SEA-1 56 (49 - 65) 48 (36 - 64) 59 (41 - 85) 59 (40 - 86) ∞ (839 - ∞) 

Hyp2 63 (54 - 72) 50 (37 - 66) 64 (45 - 93) 70 (48 - 104) ∞ (9,654 - ∞) 

PfMSP2.Dd2 80 (69 - 94) 53 (40 - 71) 69 (48 - 100) 135 (88 - 208) ∞ (7,642 - ∞) 

PfMSP2.Ch150 120 (100 - 143) 57 (42 - 76) 110 (74 - 163) 274 (164 - 456) ∞ (1,306 - ∞) 

H103 52 (45 - 60) 46 (35 - 62) 52 (36 - 74) 55 (38 - 80) ∞  

SBP1 53 (46 - 61) 47 (36 - 63) 56 (39 - 80) 52 (36 - 76) ∞ (978 - ∞) 

PfCSP 105 (89 - 124) 51 (38 - 67) 86 (59 - 125) 277 (167 - 460) ∞ (2,348 - ∞) 
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Evaluating predictive power of antibody response for recent malaria infection 

Linear regression to estimate association of each antigen with previous Pf infection 

Antigens most correlated with previous malaria infection based on logistic regression were 

Etramp5.Ag1, GexP18, EBA140, Rh2.2030, PfGLURP.R2, PfMSP119, Rh5, Etramp4.Ag2, HSP40.Ag1, 

and SEA-1 (Figure 5.21), based on ranking of odds ratios for antigens with p-values less than 0.1 

(a less conservative p-value cut-off of 0.1 is used purely as a reporting threshold here in order to 

report the effect size for a larger range of antigens, even if not significant according to standard 

cut-off values). Odds ratios ranged from below 1 to greater than 2 (GexP18) based on both 

continuous MFI responses and binary sero-positivity values, but amongst ORs with p-values less 

than 0.05, Etramp5.Ag1 had the largest ORs of approximately 1.75.  

 
Figure 5.21 Effect size of each antigen based on linear regression testing association with previous 
infection 
Separate logistic regression models were fit for each time since infection window, overall (all ages and infection 
severities) and by age category and infection severity (RDT+ vs. PCR+ / RDT -), with all antigens, current RDT/PCR 
test result, age category and transmission intensity (region) included as covariates in all models. Each point 
represents the antigen-specific effect size for a particular model. Only odds ratios greater than 1 (i.e., positive 
correlation with log odds of infection in the last 6 months) are shown. Red and blue data points represent effect 
sizes with p-value < 0.05 for continuous and binary antibody responses respectively. 
 

Continuous antibody response (MFI) 

 

 

 

 

 

 



164 
 

Binary antibody response (sero-positivity) 

 

Random forest variable importance of each antigen in predicting previous Pf infection 

When using random forest models, the antigens that were the strongest in predicting previous 

infection (based in variable importance z-scores) were Etramp5.Ag1, AMA1, GLURP, Rh2.2030, 

MSP119, HSP40, Rh2.2030, and EBA181 (Figure 5.22). RDT/PCR test result and transmission 

intensity were still stronger predictors of previous infection than antibody response. However, 

the variable importance score of the antigens identified above tended to increase relative to 

RDT/PCR result and transmission intensity for infections that occurred in the last 90 or 150 days 

compared to the last 30 days (Figure 5.22).  In other words, as the time since infection period 

becomes longer, transmission intensity and PCR- or RDT-positivity become weaker predictors and 

serological markers become relatively more important predictors. 
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Figure 5.22 Random forest z-scores for predictors of time since last infection  

Random forest z-scores (scale 0 - 100) for all potential predictors – each antigen, current RDT/PCR test result, age 
and transmission intensity. Values represent relative variable importance or each potential predictor in the 
accuracy of the model. Separate models were fit for each time since infection category, overall (all ages and 
infection severities) and by age category and infection severity (RDT+ vs. PCR+ / RDT-). 
 

 

ROC analysis using cross-validated logistic regression 

ROC curves representing the prediction accuracy for the top five antigens (listed in Table 5.7 and 

5.8), selected based on their effect size in logistic regression, are shown in Figures 5.24 and 5.25 

for each time since infection category. Models were fit using data overall for all ages and infection 

severities, as well as separately by age category and infection severity (RDT+ vs PCR+ / RDT-).  

For all time since infection categories, AUC values were higher in children compared to adults 

(Figure 5.23, Tables 5.7 and 5.8). For children aged 1-5 years, antibody responses had consistent 

AUC values when predicting infection in the last 30 days, AUC 0.85 (95%CI 0.72 – 0.93), the last 

90 days, AUC 0.85 (95%CI 0.77 – 0.92), and the last 150 days, AUC 0.84 (95%CI 0.72 – 0.91). For 

older children, predictive power was highest for infections in the last 30 days, AUC 0.85 (95%CI 
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0.77 - 0.92), and begins to decrease when predicting infection in the last 90 days, AUC 0.80 (0.74 

– 0.88) and the last 150 days, AUC 0.79 (95%CI 0.73 - 0.84). For adults, predictive power also 

decreased over time, from AUC 0.72 (95%CI 0.62 – 0.82) for infection in the last 30 days to AUC 

0.68 (95%CI 0.56 – 0.77) for infections in the last 150 days.  

Predictive power when including current RDT/PCR test result as a predictor were consistently 

higher than models excluding this variable, though AUC values differed most when predicting 

previous infection in adults compared to children (Table 5.7). Antibody responses had higher AUC 

values when predicting RDT-positive infection, AUC 0.83 (95%CI 0.78 – 0.91) when including 

current RDT/PCR test result and AUC 0.84 (95%CI 0.72 – 0.89) when excluding RDT/PCR test 

result, compared to RDT-negative (PCR-positive) infection in the last 30 days, AUC 0.76 (95%CI 

0.67 – 0.84) with current RDT/PCR test result and AUC 0.73 (95%CI 0.65 – 0.80) excluding 

RDT/PCR test result. However, predictive power between the two infection severities were 

similar when infection was greater than 30 days ago.  

AUCs values based on binary antibody response were similar to models using continuous 

antibody responses (Table 5.8). However, antigens included at the top five predictors were 

different (Tables 5.7 and 5.8, Figure 5.26).  
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Figure 5.23 Area Under the ROC Curve values by age and time since infection 

AUC values by age group and time since infection category. Solid horizontal lines represent median MFI, shaded boxes represent interquartile range (IQR), and dashed vertical lines represent 

the 95%CI. 
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Figure 5.24 ROC curves predicting infection with continuous antibody response  

ROC curves predicting infection with continuous Ab response - MFI (overall, by infection severity and age 
category). Predictive models were based on current RDT/PCR test result, transmission intensity (region), antibody 
response (MFI) to the top 5 antigens based on effect size and p-value from logistic regression model and age 
category (for non-age stratified models only). ROCs based on models excluding current RDT/PCR test result shown 
on the right. 
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Table 5.7 AUC values and antigens used in ROC models, continuous antibody response (MFI)  

Sample size, AUC values and antigens used for prediction for each ROC model, based on continuous MFI antibody response. Antigens are listed from left to right in order of strength of 

association with previous infection from logistic regression. 

Time since infection   AUC AUC Antigens included in predictive panel 

Infection & age category   RDT/PCR included RDT/PCR excluded Ranked by effect size in logistic regression 

<30 days ago N (% pos) mean (95%CI) mean (95%CI) 1 2 3 4 5 

Overall 681 (32.0%) 0.82 (0.78 - 0.88) 0.80 (0.74 - 0.86) GexP18 HSP40.Ag1 Etramp5.Ag1 PfAMA1 -- 

RDT+ 681 (15.3%) 0.83 (0.78 - 0.91) 0.84 (0.72 - 0.89) Etramp5.Ag1 PfMSP2.Ch150 PfGLURP.R2 PfAMA1 GexP18 

PCR+ (RDT-) 681 (15.3%) 0.76 (0.67 - 0.84) 0.73 (0.65 - 0.80) PfAMA1 HSP40.Ag1 H103 EBA140 -- 

Age 1-5 years 199 (24.1%) 0.85 (0.72 - 0.93) 0.81 (0.67 - 0.91) SBP1 GexP18 Rh5 Etramp5.Ag1 EBA175 

Age 6-15 years 229 (40.6%) 0.85 (0.77 - 0.92) 0.80 (0.70 - 0.90) Rh5 HSP40.Ag1 GexP18 PfAMA1 -- 

Age >15 years 253 (30.4%) 0.72 (0.62 - 0.82) 0.70 (0.62 - 0.81) GexP18 HSP40.Ag1 PfAMA1 PfMSP2.Ch150 -- 

<90 days ago N (% pos) mean (95%CI) mean (95%CI) 1 2 3 4 5 

Overall 1125 (58.8%) 0.79 (0.74 - 0.82) 0.76 (0.72 - 0.82) PfAMA1 HSP40.Ag1 Etramp5.Ag1 GexP18 -- 

RDT+ 1125 (26.5%0 0.77 (0.72 - 0.83) 0.76 (0.72 - 0.82) Etramp5.Ag1 PfAMA1 Rh2.2030 GexP18 HSP40.Ag1 

PCR+ (RDT-) 1125 (29.0%) 0.76 (0.70 - 0.83) 0.75 (0.70 - 0.80) EBA140 PfAMA1 HSP40.Ag1 EBA175 -- 

Age 1-5 years 310 (51.3%) 0.85 (0.77 - 0.92) 0.82 (0.73 - 0.92) GexP18 HSP40.Ag1 Etramp5.Ag1 Rh5 PfAMA1 

Age 6-15 years 419 (67.5%) 0.80 (0.74 - 0.88) 0.78 (0.69 - 0.85) HSP40.Ag1 EBA175 Rh5 PfMSP119 GexP18 

Age >15 years 396 (55.6%) 0.70 (0.64 - 0.79) 0.66 (0.56 - 0.74) PfAMA1 EBA181 HSP40.Ag1 GexP18 -- 

<150 days ago N (% pos) mean (95%CI) mean (95%CI) 1 2 3 4 5 

Overall 1538 (69.9%) 0.78 (0.73 - 0.81) 0.74 (0.69 - 0.78) PfAMA1 HSP40.Ag1 Etramp5.Ag1 GexP18 -- 

RDT+ 1538 (26.5%) 0.73 (0.66 - 0.78) 0.73 (0.68 - 0.78) Etramp5.Ag1 Rh2.2030 GexP18 PfAMA1 PfMSP119 

PCR+ (RDT-) 1538 (40.6%) 0.70 (0.66 - 0.77) 0.65 (0.59 - 0.71) EBA140 Hyp2 EBA175 HSP40.Ag1 -- 

Age 1-5 years 411 (63.3%) 0.84 (0.72 - 0.91) 0.79 (0.72 - 0.87) GexP18 EBA175 AMA1 Etramp5.Ag1 PfMSP119 

Age 6-15 years 577 (76.4%) 0.79 (0.73 - 0.84) 0.75 (0.66 - 0.83) EBA175 HSP40.Ag1 GexP18 Rh5 PfGLURP.R2 

Age >15 years 550 (68.0%) 0.68 (0.56 - 0.77) 0.62 (0.55 - 0.73) GexP18 PfAMA1 PfMSP2.Dd2 HSP40.Ag1 -- 
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Figure 5.25 ROC curves predicting infection with binary antibody response  

ROC curves predicting infection with binary Ab response - sero-positivity (overall, by infection severity and age 
category). Predictive models were based on current RDT/PCR test result, transmission intensity (region), antibody 
response (MFI) to the top 5 antigens and age category (for non-age stratified models only). ROCs based on models 
excluding current RDT/PCR test result shown on the right. 
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Table 5.8 AUC values and antigens in each ROC model, based on binary antibody response.  

Sample size, AUC values and antigens used for prediction for each ROC model, based on binary antibody response (sero-positivity). Antigens are listed from left to right in order of strength of 

association with previous infection from logistic regression. 

Time since infection   AUC AUC Antigens included in predictive panel 

Infection & age category   RDT/PCR included RDT/PCR excluded Ranked by effect size in logistic regression 

<30 days ago N (% pos) mean (95%CI) mean (95%CI) 1 2 3 4 5 

Overall 681 (32.0%) 0.81 (0.75 - 0.87) 0.78 (0.72 - 0.84) Etramp5.Ag1 PfMSP119 PfAMA1 HSP40.Ag1 -- 

RDT+ 681 (15.3%) 0.83 (0.76 - 0.88) 0.81 (0.73 - 0.88) Etramp5.Ag1 PfGLURP.R2 PfCSP Rh5 HSP40.Ag1 

PCR+ (RDT-) 681 (15.3%) 0.76 (0.68 - 0.82) 0.76 (0.68 - 0.84) H103 PfAMA1 EBA140 HSP40.Ag1 Hyp2 

Age 1-5 years 199 (24.1%) 0.87 (0.69 - 0.93) 0.82 (0.64 - 0.92) Rh5 PfMSP119 PfAMA1 Etramp5.Ag1 H103 

Age 6-15 years 229 (40.6%) 0.84 (0.78 - 0.92) 0.82 (0.71 - 0.89) Etramp5.Ag1 Rh2.2030 PfMSP119 HSP40  

Age >15 years 253 (30.4%) 0.74 (0.66 - 0.82) 0.70 (0.57 - 0.80) Etramp5.Ag1 PfAMA1 Hyp2 EBA181  

<90 days ago N (% pos) mean (95%CI) mean (95%CI) 1 2 3 4 5 

Overall 1125 (58.8%) 0.79 (0.73 - 0.83) 0.76 (0.68 - 0.81) Etramp5.Ag1 PfAMA1 PfMSP1.19 Rh2.2030 -- 

RDT+ 1125 (26.5%0 0.76 (0.71 - 0.84) 0.76 (0.70 - 0.82) Etramp5.Ag1 PfGLURP.R2 Rh2.2030 GexP18 HSP40.Ag1 

PCR+ (RDT-) 1125 (29.0%) 0.76 (0.71 - 0.81) 0.75 (0.69 - 0.80) EBA140 PfAMA1 H103 Hyp2 -- 

Age 1-5 years 310 (51.3%) 0.82 (0.75 - 0.88) 0.82 (0.72 - 0.89) PfMSP1.19 Rh2.2030 Etramp5.Ag1 PfGLURP.R2 Rh5 

Age 6-15 years 419 (67.5%) 0.81 (0.71 - 0.86) 0.77 (0.70 - 0.84) Etramp5.Ag1 PfMSP119 GexP18 Rh2.2030 -- 

Age >15 years 396 (55.6%) 0.70 (0.63 - 0.78) 0.66 (0.57 - 0.74) PfAMA1 EBA181 Etramp5.Ag1 PfMSP2.Dd2 -- 

<150 days ago N (% pos) mean (95%CI) mean (95%CI) 1 2 3 4 5 

Overall 1538 (69.9%) 0.76 (0.71 - 0.80) 0.73 (0.68 - 0.78) Etramp5.Ag1 PfAMA1 HSP40.Ag1 EBA140.Ag1 -- 

RDT+ 1538 (26.5%) 0.72 (0.67 - 0.78) 0.72 (0.65 - 0.77) Etramp5.Ag1 PfGLURP.R2 Rh2.2030 GexP18 Etramp5.Ag2 

PCR+ (RDT-) 1538 (40.6%) 0.71 (0.65 - 0.76) 0.66 (0.60 - 0.73) PfAMA1 Rh5 EBA140 EBA175 -- 

Age 1-5 years 411 (63.3%) 0.81 (0.72 - 0.88) 0.79 (0.69 - 0.85) Rh2.2030 PfMSP1.19 Etramp5.Ag1 Rh5 EBA175 

Age 6-15 years 577 (76.4%) 0.78 (0.69 - 0.85) 0.75 (0.64 - 0.82) Etramp5.Ag1 EBA175 GexP18 PfMSP2.Dd2 Rh5 

Age >15 years 550 (68.0%) 0.69 (0.60 - 0.77) 0.65 (0.57 - 0.73) PfAMA1 Etramp5.Ag1 EBA181 PfMSP2.Dd2 -- 
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Out of 42 models based on seven time since infection categories, three age groups and two 

infection severity categories, antigens were included as top 5 predictors in varying frequencies 

(Figure 5.26). Which antigens were included as top predictors differed depending on whether 

continuous (MFI) or binary (sero-positivity) antibody response was used as the prediction value. 

Based on continuous response, HSP40.Ag1, PfAMA1, GexP18, Etramp5.Ag1, and EBA175 are each 

strong predictors in over 25% models. Based on binary response, Etramp5.Ag1, PfAMA1, 

PfMSP119, Rh2.2030, HSP40.Ag1, GexP18, Rh5, EBA175 appear in at least 25% models.  

 

Figure 5.26 Antigen frequency as top 5 biomarker associated with previous malaria infection  

Frequency is expressed a percent of all logistic regression models run for each time since infection category, age 
group and infection severity.  
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Antibody responses were moderately correlated for several groups of antigens (Figure 5.27). 

Generally, merozoite surface protein antigens were highly correlated, particularly EBA and Rh 

antigens. PfAMA1 showed high correlation with PfGLURP.R2, PfMSP, and EBA antigens, as well 

as Rh2.2030. PfGLURP.R2 was also highly correlated with MSP and EBA antigens, and Rh2.2030 

and Rh4.2, but also showed correlation with GexP and Hyp2. Etramp5.Ag1 showed high 

correlation with PfMSP119.  

Figure 5.27 Correlation of antibody responses across antigens  

Antigen grouped according to factors likely to influence correlation: longevity of antibody responses (long-lived - 

PfAMA1, PfGLURP.R2, PfCSP, PfMSP119, short-lived – Etramp5.Ag1, Etramp4.Ag2, HSP40.Ag1, GexP18, SEA, Hyp2, 

H103, SBP1), location/function of antigen in Pf life-cycle (erythrocyte-binding – EBA, reticulocyte-binding – Rh, 

merozoite-surface proteins – MSP). 

 

 

5.7 Discussion 
 

In the context of epidemiological surveillance, there are several characteristics that may be 

important in a serological biomarker of recent infection. This includes sufficient immunogenicity 

(i.e., measurable antibody boost upon infection) coupled with rapid antibody decay. Also 

important may be consistency of response across age groups and transmission intensities. 

However, particular markers might be strong measures of population susceptibility to clinical 

disease if they are more associated with protective immunity. These could potentially be used to 
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monitor the risk of reintroduction in areas that have recently eliminated. Antigens investigated 

in this study have exhibited varying degrees of all these characteristics.  

Dynamics of antibody acquisition, age, and transmission intensity 

While most antigens were associated with a boost in antibody levels upon infection, the relative 

intensity of the signal varied, with PfAMA1, PfGLURP.R2, PfMSP119, Rh2.2030, and EBA175 

showing the highest mean antibody intensities and HSP40.Ag1, H103, SBP1, and Hyp2 showing 

the lowest. These differences in immunogenicity could be due to biological characteristics of the 

protein or how the assay has been developed (e.g., antigen coupling concentration) as discussed 

in Chapter 5a.  

Age and transmission intensity were both found to be important factors in antibody intensity and 

breadth of antibody response. As discussed in Chapter 1, this is consistent with our current and 

historical understanding of immune responses to Pf and the acquisition of clinical protection 

across multiple endemic settings.1,9,120,141,164,166,325–327 Protective humoral immunity is also 

believed to be dependent on a larger antibody repertoire across multiple antigens.170,318,328–330  

However, the extent to which these factors influenced antibody response varied by antigen, with 

the largest differences between age groups observed for PfAMA1, PfMSP119, PfGLURP.R2, EBA 

family of antigens, Rh2.2030 and Rh4.2. It is not surprising that these antigens are those thought 

to be most reflective of protective immunity or cumulative exposure318, where chronic infection 

is associated the acquisition of sustained antibody levels. On the other hand, most antigens with 

more consistent responses across age groups (Etramp5.Ag1, Etramp4.Ag2, GexP18, Hyp2, 

HSP40.Ag1) have been previously identified by Helb et al as potential markers of recent infection. 

For these antigens, cumulative exposure may not play as large a role in developing immunological 

memory.  

Rh5 also showed consistent responses across age groups, despite the fact that it has been 

considered as potential blood-stage vaccine candidate. While some studies have found this 

antigen to be associated with clinical immunity331, others suggests that antibody levels in 

naturally immune individuals may be too low to confer protection, and it may need to be 

combined with other targets to be a viable vaccine.332 If not, the consistency of response across 

ages may render it a relatively strong marker of recent infection instead.  

Transmission intensity was associated with higher antibody responses for all antigens. The 

influence of this on serological responses at the population level will be discussed in more detail 

in Chapters 6 and 7, addressing cluster levels differences in The Gambia and Namibia. 
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Estimating the rate of antibody decay 

Overall, assessing antibody kinetics in endemic populations is extremely challenging, not only 

because of confounding by age and transmission intensity. It may also be inaccurate due to 

unknown or incomplete information on the history of previous infection in older individuals and 

recurring infection during longitudinal studies that will lead to fluctuating antibody levels.  

In this study, antibody half-life estimates varied depending on the method of estimation. 

Assuming a monophasic exponential decay (with linear regression), very few antigens were found 

to have a half-life shorter than six months. The only exception was Etramp5.Ag1, where a half-

life of less than 6 months was estimated, but in ages 6-15 years only, while in young children and 

adults, it was only the lower 95%CI estimate that was less than 6 months. Other antigens with 

relatively shorter half-lives (approximately 1 year) for all ages overall were PfGLURP and Rh5. On 

the other hand, half-lives based on Cox proportional hazard models were estimated to be less 

than 6 months for all antigens in children under 15 years of age and for nearly all antigens in 

adults except for PfAMA1, PfCSP and PfGLURP.R2. The reasons this might be will be discussed 

further in the section below on methodological limitations. 

Previous estimates of antibody decay 

Previous half-life estimates of Pf-specific antibodies vary across studies. Some estimate very rapid 

declines in antibody levels, while others estimate a much longer duration after infection (Table 

5.9). The shortest decay rates are based on a cohort of 41 Kenyan children under 10 years of age, 

where IgG1 and IgG3 antibody reactivity to PfAMA1, PfMSP119, two PfMSP2 allelic types, and 

EBA175 was estimated over a 12-week period after clinical malaria infection.333 The mean half-

life of IgG1 responses for the five antigens combined was 9.8 days, while mean half-life of IgG3 

was 6.1 days. This analysis was restricted to individuals who showed consistent decline of 

antibody levels over four consecutive periods only, excluding any individuals with evidence of 

antibody boosting. 

In The Gambia, a longitudinal analysis of IgG1 and IgG3 responses to PfAMA1, PfMSP1, PfMSP2 

and EBA175 was also conducted in children, but only up to age six and followed during the dry 

season after malaria transmission. This study also found that most antibodies were lost within 

four months in the absence of reinfection. Based on Kaplan Meier survival analysis, the mean 

time to reach 50% of initial antibody levels was 16 days in children ages 1-3 years, and slightly 

longer in children aged 4-6 years (52 days for IgG1 and 47 days for IgG3).212 Declines in antibody 

responses to PfAMA1 and EBA175 also showed large differences between age groups, with levels 

declining more rapidly in younger children.  
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Amongst studies assessing antibody kinetics across all ages, a longitudinal study in Nigeria with 

individuals ranging from 5 to 70 years old observed slightly longer duration of antibodies to 

EBA175 and Rh2.267 Based on linear regression, decay of antibodies to EBA175 was estimated to 

be 98 days for parasite positive individuals (by microscopy) and 64 days for parasite negative 

individuals. For Rh2, half-life was estimated to be 120 days for parasite positive individuals and 

82 days for parasite negative. Higher antibody levels (total IgG3 and IgG3) to EBA175 were 

associated with older ages, but not for IgG2 and IgG4. However, no age differences were 

observed for antibodies to Rh2. Additionally, differences in EBA175 antibody half-lives were 

observed between IgG subtypes, with shorter half-lives for IgG2 and IgG4 compared to IgG1, IgG3 

and total IgG. Subtype-specific antibody responses to Rh2, on the other hand, showed shorter 

half-lives of IgG1, IgG2 and IgG4 compared to total IgG.  

In an all-age longitudinal study based on PCR-positive individuals in Cambodia, the 95%CI half-life 

estimates for PfMSP119 and PfGLURP were much longer, ranging from just under 7.5 months to 

1.5 years, while for CSP the estimates ranged from less than 7.5 months to over 2 years. This is 

one of the few studies to estimate antibody half-lives using the Luminex platform, though the 

majority of the antigens evaluated were for P.vivax and did not include any the Pf-specific 

markers of recent infection investigated in this chapter.  

The influence of age and acute clinical infection on antibody decay 

These studies highlight several considerations. First, that antibody decay may be more rapid in 

children and following acute infections, especially if they are quickly treated with anti-malarials. 

This is likely manifested as intense initial boosting of antibodies, followed by a subsequently fast 

reduction after the parasitic stimulus is cleared. This emphasises the need for studies to include 

both symptomatic and asymptomatic individuals to assess the utility of biomarkers in surveillance 

across all types of infection, particularly those that are sub-patent and more likely to have subtle 

antibody dynamics. 

Second, the role of IgG subclasses may also be important. IgG3 antibodies thought to be shorter 

lived due to their rapid clearance from circulation.212,334,335 However, based on the subtype-

specific analysis in the Nigerian study described above, these dynamics may differ depending on 

the antigen. Generally, IgG2 and IgG4 are believed to bind more weakly than IgG1 and IgG3.336 

This may have implications not only for the estimation of antibody half-life, but the differential 

specificity of subclasses as markers of recent malaria infection. Our current understanding of IgG 

subclasses and their association with antigen, age, and protective immunity remains mixed.255,299 

Therefore, further investigation into the effect of subclasses for the antigens in this study might 

help to fine-tune the type of response that should be measured for maximum specificity as a 

diagnostic marker. 
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The role of memory B cells - models estimating the half-life of short vs. long-lived plasma cells 

A number of studies have also tried to quantify the longevity of memory B cells (MBCs) and its 

contribution to protective immunity. For instance, a study in adults in Thailand estimated the 

half-lives of antibodies and MBCs to PfAMA1 and PfMSP119 after clinical infection and did not 

observe decay rates significantly different from zero. This suggested stable maintenance of 

antibodies over a long period, even in the absence of reinfection.337 

As described in Chapter 1, antibody-secreting plasma cells (ASCs) can be short-lived or long-lived. 

Naïve B cells will differentiate into short-lived plasma cells to control initial infection or into long-

lived plasma cells (LLPCs) and MBCs for sustained antibody-based immunity. While short-lived 

plasma cells need to be replenished from a MBC population, LLPCs survive and can secret 

antibody for extended periods independently.212,338,339 It is believed that repeated infection is 

required to build up LLPCs to a steady-state antibody level. Pf-specific MBC prevalence appears 

to be low in adults (~30-50%), even in those with a history of Pf infection. However, once 

acquired, they appear to be long lived and persist in the absence of chronic infection.127,340  

Using longitudinal data on immune responses in Ghanaian and Gambian children, White et al 

developed a model to estimate the half-life of both short and long-lived ASCs.265 This model 

assumes that both ASC types produce antibodies, but decay at different rates. They hypothesised 

that the differentiation of naïve B cells and MBCs into ASCs may generate rapid boosts in antibody 

titres as well as less discrete waves of antibodies, and that this underlying biphasic decay is not 

always easily distinguished if observing total IgG overall. For short-lived ASCs, the model 

estimates half-lives in the order of approximately 10-20 days, while LLPCs are estimated to have 

half-lives of 2-4 years or more (Table 5.9). 

Generally, models such as the one described above are difficult to validate biologically. Long-lived 

ASCs and MBCs are located primarily in lymphoid organs and only detectable in peripheral blood 

mononuclear cells (PMBCs) in the short period between differentiation and migration to the bone 

marrow.341 While mouse models indicate there is a correlation between ASCs in tissue and serum 

antibody concentrations,342 they are still poorly studied in humans due the experimental 

limitations described here. Even if the long half-lives estimated based on total IgG in the study 

presented in this chapter could be explained by parameterising short and long-lived ASCs, models 

make large assumptions about their relative proportions. Furthermore, existing estimates based 

on these models have still shown to be imprecise. More importantly, challenges related to 

measuring these dynamics with a cost-effective assay design are likely to make it impractical for 

surveillance purposes. 
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Table 5.9 Studies estimating Pf-specific antibody half-life 

STUDY ASSAY / ANTIGENS* STUDY POPULATION STATISTICAL METHOD HALF-LIFE ESTIMATES 

KINYANJUI ET AL 2007 333 

 
ELISA 
 
Antigens: PfMSP119, 
PfAMA1, PfMSP2 type A 
and B, EBA175 region II 
 
Subclasses: IgG1 and IgG3 
 

 
Kenya 
 
32 children diagnosed with 
clinical malaria (Kilifi District 
Hospital) 
 
Clinical infections (treated) 
 

 
Linear regression – monophasic exponential decay 
 
Only individuals with antibody decline over 4 
consecutive time points, excludes individuals with 
antibody boosting 

 
All antigens combined 
IgG1 (n = 23 children): 9.8 days 
IgG3 (n= 9 children): 6.1 days 

AKPOGHENETA ET AL 2008 212 

 
ELISA 
 
Antigens: PfMSP119, 
PfAMA1, PfMSP2 type A 
and B, EBA175 region II 
 
Subclasses: IgG2 and IgG3 
 

 
Gambia 
 
35 children ages 1-6 years 
 
Follow-up during dry season 
 
 

 
Kaplan Meier survival analysis – mean days to reach 
50% of day 0 antibody levels 
Only individuals with marked declines in IgG 
antibodies to either or both PfAMA1 and PfMSP2 

 
PfAMA1 and PfMSP2 combined 
 
Ages 1-3 years (IgG1 and IgG3): 16 days 
Ages 4-6 years (IgG1): 52 days 
Ages 4-6 years (IgG3): 47 days 

ISMAIL ET AL 2014 267 

 
ELISA 
 
Antigens: EBA175, Rh2 
 
Subclasses: Total IgG, IgG1, 
IgG2, IgG3, IgG4 
 

 
Nigeria 
 
40 individuals ages 5 – 70 
years 
 
Clinical infections (treated) 

 
Linear regression – exponential decay 
 
Only individuals with decreasing antibody levels over 
3 consecutive time points 

 
Total IgG 
 
EBA175 (parasite positive): 98 days 
EBA175 (parasite negative): 64 days 
 
Rh2 (parasite positive): 120 days 
Rh2 (parasite negative): 82 days 
 
Shorter half-lives for IgG2 and IgG4 
 

 
KERKHOF ET AL 2016 301 

 
Luminex 
Antigens: PfMSP119, 
PfGLURP, PfCSP 
Total IgG 

 
Cambodia 
 
PCR positive samples from 
individuals ages 2- 50 

 
Linear regression adjusted for age group 

 
PfMSP119: 225 days (171 – 329) 
PfGLURP: 207 days (130 – 512) 
PfCSP: 277 days (165 – 866) 
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Table 5.9 (continued) Studies estimating Pf-specific antibody half-life 

STUDY ASSAY / ANTIGENS* STUDY POPULATION STATISTICAL METHOD HALF-LIFE ESTIMATES 

WIPASA ET AL 2010 337 

 
ELISA, ELISPOT 
 
Antigens: PfAMA1, PfMSP119 
 
Antibody (total IgG) and 
memory B cells 

 
Thailand 
 
17 adults aged 23 – 48 with 
history of clinical malaria 

 
Mixed effects linear regression 

 
Antibodies 

PfAMA1: 10.36 years (3.45, ∞) 
PfMSP119: 7.56 (3.54, ∞) 
PfMSP1 + PfAMA1: 16.27 years (4.15, ∞) 
 

Memory B cells 
PfAMA1: ∞ (1.8, ∞) 
PfMSP119: 10.6 years (1.18, ∞) 
PfMSP1 + PfAMA1: 7.47 years (1.75, ∞) 
 

WHITE ET AL 2014 265 

 
ELISA 
 
Antigens: PfAMA1, PfMSP1, 
PfCSP, EBA175 
 
Total IgG 

 
Ghana 
151 children followed from 
birth to 2 years 
 
Gambia 
123 children ages 1-6 years, 
followed for 3 months in dry 
season following previous 
malaria infection in 
transmission season 
 

 
Bi-phasic exponential boost and decay model 
 
Model estimates half-life for: 
Total IgG antibodies 
Short-lived antibody secreting plasma cells (ASC) 
Long-lived ASCs 

 
Ghana 

PfAMA1 
IgG: 17 days; short-lived ASC: 2.5 days 
Long-lived ASC: 2,956 days 
PfMSP1 
IgG: 19 days; short-lived ASC: 2.4 days 
Long-lived ASC: 1,901 days 
PfCSP 
IgG: 14 days; short-lived ASC: 3.0 days 
Long-lived ASC: 2,881 days 
 

Gambia 
PfAMA1 
IgG: 7 days; short-lived ASC: 4 days 
Long-lived ASC: 1,050 days 
PfMSP1 
IgG: 7 days; short-lived ASC: 10 days 
Long-lived ASC: 859 days 
EBA175 
IgG: 11 days; short-lived ASC: 10 days 
Long-lived ASC: 1,607 days 

*some studies include additional antigens, but only those antigens for comparison against this study are listed here 
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The influence of genetic diversity and antigenic variation on immunogenicity 

Additional explanations for the varying antibody dynamics observed in this dataset may be the 

genetic diversity of the parasite population or antigenic variation. As mentioned above, studies 

have shown that protection from clinical malaria requires a repertoire of antibody responses 

across antigens. It is believed that inefficient acquisition of antibodies may be associated with the 

parasite’s ability to clonally vary protein expression on the surface of infected red blood cells as 

a means of immune evasion. Individuals may only generate a protective repertoire of antibodies 

after years in endemic areas and infection by multiple parasite clones.343–345 For example, the 

high level of within-population polymorphism in the MSP2 antigen is thought to result in slower 

acquisition of memory B and T-cell responses and more transient antibody production (though, 

this might also be overcome by cross-reactivity between variants).346 Ultimately, investigating 

the role of antigenic variation for more novel antigens in this study may be useful in case multiple 

variants or chimeric antigen constructs347 need to be developed or included in future assay 

platforms. These and other factors influencing serological detection of previous and current 

malaria infection are illustrated in Figure 5.28. 

 

Methodological limitations 

Half-life estimation  

The large variation of antibody kinetics estimated (Table 5.9) highlights the lack of a standardised 

approach in both study design and half-life estimation methods. Studies estimate half-life with 

linear regression267,301,333,337, survival analysis212 or estimate additional factors such as MBCs and 

ASCs265,337. Other factors that varied across studies include the age range of the study population, 

type of malaria infection (clinical episode vs. PCR-positive), and whether individuals or samples 

with antibody boosting post infection were excluded. 

In this study, estimating antibody decay rate using linear regression resulted in very large 

confidence intervals, most of which included negative values (i.e., no antibody decay). Using Cox 

proportional hazard models to estimate time sero-negative antibody levels resulted in shorter 

and more precise half-life estimates. This may be a more accurate way to define decay in the 

context of surveillance, given that decay is highly dependent on the magnitude of the boost. If 

this is not very strong, half-life could be estimated to be very long, even if they reach a sero-

negative antibody levels quickly. The baseline population antibody level for some antigens may 

also be higher. Studies that have used survival analysis212 define time to event as reaching 50% 

of baseline antibody levels. One option for the data presented in this chapter is to use antibody 

levels of individuals without recorded malaria infection during the study. However, caution 
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should be taken as their infection history prior to the study may still influence antibody levels, 

potentially resulting in overestimated baseline levels. 

Survival analysis does not estimate the individual-level rate of decay, but rather the rate at which 

a certain proportion of the population reverts to sero-negative antibody levels after infection. 

This can be compared to the use of reverse-catalytic models that estimate population-level sero-

reversion rate.291 Linear regression and the use of continuous antibody data has some advantages 

over the use of binary data in survival analysis,123 but it also introduces more variation and 

potentially non-informative noise to the estimates.  

Data censoring 

A number of studies exclude individuals or time points where antibodies are still boosting, and 

this could lead to biases. For linear regression analysis, this may over fit the data and 

underestimate half-life, but including time points during which an individual may still be acquiring 

antibodies would overestimate. For survival analysis, time to event can be defined as either the 

first time point at which an individual has a sero-negative antibody level or two consecutive sero-

negative readings. It is not clear which would best allow for fluctuations in antibody levels that 

occur even in the absence of re-infection. Analysing the difference in results for this dataset 

would be useful, but would require a longer period of follow-up. 

Antibody acquisition 

So far, this study focuses only on estimating antibody decay, and not the rate of antibody 

acquisition. However, potential methods to estimate this include segmented regression analysis, 

where both boost and decay parameters are estimated as an interrupted time series. These 

parameters could also be estimated with Bayesian Markov Chain Monte Carlo (MCMC) methods, 

which may be better suited to situations where individuals vary in their time to boost, such as in 

this dataset (Figure 5.16). Antibody acquisition models applied at the cluster level will be 

described in more detail in Chapter 6. However, future work could involve using these models to 

estimate antibody acquisition at the individual-level, as has been used by White et al.  

Biomarkers for detecting previous malaria infection – predictive accuracy 

While quantifying the dynamics of antibody response aids in our understanding of immune 

responses, the study presented here is ultimately interested in how these antigens serve as 

biomarkers of recent malaria infection. Antigens evaluated by Helb et al in Ugandan children 

estimated AUC values ranging from 0.87 (HSP40) to 0.91 (Hyp2, GexP18) for detecting infections 

in the last 30 days and AUC values from 0.86 (GexP18) to 0.92 (HSP40) for detecting infection in 

the last year. This study included current microscopy result as a predictor in their ROC analysis.  
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The data presented in this chapter also estimated similar AUC values in young children when 

including RDT or PCR test results in ROC analysis (AUC 0.72 – 0.93 for infection < 30 days ago, and 

0.72 -0.91 for infection <150 days ago). However, predictive accuracy was slightly lower when 

RDT/PCR results are not used, particularly for less recent infections (mean AUC 0.81 for infection 

<30 days vs mean AUC 0.79 for infections <150 days). While the predictive accuracy for infections 

in older children was similar for recent infections (<30 days), AUC values began to fall for 

detecting infections occurring more than 3 months ago. Overall, the predictive accuracy in adults 

was low compared to children, regardless of time since last infection. The predictive accuracy 

was also stronger in RDT-positive compared to RDT-negative / PCR-positive individuals.  

For the biomarkers investigated here, children may be a better target for sero-surveillance of 

malaria incidence because they experience more differentiating antibody responses upon 

infection relative to adults. However, lower AUC values in adults may also reflect limitations in 

the dataset because they may be more likely to experience infection prior to the start of the study 

and be misclassified as negative for recent infection in the predictive model. For particular 

markers more associated with protective immunity, they may also have higher antibody levels 

even in the absence of recent infection, decreasing the ability of these markers to identify recent 

infection. Additionally, they are also more likely to experience asymptomatic infection, whereas 

children will be more likely to have RDT-positive infections due to higher parasite densities. 

Therefore, AUC values might reflect imprecision in the data and/or model as opposed to a 

weakness in the serological markers. Identifying serological markers specifically for adults, 

therefore, should aim to use datasets where a longer history of infection is known (up to one year 

or more).  

A number of antigens in this study were found to have highly correlated antibody responses 

(Figure 5.27). This included associations within the EBA and Rh antigen families, while AMA1 was 

correlated with GLURP, MSP, EBA antigens and Rh2.2030. GLURP was correlated with MSP and 

EBA antigens, Rh2.2030, Rh4.2, GexP18 and Hyp2. Additionally, Etramp5.Ag1 was highly 

correlated with MSP119. This is expected given that these are all blood-stage antigens and many 

share similar functions for parasite invasion or red blood cell attachment (as discussed in Chapter 

1).  

While many of these antigens have not been widely studied previously (Etramp5.Ag1, GexP18, 

Hyp2), associations between other merozoite antigens have been observed before. In a cohort 

of 206 Papua New Guinean children, the combination of antibody responses to EBA, Rh2 and Rh4 

antigens were found to have an additive effect, where high responses to all three antigens were 

strongly associated with protective immunity against symptomatic malaria. Rh5 also showed 

additive protective effects when combined with EBA175, AMA1 and MSP119. Conversely, 
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combinations of different MSP antigens, or MSPs with micronemal antigens (MSP119/AMA1, 

MSP119/EBA175RII) did not show stronger protective effects compared to single-antigen 

responses.170 The association with EBA and Rh antigens may suggest that there is an additional 

benefit to the host in mounting an immune response to blocking ligands in a variety of invasion 

pathways.173  

Understanding these associations may aid in biomarker selection in a multiplex panel to 

determine which antigens may be redundant or add to the comprehensiveness of capturing total 

antibody responses in the population. It would be useful to further assess whether these 

correlations are the same for different age groups. Final ROC analysis was based on combined 

biomarker panels chosen with logistic regression because random forest models do not always 

account well for correlations between variables used in prediction.323 Random forest models 

could be used for sensitivity analysis to test the variable importance of antigens when combined 

with other correlated antigens based on Figure 5.27 and when included in models without other 

correlated antigens.  

Additionally, estimates of the predictive power of single antigens suggest they may be just as 

robust as combined biomarker panels for detecting previous infection (AUC range 0.69–0.82 

across top 5 antigens and time since infection categories; Appendix 5.2, Table 5.19). Linear 

regression was used to select the antigen most correlated with previous infection, but the 

predictive power was then assessed for the top antigens combined. It should be noted that the 

association of individual antigens with previous infection was not necessarily strong based on 

linear regression, but still used to prioritise which antigens amongst the full panel should be 

selected for further ROC analysis. Further analysis should further quantify the additional 

predictive power that is gained by combining particular antigens. Specifically, panels that 

separate antigens associated with short-lived vs. long-lived antibody responses should be 

assessed using ROC analysis for their predictive power as single antigens and combined. 

Additionally, this can be investigated for antigens shown to be highly correlated, as mentioned 

above. 

In this study, individuals who are RDT-positive were treated with artemether-lumefantrine, 

clearing the parasitaemia that would stimulate antibody levels for detection. Additionally, while 

this study aims to account for parasite density by distinguishing between RDT- and PCR-positive 

infections, without genotyping to determine whether these are due to the same infection or a 

new infection, it is difficult to draw conclusions on the association of antibody responses between 

patent and sub-patent infections. Other adjustments or analyses that could be made include 

correcting p-values to account for multiple testing (Bonferroni), sensitivity analysis using data 

normalised to arbitrary antibody concentration units rather than loess normalised MFI values (as 
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discussed in Chapter 5a), and testing the influence of sero-positivity thresholds for ROC analysis 

based on binary outcomes.  

Overall, results presented here indicate that several antigens are consistently top predictors of 

recent infection across ages, time since infection and infection severities (Figure 5.26), including 

Etramp5.Ag1, GexP18, HSP40, and certain Rh and EBA antigens (e.g., Rh2.2030, EBA175). These 

could be potentially promising tools for surveillance. However, antigens associated with long-

lived antibody responses (MSP1.19 and AMA1) are also correlated with recent infection, and may 

still have utility for surveillance over longer periods of time.  

Future work for developing sero-surveillance tools – study design, sampling frames, and use-case 

scenarios 

As mentioned above, studies similar to the one presented in this chapter are limited because 

longitudinal data often faces sampling challenges such as variability in previous infection, as well 

as reinfection during prospective follow-up. Additionally, these studies are primarily concerned 

with validating markers of protective immunity, as opposed to previous infection. This is one 

reason why controlled human malaria infection (CHMI) studies in malaria-naïve subjects are 

becoming increasingly common. While extremely useful, these are not ideal for understanding 

antibody dynamics in endemic populations due to differences in naturally acquired immunity that 

may not lead to similar outcomes. For instance, results from the RTS,S trials showed that 

vaccination conferred sterile protection in approximately half of malaria-naïve adults348, but only 

30-50% protective efficacy in African infants and children349,350. Similar vaccines studies for 

candidates targeting the liver stage antigen thrombospondin related adhesion protein (TRAP) 

also showed partial efficacy in malaria naïve adults, but no efficacy in African children or 

adults.351–353 This could be due to important genetic factors, such as differences in major 

histocompatibility complex (MHC) HLA alleles.354 Another possibility is that factors such as 

nutritional status355 and co-infections with other pathogens common in malaria endemic areas 

may modulate the development of Plasmodium-specific immunity356  

Endemic settings with intensely seasonal transmission (e.g., West African, Sahelian) can allow 

useful designs for field-based immunological studies. As described by Crompton et al127,357, 

cohorts can be enrolled during the dry season where there is little to no malaria and followed 

through the malaria season, or vice versa (similar to the study by Akpogheneta et al212). The 

predictable timing of transmission could allow multi-year cohort studies where infections and 

clinical episodes are monitored through active parasitological and clinical surveillance, with 

samples collected at time points before, during, and after asymptomatic and symptomatic 

infection. These study designs can also allow participants to serve as their own healthy pre-
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infection controls. Future studies designed in this fashion could allow better investigation of how 

acute and chronic Pf infections modulate the human immune response.  

Antigens that tend to be more associated with protective immunity could be a means of post—

elimination surveillance to understand population susceptibility to clinical disease in the event of 

reintroduction. In areas of low or rapidly declining transmission intensity, it is likely that the level 

of parasite exposure will affect the dynamics of the immune response measured in the 

population358 and the ability of serology platforms to have a stable signal. Therefore, careful 

selection of biomarkers at different stages of elimination will be important. 
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Figure 5.28 Factors influencing serological detection of malaria infection 
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The results presented in this chapter have made first steps in assessing which antigens could be 

included in sero-surveillance tools. However, there is a sizeable amount of future work that is 

required to determine how they will be used. This includes: 

 Separate assessment of antigens eliciting long vs. short-lived antibody responses and by 

extension, distinguishing between markers of recent infection and markers of protective 

immunity 

 Determining for which antigens there is differential antibody kinetics between 

subclasses that may be more specific to recent infection (IgG and IgM responses) and 

optimising assay according to capture these responses 

 Identifying which allelic variants (if any) are relevant for capturing infection by all 

circulating parasites in environments with a high degree of genetic diversity. This will 

likely require a revisit to micro-array platforms that are able to assess reactivity to a 

larger number of analytes and has been done previously exploring var genes and sero-

reactivity to PfEMP1158. Future down-selected surveillance platforms could  include all 

variants or chimeric antigen constructs.347  

 Classifying antigens according to demographic groups (age, history of infection, 

transmission intensity) and determining whether they are best used as population-wide 

biomarkers or only useful for convenience sampling (school children, expanded program 

on immunization (EPI), pregnant women and antenatal clinics, or occupational risk (e.g., 

male adult forest /mine workers) 

 Setting desired sensitivity/specificity thresholds depending on diagnostic use by: 

o Defining what constitutes a false-positive or false-negative in different 

elimination strategies or trials 

o Quantifying the magnitude of false-positive or negative results across 

transmission settings and what the potential impact on intervention decisions 

would be  
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Appendix 5.2. Additional graphs and tables assessing antibody dynamics 
 

Figure 5.29 Distribution of time to decay, by antigen and age  
Vertical lines along the x-axis show individual data points. Individuals with no antibody decay during time period of observation are recorded as having time to decay of 180 days.  
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Figure 5.30 Distribution of time to decay, by antigen and RDT-positivity 

Vertical lines along the x-axis show individual data points. Individuals with no antibody decay during time period of observation are recorded as having time to decay of 180 days. 
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Table 5.10 Antibody intensity and days since infection (continuous), unadjusted 

Antigen baseline 
log MFI 

∆ log MFI time 95%CI 
lower 

95%CI 
upper 

p-value 
∆ log MFI 

MSP1.19 7.33 0.0022 0.0000 0.0045 0.054 

AMA1 7.16 0.0023 0.0001 0.0046 0.043 

GLURP 6.65 0.0001 -0.0024 0.0027 0.926 

EBA175 5.10 0.0031 0.0006 0.0057 0.015 

EBA181 5.27 0.0026 0.0005 0.0046 0.016 

EBA140 4.91 0.0023 0.0002 0.0043 0.028 

Rh5 6.18 -0.0003 -0.0022 0.0015 0.719 

Rh2.2030 6.22 0.0049 0.0028 0.0069 0.000 

Rh4.2 5.16 0.0012 -0.0007 0.0031 0.214 

Etramp5.Ag1 5.98 -0.0019 -0.0040 0.0003 0.097 

Etramp4.Ag2 5.39 0.0012 -0.0004 0.0029 0.145 

GexP18 6.19 0.0016 -0.0001 0.0034 0.066 

HSP40 5.51 0.0027 0.0010 0.0043 0.001 

SEA-1 5.75 0.0007 -0.0009 0.0024 0.391 

Hyp2 5.55 0.0013 -0.0002 0.0027 0.091 

MSP2.Dd2 5.74 0.0022 -0.0001 0.0044 0.057 

MSP2.Ch150 5.53 0.0013 -0.0009 0.0034 0.257 

H103 5.49 0.0017 0.0001 0.0033 0.039 

SBP1 5.61 0.0011 -0.0009 0.0030 0.282 

CSP 5.03 0.0018 -0.0005 0.0040 0.119 
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Table 5.11 Antibody intensity and days since infection (continuous), adjusted for age and transmission intensity  

Linear regression of log MFI by days since infection, adjusted for age and village-level PCR prevalence (<10% and >10%) 

Antigen baseline 
(log MFI) 

∆ log MFI 
time 

95%CI 
lower 

95%CI 
upper 

p-value 
∆ log MFI 

age p-value 
age 

PCR 
prevalence 

p-value 
prevalence 

MSP1.19 4.298 0.0024 0.0001 0.0046 0.040 0.69 0.000 1.21 0.000 

AMA1 1.359 0.0025 0.0003 0.0047 0.028 1.54 0.000 1.96 0.000 

GLURP 1.160 0.0002 -0.0023 0.0027 0.883 1.77 0.000 1.37 0.000 

EBA175 -0.306 0.0033 0.0009 0.0058 0.009 1.52 0.000 1.71 0.000 

EBA181 0.685 0.0027 0.0006 0.0047 0.010 1.39 0.000 1.29 0.000 

EBA140 2.124 0.0025 0.0004 0.0045 0.018 0.82 0.000 0.81 0.001 

Rh5 4.746 -0.0001 -0.0020 0.0017 0.878 0.24 0.042 0.70 0.000 

Rh2.2030 1.883 0.0051 0.0031 0.0071 0.000 1.16 0.000 1.46 0.000 

Rh4.2 2.718 0.0014 -0.0005 0.0033 0.140 0.57 0.000 0.94 0.000 

Etramp5.Ag1 4.035 -0.0017 -0.0039 0.0005 0.123 0.30 0.012 1.01 0.000 

Etramp4.Ag2 3.994 0.0014 -0.0003 0.0030 0.111 0.38 0.001 0.45 0.020 

GexP18 4.505 0.0018 0.0001 0.0035 0.042 0.25 0.034 0.88 0.000 

HSP40 3.671 0.0028 0.0011 0.0044 0.001 0.43 0.000 0.71 0.000 

SEA-1 4.265 0.0009 -0.0008 0.0025 0.319 0.33 0.015 0.61 0.005 

Hyp2 4.096 0.0014 -0.0001 0.0028 0.062 0.31 0.002 0.61 0.000 

MSP2.Dd2 1.617 0.0021 -0.0001 0.0043 0.060 1.31 0.000 1.07 0.000 

MSP2.Ch150 0.921 0.0016 -0.0005 0.0037 0.142 1.15 0.000 1.68 0.000 

H103 3.352 0.0018 0.0002 0.0034 0.023 0.60 0.000 0.66 0.001 

SBP1 4.588 0.0012 -0.0007 0.0031 0.215 0.09 0.380 0.63 0.000 

CSP 1.058 0.0019 -0.0003 0.0041 0.090 1.24 0.000 1.06 0.000 
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Table 5.12 Antibody intensity and days since infection (continuous), ages 1-5 years (unadjusted) 

Antigen baseline  
(log MFI) 

∆ log MFI 
time 

95%CI 
lower 

95%CI 
upper 

p-value 
∆ log MFI 

MSP1.19 6.24 0.0059 0.0002 0.0116 0.042 

AMA1 5.40 0.0054 -0.0001 0.0109 0.055 

GLURP 4.51 0.0056 -0.0004 0.0115 0.065 

EBA175 3.61 0.0047 -0.0002 0.0096 0.061 

EBA181 3.97 0.0024 -0.0015 0.0062 0.226 

EBA140 3.90 0.0045 0.0006 0.0085 0.025 

Rh5 5.63 0.0022 -0.0021 0.0066 0.315 

Rh2.2030 4.99 0.0051 0.0012 0.0089 0.010 

Rh4.2 4.30 0.0031 -0.0005 0.0068 0.095 

Etramp5.Ag1 5.38 0.0015 -0.0036 0.0066 0.567 

Etramp4.Ag2 4.71 0.0047 0.0007 0.0086 0.021 

GexP18 5.58 0.0061 0.0021 0.0101 0.003 

HSP40 4.99 0.0036 0.0004 0.0068 0.027 

SEA-1 5.32 0.0009 -0.0025 0.0043 0.599 

Hyp2 4.97 0.0042 0.0011 0.0074 0.009 

MSP2 4.44 0.0029 -0.0010 0.0069 0.149 

MSP2.Ch150 4.21 0.0046 0.0002 0.0090 0.039 

H103 4.88 0.0006 -0.0031 0.0043 0.744 

SBP1 5.13 0.0050 0.0007 0.0093 0.024 

CSP 3.58 0.0029 -0.0014 0.0071 0.184 
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Table 5.13 Antibody intensity and days since infection (continuous), ages 1-5 years (adjusted for village-level PCR prevalence) 

Antigen baseline  
(log MFI) 

∆ log MFI 
time 

95%CI 
lower 

95%CI 
upper 

p-value  
∆ log MFI 

PCR 
prevalence 

p-value 
prevalence 

MSP1.19 4.04 0.0062 0.0006 0.0118 0.030 1.65 0.002 

AMA1 1.68 0.0058 0.0005 0.0112 0.031 2.80 0.000 

GLURP 2.65 0.0059 0.0000 0.0118 0.050 1.40 0.005 

EBA175 1.22 0.0053 0.0006 0.0100 0.028 1.78 0.000 

EBA181 2.25 0.0027 -0.0010 0.0065 0.152 1.29 0.000 

EBA140 3.43 0.0047 0.0007 0.0087 0.020 0.34 0.269 

Rh5 4.31 0.0027 -0.0016 0.0069 0.225 0.97 0.004 

Rh2.2030 2.87 0.0057 0.0019 0.0094 0.003 1.58 0.000 

Rh4.2 3.58 0.0033 -0.0004 0.0069 0.080 0.54 0.145 

Etramp5.Ag1 3.34 0.0012 -0.0037 0.0062 0.626 1.57 0.000 

Etramp4.Ag2 3.88 0.0048 0.0009 0.0088 0.017 0.62 0.100 

GexP18 4.13 0.0065 0.0026 0.0104 0.001 1.08 0.001 

HSP40 3.44 0.0037 0.0006 0.0069 0.020 1.17 0.001 

SEA-1 4.38 0.0010 -0.0024 0.0044 0.558 0.71 0.128 

Hyp2 4.05 0.0044 0.0013 0.0076 0.006 0.69 0.015 

MSP2.Dd2 2.58 0.0031 -0.0008 0.0070 0.117 1.40 0.000 

MSP2.Ch150 1.91 0.0052 0.0010 0.0094 0.015 1.72 0.000 

H103 4.09 0.0008 -0.0029 0.0045 0.668 0.59 0.069 

SBP1 3.74 0.0052 0.0009 0.0094 0.016 1.04 0.000 

CSP 2.15 0.0031 -0.0012 0.0073 0.154 1.07 0.006 
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Table 5.14 Antibody intensity and days since infection (continuous), ages 6-15 years (unadjusted) 

Antigen baseline  
(log MFI) 

∆ log MFI 
time 

95%CI 
lower 

95%CI 
upper 

p-value  
∆ log MFI 

MSP1.19 7.44 0.0011 -0.0024 0.0046 0.541 

AMA1 6.91 0.0021 -0.0013 0.0054 0.227 

GLURP 6.49 -0.0031 -0.0071 0.0008 0.120 

EBA175 4.86 0.0009 -0.0030 0.0047 0.659 

EBA181 5.04 0.0016 -0.0016 0.0047 0.333 

EBA140 4.85 0.0016 -0.0014 0.0045 0.303 

Rh5 6.39 -0.0019 -0.0044 0.0005 0.127 

Rh2.2030 6.13 0.0048 0.0015 0.0082 0.005 

Rh4.2 5.44 -0.0017 -0.0048 0.0013 0.265 

Etramp5.Ag1 6.17 -0.0041 -0.0076 -0.0006 0.021 

Etramp4.Ag2 5.54 -0.0013 -0.0038 0.0012 0.321 

GexP18 6.33 -0.0005 -0.0032 0.0023 0.732 

HSP40 5.58 0.0011 -0.0015 0.0037 0.410 

SEA-1 5.86 0.0002 -0.0026 0.0030 0.898 

Hyp2 5.62 0.0001 -0.0022 0.0024 0.924 

MSP2.Dd2 5.53 0.0009 -0.0027 0.0044 0.636 

MSP2.Ch150 5.40 -0.0009 -0.0040 0.0022 0.588 

H103 5.50 0.0016 -0.0007 0.0039 0.169 

SBP1 5.82 -0.0004 -0.0032 0.0023 0.762 

CSP 5.17 -0.0010 -0.0046 0.0026 0.581 
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Table 5.15 Antibody intensity and days since infection (continuous), ages 6-15 years (adjusted for village-level PCR prevalence) 

Antigen baseline  
(log MFI) 

∆ log MFI 
time 

95%CI 
lower 

95%CI 
upper 

p-value  
∆ log MFI 

PCR 
prevalence 

p-value 
prevalence 

MSP1.19 5.46 0.0012 -0.0023 0.0047 0.499 1.49 0.000 

AMA1 3.84 0.0023 -0.0011 0.0056 0.183 2.32 0.000 

GLURP 4.02 -0.0029 -0.0068 0.0010 0.143 1.86 0.000 

EBA175 1.79 0.0012 -0.0026 0.0051 0.523 2.30 0.000 

EBA181 2.89 0.0018 -0.0013 0.0049 0.256 1.61 0.000 

EBA140 3.55 0.0018 -0.0012 0.0047 0.247 0.97 0.007 

Rh5 5.66 -0.0018 -0.0043 0.0007 0.153 0.54 0.035 

Rh2.2030 3.66 0.0051 0.0017 0.0084 0.003 1.85 0.000 

Rh4.2 4.48 -0.0015 -0.0046 0.0015 0.323 0.71 0.039 

Etramp5.Ag1 5.01 -0.0039 -0.0073 -0.0004 0.029 0.87 0.004 

Etramp4.Ag2 4.91 -0.0012 -0.0037 0.0013 0.360 0.47 0.136 

GexP18 5.11 -0.0003 -0.0030 0.0024 0.819 0.91 0.006 

HSP40 4.76 0.0012 -0.0014 0.0038 0.367 0.61 0.040 

SEA-1 5.09 0.0003 -0.0025 0.0031 0.831 0.58 0.100 

Hyp2 4.82 0.0002 -0.0021 0.0025 0.851 0.59 0.038 

MSP2.Dd2 4.01 0.0010 -0.0025 0.0046 0.564 1.14 0.002 

MSP2.Ch150 2.75 -0.0005 -0.0036 0.0025 0.740 1.98 0.000 

H103 4.61 0.0017 -0.0006 0.0040 0.142 0.66 0.029 

SBP1 4.66 -0.0003 -0.0030 0.0025 0.859 0.86 0.002 

CSP 3.76 -0.0007 -0.0042 0.0029 0.716 1.05 0.002 
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Table 5.16 Linear regression of log MFI and days since infection (categorical) , unadjusted 

Antigen Unadjusted 

baseline 
(log MFI) 

∆ log MFI 
time 

p-value 
time 

MSP1.19 7.88 -0.1175 0.072 

AMA1 7.60 -0.0916 0.259 

GLURP 6.79 -0.0679 0.428 

EBA175 5.41 -0.0408 0.624 

EBA181 5.39 -0.0037 0.957 

EBA140 5.21 -0.0468 0.449 

Rh5 6.56 -0.1085 0.032 

Rh2.2030 6.59 -0.0030 0.966 

Rh4.2 5.28 -0.0208 0.719 

Etramp5.Ag1 6.11 -0.1024 0.038 

Etramp4.Ag2 5.58 -0.0347 0.467 

GexP18 6.54 -0.0712 0.152 

HSP40 5.87 -0.0524 0.270 

SEA 5.93 -0.0372 0.498 

Hyp2 5.68 -0.0226 0.593 

MSP2.Dd2 6.32 -0.1230 0.064 

MSP2.Ch150 5.64 -0.0275 0.686 

H103 5.64 -0.0134 0.792 

SBP1 6.03 -0.0909 0.039 

CSP 5.07 0.0043 0.948 
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Table 5.17 Linear regression of log MFI and days since infection (categorical), adjusted for age and village -level PCR prevalence 

Antigen 
 

∆ log MFI 
time 

Age 6-15 years Age >15 years PCR prevalence  
> 10% 

baseline 
(log MFI) 

coef p-value coef p-value coef p-value coef p-value 

MSP1.19 5.22 -0.0603 0.317 0.47 0.006 1.19 0.000 1.43 0.000 

AMA1 2.97 -0.0065 0.919 0.95 0.000 2.88 0.000 2.28 0.000 

GLURP 2.81 -0.0061 0.929 0.95 0.000 3.26 0.000 1.76 0.000 

EBA175 1.36 0.0268 0.692 0.73 0.000 2.86 0.000 1.96 0.000 

EBA181 1.98 0.0516 0.343 0.82 0.000 2.58 0.000 1.54 0.000 

EBA140 3.18 -0.0105 0.856 0.57 0.001 1.39 0.000 0.92 0.000 

Rh5 5.14 -0.0741 0.132 0.18 0.207 0.37 0.012 0.85 0.000 

Rh2.2030 2.91 0.0675 0.255 0.99 0.000 2.24 0.000 1.74 0.000 

Rh4.2 3.16 0.0251 0.645 0.59 0.000 1.00 0.000 1.05 0.000 

Etramp5.Ag1 3.89 -0.0478 0.285 0.13 0.330 0.50 0.000 1.39 0.000 

Etramp4.Ag2 4.35 -0.0100 0.829 0.17 0.190 0.61 0.000 0.66 0.000 

GexP18 4.87 -0.0291 0.538 0.03 0.800 0.27 0.058 1.09 0.000 

HSP40 4.26 -0.0189 0.673 0.19 0.139 0.75 0.000 0.89 0.000 

SEA 4.51 -0.0043 0.937 0.35 0.025 0.54 0.001 0.75 0.000 

Hyp2 4.36 0.0074 0.856 0.17 0.145 0.47 0.000 0.75 0.000 

MSP2.Dd2 3.28 -0.0748 0.169 0.72 0.000 2.42 0.000 1.35 0.000 

MSP2.Ch150 1.82 0.0448 0.404 0.58 0.000 2.18 0.000 2.00 0.000 

H103 3.77 0.0228 0.631 0.59 0.000 1.17 0.000 0.85 0.000 

SBP1 4.75 -0.0567 0.183 0.13 0.305 0.13 0.303 0.81 0.000 

CSP 1.95 0.0564 0.306 1.14 0.000 2.46 0.000 1.26 0.000 
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Table 5.18 Cox proportional hazard rates by antigen and age  

Hazard rate (95%CI) 
 

All ages 1-5 years 6-15 years >15 years 

MSP1.19 0.008 (0.007 - 0.010) 0.011 (0.008 - 0.015) 0.008 (0.006 - 0.012) 0.007 (0.004 - 0.010) 

AMA1 0.006 (0.005 - 0.007) 0.011 (0.008 - 0.015) 0.007 (0.004 - 0.010) 0.003 (0.002 - 0.005) 

GLURP 0.005 (0.004 - 0.006) 0.001 (0.007 - 0.014) 0.007 (0.004 - 0.010) 0.002 (0.001 - 0.003) 

EBA175 0.008 (0.007 - 0.010) 0.013 (0.010 - 0.018) 0.010 (0.007 - 0.014) 0.005 (0.003 - 0.007) 

EBA181 0.009 (0.008 - 0.011) 0.014 (0.011 - 0.019) 0.011 (0.008 - 0.016) 0.005 (0.003 - 0.008) 

EBA140 0.012 (0.011 - 0.014) 0.015 (0.011 - 0.020) 0.012 (0.009 - 0.018) 0.011 (0.007 - 0.016) 

Rh5 0.013 (0.011 - 0.014) 0.014 (0.011 - 0.019) 0.013 (0.009 - 0.018) 0.011 (0.008 - 0.017) 

Rh2.2030 0.008 (0.007 - 0.009) 0.013 (0.009 - 0.017) 0.008 (0.006 - 0.012) 0.005 (0.003 - 0.008) 

Rh4.2 0.013 (0.011 - 0.015) 0.015 (0.011 - 0.020) 0.013 (0.009 - 0.019) 0.011 (0.008 - 0.017) 

Etramp5.Ag1 0.008 (0.007 - 0.009) 0.009 (0.007 - 0.013) 0.008 (0.005 - 0.012) 0.007 (0.005 - 0.011) 

Etramp4.Ag2 0.013 (0.011 - 0.015) 0.014 (0.010 - 0.018) 0.012 (0.009 - 0.018) 0.012 (0.008 - 0.018) 

GexP18 0.007 (0.006 - 0.009) 0.009 (0.007 - 0.012) 0.007 (0.005 - 0.011) 0.006 (0.004 - 0.010) 

HSP40 0.009 (0.007 - 0.010) 0.012 (0.009 - 0.016) 0.009 (0.006 - 0.013) 0.007 (0.005 - 0.011) 

SEA-1 0.012 (0.011 - 0.014) 0.014 (0.011 - 0.019) 0.012 (0.008 - 0.017) 0.012 (0.008 - 0.017) 

Hyp2 0.011 (0.010 - 0.013) 0.014 (0.010 - 0.018) 0.011 (0.007 - 0.015) 0.010 (0.007 - 0.014) 

MSP2.Dd2 0.009 (0.007 - 0.010) 0.013 (0.010 - 0.017) 0.010 (0.007 - 0.015) 0.005 (0.003 - 0.008) 

MSP2.Ch150 0.006 (0.005 - 0.007) 0.012 (0.009 - 0.016) 0.006 (0.004 - 0.009) 0.003 (0.002 - 0.004) 

H103 0.013 (0.012 - 0.015) 0.015 (0.011 - 0.020) 0.013 (0.009 - 0.019) 0.013 (0.009 - 0.018) 

SBP1 0.013 (0.011 - 0.015) 0.015 (0.011 - 0.019) 0.012 (0.009 - 0.018) 0.013 (0.009 - 0.019) 

CSP 0.007 (0.006 - 0.008) 0.014 (0.010 - 0.018) 0.008 (0.006 - 0.012) 0.002 (0.002 - 0.004) 
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Figure 5.31 Random forest sensitivity analysis, number of predictors and out-of-bag prediction error 
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Figure 5.32 Mean MFI by days since infection and age  
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Table 5.19 Cross-validated AUC values predicting infection based on Ab response to a single antigen 

AUCs based on predictive model including current RDT/PCR test result shown on left, and excluding RDT/PCR 

test results shown on right. 

AUC (single antigen) Excluding RDT/PCR 

Top 5 
antigens 

Median AUC (95%CI) Top 5 antigens Median AUC (95%CI) 

<30 days ago 

MSP1.19 0.82 (0.77-0.86) Etramp5.Ag1 0.78 (0.71-0.84) 

Etramp5.Ag1 0.82 (0.77-0.88) AMA1 0.78 (0.73-0.82) 

AMA1 0.81 (0.76-0.87) MSP1.19 0.77 (0.72-0.84) 

MSP2.Dd2 0.81 (0.75-0.86) GLURP 0.77 (0.69-0.84) 

MSP2.Ch150 0.81 (0.76-0.85) Rh2.2030 0.76 (0.71-0.80) 

<90 days ago 

AMA1 0.80 (0.74-0.83) AMA1 0.76 (0.71-0.79) 

MSP1.19 0.78 (0.74-0.83) MSP1.19 0.74 (0.68-0.80) 

Etramp5.Ag1 0.77 (0.73-0.82) Etramp5.Ag1 0.73 (0.68-0.79) 

GLURP 0.77 (0.71-0.80) GLURP 0.72 (0.69-0.77) 

Rh2.2030 0.76 (0.73-0.81) Rh2.2030 0.72 (0.67-0.77) 

<150 days ago 

MSP1.19 0.77 (0.71-0.81) AMA1 0.72 (0.67-0.77) 

AMA1 0.76 (0.73-0.80) MSP1.19 0.71 (0.68-0.76) 

Etramp5.Ag1 0.75 (0.71-0.78) Etramp5.Ag1 0.70 (0.65-0.75) 

Rh2.2030 0.74 (0.69-0.78) GLURP 0.70 (0.65-0.75) 

GLURP 0.74 (0.67-0.78) Rh2.2030 0.69 (0.65-0.74) 
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 Measuring seasonal and geographical variation 
in malaria transmission in The Gambia with novel 
serological biomarkers 
 

In Chapter 5, antibody responses a panel of P.falciparum antigens were investigated to identify 

the strongest biomarkers for recent malaria infection. These were validated using individual-level 

longitudinal data. This chapter describes antibody responses to a subset of these antigens at the 

cluster-level by comparing areas of low and high transmission intensity and between dry and wet 

season in four villages in The Gambia to assess how serological markers can be used to measure 

short-term changes in transmission. 
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6.1 Background 
 

For decades, the geographical size and pronounced seasonality of The Gambia has led to 

numerous studies on the heterogeneity of malaria. The country is characterised by marked 

variations in clinical incidence, parasite prevalence, and parasitaemia, even over small distances 

with similar infection risk. Studies as early as the 1980s observed local-scale variation in malaria 

infection within 2 kilometres of mosquito breeding sites that are unexplained by bed-net usage 

or entomological inoculation rate (EIR).136 At that time, researchers hypothesised that this was 

due to variations in protective immunity, leading to reductions in parasite prevalence in children 

experiencing the more intense malaria challenge.  

This epidemiological landscape has also enabled pivotal studies evaluating the effectiveness of 

cluster-level interventions to reduce malaria transmission. Amongst the first community-based 

studies in The Gambia were randomised controlled trials to determine the efficacy of insecticide 

treated bed nets (ITNs). Significant reductions were observed in villages where all nets in a village 

were treated (as opposed to individual nets), suggesting a potential herd effect for individuals 

sleeping in proximity to households using ITNs.359–361 Larger-scale studies following this also 

included chemoprophylaxis for children under 6 years of age together with ITNs and found 

significant reductions in clinical incidence in children.362 These findings led to WHO support for 

additional multi-country studies in Africa confirming the efficacy of ITNs in reducing child 

mortality as well as WHO support in The Gambia for free national provision of insecticide.363 Bed-

net usage across the country remains high today (71.5% ownership of LLINs in 2013).220 In 2012, 

seasonal malaria chemoprevention (SMC) in children under age five was recommended by the 

WHO for use in the Sahel and sub-Sahel where malaria transmission is seasonal and sufficiently 

intense.  

Today, micro-epidemiological variations in malaria transmission still remain. These are even more 

relevant now as the country aims to achieve elimination for the monitoring and evaluation of 

community-based interventions.364 The Malaria Transmission Dynamics study conducted in 2013 

(and described in Chapter 5) has observed ongoing variation across the country in EIR, clinical 

incidence, and Pf infection measured by PCR.220 The latter of these also had varying proportions 

of patent, sub-patent, and gametocyte-positive infections (Figure 6.1 and Table 6.1).  
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Table 6.1 Malaria Transmission Dynamics study, clinical and infection incidence June - December 2013 

A. Clinical incidence by month 

 

B. P. falciparum infection 

 

 

Figure 6.1 Malaria Transmission Dynamics study, overall malaria prevalence and incidence by month  

 

 

Serological surveys based on MSP119 in Farafenni on the North Bank Region of The Gambia have 

shown rapid declines in transmission between 1988 and 2011, correlating with declines in under-

5 parasite prevalence and all-cause mortality over the same period.260 In 2012, school-based 

serological surveys based on MSP119 also showed countrywide variation in transmission, with the 

highest levels of sero-prevalence in the Upper River Region compared to the West Coast Region. 
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This study also found a strong association between parasite and sero-prevalence (sero-positive 

children had a 3-fold increased odds of parasitaemia detectable by microscopy).219  

Using an expanded panel of serological markers of malaria infection - selected based on their 

predictive power in Chapter 5b - this chapter aims to evaluate differences in antibody responses 

at the cluster-level between regions of low transmission intensity (West Coast Region) and high 

transmission intensity (Upper River Region). It also assesses short-term changes in antibody 

response within the same region before and after malaria transmission season (July vs. 

December). An additional cross-sectional survey in April for the Upper River Region is also 

included to assess whether there are significant declines in antibody responses several months 

after transmission season. 

6.2 Methods 
 

Laboratory procedures and data normalisation 

Human plasma from whole blood samples were prepared and tested on the Luminex assay 

platform using the procedures described in Chapter 5a. Data were normalised to adjust for 

between plate variation using a loess normalisation method295 and sero-positivity defined 

according to methods described in Chapter 5a. Analyses of Ab intensity are based on either 

median fluorescence intensity (MFI) as a measure of continuous Ab response or sero-positivity 

as a binary Ab response.  

Statistical analyses 

Antigen selection 

A total of 20 antigens were included in the Luminex multiplex assay for sample processing, but 

data from only a subset of the most informative markers are included here for brevity. Antigen 

selection was based on the results summarised in Chapter 5b and includes two markers of long-

lived antibody response (MSP119 and AMA1) and five markers of recent infection that 

demonstrated the highest frequencies as predictors of malaria infection in the last six months 

across all age categories, “time since infection” windows and infection severity (Etramp5.Ag1, 

Rh2.2030, EBA175, GexP18, and HSP40). 

Sero-prevalence in children 

Sero-prevalence in children was estimated for three age ranges - 1-15 years, 2-10 years, and 1-5 

years - and sero-positivity values were assigned according to thresholds defined in Chapter 5a.  

While it has been suggested that sero-prevalence in children age 1-5 years is most correlated 

with parasite prevalence260, estimates of clinical incidence and parasite prevalence are routinely 

standardised to ages 2-10 years247,258,365 because it has historically been used to classify regions 
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into hypoendemic (<10%), mesoendemic (10–50%), and hyperendemic (50–75%) transmission 

categories366.  

Sero-prevalence based on children aged 1-15 may have most relevance for school-based 

convenience surveys219,367. As discussed in Chapter 1 and 5b, it also reflects the age range where 

individuals may not have fully acquired long lived antibodies to most malaria antigens. Therefore, 

measuring antibodies in these ages is more likely to correlate with other measures of malaria 

incidence.  

Seroconversion rate 

Age-adjusted sero-conversion rates (using Reverse Catalytic Model 1 described in Chapter 4) 

were estimated for antigens associated with long-lived antibody response (MSP119, AMA1). A 

fixed sero-reversion rate for each antigen was used across all clusters, which was estimated based 

on fitting a single sero-catalytic model to all individuals in the sample and setting sero-reversion 

rate to this value in all subsequent cluster-specific model fits. Models were fit for each antigen 

and SCRs estimated separately for each cluster and survey month. 

Antibody acquisition 

The reverse catalytic model is most suitable for long-lived antibody responses due to assumptions 

about cumulative sero-prevalence by age. However, this is not an accurate assumption for 

antigens eliciting short-lived antibody response and SCR models are not appropriate. Therefore, 

for short-term markers, population-level serological responses can be characterised with Ab 

acquisition models, which use antibody levels as a continuous variable, based on mean MFI as a 

function of age, rather than dichotomising individuals into sero-positive and sero-negative 

status.124 An Ab acquisition model that assumes constant transmission across all ages can be 

described as: 

𝐴(𝑎) =  𝛼0 + 
𝛼

𝑟
 (1 − 𝑒−𝑟∗𝑎)     (6.1) 

Where 𝐴(𝑎) is the geometric mean MFI at age 𝑎, 𝛼0 is the baseline antibody intensity, 𝛼 is the 

rate of Ab acquisition, and 𝑟 is the rate of Ab decay in a given population. The model is derived 

from the differential equation: 

𝑑𝐴

𝑑𝑡
=  𝛼(𝑎) − 𝑟𝐴     (6.2) 

Acquisition and decay rates are estimated by assuming that antibody intensity at a given age, 

𝑌(𝑎), is log-normally distributed: 

𝑌(𝑎)| 𝛼0, 𝛼, 𝑟, 𝑎 ~ LogNormal ( log(𝐴(𝑎)),  𝜎2 )   (6.3) 
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Similar to reverse catalytic models used to estimate sero-conversion and sero-reversion rates, Ab 

acquisition models can be extended to estimate different Ab acquisition rates depending on age, 

which can be described as: 

𝐴(𝑎) =  {
𝛼0 +  

𝛼2

𝑟
 (1 − 𝑒−𝑟∗𝑎𝑐)                                                            ∶ 𝑎 ≤  𝑎𝑐

𝛼0 +  
𝛼2

𝑟
 (1 − 𝑒−𝑟∗𝑎𝑐) + 

𝛼1

𝑟
 (1 − 𝑒−𝑟∗(𝑎− 𝑎𝑐))𝑒−𝑟∗𝑎𝑐   ∶ 𝑎 >  𝑎𝑐

          (6.4) 

Where 𝑎𝑐 is the age at which there is a change in Ab acquisition rate, 𝛼2 is the Ab acquisition rate 

for individuals aged less than or equal to 𝑎𝑐, 𝛼1 is the Ab acquisition rate for individuals aged 

greater than 𝑎𝑐, and Ab decay rate 𝑟 is assumed to be constant across all ages. The best fit model 

for each antigen and study arm or intervention was chosen based on deviance information 

criterion (DIC) values. 

Some short-term markers (Etramp5.Ag1, GexP19, and HSP40) had very small Ab decay rates with 

respect age, and models excluding this parameter fit the data better (as assessed by DIC values).  

The simplified model can be expressed as follows: 

𝐴(𝑎) =  𝛼0 +  𝛼 ∗ 𝑎     (6.5) 

 

𝐴(𝑎) =  {
𝛼0 +   𝛼2 ∗ 𝑎𝑐                                    ∶ 𝑎 ≤  𝑎𝑐

𝛼0 +  𝛼2 ∗ 𝑎𝑐 +  𝛼1(𝑎 −  𝑎𝑐)       ∶ 𝑎 >  𝑎𝑐
                         (6.6) 

All models were fit using Bayesian Monte Carlo Markov Chain (MCMC) estimation with the rjags 

package in R version 3.3.2.  

Area under the Ab acquisition curve (AUC) values109 were calculated based on the Ab acquisition 

model fit for each cluster and survey month, with 95% credible intervals based on the distribution 

of estimated Ab intensity for covariate values sampled in the MCMC. This gives an estimate of 

the cumulative antibody intensity across all ages in the population. (Note: this is different to the 

AUC values computed in Chapter 5b, which refers to the Area Under the Receiver Operating 

Characteristic (ROC) curve to define the sensitivity and specificity of a diagnostic test).  

 

6.3 Results 
 

Sero-prevalence in children by geographical region and transmission season 

Changes in sero-prevalence between geographical region and transmission season differed by 

antigen and age range (Figure 6.2 and Table 6.2). Overall, differences across most antigens were 

most pronounced in children under age 15 and less apparent in children aged 2-10 years. In 
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children under 5, small differences are still observed between region and season, but p-values 

suggest that none of these differences are statistically significant. 

In the West Coast Region, seasonal differences in under-15 sero-prevalence observed for MSP119, 

with 2.0% (95%CI 1.0 – 3.1) prevalence in July and 4.9% (95%CI 3.4 – 6.4) in December. 

Differences were also seen for Etramp5.Ag1 – seroprevalence was 3.5% (95%CI 2.2 – 4.9) in July 

compared to 8.2% (95%CI 6.3 – 10.1) in December. Statistical evidence for differences in sero-

prevalence for all other antigens in this age range was weak. On the other hand, sero-prevalence 

in ages 2-10 between July and December on the West Coast showed no statistically significant 

differences.  

In the Upper River Region, all antigens showed differences in under-15 sero-prevalence between 

July and December. Between December 2013 and April 2014, there were also slight decreases in 

under-15 sero-prevalence for MSP119 (12.8% 95%CI 10.8 – 14.9 vs. 9.0% 95%CI 7.4 – 10.5), AMA1 

(22.6% 95%CI 29.1 – 25.2 vs. 19.5% 95%CI 17.3 – 21.6), and Etramp5.Ag1 (18.7% 95%CI 16.3 – 

21.1 vs. 14.6% 95%CI 12.7 – 16.5). However, none of these decreases were as large as the change 

between July and December 2013.  
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Figure 6.2 Sero-prevalence by antigen, geographical region, and transmission season  

A. Ages < 15 years 

 

 

B. Ages 2-10 years 

 

C. Ages < 5  years 
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Table 6.2 Sero-prevalence by antigen, geographical region, and transmission season 

A. Ages < 15 years (95%CI) 
 

MSP119 AMA1 Etramp5.Ag1 Rh2.2030 EBA175 GexP18 HSP40 

West Coast Region 
       

July 2013 (n=314) 2.0% (1.0 - 3.1) 4.1% (2.7 - 5.5) 3.5% (2.2 - 4.9) 1.7% (0.8 - 2.6) 1.9% (0.9 - 2.8) 8.0% (6.1 - 9.9) 4.5% (3.0 - 5.9) 

Dec 2013 (n=317) 4.9% (3.4 - 6.4) 4.2% (2.8 - 5.6) 8.2% (6.3 - 10.1) 2.1% (1.1 - 3.1) 1.1% (0.4 - 1.9) 9.9% (7.8 - 12.0) 4.8% (3.3 - 6.2) 

Upper River Region 
       

July 2013 (n=437) 3.3% (2.2 - 4.5) 14.4% (12.2 - 16.6) 5.5% (4.1 - 6.9) 6.8% (5.2 - 8.4) 5.4% (4.0 - 6.8) 16.2% (13.9 - 18.5) 7.3% (5.7 - 8.9) 

Dec 2013 (n=390) 12.8% (10.8 - 14.9) 22.6% (20.1 - 25.2) 18.7% (16.3 - 21.1) 17.2% (14.9 - 19.6) 10.8% (8.9 - 12.7) 22.6% (20.1 - 25.2) 14.7% (12.5 - 16.9) 

Apr 2014 (n=504) 9.0% (7.4 - 10.5) 19.4% (17.3 - 21.6) 14.6% (12.7 - 16.5) 14.5% (12.5 - 16.4) 9.5% (7.9 - 11.1) 21.5% (19.3 - 23.7) 14.9% (13.0 - 16.9) 

  

B. Ages 2-10 years (95%CI) 
 

MSP119 AMA1 Etramp5.Ag1 Rh2.2030 EBA175 GexP18 HSP40 

West Coast Region 
       

July 2013 (n=207) 1.3% (0.1 - 2.5) 1.9% (0.4 - 3.3) 1.9% (0.4 - 3.3) 0.6% (0.0 - 1.4) 0.7% (0.0 - 1.7) 4.8% (2.5 - 7.1) 2.4% (0.8 - 4.1) 

Dec 2013 (n=197) 3.0% (1.1 - 4.9) 1.5% (0.2 - 2.9) 5.1% (2.7 - 7.6) 0.4% (0.0 - 1.1) 0.4% (0.0 - 1.1) 4.8% (2.4 - 7.1) 2.3% (0.6 - 3.9) 

Upper River Region 
       

July 2013 (n=275) 1.8% (0.5 - 3.1) 6.3% (4.0- 8.6) 3.1% (1.4 - 4.7) 3.5% (1.7 - 5.2) 2.6% (1.1 - 4.1) 8.9% (6.2 - 11.6) 3.0% (1.3 - 4.6) 

Dec 2013 (n=241) 8.4% (5.6 – 11.1) 12.7% (9.4 - 16.0) 12.8% (9.5 - 16.1) 9.7% (6.7 - 12.6) 6.0% (3.7 - 8.4) 13.8% (10.3 - 17.7) 9.2% (6.3 - 12.0) 

Apr 2014 (n=334) 6.0% (4.0 - 7.9) 11.7% (9.0 - 14.3) 9.8% (7.4 - 12.3) 8.9% (6.5 – 11.2) 5.6% (3.7 - 7.5) 17.0% (13.6 - 17.4) 10.2% (7.7 - 12.7) 

 

C. Ages <5 years (95%CI) 
 

MSP119 AMA1 Etramp5.Ag1 Rh2.2030 EBA175 GexP18 HSP40 

West Coast Region 
       

July 2013 (n=138) 0.9% (0.0 - 2.3) 0.9% (0.0 - 2.3) 0.9% (0.0 - 2.3) 0.4% (0.0 - 1.2) 0.0% (0.0 - 0.0) 4.3% (1.4 - 7.2) 1.7% (0.0 - 3.5) 

Dec 2013 (n=131) 1.0% (0.0 - 2.4) 0.2% (0.0 - 0.8) 1.9% (0.0 - 3.9) 0.2% (0.0 - 0.8) 0.2% (0.0 – 0.8) 4.6% (1.5 - 7.7) 1.0% (0.0 - 2.4) 

Upper River Region 
       

July 2013 (n=193) 0.9% (0.0 - 2.1) 2.8% (0.8- 4.9) 1.5% (0.0 - 3.0) 1.5% (0.0 – 3.0) 1.2% (0.0 - 2.5) 8.3% (5.0 - 11.7) 2.2% (0.4 - 4.0) 

Dec 2013 (n=175) 4.3% (1.7 – 6.8) 6.5% (3.4 - 9.6) 6.3% (3.3 - 9.4) 4.3% (1.7 – 6.8) 2.7% (0.7 – 4.7) 8.7% (5.2 - 12.3) 5.7% (2.8 - 8.6) 

Apr 2014 (n=223) 2.6% (0.8 - 4.3) 4.1% (1.9 – 6.4) 5.0% (2.5 - 7.4) 2.8% (0.9 – 4.6) 2.2% (0.5 - 3.8) 8.7% (5.6 - 11.9) 3.8% (1.6 - 5.9) 
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Sero-conversion rate between geographical region and transmission season.  

Differences in SCR between geographical region and transmission season varied by antigen (Table 

6.3, Figure 6.3). In the West Coast Region, changes in antibody responses between transmission 

seasons were larger for MSP119 (difference in SCR between July and December was 0.0147) 

compared to AMA1 (difference in SCR of 0.0007), though with weak statistical evidence for 

difference. In the Upper River, differences in antibody response between season was similar for 

both antigens but both were larger than seasonal differences observed on the West Coast. 

Change in MSP119 SCR between July and December was 0.0405 and 0.0301 for AMA1 SCR. 

Additionally, decreases in antibody responses between December 2013 and April 2014 were 

observed for both antigens (MSP119SCR declined by 0.0213 and AMA1 SCR by 0.0138), but p-

values do not suggest these differences are statistically significant. 

In the dry season (July), MSP119SCR between the West Coast Region and Upper River Region were 

0.0067 (95%CI 0.0037 – 0.0123) and 0.0130 (95%CI 0.0088 – 0.0194) respectively. However, just 

after peak malaria season, this difference was more pronounced, with MSP119 SCR 0.0214 (95%CI 

0.0087 – 0.0530) in the West Coast compared to 0.0535 (95%CI 0.0344 – 0.0831) in the Upper 

River. On the other hand, AMA1 SCR differed between regions in both the dry and wet season. 

In July, AMA1 SCR for the West Coast Region was 0.0159 (95%CI 0.0080 – 0.0239) and 0.0614 

(95%CI 0.0509 – 0.0740) in the Upper River Region. This difference was more pronounced in the 

December, where AMA1 SCR in West Coast was 0.0166 (95%CI 0.0124 – 0.0224) and 0.0915 

(95%CI 0.0738 – 0.1135) in Upper River.  

 

Table 6.3 Sero-conversion rates for MSP119and AMA1 by transmission season and geographical region  

 MSP119 SCR (95%CI) AMA1 SCR (95%CI) 

 SCR overall SCR overall / SCR children* SCR adults 

West Coast Region    

     July 2013 0.0067 (0.0037 – 0.0123) 0.0159 (0.0080 – 0.0239) 0.0877 (0.0438 – 0.1315) 

     December 2013 0.0214 (0.0087 – 0.0530) 0.0166 (0.0124 – 0.0224)  

Upper River Region    

     July 2013 0.0130 (0.0088 – 0.0194) 0.0614 (0.0509 – 0.0740)  

     December 2013 0.0535 (0.0344 – 0.0831) 0.0915 (0.0738 – 0.1135)  

     April 2014 0.0322 (0.0241 – 0.0431) 0.0777 (0.0389 – 0.1166) 0.0815 (0.0408 – 0.1223) 

*For clusters with an age-dependent change in sero-conversion rate for AMA1, SCR for younger ages is listed on 

left and older ages listed on right. No change in transmission for MSP119 was significant for any clusters or 

month. Therefore, all MSP119 SCRs are listed are for all ages. 
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Figure 6.3 MSP119 and AMA1 sero-conversion rates by transmission season and geographical region  
Cluster level sero-conversion rates are compared between a) West Coast Region July vs. December 2013 (low 
endemicity pre- vs. post-transmission season) b) Upper River Region South July vs. December 2013 (moderate 
endemicity pre- vs. post-transmission season) c) West Coast Region vs. Upper River Region July 2013 (low vs. 
moderate endemicity pre-transmission season) and d) West Coast Region vs. Upper River Region December 2013 
(low vs. moderate endemicity post-transmission season). 
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Age-adjusted antibody acquisition by geographical region and transmission season 

Based on antigens associated with long-lived antibody responses (MSP119 and AMA1), AUC values 

of antibody acquisition (age-adjusted mean MFI) across all ages did not show statistically strong 

differences between region or season (Tables 6.4 and 6.5, Figures 6.4A-B, 6.5A-B and 6.6A-D). 

However, in children under 15, AUC values for MSP119 showed differences between the West 

Coast Region and the Upper River Region, but only in December at the end of peak malaria season 

(p = 0.008) (Table 6.4, Figure 6.6A-B). AUC values for AMA1 showed differences between 

geographical regions in both the dry season (p = 0.069) and peak season (p<0.001) (Table 6.5, 

Figure 6.6C-D). However, no differences AUC values were observed in children under 15 between 

seasons in either region (Tables 6.4 and 6.5, Figures 6.4A-B and 6.5A-B). 

Based on antigens associated with shorter-lived antibody responses, nearly all showed 

differences in AUC values in December between regions across all age ranges (Figure 6.6E-N, 

Tables 6.6 – 6.10). The exceptions were Etramp5.Ag1 (Table 6.6) and GexP18 (Table 6.9), where 

differences between regions were only observed in children under 15 (p=0.009 and p=0.004 

respectively), but not across all ages (p = 0.359 and 0=0.098 respectively).  

However, some of these antigens did show differences in AUC values between seasons or 

between regions in the dry season. In the Upper River Region, Etramp5.Ag1 showed differences 

in antibody acquisition between July and December in children under 15 (p=0.001) (Figure 6.5C). 

While GexP18 did not show differences between seasons, there were differences between 

regions in the dry season (p=0.029) (Figure 6.6L). Additionally, AUC values based on antibody 

acquisition to HSP40 showed seasonal differences in the West Coast Region in all ages (p=0.055) 

and in children under 15 (p=0.002) (Figure 6.4G, Table 6.10).  

Antibody acquisition to Rh2.2030 and EBA175 did not show statistically strong seasonal 

differences for either region nor did it show differences between the West Coast and Upper River 

Regions in the dry season (Tables 6.7 and 6.8). Between December 2013 and April 2014, there 

did not appear to be any changes in antibody acquisition to any antigens, regardless of whether 

there were changes between July and December 2013 for the same antigen (Figure 6.7, Tables 

6.5 – 6.10). 
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Figure 6.4 Antibody acquisition, West Coast Region July - December 2013 
Ab acquisition for the West Coast Region (Besse and Ndemban) between July 2013 (pre-transmission season) and 
December 2013 (post-transmission season). P-values for difference in AUC values between seasons are shown 
for all ages and for under-15 year olds. 
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Figure 6.5 Antibody acquisition, Upper River Region South July - December 2013 
Ab acquisition for the Upper River Region South (Madina Samako and Njaiyal) between July 2013 (pre-
transmission season) and December 2013 (post-transmission season). P-values for difference in AUC values 
between seasons are shown for all ages and for under-15 year olds. 
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Figure 6.6 Antibody acquisition, West Coast Region cs. Upper River Region July - December 2013 
Ab acquisition for West Coast Region (WCR) vs. Upper River Region South (URR) between July 2013 (left) and 
December 2013 (right). P-values for difference in AUC values between seasons are shown for all ages and for 
under-15 year olds. 
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Figure 6.6 continued 
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Figure 6.7 Antibody acquisition, Upper River Region before and after peak transmission season  
Before peak transmission season (July 2013 in black), immediately after transmission season (December 2013 in 
blue), and several months after peak transmission season (April 2014 in green). 
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Table 6.4 MSP119 AUC values by geographical region and transmission season  

All ages AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 88,717 (57,837 – 176,435) -- -- -- -- 

Dec 2013 65,739 (35,931 – 121,350) 0.976 -- -- -- 

Upper River Region (URR)     

July 2013 110,271 (62,775 – 244,436) -- -- 0.995 -- 

Dec 2013 183,300 (89,459 – 326,546) -- 0.908 -- 0.515 

Apr 2014 243,843 (176,640 – 415,626) -- -- -- -- 

 

Ages <15 
years only 

AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 5,741 (5,146 – 7,275) -- -- -- -- 

Dec 2013 5,580 (4,719 – 7,089) 0.998 -- -- -- 

Upper River Region (URR)     

July 2013 8,319 (6,790 – 11,191) -- -- 0.999 -- 

Dec 2013 19,412 (14,357 – 25,252) -- 0.555 -- 0.008 

Apr 2014 20,821 (19,088 – 28,570) -- -- -- -- 

 

Table 6.5 AMA1 AUC values by geographical region and transmission season  

All ages AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 219,039 (145,845 – 289,917) -- -- -- -- 

Dec 2013 169,068 (122,449 – 224,763) 0.999 -- -- -- 

Upper River Region (URR)     

July 2013 336,028 (197,768 – 493,597) -- -- 0.630 -- 

Dec 2013 436,288 (283,089 – 762,328) -- 0.913 -- 0.501 

Apr 2014 508,273 (266,363 – 740,284) -- -- -- -- 

 

Ages <15 
years only 

AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 7,006 (4,879 – 12,464) -- -- -- -- 

Dec 2013 6,219 (4,142 – 11,835) 0.998 -- -- -- 

Upper River Region (URR)     

July 2013 17,167 (12,153 – 23,123) -- -- 0.069 -- 

Dec 2013 27,228 (17,878 – 46,864) -- 0.655 -- <0.001 

Apr 2014 25,364 (15,162 – 34,686) -- -- -- -- 
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Table 6.6 Etramp5.Ag1 AUC values by geographical region and transmission season  

All ages AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 12,721 (11,196 – 15,075) -- -- -- -- 

Dec 2013 13,254 (10,809 – 17,351) 0.823 -- -- -- 

Upper River Region (URR)     

July 2013 15,081 (12,916 – 17,666) -- -- 0.998 -- 

Dec 2013 26,377 (20,400 – 35,645) -- 0.09 -- 0.359 

Apr 2014 28,769 (24,524 – 33,842) -- -- -- -- 

 

Ages <15 years 
only 

AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 1,728 (1,526 – 1,960) -- -- -- -- 

Dec 2013 1,673 (1,382 – 2,013) 0.984 -- -- -- 

Upper River Region (URR)     

July 2013 1,785 (1,595 – 2,011) -- -- 0.999 -- 

Dec 2013 3,391 (2,810 – 4,123) -- 0.001 -- 0.009 

Apr 2014 3,190 (3,508 – 4,406) -- -- -- -- 

 

Table 6.7 Rh2.2030 AUC values by geographical region and transmission season 

All ages AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 54,819 (34,196 – 81,653) -- -- -- -- 

Dec 2013 37,413 (24,815 – 57,649) 0.928 -- -- -- 

Upper River Region (URR)     

July 2013 84,691 (50,407 – 144,936) -- -- 0.853 -- 

Dec 2013 183,443 (82,844 – 450,577) -- 0.768 -- 0.039 

Apr 2014 153,004 (105,268 – 285,397) -- -- -- -- 

 

Ages <15 
years only 

AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 2,845 (2,138 – 3,668) -- -- -- -- 

Dec 2013 1,838 (1,404 – 2,442) 0.654 -- -- -- 

Upper River Region (URR)     

July 2013 5,434 (3,536 – 8,021) -- -- 0.541 -- 

Dec 2013 13,895 (7,381 – 24,865) -- 0.395 -- 0.006 

Apr 2014 12,233 (7,724 – 21,278) -- -- -- -- 
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Table 6.8 EBA175 AUC values by geographical region and transmission season 

All ages AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 28,955 (17,123 – 48,401) -- -- -- -- 

Dec 2013 18,718 (13,458 – 26,138) 0.665 -- -- -- 

Upper River Region (URR)     

July 2013 47,335 (32,625 – 82,388) -- -- 0.146 -- 

Dec 2013 79,607 (36,561 – 158,344) -- 0.325 -- 0.001 

Apr 2014 99,205 (79,983 – 124,841) -- -- -- -- 

 

Ages <15 
years only 

AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 663 (516 – 888) -- -- -- -- 

Dec 2013 512 (450 – 613) 0.999 -- -- -- 

Upper River Region (URR)     

July 2013 1,335 (915 – 2,415) -- -- 0.720 -- 

Dec 2013 2,141 (1,538 – 3,035) -- 0.996 -- 0.013 

Apr 2014 2,691 (2,287 – 3,319) -- -- -- -- 

 

Table 6.9 GexP18 AUC values by geographical region and transmission season 

All ages AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 27,830 (25,627 – 31,218) -- -- -- -- 

Dec 2013 27,636 (24,974 – 32,314) 0.997 -- -- -- 

Upper River Region (URR)     

July 2013 37,428 (32,984 – 45,333) -- -- 0.263 -- 

Dec 2013 44,968 (38,378 – 55,513) -- 0.993 -- 0.098 

Apr 2014 44,954 (52,676 – 66,419) -- -- -- -- 

 

Ages <15 
years only 

AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 4,461 (4,259 – 5,058) -- -- -- -- 

Dec 2013 4,544 (4,078 – 5,044) 0.998 -- -- -- 

Upper River Region (URR)     

July 2013 6,244 (5,426 – 7,111) -- -- 0.029 -- 

Dec 2013 7,031 (6,150 – 8,016) -- 0.989 -- 0.004 

Apr 2014 6,705 (5,933 – 7,575) -- -- -- -- 
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Table 6.10 HSP40 AUC values by geographical region and transmission season 

All ages AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 17,944 (15,882 – 20,542) -- -- -- -- 

Dec 2013 11,785 (10,038 – 14,717) 0.055 -- -- -- 

Upper River Region (URR)     

July 2013 25,948 (21,711 – 30,965) -- -- 0.174 -- 

Dec 2013 25,841 (20,639 – 33,565) -- 0.987 -- 0.014 

Apr 2014 29,716 (23,513 – 38,341) -- -- -- -- 

 

Ages <15 
years only 

AUC (95% CI) 
p-value 

July/Dec 2013 
WCR 

p-value 
July/Dec 2013  

URR 

p-value 
WCR/URR 
July 2013 

p-value 
WCR/URR 
Dec 2013 

West Coast Region (WCR)     

July 2013 17,944 (15,882 – 20,542) -- -- -- -- 

Dec 2013 11,785 (10,038 – 14,717) 0.002 -- -- -- 

Upper River Region (URR)     

July 2013 25,948 (21,711 – 30,965) -- -- 0.159 -- 

Dec 2013 25,841 (20,639 – 33,565) -- 0.969 -- <0.001 

Apr 2014 29,716 (23,513 – 38,341) -- -- -- -- 

 

6.4 Discussion 
 

The analysis in this chapter explores methods for measuring short-term changes in antibody 

responses at the population-level. As discussed in Chapters 1 and 4, sero-epidemiology in malaria 

has focused on the use of markers of previous infection associated with long-lived antibody 

responses. New serological markers evaluated here highlight the limitations of existing sero-

epidemiological models, but shows the potential of new methods for measuring cluster-level 

antibody responses.  

Sero-prevalence and sero-conversion rates in low transmission settings 

Based on sero-prevalence in children under 15, differences between geographical region and 

transmission season were observed for nearly all antigens in the Upper River Region, while only 

MSP119 and Etramp5.Ag1 detected seasonal differences in the West Coast Region. The extent to 

which these differences reflect short-term changes in infection incidence as opposed to 

cumulative historical infection is not clear. Differences in sero-prevalence in children aged 2-10 

were only observed in the Upper River Region, while in children under five, there were no 

statistically significant differences in sero-prevalence to any antigen by region or season. 

However, given that differences are observed between a span of only six months in the Upper 
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River Region in the same cohort suggests that these changes do reflect short-term incidence to 

some degree. Inability to detect differences in the West Coast Region may reflect the challenge 

of measuring fine-scale differences at low transmission intensity.  

Models estimating population level force of infection (sero-conversion rate) are predicated on 

the assumption that sero-prevalence will increase predictably with age. While this may still be 

true for newer antigens evaluated in this thesis, as transmission declines, increases in cumulative 

sero-prevalence with age will become more subtle. As with clinical incidence at low transmission, 

changes over time or between clusters derived from sero-prevalence may become undetectable. 

Alternatively, they may require larger samples sizes for accurate measures of prevalence from a 

single cross-sectional survey or to statistically test for differences over time and in space. These 

factors become more critical as countries deploy a variety of community-based interventions 

(Chapter 1 Table 1.1) to accelerate towards elimination that will require surveillance monitoring 

or testing in efficacy trials.  

Another limitation of these approaches is that sero-prevalence is potentially influenced by the 

sero-positivity threshold, as discussed in Chapter 5a. Therefore, future analysis could include 

sensitivity testing to understand the impact on outcomes if alternative cut-offs are used. The use 

of antibody acquisition models also introduces challenges in significance testing, which are less 

routinely used in the manner introduced in this chapter for Bayesian fitting methods. However, 

it has been used here for better interpretation of model outputs. Alternatively, antibody 

acquisition models can also be fit using maximum likelihood methods, where likelihood ratio tests 

are more amenable to frequentist significance testing.  

The use of antibody acquisition models is also amenable to analysis that may combine continuous 

antibody responses to multiple antigens in a single model. For example, investigation of which 

antigens exhibit a change in antibody acquisition rate with age compared to those that do not 

may help to distinguish long versus short-term markers of previous exposure. With the use of 

continuous instead of dichotomous serology data, it can also help to highlight those antigens that 

may be associated with medium-term exposure, such as the Rh and EBA families of antigens, 

where either the magnitude of change between age groups is less pronounced, or the age at 

which a change in antibody acquisition rate occurs differs from longer-lived antibody responses 

to antigens such as MSP1.19 and AMA1. 
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Comparison of serological, clinical and parasitological endpoints 

Comparisons between geographical regions and transmission season based on serological 

endpoints align generally with trends in clinical and parasitological endpoints previously assessed 

by Mwesigwa et al (Figure 6.8, Table 6.10).  

In the West Coast Region, there were no significant differences in clinical incidence between July 

and December (Figure 6.8, Table 6.11), which is also reflected in cluster-level antibody responses 

for all antigens assessed. However, parasite prevalence in December was slightly higher than in 

July. In the Upper River Region, however, while clinical incidence was not shown to be 

significantly different between July and December, serological responses did not differ for some 

antigens and age ranges, while differences were observed for Etramp5.Ag1 and GexP18.  

On the West Coast, sero-prevalence only showed differences between July and December for 

MSP119 and Etramp5.Ag1, while all antigens showed increases in sero-positivity in December in 

the Upper River Region. It may be possible that serological responses are better correlated with 

clinical incidence and parasite prevalence two months prior given the time required to build an 

antibody response upon infection. In this context, antibody boost and decay estimates for each 

antigen can help to determine what period of lag time to account for when considering 

correlation with other measures of infection. Generally, however, trying to correlate the 

temporal dynamics of parasite density, clinical symptoms, and serological responses would be 

challenging and likely requires frequent sampling to account for fluctuations in both parasite 

density and antibody levels, while also factoring in reinfection and the impact of treatment. 

In Chapter 5b, logistic regression was used to evaluate the association between and odds of RDT 

or PCR positive infections based on time since infection windows. However, this was not tested 

based on the subset of cross-sectional data here. Chapter 5b analysis also adjusted for individual 

level covariates that could be further explored with the cluster/population-level data here. 

Household risk of infection can also be investigated using data on bednet usage or EIR. Antibody 

acquisition models have been developed that can adjust for a number of covariates and future 

analysis can update the results in this chapter to account for these factors.  
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Figure 6.8 Incidence of clinical malaria and P.falciparum infection by region and month 

 

 

Table 6.11 Incidence of clinical malaria and P.falciparum infection by region and month 
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As discussed in Chapter 5b, acute clinical infection and its subsequent treatment may have a 

strong effect on an individual’s serological response. The degree to which this varies by antigen 

would be useful further investigation. This could be done by stratifying the analysis by infection 

severity – clinical infections identified through passive case detection, asymptomatic patent 

infections positive by RDT, and asymptomatic sub-patent cases negative by RDT but PCR positive. 

However, it is likely that these factors would have strong collinearity with age and other risk 

factors (such as bednet usage), and this would need to be accounted for in the analysis. 

Assessing the impact of mass drug administration with serological endpoints 

While not explored in this analysis, as the full epidemiological data is not yet available, what 

naturally follows is an evaluation of the impact of MDA on antibody responses. A comparison of 

antibody acquisition between December 2013 (prior to MDA) and December 2014 (after one year 

of MDA) for the Upper River Region is illustrated in Appendix 6. However, this cohort study was 

not based on a cluster randomised trial design, as all villages received MDA. However, villages 

located close to MDA study villages, but not receiving the intervention, could serve as suitable 

controls. As part of this serology study, cross-sectional samples were processed on Luminex for 

one such village (Gambisera) from the International Centers of Excellence for Malaria Research 

(ICEMR) longitudinal study. Only sample for two time points (dry season June 2014 and post-

transmission season January 2015) were selected for comparison against the dry and wet season 

cross-sectional surveys in the year that MDA was administration in the Malaria Transmission 

Dynamics study. According to national policy, the “control” cluster received SMC for children 

under age five. Therefore, comparisons would be testing for differences between two types of a 

population wide drug-based interventions. In light of recent research in Senegal supporting the 

efficacy of administering SMC in children up to age ten32, this comparison of under-5 SMC against 

all-age MDA could be informative, particularly in Sahelian settings. 

Future study designs 

As introduced in Chapters 1 and 5b and in the background of this chapter, The Gambia’s seasonal 

transmission patterns provide ample opportunity for unique study designs assessing serological 

responses in the absence of reinfection. The data used in this chapter was not collected with this 

type of analysis in mind, with the exception of a monthly survey conducted in April. However, the 

results presented here suggest that between December and April, serological responses for the 

antigens of interest do not decline significantly at any age range, despite the observation that 

differences in population responses are measurable between July and December. This suggests 

that in this setting, antibody decay occurs over a period longer than four months.  
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As described in Chapter 5b (Table 5.10), several longitudinal studies in The Gambia have observed 

measurable decay in antibody responses in the dry season in children, even for antigens believed 

to be more associated with protective immunity.212,265 Similarly, other West African studies in 

Mali assessed antibody responses to over 2,000 Pf antigens on protein microarray before and 

after the malaria season found levels declined rapidly in children under 10 within six months after 

transmission season.263 Therefore, there is precedent for further research to determine more 

precisely the longevity of population-level antibody responses across all ages and to determine if 

these are influenced by current and historical transmission intensity. These studies may help to 

clarify the sampling timeframe (and population) for future surveillance activities incorporating 

serological endpoints. 

Given previous evidence of heterogeneity and spatial clustering in The Gambia, future analyses 

should also investigate whether this is also true for serological endpoints. This may include 

logistic regression of odds of sero-positivity based on distance from households of infected 

individuals identified with passive or active case detection. Descriptive mapping of household 

level antibody levels would also be informative, which could be compared with other maps of 

clinical incidence and parasite prevalence from the same study. 

Overall, the results in this chapter indicate that cluster-level serological responses to several 

antigen correlate with known differences in malaria transmission between geographical regions 

and transmission seasons. However, the number of clusters in this study are small. The following 

chapter will extend on this analysis to determine how these serological measures can be used as 

trial efficacy endpoints in a study with a larger number of clusters. 
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Appendix 6 
 

Figure 6.9 Serological responses in the Upper River Region pre- and post-MDA 

Pre-MDA (April 2014, black) and post-MDA (December 2014, green) 
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 Evaluating the effectiveness of reactive focal 
mass drug administration and reactive vector control in 
Zambezi Region, Namibia, using serological endpoints 
 

In Chapter 6, serological endpoints were used to measure cluster-level differences in antibody 

response between areas of low and high transmission intensity and between dry and wet season 

in four villages in The Gambia. In this chapter, cluster-level serological analysis is extended to 

evaluate differences between study arms of a cluster-randomised trial in Namibia testing the 

effectiveness of reactive focal mass drug administration and reactive vector control.  
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7.1 Background 
 

The identification of infected, but asymptomatic, individuals remains a key challenge in low-

transmission settings. More importantly, failure to treat asymptomatic individuals that do not 

present at the health facility can delay country or regional progress toward elimination if they 

contribute significantly to onward transmission.368 As described in Chapter 1, reactive case 

detection (RACD) is widely used for actively targeting asymptomatic residents in the 

neighbourhood of passively identified index cases from the clinic.369 However, the limited 

sensitivity of current field diagnostics for the detection of asymptomatic individuals232,370 has 

been suggested as one reason RACD has not demonstrated effectiveness in low transmission 

settings.236,371  

The WHO recently endorsed the use of mass drug administration (MDA) for elimination in regions 

with a very high potential for interrupting transmission, defined as high treatment access, strong 

vector control and surveillance, and minimal risk of re-introduction.372 This is driven by the fact 

that MDA often faces a dual challenge – the need for high coverage to impact transmission 

coupled with low adherence and acceptability in communities where clinical cases are rare. In 

addition to the safety risks of treating uninfected populations, failure to eliminate after the 

implementation of MDA can create an environment suitable for selection pressure and the 

emergence of drug resistance.74  

Reactive focal MDA (rfMDA) is a potential alternative, where the aim is to target the infectious 

human reservoir. In this strategy, chemoprophylaxis is only administered to individuals with 

increased risk of infection based on proximity to a passively-detected index case.369 As with MDA, 

vector control measures such as indoor residual spraying (IRS) face spray quality and coverage 

challenges and the risk of resistance if insecticides are not rotated.373 Therefore, reactive focal 

IRS or reactive vector control (RAVC) is a strategy akin to rfMDA, but specifically targeting the 

infectious mosquito reservoir in elimination settings.374  

Limited studies have investigated these strategies in low-transmission settings in sub-Saharan 

Africa. In order to evaluate the effectiveness and feasibility of rfMDA and RAVC compared to 

RACD and standard IRS campaigns, a cluster randomised control trial was conducted in Zambezi 

Region, Namibia. Zambezi is an area of moderately low transmission targeting malaria 

elimination by 2020.375,376 However, it still has sufficiently high incidence to provide study power 

for a randomised controlled trial. This trial was part of the Namibia Malaria Elimination Research 

Programme (NAMEP).  
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Primary endpoints of the trial were cumulative clinical incidence and infection prevalence based 

on rapid diagnostic test (RDT) and quantitative polymerase chain reaction (qPCR). The evaluation 

of serological outcomes as secondary endpoints using both long- and short-lived antibody 

responses can help to determine whether serological markers can be useful measures of 

transmission specifically in the context of cluster-randomised trials. This chapter assesses cluster-

level antibody responses to a panel of 20 serological markers, measured using the Luminex 

multiplex assay and based on samples from the end line cross-sectional survey of the 

RACD/rfMDA/RAVC trial. The aim is to evaluate the effectiveness of two interventions, 

independently and combined, using novel serological biomarkers of recent malaria infection.  

 

7.2 Methods 
 

Study design 

The study was an open label cluster randomised controlled trial with a 2x2 factorial study design 

(Table 7.1) with three interventions: 

 RACD: rapid diagnostic testing and treatment using artemether-lumefantrine (AL) of 
individuals residing within a 500m radius of a recent passively detected index case 
 

 rfMDA: presumptive treatment with artemether-lumefantrine (AL) 
 

 RAVC: IRS using pirimiphos-methyl, administered to household of individuals residing 
within a 500m radius of a recent passively detected index case. Note: this is in addition 
to routine annual IRS conducted as part of standard malaria control by the Ministry of 
Health. 

 
The trial was conducted in Zambezi Region, Namibia from January to November 2017 (Figure 7.1), 

which covers catchment areas for 11 health facilities. Of the 102 EAs in the study area, 56 EAs 

were selected and randomly allocated to one of four arms. The primary outcome was cumulative 

incidence of passively detected, locally acquired malaria. Secondary outcomes included infection 

prevalence, intervention coverage, refusal rates, adverse events, and adherence. Further details 

of the study are reported on ClinicalTrials.gov: NCT02610400377 and described in Medzihradsky 

et al, 2018.378   
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Table 7.1 Study arms in 2x2 factorial design trial 

 
 Strategies targeting the human reservoir 

 
 

Strategies targeting the 
mosquito reservoir 

 RACD* 
28 clusters 

rfMDA† 
28 clusters 

No RAVC 
28 clusters 

RACD only 
14 clusters 

rfMDA only 
14 clusters 

RAVC‡ 
28 clusters 

RACD + RAVC 
14 clusters 

rfMDA + RAVC 
14 clusters 

 

Reactive case detection (RACD): RDT testing of individuals residing within a 500m radius of a recent passively 
detected index case; treating positive with artemether-lumenfrantrine (AL).  

Reactive focal mass drug administration (rfMDA): presumptively treating individuals living in a 500m radius 
around an index case using artemether-lumefantrine, without RDT testing.  

Reactive vector control (RAVC): spraying long-acting insecticide Actellic 300CS to interior walls of living 
structures of individuals residing within a 500m radius of a recent passively detected index case. 

 

The cross-sectional end line survey was conducted at the end of the malaria season from May to 

August 2017 to measure infection- and sero-prevalance. Within each of the 56 EAs of the cluster 

RCT study, 25 households were randomly sampled for inclusion in the cross-sectional survey. All 

participants greater than six months of age and slept in the household at least three nights per 

week in the previous four weeks were eligible for inclusion in the study. Blood samples were 

collected by finger prick for molecular and serological analysis on dry blood spot (DBS) filter paper 

(Whatman 3 Corporation, Florham Park, NJ, USA) and 250 l of whole blood in BD Microtainer 

tubes with EDTA additive. Participants were tested with two different rapid diagnostic tests - 

CareStart™ Malaria Pf/PAN (HRP2/pLDH) and a highly-sensitive RDT (HSRDT) developed by 

Standard Diagnostics. Individuals, both symptomatic and asymptomatic, with positive CareStart™ 

RDT results were treated with AL according to national guidelines.379 
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Figure 7.1 Study area in western Zambezi Region, Namibia  

 

 

Laboratory procedures and data normalisation 

Human plasma from whole blood samples were prepared and tested on the Luminex assay 

platform using the procedures described in Chapter 5a. Data were normalised to adjust for 

between plate variation using a loess normalisation method295 and sero-positivity defined 

according to methods described in Chapter 5a. Analyses of Ab intensity are based on ether 

median fluorescence intensity (MFI) as a measure of continuous Ab response or sero-positivity 

as a binary Ab response.  

 

Statistical analyses 

Antigen selection.  A total of 20 antigens were included in the Luminex multiplex assay for sample 

processing, but data from only a subset of the most informative markers are included here for 

brevity. Antigen selection was based on the results summarised in Chapter 5b and includes two 

markers of long-lived antibody response (MSP119, AMA1) and five markers of recent infection 

that demonstrated the highest frequencies as predictors of malaria infection in the last six 

months across all age categories, “time since infection” windows and infection severity 

(Etramp5.Ag1, Rh2.2030, EBA175, GexP18, and HSP40). 
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Sero-positivity. The odds of sero-positivity to each antigen were calculated based on logistic 

regression with generalised estimating equations (GEE), which allows for clustering at the EA-

level, and assessed by study arm and intervention: 

1. Study arm: RACD only, RACD + RAVC, rfMDA only, rfMDA + RAVC 

2. Intervention strategy 

a. RACD vs. rfMDA (with or without RAVC aggregated) 

b. No RAVC vs. RAVC (with either RACD or rfMDA aggregated)  

Analyses were adjusted for age category, trial intervention coverage, visit day (to account for 

effect of declining transmission during the cross-sectional survey period), fever, and gender. Trial 

intervention coverage was defined as the proportion of target households correctly receiving the 

intervention for their study arm (greater than or less than 75%). This was calculated as the 

proportion of index cases where the RACD or rfMDA intervention was implemented in 

households covering at least 25 individuals within 5 weeks of case identification. For the RAVC 

intervention, it was defined as the proportion of index cases where at least 7 households were 

sprayed within 5 weeks of case identification.  

Separate regression analysis was also conducted to test if the interaction of rfMDA and RAVC as 

a combined intervention has a multiplicative effect on the odds of sero-positivity. Responses to 

a subset of short-term markers which showed the greatest effect with study arm were combined 

for analysis of odds of sero-positivity to any short-term marker. 

Outcomes were also adjusted for travel in the last 8 weeks, receiving IRS in the last 12 months, 

and sleeping under a bed net, but none of these covariates were found to be significant 

confounders and were therefore excluded from final regression analysis. 

Seroconversion rate. Age-adjusted sero-conversion rates (using Reverse Catalytic Model 1 

described in Chapter 4) were estimated for antigens associated with long-lived antibody response 

(MSP119, AMA1). A fixed sero-reversion rate for each antigen was used across all clusters, which 

was estimated based on fitting a single sero-catalytic model to all individuals in the sample and 

setting sero-reversion rate to this value in all subsequent cluster-specific model fits. SCRs were 

fit for each EA independently and the mean SCR across all EAs within a study arm or intervention 

estimated.  

Sero-prevalence in children. All-age sero-prevalence for most antigens will include adults who 

may be sero-positive due to long-lived antibody responses from repeated infection. Therefore, 

sero-prevalence in individuals less than 15 years of age may be more useful for assessing recent 

infections. These were calculated for each antigen and cluster separately. Combined sero-
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prevalence was also assessed for a subset of short-term markers based on whether individuals 

were sero-positive to any antigen. 

Antibody acquisition. For all antigens, Ab acquisition and decay were estimated for each study 

cluster (based on equations 6.1-6.6 as described in Chapter 6), and an Area under the Ab 

acquisition curve (AUC) value109 calculated based on the mean and 95% credible intervals of the 

model fit. Differences in mean AUC values between study arms were assessed using linear 

regression of cluster-level AUC adjusted for study arm and trial intervention coverage and inverse 

weighted by the 95%CI of the cluster-level AUC.  

Ab acquisition was also estimated for each study arm overall, allowing for random effects at the 

cluster level (Appendix 7, Figure 7.17), but this was not used for final analysis as independently 

fitting the model for each cluster was considered to be a more accurate reflection of cluster level 

variation, and also allowed for more standard evaluation of differences between study arms using 

linear regression or mean AUC. 

Assessing the effect of study arm and intervention. The effect of study arm and intervention on 

sero-prevalence, sero-conversion rate and antibody acquisition were assessed based on linear 

regression of cluster-level effect by study arm. Analysis was adjusted for trial intervention 

coverage and inverse-weighted by the 95%CI of the cluster-specific SCR.  

Regression analyses tested the effect of each study arm and intervention independently as well 

with an interaction between rfMDA and RAVC. This allows assessment of the effect of each 

intervention singly (rfMDA only or RACD + RAVC) or in combination (rfMDA + RAVC).  This allows 

one to interpret whether outcomes in the rfMDA + RAVC arm were due entirely to one 

intervention and whether there were any synergistic or adverse effects when the interventions 

are combined.  

Interpreting interaction terms. For outcomes based on logistic regression, interpretation of the 

interaction effect is multiplicative (i.e., the effect of the interventions combined is the 

multiplication of the ORs for rfMDA only, RACD+RAVC, and rfMDA:RAVC). For outcomes based 

on linear regression, the interpretation of the interaction effect is additive (i.e., the effect of the 

interventions combined is expressed as the difference from the mean baseline value and is the 

sum of the rfMDA only, RACD + RAVC, and rfMDA:RAVC coefficients). 

In some instances, the effect of a single intervention could be harmful (OR of sero-positivity 

greater than 1 or increase in mean antibody response), but if the combined effect of the 

intervention is synergistic, it may counteract this effect, resulting in the rfMDA + RAVC arm having 

a neutral effect compared to the control/reference arm. 
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Comparison of trial endpoints. To compare the relative utility of serological endpoints, clinical 

incidence rate ratio (IRR) (intention-to-treat and per-protocol) is compared against mean SCR by 

study arm or intervention, and using RACD only, RACD (with or without RAVC) and No RAVC (with 

RACD or rfMDA) as reference. Additionally, odds ratios of sero-positivity of each antigen are 

compared to the odds ratio of HSRDT positivity by study arm and intervention. Finally, the AUC 

values of Ab acquisition for each antigen are compared by study arm and intervention.  

 

7.3 Results 
 

Population demographics, baseline transmission intensity, and intervention coverage  

In total, 4,212 samples from the study were analysed for antibody responses. Of these individuals, 

1,117 were from study clusters receiving RACD, 1,119 receiving RAVC, 1,030 receiving RACD + 

rfMDA, and 898 receiving RAVC + rfMDA (Table 7.2). The majority of individuals in all study arms 

were >15 years of age. Less than 1% of individuals in all study arms had fever based on 

temperature greater than 37.5⁰C. There were similar proportions of females and males in all 

study arms. Less than 10% of individuals in all study arms reported sleeping outdoors in the 

previous two weeks, while between 18.7 – 28.3% of individuals reported sleeping under a bednet 

the previous night. Only 13.4 – 28.3% of individuals received IRS in the previous 12 months.  

Trial intervention coverage also varied across study arms. Amongst EAs randomised to either 

RACD only, rfMDA only or rfMDA + RAVC interventions, 35.7% of EAs within the study arm 

received less than 75% trial intervention coverage, while 42.9% of EAs randomised to the RACD 

+ RAVC arm received less than 75% trial intervention coverage (Table 7.3).  

Table 7.2 Demographics of study population by study arm 
 

RACD only RACD + RAVC rfMDA only rfMDA + RAVC 

Individuals n = 1117 (%) n = 1119 (%) n = 1030 (%) n = 898 (%) 

Age 
    

6 months - 5 years 195 (17.5) 199 (17.8) 166 (16.1) 164 (18.3) 

6-15 years 309 (27.7) 307 (27.4) 297 (28.8) 260 (29.0) 

> 15 years 613 (54.9) 613 (54.8) 567 (55.0) 474 (52.8) 

Fever (≥ 37.5⁰C) 1 (0.1) 4 (0.4) 2 (0.2) 3 (0.3) 

Sex 
    

Female 634 (56.8) 634 (56.7) 558 (54.2) 482 (53.7) 

Male 483 (43.2) 485 (43.3) 472 (45.8) 416 (46.3) 

Slept outdoors in past 2 weeks 69 (6.2) 58 (5.2) 74 (7.2) 61 (6.8) 

Slept under bednet previous night 266 (23.8) 219 (19.6) 193 (18.7) 254 (28.3) 

Recent IRS in past 12 months 256 (22.9) 317 (28.3) 161 (15.6) 120 (13.4) 

Recent travel in past 8 weeks 119 (10.6) 126 (11.3) 128 (12.4) 146 (16.3) 
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Table 7.3 Enumeration area level intervention coverage by study arm  
 

RACD only RACD + RAVC rfMDA only rfMDA + RAVC 

EAs n (EAs) = 14 (%) n (EAs)  = 14 (%) n (EAs)  = 14 (%) n (EAs)  = 14 (%) 

Intervention coverage 
    

< 75% 5 (35.7) 6 (42.9) 5 (35.7) 5 (35.7) 

> 75% 8 (57.1) 8 (57.1) 9 (64.3) 9 (64.3) 

Missing 1 (7.2) 0 (0.0) 0 (0.0) 0 (0.0) 

 

Non-serological study outcomes – clinical incidence and parasite prevalence by highly sensitive 
rapid diagnostic test 

The primary aim of this chapter is to assess serological endpoints. However, clinical incidence 

from the intervention trial (Table 7.4) and HSRDT positivity results from the end-line cross-

sectional survey (Table 7.5) are summarised here as background. These are later used as a 

comparison against serological endpoints in analysis detailed in following sections.  

Based on clinical incidence rate ratio (IRR), there was no statistically strong evidence of 

differences between study arms based on both intention-to-treat and per-protocol analysis 

(adjusted for 2016 incidence, intervention coverage, and median time to intervention) (Tables 

7.4a and 7.4b). Lower IRR values are observed in rfMDA compared to RACD arms (with or without 

RAVC), RAVC arms compared to No RAVC (with either rfMDA or RACD), and in rfMDA + RAVC 

arms compared to RACD only. However, p-values for all IRRs were large. 

The only study arm to show an effect on HSRDT positivity was the rfMDA + RAVC study arm (OR 

0.72 95%CI 0.41 – 1.26, p=0.255), suggesting a synergistic effect of the interventions combined 

compared to no effect when they are implemented separately (Table 7.5). However, statistical 

evidence for these effects was weak. Odds of HSRDT positivity was higher in older children and 

adults, febrile individuals, and females. Intervention coverage did not have an effect on odds of 

HSRDT positivity, while visit day had a very small effect (OR 0.98 95%CI 0.97 – 0.99, p<0.001).  

 
Table 7.4 Cumulative incidence of locally acquired passively detected malaria cases  

A. IRR = incidence rate ratio. Data are mean (95%CI) 

  Incidence Modified Intention-to-treat 

 n  p-value IRR p-value 

RACD 27 30.6 (18.7-42.5)  0.21 ref 0.67 
rfMDA 28 23.3 (9.7-37.0)  0.86 (0.44-1.70) 
No RAVC  27 29.9 (15.9-43.8) 0.25 ref 0.52 
RAVC 28 24.0 (12.2-35.7)  0.80 (0.41-1.56) 
RACD only 13 32.3 (16.5-48.1)  0.10  ref 0.38 

rfMDA+RAVC 14 19.0 (3.8-34.2)   0.67 (0.27-1.65) 
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B. aIRR = adjusted incidence rate ratio. Data are mean (95%CI) 

  Per-protocol 

 n aIRR* p-value aIRR** p-value 

RACD 27 Ref 0.49 ref 0.47 
rfMDA 28 0.77 (0.38-1.60) 0.67 (0.22-2.03)***  
No RAVC  27 Ref 0.41 ref 0.07 
RAVC 28 0.75 (0.38-1.48) 0.58 (0.33-1.04)  
RACD only 13 Ref 0.33 ref 0.12 
rfMDA+RAVC 14 0.61 (0.23-1.63) 0.48 (0.20-1.19)  

*adjusted for 2016 incidence of local cases only 
** adjusted for 2016 incidence of local cases, intervention coverage, median time to intervention, and co-
interventions by Ministry of Health and Social Services 
*** additionally adjusted for RAVC intervention coverage 
 
 
Table 7.5 HSRDT positivity by study arm and intervention 

 

A. By study arm. Logistic regression unadjusted and adjusted (GEE model with clustering at EA-level) 

Outcome: HSRDT positivity Unadjusted Adjusted 

OR 95% CI p-value OR 95% CI p-value 

RACD only 1.00 1.00  1.00 1.00  

RACD + RAVC 1.30 0.83 – 2.03 0.259 1.09 0.65 – 1.82 0.743 

rfMDA 0.99 0.61 – 1.61 0.963 1.04 0.57 – 1.90 0.891 
rfMDA + RAVC 0.72 0.41 – 1.26 0.255 0.73 0.40 – 1.31 0.292 

Age category       
1-5 years -- -- -- 1.00 1.00  

6-15 years -- -- -- 2.28 1.20 – 4.31 0.012 

>15 years -- -- -- 2.11 1.18 – 3.76 0.012 
Intervention coverage > 75% -- -- -- 1.03 0.68 – 1.57 0.878 

Visit day -- -- -- 0.98 0.97 – 0.99 <0.001 

Fever -- -- -- 4.74 1.59 – 14.09 0.005 
Gender (Female) -- -- -- 0.62 0.44 – 0.88 0.008 

 

B. By intervention (with rfMDA and RAVC interaction effect) 

Outcome: HSRDT positivity Unadjusted Adjusted 

OR 95% CI p-value OR 95% CI p-value 

rfMDA* 0.99 0.61 – 1.61 0.963 1.04 0.57 – 1.90 0.891 

RAVC† 1.30 0.83 – 2.03 0.259 1.09 0.65 – 1.82 0.743 

rfMDA:RAVC 0.57 0.27 – 1.16 0.122 0.64 0.29 – 1.43 0.276 
1-5 years -- -- -- 1.00 1.00  

6-15 years -- -- -- 2.28 1.20 – 4.31 0.012 
>15 years -- -- -- 2.11 1.18 – 3.76 0.012 

Intervention coverage > 75% -- -- -- 1.03 0.68 – 1.57 0.898 

Visit day -- -- -- 0.98 0.97 – 0.99 <0.001 
Fever -- -- -- 4.74 1.59 – 14.09 0.005 

Gender (Female) -- -- -- 0.62 0.44 – 0.88 0.008 

* With or without RAVC  † With either RACD or rfMDA 
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Sero-positivity to antigens associated with long-lived antibody response (MSP119 and AMA1) 

After adjusting for age, intervention coverage, visit day, fever, and gender, odds of sero-positivity 

to antigens associated with long-lived antibodies (MSP119 and AMA1) did not show strong 

differences between the four study arms (Tables 7.6 and 7.7). In fact, analysis of the interaction 

of the interventions for both antigens suggests that RAVC is actually associated with increased 

odds of sero-positivity, but when combined with rfMDA, reduces the odds of being sero-positivity 

such that there is no net effect on the OR. However, p-values for all these effects were large.  

When aggregating study arms to compare EAs receiving RACD (with or without RAVC) with EAs 

receiving rfMDA (with or without RAVC), there was of a decreased odds of sero-positivity for 

individuals in EAs receiving rfMDA for MSP119 (OR 0.80 95%CI 0.62 – 1.02, p = 0.075) specifically 

for clusters receiving more than 75% intervention coverage, but statistical evidence was not 

strong. There was no difference between interventions based on intention-to-treat analysis. 

Similarly, specifically for clusters receiving high intervention coverage, sero-positivity to AMA1 

was lower in rfMDA EAs (OR 0.78 95%CI 0.60 – 1.01, p=0.061), again without strong statistical 

evidence. No differences in odds of sero-positivity to either antigen were observed between 

individuals in EAs receiving RAVC and those that did not.  

For both antigens, odds of sero-positivity increased with age (Tables 7.6 and 7.7). Compared to 

young children (ages 1-5 years), odds of sero-positivity to MSP119 for older children (ages 6-15 

years) was 3.44 (95%CI 2.50 – 4.74, p < 0.001) and adults (>15 years) had an OR of 10.77 (95%CI 

7.91 – 14.57, p < 0.001). Age effect was even stronger for AMA1, where older children had an OR 

of 3.03 (95%CI 2.24 – 4.11, p < 0.001) and adults had an OR of 37.66 (95%CI 28.22 – 50.25, 

p<0.001). Females also showed decreased odds of sero-positivity to both antigens compared to 

males for MSP119 (OR 0.79, 0.69 – 0.91; p=0.001), while for AMA1, the OR was 0.87 (95%CI 0.74 

– 1.02, p=0.099), but statistical evidence was not strong. 

An effect of intervention coverage on the odds of sero-positivity to both antigens was observed, 

with individuals in EAs that received greater than 75% trial coverage having an OR of sero-

positivity to MSP119 of 0.85 (95%CI 0.71 – 1.01, p=0.072) and OR 0.86 to AMA1 (95%CI 0.73 – 

1.01, p=0.157), but p-values were above 0.05. Visit day did not appear to have an effect on sero-

positivity, suggesting that the impact of changing seasonality during the course of the survey was 

minimal on this endpoint (Tables 7.6 and 7.7). By comparison, visit day had a small effect on the 

odds of HSRDT positivity (OR 0.98 95%CI 0.97 – 0.99, p<0.001) (Table 7.5). 
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Table 7.6 MSP119 sero-positivity by study arm and intervention 
 

A. By study arm. Logistic regression unadjusted and adjusted (GEE model with clustering at EA-level) 

Outcome: sero-positivity Unadjusted Adjusted 

OR 95% CI p-value OR 95% CI p-value 

RACD only 1.00 1.00  1.00 1.00  

RACD + RAVC 1.16 0.97 – 1.39 0.102 1.17 0.95 – 1.45 0.148 
rfMDA 1.01 0.84 – 1.21 0.903 1.02 0.81 – 1.30 0.843 

rfMDA + RAVC 0.94 0.78 – 1.14 0.537 0.98 0.75 – 1.27 0.865 

Age category       
1-5 years -- -- -- 1.00 1.00  

6-15 years -- -- -- 3.44 2.50 – 4.74 0.000 

>15 years -- -- -- 10.77 7.91 – 14.67 0.000 
Intervention coverage > 75% -- -- -- 0.85 0.71 – 1.01 0.072 

Visit day -- -- -- 1.00 0.99 – 1.00 0.128 

Fever -- -- -- 1.04 0.26 – 4.07 0.960 
Gender (Female) -- -- -- 0.79 0.69 – 0.91 0.001 

 

B. By intervention (with rfMDA and RAVC interaction effect). Logistic regression unadjusted and adjusted 
(GEE model with clustering at EA-level) 

Outcome: sero-positivity Unadjusted Adjusted 

OR 95% CI p-value OR 95% CI p-value 

rfMDA* 1.04 0.86 – 1.24 0.707 1.03 0.81 – 1.32 0.786 
RAVC† 1.18 0.99 – 1.41 0.060 1.18 0.95 – 1.46 0.137 

rfMDA:RAVC 0.77 0.59 – 1.00 0.047 0.81 0.57 – 1.15 0.244 

1-5 years -- -- -- 1.00 1.00  
6-15 years -- -- -- 3.47 2.52 – 4.77 <0.001 

>15 years -- -- -- 10.84 7.97 – 14.76 <0.001 

Intervention coverage > 75% -- -- -- 0.85 0.71 – 1.01 0.070 
Visit day -- -- -- 1.00 0.99 – 1.00 0.123 

Fever -- -- -- 1.16 0.46 – 2.97 0.751 

Gender (Female) -- -- -- 0.79 0.69 – 0.91 0.001 

* With or without RAVC  † With either RACD or rfMDA 

 

 

Table 7.7 AMA1 sero-positivity by study arm and intervention 

 

A. By study arm. Logistic regression unadjusted and adjusted (GEE model with clustering at EA-level) 

Outcome: sero-positivity Unadjusted Adjusted 

OR 95% CI p-value OR 95% CI p-value 

RACD only 1.00 1.00  1.00 1.00  
RACD + RAVC 1.08 0.91 – 1.28 0.384 1.12 0.91 – 1.39 0.390 

rfMDA 1.05 0.88 – 1.25 0.572 1.09 0.87 – 1.35 0.551 
rfMDA + RAVC 0.95 0.79 – 1.14 0.571 1.01 0.80 – 1.26 0.966 

Age category       

1-5 years -- -- -- 1.00 1.00  
6-15 years -- -- -- 3.03 2.24 – 4.11 0.000 

>15 years -- -- -- 37.66 28.22 – 50.25 0.000 

Intervention coverage > 75% -- -- -- 0.86 0.73 – 1.01 0.157 
Visit day -- -- -- 1.00 0.99 – 1.00 0.313 

Fever -- -- -- 1.06 0.22 – 5.05 0.947 

Gender (Female) -- -- -- 0.87 0.74 – 1.02 0.099 

 

 

 



242 
 
 

 

B. By intervention (with rfMDA and RAVC interaction effect). Logistic regression unadjusted and adjusted 
(GEE model with clustering at EA-level) 

Outcome: sero-positivity Unadjusted Adjusted 

OR 95% CI p-value OR 95% CI p-value 

rfMDA* 1.06 0.89 – 1.25 0.525 1.09 0.83 – 1.43 0.547 
RAVC† 1.09 0.92 – 1.29 0.310 1.13 0.87 – 1.47 0.353 

rfMDA:RAVC 0.80 0.63 – 1.02 0.076 0.82 0.54 – 1.26 0.368 

1-5 years -- -- -- 1.00 1.00  
6-15 years -- -- -- 3.04 2.21 – 4.19 <0.001 

>15 years -- -- -- 37.77 27.87 – 51.20 <0.001 
Intervention coverage > 75% -- -- -- 0.86 0.69 – 1.06 0.157 

Visit day -- -- -- 1.00 0.99 – 1.00 0.275 

Fever -- -- -- 1.19 0.36 – 3.95 0.775 
Gender (Female) -- -- -- 0.87 0.73 – 1.03 0.102 

* With or without RAVC  † With either RACD or rfMDA 

 

 

Seroconversion rate to MSP119 and AMA1 

Across all clusters irrespective of trial intervention coverage, there were no differences between 

study arms for either MSP119 SCR (Table 7.8a) or AMA1 (Table 7.9a). Similar to the outcomes for 

sero-positivity, RAVC is associated with an increase in mean MSP119 sero-conversion rate. While 

the combination of the interventions is synergistic (Table 7.9b), it is not enough to counteract the 

harmful effect of RAVC, and the net effect is slightly higher mean sero-conversion rates in the 

rfMDA + RAVC compared with the RACD only reference arm. For AMA1, both rfMDA only and 

RAVC were associated with higher mean sero-conversion rates, but the combination had a net 

effect of slightly lower mean sero-conversion rates in the rfMDA + RAVC arm compared to the 

reference arm. However, p-values for all results were large, suggesting that statistical evidence 

for any study arm differences is weak. 

This is likely due to the large variations in SCR estimates between clusters causing a lack of 

precision when evaluating differences between study arms. The largest inter-cluster variations in 

MSP119 SCR were seen in the RACD + RAVC arm, which had an mean SCR standard error (SE) of 

0.020 across all clusters and 0.034 for clusters with >75% trial coverage (data not shown). With 

the exception of this study arm, analysis based on clusters with >75% trial coverage had smaller 

SCR standard errors (0.007 compared to 0.017 for rfMDA only, 0.005 vs. 0.015 for rfMDA + RAVC 

and 0.004 v. 0.011 for rfMDA with or without RAVC) (data not shown). For AMA1, the largest 

variations in SCR were in the rfMDA + RAVC study arm, but the SE is reduced when analysis is 

restricted to high intervention coverage clusters (data not shown).  

 

 

 



243 
 
 

 

Figure 7.2 MSP119 sero-conversion rate overall, by intervention coverage and study arm 

A. Overall and by intervention coverage 

 

B. By study arm 
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Table 7.8 MSP119 sero-conversion rate by study arm and intervention 
 

A. By study arm. Reference (intercept) is the mean SCR of clusters in the RACD only arm, and difference 
in mean SCR is listed for all other study arms based on linear regression unadjusted and adjusted for 
intervention coverage (>75%).  

 

 Unadjusted Adjusted 

Study arm Difference in SCR (95%CI) p-value Difference in SCR (95%CI) p-value 

RACD only mean SCR 
(intercept) 

0.0251 (0.0110; 0.0393) -- 0.0287 (0.0118; 0.0457) -- 

RACD + RAVC 0.0053 (-0.0145; 0.0250) 0.603 0.0047 (-0.0152; 0.0246) 0.644 

rfMDA only -0.0002 (-0.0200; 0.0195) 0.983 0.0004 (-0.0195; 0.0203) 0.968 

rfMDA + RAVC 0.0018 (-0.0186; 0.0222) 0.864 0.0029 (-0.0178; 0.0235) 0.785 

Intervention coverage -- -- -0.0059 (-0.0211; 0.0094) 0.452 

 
B. By intervention. Reference (intercept) is the mean SCR of clusters in the RACD only arm, and difference 

in mean SCR is listed for rfMDA only and RACD + RAVC based on linear regression unadjusted and 
adjusted for intervention coverage (>75%). rfMDA:RAVC is the additional SCR difference of the two 
interventions combined (included as an interaction effect in the linear regression). 
 

 Unadjusted Adjusted 

Intervention Difference in SCR (95%CI) p-value Difference in SCR (95%CI) p-value 

RACD only mean SCR 
(intercept) 

0.0251 (0.0110; 0.0393) -- 0.0287 (0.0118; 0.0457) -- 

rfMDA -0.0002 (-0.0200; 0.0195) 0.983 0.0004 (-0.0195; 0.0203) 0.968 

RAVC 0.0053 (-0.0145; 0.0250) 0.603 0.0047 (-0.0152; 0.0246) 0.644 

rfMDA:RAVC -0.0033 (-0.0315; 0.0250) 0.822 -0.0022 (-0.0307; 0.0262) 0.878 

Intervention coverage -- -- -0.0059 (-0.0211; 0.0094) 0.452 
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Figure 7.3 AMA1 sero-conversion rate overall, by intervention coverage and study arm 

A. Overall and by intervention coverage 

 

B. By study arm 
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Table 7.9 AMA1 sero-conversion rate by study arm and intervention 

 

A. By study arm. Reference (intercept) is the mean SCR of clusters in the RACD only arm, and difference 
in mean SCR is listed for all other study arms based on linear regression unadjusted and adjusted for 
intervention coverage (>75%).  

 

 Unadjusted Adjusted 

Study arm Difference in SCR (95%CI) p-value Difference in SCR (95%CI) p-value 

RACD only mean SCR 
(Intercept) 

0.0384 (0.0285; 0.0484) -- 0.0396 (0.0278; 0.0514) -- 

RACD + RAVC 0.0043 (-0.0097; 0.0184) 0.549 0.0043 (-0.0099; 0.0185) 0.557 

rfMDA only 0.0047 (-0.0094; 0.0187) 0.517 0.0049 (-0.0093; 0.0191) 0.501 

rfMDA + RAVC -0.0017 (-0.0158; 0.0124) 0.817 -0.0015 (-0.0157; 0.0128) 0.842 

Intervention coverage -- -- -0.0020 (-0.0125; 0.0085) 0.706 

 
B. By intervention. Reference is the mean SCR of clusters in the RACD only arm, and difference in mean 

SCR is listed for rfMDA only and RACD + RAVC based on linear regression unadjusted and adjusted for 
intervention coverage (>75%). rfMDA:RAVC is the additional SCR difference of the two interventions 
combined (included as an interaction effect in the linear regression). 

 Unadjusted Adjusted 

Intervention Difference in SCR (95%CI) p-value Difference in SCR (95%CI) p-value 

RACD only mean SCR 
(Intercept) 

0.0384 (0.0285; 0.0484) -- 0.0396 (0.0278; 0.0514) -- 

rfMDA 0.0047 (-0.0094; 0.0187) 0.517 0.0049 (-0.0093; 0.0191) 0.501 

RAVC 0.0043 (-0.0097; 0.0184) 0.549 0.0043 (-0.0099; 0.0185) 0.557 

rfMDA:RAVC -0.0107 (-0.0306; 0.0092) 0.297 -0.0107 (-0.0307; 0.0094) 0.303 

Intervention coverage -- -- -0.0020 (-0.0125; 0.0085) 0.706 

 

 

Sero-prevalence to MSP119 and AMA1 in children 

Sero-prevalence to MSP119 in children was slightly lower in the RACD + RAVC study arm by 1.4% 

(95%CI 0.0-2.8, p=0.057) and in the rfMDA + RAVC study arm by 2.0% (95%CI 0.6 – 3.5, p=0.007) 

(Table 7.10). However, sero-prevalence in the rfMDA only arm did not appear to be significantly 

lower than the RACD only arm. Regression analysis comparing the interventions (Table 7.10b) 

suggest that the decrease in sero-prevalence is entirely due to the RAVC intervention, 

contributing to a decrease of 1.4% (95%CI 0.0 – 2.9, p=0.057). This was also observed for AMA1, 

where sero-prevalence in the RACD + RAVC arm was lower by 0.7% (95%CI 0.0 – 1.5%, p=0.053) 

and in the rfMDA + RAVC arm was lower by 1.1% (95%CI 0.4 – 1.8, p=0.005). Contrary to the 

effects on sero-positivity and sero-conversion rates, the effect on sero-prevalence appears to be 

driven by the RAVC intervention, while the interaction of the interventions combined results in a 

slight increase in sero-prevalence. However, results for the interaction effect have large p-values 

(Table 7.11b). Intervention coverage did not have an effect on sero-prevalence to either antigen. 
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Table 7.10 MSP119 under-15 sero-prevalence by study arm and intervention 

 

A. By study arm. Reference (intercept) is the mean sero-prevalence for ages <15 years amongst of clusters 
in the RACD only arm, and difference in mean sero-prevalence is listed for all other study arms based 
on linear regression unadjusted and adjusted for intervention coverage (>75%).  

 

 Unadjusted Adjusted 

Study arm Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only mean SP 
(Intercept) 

6.0% (5.0 - 7.0) -- 6.2% (5.0 – 7.4) -- 

RACD + RAVC -1.3% (-2.7; 0.1) 0.085 -1.4% (-2.9; 0.0) 0.057 

rfMDA only -0.9% (-2.3; 0.5) 0.194 -1.1% (-2.5; 0.3) 0.137 

rfMDA + RAVC -1.9% (-3.3; -0.5) 0.011 -2.0% (-3.5; -0.6) 0.007 

Intervention coverage -- -- -0.1% (-1.1; 1.0) 0.880 

 

B. By intervention. Reference (intercept) is the mean sero-prevalence of ages <15 years of clusters in the 
RACD only arm, and difference in mean sero-prevalence is listed for rfMDA only and RACD + RAVC based 
on linear regression unadjusted and adjusted for intervention coverage (>75%). rfMDA:RAVC is the 
additional sero-prevalence difference of the two interventions combined (included as an interaction 
effect in the linear regression). 

 

 Unadjusted Adjusted 

Intervention Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only mean SP 
(Intercept) 

6.0% (5.0 - 7.0) -- 6.2% (5.0 – 7.4) -- 

rfMDA -0.9% (-2.3; 0.5) 0.194 -1.1% (-2.5; 0.3) 0.137 

RAVC -1.3% (-2.7; 0.1) 0.085 -1.4% (-2.9; 0.0) 0.057 

rfMDA:RAVC 0.3% (-1.7; 2.3) 0.758 0.5% (-1.5; 2.5) 0.638 

Intervention coverage -- -- -0.1% (-1.1; 1.0) 0.880 
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Table 7.11 AMA1 under-15 sero-prevalence by study arm and intervention 
 

A. By study arm. Reference (intercept) is the mean sero-prevalence for ages  <15 years amongst  of 
clusters in the RACD only arm, and difference in mean sero-prevalence is listed for all other study arms 
based on linear regression unadjusted and adjusted for intervention coverage (>75%).  

 

 Unadjusted Adjusted 

Study arm Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only  mean SP 
(Intercept) 

6.3% (5.8 - 6.8) <0.001 6.4% (5.8 – 7.0) <0.001 

RACD + RAVC -0.7% (-1.4; 0.1) 0.079 -0.7% (-1.5; 0.0) 0.053 

rfMDA only -0.5% (-1.2; 0.2) 0.190 -0.6% (-1.3; 0.2) 0.135 

rfMDA + RAVC -1.0% (-1.8; -0.3) 0.008 -1.1% (-1.8; -0.4) 0.005 

Intervention coverage -- -- -0.04% (-0.6; 0.5) 0.893 

 

B. By intervention. Reference (intercept) is the mean sero-prevalence of ages <15 years of clusters in the 
RACD only arm, and difference in mean sero-prevalence is listed for rfMDA only and RACD + RAVC based 
on linear regression unadjusted and adjusted for intervention coverage (>75%). rfMDA:RAVC is the 
additional sero-prevalence difference of the two interventions combined (included as an interaction 
effect in the linear regression). 

 

 Unadjusted Adjusted 

Intervention Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only mean SP 
(Intercept) 

6.3% (5.8 - 7.8) <0.001 6.4% (5.8 – 7.0) <0.001 

rfMDA -0.5% (-1.2; 0.2) 0.190 -0.6% (-1.3; 0.2) 0.135 

RAVC -0.7% (-1.4; 0.1) 0.079 -0.7% (-1.5; 0.0) 0.053 

rfMDA:RAVC 0.1% (-0.9; 1.2) 0.808 0.2% (-0.8; 1.3) 0.690 

Intervention coverage -- -- -0.04% (-0.6; 0.5) 0.893 

 

 

Antibody acquisition to MSP119 and AMA1 

Based on antibody acquisition to MSP119, there were no statistically strong differences in AUC 

values between study arms (Figure 7.4b, Table 7.12). For AMA1, antibody acquisition AUC values 

were slightly higher in the rfMDA only compared to the RACD only arm (p=0.025) (Figure 7.5b, 

Table 7.13). Intervention coverage did not have an effect on AUC values for either antigen 

(Figures 7.4a and 7.5a, Tables 7.12 and 7.13). 
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Figure 7.4 MSP119 Antibody acquisition overall, by trial coverage and study arm 
 

A. Overall and by trial coverage. Ab acquisition fit for all clusters (top), points are age-adjusted MFI, black 
dotted lines are clusters with <75% intervention coverage, blue dotted lines are clusters with >75% 
intervention coverage, and shaded areas are the 95% credible intervals of the Ab acquisition fit. Clusters 
with <75% intervention coverage shown in black (bottom left) and >75% intervention coverage in red 
(bottom right). 

 

B. By study arm. RACD only in blue (top left), RACD + RACD in green (top right), rfMDA only in red 
(bottom left), and rfMDA + RAVC in  yellow (bottom right). Dotted lines show clusters with <75% 
intervention coverage and solid lines clusters with >75% intervention coverage. 
 

 

 



250 
 
 

 

Table 7.12 MSP119 Area under the antibody acquisition curve by study arm and intervention 
 

A. By study arm. Reference (intercept) is the mean AUC of clusters in the RACD only arm, and difference 
in mean AUC is listed for all other study arms based on linear regression unadjusted and adjusted for 
intervention coverage (>75%).  

 

 Unadjusted Adjusted 

Study arm Difference in AUC (95%CI) p-value Difference in AUC (95%CI) p-value 

RACD only mean AUC 
(Intercept) 

187,724 (139,267; 236,181) -- 175,252 (116,591; 233,913) -- 

RACD + RAVC 69,504 (-5,891; 144,899) 0.077 71,147 (-6,270; 148,564) 0.078 

rfMDA only 39,999 (-34,809; 114,806) 0.299 42,085 (-34,679; 118,849) 0.288 

rfMDA + RAVC 14,255 (-57,592; 86,102) 0.699 13,253 (-61,571; 88,078) 0.730 

Intervention coverage -- -- 18,081 (-38,994; 75,155) 0.537 

 

B. By intervention. Reference (intercept) is the mean AUC of clusters in the RACD only arm, and difference 
in mean AUC is listed for rfMDA only and RACD + RAVC based on linear regression unadjusted and 
adjusted for intervention coverage (>75%). rfMDA:RAVC is the additional AUC difference of the two 
interventions combined (included as an interaction effect in the linear regression). 
 

 Unadjusted Adjusted 

Intervention Difference in AUC (95%CI) p-value Difference in AUC (95%CI) p-value 

RACD only mean AUC 
(Intercept) 

187,724 (139,267; 236,181) <0.001 175,252 (116,591; 233,913) <0.001 

rfMDA 39,999 (-34,809; 114,806) 0.299 42,085 (-34,679; 118,849) 0.288 

RAVC 69,504 (-5,891; 144,899) 0.077 71,147 (-6,270; 148,564) 0.078 

rfMDA:RAVC -95,248 (-203,629; 13,133) 0.091 -99,979 (-210,566; 10,608) 0.082 

Intervention coverage -- -- 18,081 (-38,994; 75,155) 0.537 
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Figure 7.5 AMA1 antibody acquisition overall, by trial coverage and study arm 

A. Overall and by trial coverage. Ab acquisition fit for all clusters (top), points are age-adjusted MFI, black 
dotted lines are clusters with <75% intervention coverage, blue dotted lines are clusters with >75% 
intervention coverage, and shaded areas are the 95% credible intervals of the Ab acquisition fit. Clusters 
with <75% intervention coverage shown in black (bottom left) and >75% intervention coverage in red 
(bottom right). 

 

B. By study arm. RACD only in blue (top left), RACD + RACD in green (top right), rfMDA only in red (bottom 
left), and rfMDA + RAVC in yellow (bottom right). Dotted lines show clusters with <75% intervention 
coverage and solid lines clusters with >75% intervention coverage. 
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Table 7.13 AMA1 Area under the antibody acquisition curve by study arm and intervention 

A. By study arm. Reference (intercept) is the mean AUC of clusters in the RACD only arm, and difference 
in mean AUC is listed for all other study arms based on linear regression unadjusted and adjusted for 
intervention coverage (>75%).  

 Unadjusted Adjusted 

Study arm Difference in AUC (95%CI) p-value Difference in AUC (95%CI) p-value 

RACD only mean AUC 
(Intercept) 

594,657 (436,953; 752,362) -- 549,029 (351,354; 746,704) -- 

RACD + RAVC 200,921 (-46,831; 448,674) 0.118 217,282 (-37,179; 471,743) 0.100 

rfMDA only 309,240 (49,211; 569,270) 0.024 314,481 (47,041; 581,920) 0.025 

rfMDA + RAVC 67,671 (0176,396; 311,738) 0.589 82,077 (-168,454; 332,607) 0.524 

Intervention coverage -- -- 58,021 (-132,654; 248,696) 0.554 

 

B. By intervention. Reference (intercept) is the mean AUC of clusters in the RACD only arm, and difference 
in mean AUC is listed for rfMDA only and RACD + RAVC based on linear regression unadjusted and 
adjusted for intervention coverage (>75%). rfMDA:RAVC is the additional AUC difference of the two 
interventions combined (included as an interaction effect in the linear regression). 

 

 Unadjusted Adjusted 

Intervention Difference in AUC (95%CI) p-value Difference in AUC (95%CI) p-value 

RACD only mean AUC 
(Intercept) 

594,657 (436,953; 752,362) -- 549,029 (351,354; 746,704) -- 

rfMDA 309,240 (49,211; 569,270) 0.024 314,481 (47,041; 581,920) 0.025 

RAVC 200,921 (-46,831; 448,674) 0.118 217,282 (-37,179; 471,743) 0.100 

rfMDA:RAVC -442,490 (-815,081; -69,900) 0.024 -449,686 (-829,524; -69,848) 0.024 

Intervention coverage -- -- 58,021 (-132,654; 248,696) 0.554 

 

Antigens associated with short-lived antibody responses 

Sero-positivity to Etramp5.Ag1, Rh2.2030 and EBA175 

Compared with antigens associated with long-lived antibody responses, differences in odds of 

sero-positivity for Etramp5.Ag1 and Rh2.2030 between study arms were more apparent, though 

not statistically strong.  

Based on unadjusted logistic regression, individuals in the rfMDA + RAVC arm had a reduced odds 

of Etramp5.Ag1 sero-positivity (OR 0.76 95%CI 0.63 – 0.93, p=0.008) compared to the RACD only 

arm (Table 7.14a). Individuals receiving rfMDA only had an OR of 0.86 (95%CI 0.71 – 1.03, 

p=0.107), and individuals receiving RACD + RAVC had an OR of 0.94 (95%CI 0.79 – 1.13, p=0.521). 

After adjusting for demographic covariates and intervention coverage, odds of sero-positivity to 

Etramp5.Ag1 was lowest in the rfMDA + RAVC study arm (OR 0.78, 95%CI 0.60 – 1.02, p = 0.071), 

but statistical evidence for this difference was weak. A similar effect was observed when 

aggregating rfMDA arms (OR 0.87 95%CI 0.72 – 1.05, p = 0.153), but the effect of RAVC was not 

strong (OR 0.95, 95%CI 0.80 – 1.14, p = 0.586) based on intention-to-treat analysis, suggesting 
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that the differences in the rfMDA + RAVC arm compared to RACD only are driven primarily by the 

rfMDA intervention. 

 

Table 7.14 Etramp5.Ag1 sero-positivity by study arm and intervention 

A. By study arm. Unadjusted and adjusted (GEE with clustering at EA-level) logistic regression, odds of 
sero-positivity by study arm. 

 

Outcome: Sero-positivity Unadjusted Adjusted‡ 

OR 95% CI p-value OR 95% CI p-value 

RACD only 1.00 1.00  1.00 1.00  
RACD + RAVC 0.94 0.79 – 1.13 0.521 0.90 0.69 – 1.18 0.458 

rfMDA 0.86 0.71 – 1.03 0.107 0.90 0.68 – 1.18 0.441 

rfMDA + RAVC 0.76 0.63 – 0.93 0.008 0.78 0.60 – 1.02 0.071 
Age category       

1-5 years -- -- -- 1.00 1.00  

6-15 years -- -- -- 1.65 1.32 – 2.06 0.000 
>15 years -- -- -- 1.80 1.46 – 2.22 0.000 

Intervention coverage > 75% -- -- -- 0.84 0.70 – 1.01 0.063 
Visit day -- -- -- 0.99 0.99 – 1.00 0.000 

Fever -- -- -- 1.65 0.48 – 5.70 0.431 

Gender (Female) -- -- -- 0.82 0.71 – 0.94 0.005 

 

B. By intervention. Logistic regression unadjusted and adjusted (GEE model with clustering at EA-level) 

Outcome: sero-positivity Unadjusted Adjusted 

OR 95% CI p-value OR 95% CI p-value 

rfMDA* 0.87 0.72 – 1.05 0.140 0.89 0.68 – 1.17 0.406 
RAVC† 0.95 0.80 – 1.14 0.586 0.90 0.69 – 1.17 0.422 

rfMDA:RAVC 0.91 0.70 – 1.20 0.511 0.97 0.67 – 1.40 0.880 

1-5 years -- -- -- 1.00 1.00  
6-15 years -- -- -- 1.65 1.32 – 2.05 <0.001 

>15 years -- -- -- 1.80 1.46 – 2.22 <0.001 

Intervention coverage > 75% -- -- -- 0.84 0.70 – 1.01 0.062 
Visit day -- -- -- 0.99 0.99 – 1.00 <0.001 

Fever -- -- -- 1.74 0.80 – 3.78 0.161 
Gender (Female) -- -- -- 0.81 0.71 – 0.94 0.004 

* With or without RAVC  † With either RACD or rfMDA 
 

Unadjusted odds of Rh2.2030 sero-positivity was lower in all study arms compared to the RACD 

only arm, but statistical evidence was weak. However, adjusted odds of sero-positivity to 

Rh2.2030 (Table 7.15) was only observed to be lower in the RACD + RAVC and rfMDA only arms 

(OR 0.83 95%CI 0.67 – 1.03, p=0.096 and 0.87 95%CI 0.68 – 1.11, p=0.268 respectively). There 

were no statistically strong differences when aggregating rfMDA arms or RAVC arms for 

Rh2.2030.   

The effect of age on sero-positivity was less pronounced for Etramp5.Ag1 compared with MSP119 

and AMA1, where older children had an OR of 1.65 (95%CI 1.32 – 2.06, p<0.001) compared to 

young children and adults only had an OR of 1.80 (95%CI 1.46 – 2.22, p<0.001). However, the age 
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effect for Rh2.2030 was similar to long-term antibody markers, with older children having an OR 

of 2.92 (95%CI 1.95 – 4.36, p<0.001) and adults an OR of 22.29 (95%CI 15.38 – 32.30), p<0.001).  

Table 7.15 Rh2.2030 sero-positivity by study arm and intervention 

 

A. By study arm. Unadjusted and adjusted (GEE with clustering at EA-level) logistic regression, odds of 
sero-positivity by study arm. 

Outcome: Sero-positivity Unadjusted Adjusted‡ 

OR 95% CI p-value OR 95% CI p-value 

RACD only 1.00 1.00  1.00 1.00  

RACD + RAVC 0.83 0.72 – 1.04 0.129 0.83 0.67 – 1.03 0.096 

rfMDA 0.87 0.74 – 1.07 0.209 0.87 0.68 – 1.11 0.268 
rfMDA + RAVC 0.95 0.79 – 1.15 0.623 1.00 0.77 – 1.31 0.988 

Age category       

1-5 years -- -- -- 1.00 1.00  
6-15 years -- -- -- 2.92 1.95 – 4.36 0.000 

>15 years -- -- -- 22.29 15.38 – 32.30 0.000 

Intervention coverage > 75% -- -- -- 0.79 0.66 – 0.95 0.012 
Visit day -- -- -- 1.00 0.99 – 1.00 0.270 

Fever -- -- -- 1.67 0.64 – 4.39 0.297 
Gender (Female) -- -- -- 0.73 0.63 – 0.84 0.000 

 

B. By intervention. Logistic regression unadjusted and adjusted (GEE model with clustering at EA-level) 

Outcome: sero-positivity Unadjusted Adjusted 

OR 95% CI p-value OR 95% CI p-value 

rfMDA* 0.89 0.74 – 1.07 0.204 0.87 0.68 – 1.11 0.268 

RAVC† 0.87 0.73 – 1.04 0.123 0.83 0.67 – 1.03 0.096 

rfMDA:RAVC 1.21 0.93 – 1.58 0.149 1.39 0.97 – 1.98 0.074 
1-5 years -- -- -- 1.00 1.00  

6-15 years -- -- -- 2.92 1.95 – 4.36 <0.001 

>15 years -- -- -- 22.29 15.38 – 32.30 <0.001 
Intervention coverage > 75% -- -- -- 0.79 0.66 – 0.95 0.012 

Visit day -- -- -- 1.00 0.99 – 1.00 0.270 
Fever -- -- -- 1.67 0.64 – 4.39 0.297 

Gender (Female) -- -- -- 0.73 0.63 – 0.84 <0.001 

* With or without RAVC  † With either RACD or rfMDA 
 

For EBA175, no differences in odds of sero-positivity were observed between study arms or 

interventions, nor was there an effect of intervention coverage (Table 7.16). However, there was 

an effect of age, primarily in adults who had an OR of 7.23 (95%CI 5.23 – 9.31, p<0.001) compared 

to young children, while older children only had an OR of 1.78 (95%CI 1.33 – 2.39, p<0.001).  
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Table 7.16 EBA175 sero-positivity by study arm and intervention 
 

A. By study arm. Unadjusted and adjusted (GEE with clustering at EA-level) logistic regression, odds of 
sero-positivity by study arm. 

Outcome: sero-positivity Unadjusted Adjusted 

OR 95% CI p-value OR 95% CI p-value 

RACD only 1.00 1.00  1.00 1.00  
RACD + RAVC 1.17 0.98 – 1.39 0.088 1.17 0.94 – 1.45 0.162 

rfMDA 1.06 0.89 – 1.28 0.502 1.07 0.85 – 1.34 0.562 

rfMDA + RAVC 1.03 0.85 – 1.24 0.782 1.06 0.81 – 1.37 0.679 
Age category       

1-5 years -- -- -- 1.00 1.00  

6-15 years -- -- -- 1.78 1.33 – 2.39 <0.001 
>15 years -- -- -- 7.23 5.23 – 9.31 <0.001 

Intervention coverage > 75% -- -- -- 0.98 0.83 – 1.17 0.840 
Visit day -- -- -- 1.00 0.99 – 1.00 0.073 

Fever -- -- -- 0.76 0.27 – 2.10 0.594 

Gender (Female) -- -- -- 0.78 0.68 – 0.91 0.001 

 

B. By intervention. Logistic regression unadjusted and adjusted (GEE model with clustering at EA-level) 

Outcome: sero-positivity Unadjusted Adjusted 

OR 95% CI p-value OR 95% CI p-value 

rfMDA* 1.06 0.89 – 1.28 0.502 1.07 0.85 – 1.34 0.562 
RAVC† 1.17 0.98 – 1.39 0.088 1.17 0.94 – 1.45 0.162 

rfMDA:RAVC 0.83 0.64 – 1.07 0.155 0.85 0.60 – 1.19 0.332 

1-5 years -- -- -- 1.00 1.00  
6-15 years -- -- -- 1.78 1.33 – 2.39 <0.001 

>15 years -- -- -- 7.23 5.62 – 9.31 <0.001 

Intervention coverage > 75% -- -- -- 0.98 0.83 – 1.17 0.840 
Visit day -- -- -- 1.00 0.99 – 1.00 0.073 

Fever -- -- -- 0.76 0.27 – 2.10 0.594 
Gender (Female) -- -- -- 0.78 0.68 – 0.91 0.001 

* With or without RAVC  † With either RACD or rfMDA 
 

Similar to long-term markers, clusters with trial intervention coverage greater than 75% had a 

reduced the odds of sero-positivity to both Etramp5.Ag1 (OR 0.84 95%CI 0.70 – 1.01, p=0.063) 

and Rh2.2030 (OR 0.079 95%CI 0.66 – 0.95, p=0.012). Females also had a lower odds of sero-

positivity compared to males for both Etramp5.Ag1 (OR 0.82 95%CI 0.71 – 0.94, p=0.005) and 

Rh2.2030 (OR 0.80 95%CI 0.70 – 0.92, p=0.002).  

Sero-prevalence in children to Etramp5.Ag1, Rh2.2030 and EBA175 

Similar to MSP119, under-15 sero-prevalence to Etramp5.Ag1 was lower in the RACD + RAVC arm 

by 2.7% (95%CI 0.0 – 5.4, p=0.55) and in the rfMDA + RAVC arm by 3.9% (95%CI 1.2 – 6.6, p=0.006) 

when adjusted for intervention coverage (Table 7.17a). For Rh2.2030, only the rfMDA + RAVC 

arm was statistically different, with an adjusted sero-prevalence lower by 1.7% (95%CI 0.4 – 3.0, 

p=0.013) (Table 7.18a). Similar to Etramp5.Ag1, adjusted sero-prevalence to EBA175 (Table 

7.19a) was only slightly lower in the RACD + RAVC arm by 0.7% (95%CI 0.0 – 1.3, p=0.55). In the 

rfMDA + RAVC arm, adjusted sero-prevalence was lower by 1.0% (95%CI 0.3 - 1.6, p=0.006). Based 
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on regression analysis comparing the interventions, the differences in the rfMDA + RAVC arm 

appear to be driven primarily by the effect of the RAVC intervention (Tables 7.17b, 7.18b and 

7.19b). 

 

Table 7.17 Etramp5.Ag1 under-15 sero-prevalence by study arm and intervention 

A. By study arm. Reference (intercept) is the mean sero-prevalence for ages  <15 years amongst  of 
clusters in the RACD only arm, and difference in mean sero-prevalence is listed for all other study arms 
based on linear regression unadjusted and adjusted for intervention coverage (>75%).  

 Unadjusted Adjusted 

Study arm Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only mean SP 
(Intercept) 

14.4% (12.6 – 16.2) -- 14.8% (12.5 – 17.0) -- 

RACD + RAVC -2.4% (-5.0; 0.2) 0.081 -2.7% (-5.4; 0.0) 0.055 

rfMDA only -1.8% (-4.4; 0.8) 0.191 -2.1% (-4.7; 0.6) 0.135 

rfMDA + RAVC -3.6% (-6.2; -1.0) 0.009 -3.9% (-6.6; -1.2) 0.006 

Intervention coverage -- -- -0.1% (-2.1; 1.8) 0.888 

 

B. By intervention. Reference (intercept) is the mean sero-prevalence of ages <15 years of clusters in the 
RACD only arm, and difference in mean sero-prevalence is listed for rfMDA only and RACD + RAVC based 
on linear regression unadjusted and adjusted for intervention coverage (>75%). rfMDA:RAVC is the 
additional sero-prevalence difference of the two interventions combined (included as an interaction 
effect in the linear regression). 

 Unadjusted Adjusted 

Intervention Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only mean SP 
(Intercept) 

14.4% (12.6 – 16.2) -- 14.4% (12.6 – 16.2) -- 

rfMDA -1.8% (-4.4; 0.8) 0.191 -2.1% (-4.7; 0.6) 0.135 

RAVC -2.4% (-5.0; 0.2) 0.081 -2.7% (-5.4; 0.0) 0.055 

rfMDA:RAVC 0.5% (-3.2; 4.2) 0.787 0.8% (-2.9; 4.6) 0.668 

Intervention coverage -- -- -0.1% (-2.1; 1.8) 0.888 

 

 

Table 7.18 Rh2.2030 under-15 sero-prevalence by study arm and intervention 

A. By study arm. Reference (intercept) is the mean sero-prevalence for ages  <15 years amongst  of 
clusters in the RACD only arm, and difference in mean sero-prevalence is listed for all other study arms 
based on linear regression unadjusted and adjusted for intervention coverage (>75%).  

 Unadjusted Adjusted 

Study arm Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only mean SP 
(Intercept) 

3.0% (2.1 – 3.9) -- 3.2% (2.1 – 4.3) -- 

RACD + RAVC -1.1% (-2.3; 0.2) 0.104 -1.2% (-2.5; 0.1) 0.070 

rfMDA only -0.8% (-2.1; 0.4) 0.212 -1.0% (-2.3; 0.3) 0.150 

rfMDA + RAVC -1.5% (-2.8; -0.3) 0.020 -1.7% (-3.0; -0.4) 0.013 

Intervention coverage -- -- -0.1% (-1.0; 0.8) 0.865 
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B. By intervention. Reference (intercept) is the mean sero-prevalence of ages <15 years of clusters in the 
RACD only arm, and difference in mean sero-prevalence is listed for rfMDA only and RACD + RAVC based 
on linear regression unadjusted and adjusted for intervention coverage (>75%). rfMDA:RAVC is the 
additional sero-prevalence difference of the two interventions combined (included as an interaction 
effect in the linear regression). 

 Unadjusted Adjusted 

Intervention Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only mean SP 
(Intercept) 

3.0% (2.1 – 3.9) -- 3.2% (2.1 – 4.3) -- 

rfMDA -0.8% (-2.1; 0.4) 0.212 -1.0% (-2.3; 0.3) 0.150 

RAVC -1.1% (-2.3; 0.2) 0.104 -1.2% (-2.5; 0.1) 0.070 

rfMDA:RAVC 0.4% (-1.4; 2.1) 0.695 0.5% (-1.3; 2.3) 0.575 

Intervention coverage -- -- -0.1% (-1.0; 0.8) 0.865 

 

 

Table 7.19 EBA175 under-15 sero-prevalence by study arm and intervention 

A. By study arm. Reference (intercept) is the mean sero-prevalence for ages  <15 years amongst  of 
clusters in the RACD only arm, and difference in mean sero-prevalence is listed for all other study arms 
based on linear regression unadjusted and adjusted for intervention coverage (>75%).  

 Unadjusted Adjusted 

Study arm Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only mean SP 
(Intercept) 

3.6% (3.1 – 4.0) -- 3.7% (3.1 – 4.2) -- 

RACD + RAVC -0.6% (-1.2; 0.1) 0.082 -0.7% (-1.3; 0.0) 0.055 

rfMDA only -0.4% (-1.1; 0.2) 0.192 -0.5% (-1.2; 0.1) 0.135 

rfMDA + RAVC -0.9% (-1.5; -0.2) 0.010 -1.0% (-1.6; -0.3) 0.006 

Intervention coverage -- -- 0.0% (-0.5; 0.4) 0.885 

 

B. By intervention. Reference (intercept) is the mean sero-prevalence of ages <15 years of clusters in the 
RACD only arm, and difference in mean sero-prevalence is listed for rfMDA only and RACD + RAVC based 
on linear regression unadjusted and adjusted for intervention coverage (>75%). rfMDA:RAVC is the 
additional sero-prevalence difference of the two interventions combined (included as an interaction 
effect in the linear regression). 

 Unadjusted Adjusted 

Intervention Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only mean SP 
(Intercept) 

3.6% (3.1 – 4.0) -- 3.7% (3.1 – 4.2) -- 

rfMDA -0.4% (-1.1; 0.2) 0.192 -0.5% (-1.2; 0.1) 0.135 

RAVC -0.6% (-1.2; 0.1) 0.082 -0.7% (-1.3; 0.0) 0.055 

rfMDA:RAVC 0.1% (-0.8; 1.1) 0.777 0.2% (-0.7; 1.1) 0.658 

Intervention coverage -- -- 0.0% (-0.5; 0.4) 0.885 
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Sero-positivity and sero-prevalence to any short-term marker or HSRDT combined 

When assessing the odds of sero-positivity to any of the three short-term serological markers or 

HSRDT positivity, differences between study arms were not statistically strong. However, both 

unadjusted and adjusted regression analysis showed a lower OR in the rfMDA and rfMDA + RAVC 

study arms (Table 7.20). There was a slightly increased odds of positivity in older children (1.87 

95%CI 1.53-2.30, p<0.001), and an even larger increased odds in adults (6.07 95%CI 4.98 – 7.40, 

p<0.001).  

Similar to sero-prevalence to individual antigens, the combined under-15 seroprevalence to all 

three short-term markers was lower in the RACD + RAVC arm by 3.6% (95%CI 0.0 – 7.1, p=0.056) 

when adjusted for intervention coverage (Table 7.21a). Sero-prevalence in the rfMDA + RAVC 

arm was lower by 5.2% (95%CI 1.6 – 8.7, p=0.007). Overall, these differences are larger than those 

observed for the markers individually. Again, the effect appears to be primarily due to the RAVC 

intervention, which is associated with a sero-prevalence lower by 3.6% (95%CI 0.09 – 7.1, 

p=0.056) compared to interventions without RAVC, while rfMDA arms are only associated with a 

reduction of sero-prevalence of 2.7% compared to RACD arms, but the p-value indicates that 

statistical evidence for this difference is weak (Table 7.21b). 

 
Table 7.20 Combined sero-positivity (Etramp5.Ag1, Rh2.2030, EBA175) and HSRDT-positivity by study 
arm 
Unadjusted and adjusted (GEE with clustering at EA-level) logistic regression, odds of sero-positivity by study arm. 

Outcome: Positive to short-
term sero-marker or HSRDT 

Unadjusted Adjusted‡ 

OR 95% CI p-value OR 95% CI p-value 

RACD only 1.00 1.00  1.00 1.00  

RACD + RAVC 1.08 0.91 – 1.28 0.53761 1.06 0.84 – 1.33 0.622 

rfMDA 0.89 0.75 – 1.05 0.164 0.88 0.69 – 1.12 0.290 
rfMDA + RAVC 0.92 0.77 – 1.09 0.329 0.90 0.69 – 1.18 0.452 

Age category       

1-5 years -- -- -- 1.00 1.00  
6-15 years -- -- -- 1.87 1.53 – 2.30 <0.001 

>15 years -- -- -- 6.07 4.98 – 7.40 <0.001 
Intervention coverage > 75% -- -- -- 0.89 0.74 – 1.06 0.177 

Visit day -- -- -- 1.00 0.99 – 1.00 0.006 

Fever -- -- -- 1.90 0.77 – 4.69 0.166 
Gender (Female) -- -- -- 0.75 0.66 – 0.86 <0.001 

‡ Adjusted for age category, intervention coverage, visit day, fever, gender and clustering at EA-level, but not 
shown in table. 
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Table 7.21 Combined sero-prevalence (Etramp5.Ag1, Rh2.2030, EBA175) by study arm and intervention 

A. By study arm. Reference (intercept) is the mean sero-prevalence for ages  <15 years amongst  of 
clusters in the RACD only arm, and difference in mean sero-prevalence is listed for all other study arms 
based on linear regression unadjusted and adjusted for intervention coverage (>75%).  

 Unadjusted Adjusted 

Study arm Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only mean SP 
(Intercept) 

15.7% (13.2 –18.1) -- 16.2% (13.2 –19.2) -- 

RACD + RAVC -3.1% (-6.6; 0.3) 0.083 -3.6% (-7.1; 0.0) 0.056 

rfMDA only -2.3% (-5.8; 1.1) 0.192 -2.7% (-6.3; 0.8) 0.136 

rfMDA + RAVC -4.7% (-8.2; -1.3) 0.010 -5.2% (-8.7; -1.6) 0.007 

Intervention coverage -- -- -0.2% (-2.8; 2.4) 0.884 

 

B. By intervention. Reference (intercept) is the mean sero-prevalence of ages <15 years of clusters in the 

RACD only arm, and difference in mean sero-prevalence is listed for rfMDA only and RACD + RAVC based 

on linear regression unadjusted and adjusted for intervention coverage (>75%). rfMDA:RAVC is the 

additional sero-prevalence difference of the two interventions combined (included as an interaction 

effect in the linear regression). 

 Unadjusted Adjusted 

Intervention Difference in SP (95%CI) p-value Difference in SP (95%CI) p-value 

RACD only mean SP 
(Intercept) 

15.7% (13.2 –18.1) -- 16.2% (13.2 –19.2) -- 

rfMDA -2.3% (-5.8; 1.1) 0.192 -2.7% (-6.3; 0.8) 0.136 

RAVC -3.1% (-6.6; 0.3) 0.083 -3.6% (-7.1; 0.0) 0.056 

rfMDA:RAVC 0.7% (-4.2; 5.7) 0.773 1.2% (-3.8; 6.1) 0.654 

Intervention coverage -- -- -0.2% (-2.8; 2.4) 0.884 

 

 

Antibody acquisition to Etramp5.Ag1, Rh2.2030, EBA175 

Based on Ab acquisition models unadjusted and adjusted for intervention coverage, lower 

Etramp5.Ag1 antibody responses were observed in all study arms compared to the RACD only 

arm (Table 7.22, Figure 7.6b). However, these differences were only statistical strong for the 

rfMDA only arm (p=0.027 unadjusted and p=0.037 adjusted), while there is some weak evidence 

that differences in rfMDA + RAVC arms are significant (p=0.078 unadjusted and p=0.085 

adjusted). Intervention coverage was shown to have a strong effect on differences between study 

arms, with a lower mean AUC value of 7,013 (95%CI 1,733 – 12,292, p=0.012) in clusters receiving 

greater than 75% intervention coverage (Table 7.22, Figures 7.6a-b).  

On the other hand, antibody acquisition to Rh2.2030 did not appear to be different between 

study arms (Table 7.23, Figure 7.7b). Study arms with high intervention coverage had mean AUC 

values lower by 12,737, but p-values suggest that this difference statistically weak (Table 7.23, 
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Figures 7.7a-b). While this was not tested for each study arm, Figure 7.7b suggests that the effect 

of intervention coverage may be primarily in the rfMDA + RAVC arm, where high intervention 

coverage clusters appear to consistently have lower antibody acquisition compared to lower 

coverage clusters. There were no differences between study arms in antibody acquisition AUC 

values for EBA175 (Table 7.24), nor was there an effect of intervention coverage observed 

(Figures 7.8a-b). However, similar to Rh2.2030, Figure 7.8b suggests that the effect may only be 

apparent in the rfMDA + RAVC arm, but the effect of intervention coverage was not statistically 

tested by study arm in this analysis. 

For a majority of clusters, changes in Ab acquisition rate to both Rh2.2030 (Figures 7.7a-b) and 

EBA175 (Figures 7.8a-b) appear to occur between ages 15-20, while age-related differences are 

not observed in the Ab acquisition rates to Etramp5.Ag1 (Figures 7.6a-b). This is consistent with 

the higher odds of sero-positivity to Rh2.2030 in adults. A higher odds of sero-positivity to EBA175 

is also observed in adults, but is not as pronounced relative to Rh2.2030.  
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Figure 7.6 Etramp5.Ag1 antibody acquisition overall, by intervention coverage and study arm 

A. Overall and by intervention coverage. Ab acquisition fit for all clusters (top), points are age-adjusted 
MFI, black dotted lines are clusters with <75% intervention coverage, blue dotted lines are clusters with 
>75% intervention coverage, and shaded areas are the 95% credible intervals of the Ab acquisition fit. 
Clusters with <75% intervention coverage shown in black (bottom left) and >75% intervention coverage 
in red (bottom right). 

 

B. B study arm. RACD only in blue (top left), RACD + RACD in green (top right), rfMDA only in red (bottom 
left), and rfMDA + RAVC in yellow (bottom right). Dotted lines show clusters with <75% intervention 
coverage and solid lines clusters with >75% intervention coverage. 
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Table 7.22 Etramp5.Ag1 Area under the antibody acquisition curve by study arm and intervention 

 

A. By study arm. Reference (intercept) is the mean AUC of clusters in the RACD only arm, and difference 
in mean AUC is listed for all other study arms based on linear regression unadjusted and adjusted for 
intervention coverage (>75%). 

 

 Unadjusted Adjusted 

Study arm 
Difference in AUC 

(95%CI) 
p-value 

Difference in AUC 
(95%CI) 

p-value 

RACD only mean AUC 
(Intercept) 

38,843 (33,762; 43,923) -- 43,476 (37,494; 49,458) -- 

RACD + RAVC -3,172 (-10,354; 4,009) 0.391 -2,782 (-9,770; 4,206) 0.439 

rfMDA only -8,118 (-15,101; -1,125) 0.027 -7,453 (-14,273; -632) 0.037 

rfMDA + RAVC -6,546 (-13,682; 589) 0.078 -6,211 (-13,153; 731) 0.086 

Intervention coverage -- -- -7,013 (-12,292; -1,733) 0.012 

 

B. By intervention. Reference (intercept) is the mean AUC of clusters in the RACD only arm, and difference 

in mean AUC is listed for rfMDA only and RACD + RAVC based on linear regression unadjusted and 

adjusted for intervention coverage (>75%). rfMDA:RAVC is the additional AUC difference of the two 

interventions combined (included as an interaction effect in the linear regression). 

 Unadjusted Adjusted 

Intervention 
Difference in AUC 

(95%CI) 
p-value 

Difference in AUC 
(95%CI) 

p-value 

RACD only mean AUC 
(Intercept) 

38,843 (33,762; 43,923) -- 43,476 (37,494; 49,458) -- 

rfMDA -8,118 (-15,101; -1,125) 0.027 -7,453 (-14,273; -632) 0.037 

RAVC -3,172 (-10,354; 4,009) 0.391 -2,782 (-9,770; 4,206) 0.439 

rfMDA:RAVC 4,744 (-5,238; 14,726) 0.356 4,024 (-5,620; 13,668) 0.417 

Intervention coverage -- -- -7,013 (-12,292; -1,733) 0.012 
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Figure 7.7 Rh2.2030 Antibody acquisition overall, by trial intervention coverage and study arm 

A. Overall and by intervention coverage. Ab acquisition fit for all clusters (top), points are age-adjusted 

MFI, black dotted lines are clusters with <75% intervention coverage, blue dotted lines are clusters with 

>75% intervention coverage, and shaded areas are the 95% credible intervals of the Ab acquisition fit. 

Clusters with <75% intervention coverage shown in black (bottom left) and >75% intervention coverage 

in red (bottom right). 

 

B. By study arm. RACD only in blue (top left), RACD + RACD in green (top right), rfMDA only in red (bottom 

left), and rfMDA + RAVC in yellow (bottom right). Dotted lines show clusters with <75% intervention 

coverage and solid lines clusters with >75% intervention coverage. 
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Table 7.23 Rh2.2030 Area under the antibody acquisition curve by study arm and intervention 

A. By study arm. Reference (intercept) is the mean AUC of clusters in the RACD only arm, and difference 
in mean AUC is listed for all other study arms based on linear regression unadjusted and adjusted for 
intervention coverage (>75%). 

 Unadjusted Adjusted 

Study arm Difference in AUC (95%CI) p-value Difference in AUC (95%CI) p-value 

RACD only mean AUC 
(Intercept) 

338,528 (271,875; 405,180) -- 353,514 (270,152; 436,876) -- 

RACD + RAVC 10,875 (-88,397; 110,147) 0.831 3,760 (-98,728; 106,247) 0.943 

rfMDA only 24,379 (-77,119; 125,877) 0.640 17,731 (-87,130; 122,593) 0.742 

rfMDA + RAVC 42,591 (-62,181; 147,362) 0.429 37,226 (-71,721; 146,173) 0.506 

Intervention coverage -- -- -12,737 (-92,396; 66,922) 0.755 

 

B. By intervention. Reference (intercept) is the mean AUC of clusters in the RACD only arm, and difference 
in mean AUC is listed for rfMDA only and RACD + RAVC based on linear regression unadjusted and 
adjusted for intervention coverage (>75%). rfMDA:RAVC is the additional AUC difference of the two 
interventions combined (included as an interaction effect in the linear regression). 

 Unadjusted Adjusted 

Intervention Difference in AUC (95%CI) p-value Difference in AUC (95%CI) p-value 

RACD only mean AUC 
(Intercept) 

338,528 (271,875; 405,180) -- 353,514 (270,152; 436,876) -- 

rfMDA 24,379 (-77,119; 125,877) 0.640 17,731 (-87,130; 122,593) 0.742 

RAVC 10,875 (-88,397; 110,147) 0.831 3,760 (-98,728; 106,247) 0.943 

rfMDA:RAVC 7,337 (-141,823; 156,497) 0.924 15,735 (-136,601; 168,071) 0.840 

Intervention coverage -- -- -12,737 (-92,396; 66,922) 0.755 
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Figure 7.8 EBA175 Antibody acquisition overall, by trial intervention coverage and study arm 

A. Overall and by intervention coverage. Ab acquisition fit for all clusters (top), points are age-adjusted 
MFI, black dotted lines are clusters with <75% intervention coverage, blue dotted lines are clusters with 
>75% intervention coverage, and shaded areas are the 95% credible intervals of the Ab acquisition fit. 
Clusters with <75% intervention coverage shown in black (bottom left) and >75% intervention coverage 
in red (bottom right). 

 

B. By study arm. RACD only in blue (top left), RACD + RACD in green (top right), rfMDA only in red (bottom 
left), and rfMDA + RAVC in yellow (bottom right). Dotted lines show clusters with <75% intervention 
coverage and solid lines clusters with >75% intervention coverage. 

 

 



266 
 
 

 

Table 7.24 EBA175 Area under the antibody acquisition curve by study arm and intervention 

A. By study arm. Reference (intercept) is the mean AUC of clusters in the RACD only arm, and difference 
in mean AUC is listed for all other study arms based on linear regression unadjusted and adjusted for 
intervention coverage (>75%). 

 Unadjusted Adjusted 

Study arm Difference in AUC (95%CI) p-value Difference in AUC (95%CI) p-value 

RACD only mean AUC 
(Intercept) 

109,604 (82,503; 136,704) -- 108,131 (74,974; 141,289) -- 

RACD + RAVC 18,439 (-20,992; 57,871) 0.364 15,142 (-25,708; 55,993) 0.471 

rfMDA only 19,304 (-21,622; 60,229) 0.360 16,240 (-26,045; 58,524) 0.455 

rfMDA + RAVC 10,461 (-31,009; 51,930) 0.623 6,581 (-36,501; 49,662) 0.766 

Intervention coverage -- -- 7,645 (-23,376; 38,666) 0.631 

 

B. By intervention. Reference (intercept) is the mean AUC of clusters in the RACD only arm, and difference 
in mean AUC is listed for rfMDA only and RACD + RAVC based on linear regression unadjusted and 
adjusted for intervention coverage (>75%). rfMDA:RAVC is the additional AUC difference of the two 
interventions combined (included as an interaction effect in the linear regression). 

 Unadjusted Adjusted 

Intervention Difference in AUC (95%CI) p-value Difference in AUC (95%CI) p-value 

RACD only mean AUC 
(Intercept) 

109,604 (82,503; 136,704) -- 108,131 (74,974; 141,289) -- 

rfMDA 19,304 (-21,622; 60,229) 0.360 16,240 (-26,045; 58,524) 0.455 

RAVC 18,439 (-20,992; 57,871) 0.364 15,142 (-25,708; 55,993) 0.471 

rfMDA:RAVC -27,282 (-86,279; 31,715) 0.369 -24,801 (-85,130; 35,528) 0.424 

Intervention coverage -- -- 7,645 (-23,376; 38,666) 0.631 

 

 

Comparison of trial endpoints 

A comparison of serological, clinical, and HSRDT endpoints are illustrated in Figures 7.9 – 7.11. 

Overall, confidence intervals appeared large for all endpoints and study arms, making it difficult 

to draw statistical conclusions from the results according to any endpoint.  

Clinical endpoints show a decreased mean IRR in rfMDA and RAVC intervention arms, individually 

and combined (Figure 7.9c). Smaller confidence intervals were observed for AMA1 SCRs 

compared to MSP119 SCRs, but remain large for both antigens (Figure 7.9a-b). For most 

serological endpoints, differences were more apparent between study arms when restricting 

analysis to clusters with high intervention coverage. Intention-to-treat analysis suggests that SCR 

values do not differ between study arms for either antigen, while per-protocol analysis suggest 

that SCR may be lower in the rfMDA only and rfMDA + RAVC arms. However, strong statistical 

conclusions still cannot be drawn due to the large confidence intervals. SCR and IRR are not 

directly comparable here, as they are expressed as rates and rate ratios respectively.  
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Based on HSRDT results, a lower odds of positive test result compared to RACD only was observed 

only in the rfMDA + RAVC arm, while rfMDA clusters (with or without RAVC) showed lower odds 

of HSRDT positivity compared to RACD (with or without RAVC) arms (Figure 7.10a and 7.10c). A 

lower odds of HSRDT positivity was only observed in RAVC compared to No RAVC arms based on 

per-protocol analysis (Figure 7.10d). For Etramp5.Ag1, lower odds of sero-positivity were 

observed in all study arms compared to the RACD only arm based on both intention-to-treat and 

per-protocol analysis. For Rh2.2030, decreased odds of sero-positivity were observed in the RACD 

+ RAVC and rfMDA only arms based on both intention-to-treat and per-protocol analysis.  

When comparing interventions, sero-positivity to Rh2.2030 based on per-protocol analysis was 

lower in rfMDA arms (with or without RAVC) compared to RACD arms. It was also lower in RAVC 

arms (with either rfMDA or RACD) compared to arms without RAVC (Figure 7.10d). However, 

these differences were no longer apparent based on intention-to-treat analysis (Figure 7.10b). 

For MSP119, AMA1 and EBA175, odds of sero-positivity was not lower in any of the study arms 

compared to the RACD only reference arm based on both intention-to-treat and per-protocol 

analysis. When comparing interventions, rfMDA study arms (with or without RAVC) showed 

lower odds of sero-positivity based on per-protocol analysis. However, similar to Rh2.2030, these 

differences were also no longer apparent based on intention-to-treat analysis. Overall, 

confidence intervals for the ORs of all serological endpoints were smaller than HSRDT.  

Based on Ab acquisition AUC values (Figure 7.11), lower antibody levels to MSP119 or AMA1 were 

not observed in any study arms compared to the RACD only arm (Figure 7.11a). For both 

Rh2.2030 and EBA175, AUC values were lower in the RACD + RAVC and the rfMDA + RAVC study 

arms based on per-protocol analysis, but no differences were observed based on intention-to-

treat analysis.  On the other hand, AUC values for Etramp5.Ag1 were lower in all study arms 

compared to the RACD only arm based on both intention-to-treat and per-protocol analysis.  
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Figure 7.9 Sero-conversion rate and clinical incidence rate ratio by study arm and intervention  

Mean SCR by each study arm (left). Mean SCR by intervention (middle) and clinical IRR by intervention (right), 
where reference arms are RACD only, RACD (with or without RAVC) and No RAVC respectively. Intention-to-treat 
(ITT) includes all clusters and per-protocol (PP) only includes clusters receiving >75% trial intervention coverage. 
 

 

 

Figure 7.10 Sero-positivity vs. HSRDT positivity odds ratio by study arm and intervention  

Reference arms are RACD only, RACD (with or without RAVC) and No RAVC respectively. Intention-to-treat (ITT) 
includes all clusters and per-protocol (PP) only includes clusters receiving >75% trial intervention coverage. 
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Figure 7.11 Area under the antibody acquisition curve by study arm and intervention  

Reference arms are RACD only, RACD (with or without RAVC) and No RAVC respectively. Intention-to-treat (ITT) 
refers to Ab acquisition model fit overall and per-protocol (PP) refers to Ab acquisition model fit adjusted for 
intervention coverage. 
 

 

 

7.4 Discussion 
 

While serological measures have been used widely to monitor medium to long-term trends in 

malaria transmission, they have almost never been used as endpoints in efficacy trials, which the 

analysis in this chapter attempts to do using biomarkers of recent malaria infection. Serological 

results overall are consistent with the primary outcomes of the intervention trial based on clinical 

and HSRDT endpoints, which also did not show statistical strong evidence for an intervention 

effect. This may provide some indication that serological endpoints are well correlated with other 

short-term measures of malaria infection. Potential reasons for why this trial did not show an 

intervention effect overall are discussed in following sections. 

Assessing trial effect with serological endpoints 

When assessing differences in antibody responses between study arms, results were varied by 

antigen and method / unit used to analyse serological endpoints. There was also inconsistency 

between which intervention (RAVC or rfMDA) was most associated with reduced antibody levels. 

Overall, analysis to determine if the combination of the interventions had a synergistic effect 
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were not conclusive, but p-values for the interaction terms were generally large, providing weak 

statistical evidence for any effects observed.  

No differences were observed between study arms in sero-conversion rates or antibody 

acquisition to MSP119 and AMA1, but slightly lower under-15 sero-prevalence to both antigens in 

study arms receiving RAVC. However, antibody responses to these antigens reflect high inter-

cluster variation, even within study arms. It is unclear if this reflects variation in the study 

outcomes or in the underlying antibody levels prior to the study. The latter is highly probable 

given that these antigens are associated with longer-lived antibody responses. 

On the other hand, antibody responses to Etramp5.Ag1 showed lower odds of sero-positivity, 

under-15 sero-prevalence, and antibody acquisition for most study arms compared to the 

reference arms, but whether differences were due to the RAVC intervention (based on sero-

prevalence analysis) or the rfMDA intervention (based on antibody acquisition) were not 

consistent. Antibody responses to Rh2.2030 based on sero-positivity and sero-prevalence 

suggest an effect of RAVC on reducing transmission, while antibody acquisition to this antigen 

was not informative. Assessing the combined antibody response to Etramp5.Ag1, Rh2.2030, 

EBA175 and HSRDT result did not improve the statistical power of the results compared to 

Etramp5.Ag1 alone, but the magnitude of the differences measured were larger.  

Assessing outcomes based on sero-positivity has the advantage of allowing adjustment by 

individual level covariates, including age and gender, while sero-prevalence does not. Sero-

conversion rate has utility as a measure of force of infection, which can be used as a strong proxy 

for age-dependent transmission risk. However, the reverse catalytic model is only appropriate 

for antigens where antibody responses are relatively long-lived. The use of antibody acquisition 

models allows the estimation of population-level and age-adjusted antibody responses. 

However, the effects between study arms is not easily interpretable in the context of efficacy 

trials. For both sero-conversion rates and antibody acquisition models, it is important to consider 

the inter-cluster coefficient of variation (ICC) within each study arm. Another method for 

assessing differences between study arms is the breadth of antibody response, which could be 

included in future analyses of this data. 

The relationship between serological outcomes and age, geographical or population, parasite 

prevalence and clinical outcomes 

Strong age-dependency in antibody responses was observed for MSP119, AMA1, Rh2.2030, and 

EBA175, but not for Etramp5.Ag1. This is consistent with the previous results on age-dependent 

antibody responses in individuals from The Gambia, as well as the known effects of age on 

immune responses to many of these antigens, previously discussed in Chapters 1 and 5b. 
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Antibody responses between study arms to Etramp5.Ag1 were most consistent with clinical 

incidence outcomes, and were even more aligned with clinical outcomes than HSRDT results. 

Confidence intervals for HSRDT positivity were much larger than those for sero-positivity. 

Similarly, clinical IRR had large confidence intervals, but it is not possible to assess these in 

relation to serological markers of recent infection because the units of analysis are not directly 

comparable. Due to the weak statistical strength of the clinical and HSRDT results, it is difficult to 

interpret whether the limited differences observed between study arms reflects inadequate 

sensitivity and specificity of the serological markers or the absence of an intervention effect in 

the trial overall.  

Indeed, a major challenge with using serological endpoints in trials is how to directly translate 

differences in antibody responses to clinical and/or parasitological outcomes as they are 

measuring immunological responses to infection rather than infection itself. These correlations 

will differ depending on the serological markers used. The analysis in Chapter 4 comparing sero-

conversion rates to parasite prevalence and clinical incidence are steps in the right direction. 

However, as illustrated here and in Chapter 6, reverse catalytic models can only be used for 

antigens eliciting stable and long-lived antibody responses. Therefore, additional research will 

need to correlate antibody responses to newer short-lived biomarkers to more established trial 

endpoints.  

qPCR results from the cross-sectional end-line survey were not available at the time of this 

analysis. Therefore, future work will need to correlate serological endpoints with PCR prevalence, 

as it will likely be a better measure of low-density infections than the HSRDT, which was not found 

to be significantly more sensitive than conventional RDTs in this study (analysis not shown). 

Impact of intervention coverage and duration on trial outcomes 

Intervention coverage did not appear to have an effect on HSRDT positivity or antibody responses 

to MSP119 and AMA1. On the other hand, it did appear to have an impact on antibody responses 

to Etramp5.Ag1 (sero-positivity, antibody acquisition AUC) and Rh2.2030 (sero-positivity). There 

may also be some effect of intervention coverage on antibody acquisition to Rh2.2030 and 

EBA175 in particular study arms (rfMDA + RAVC), but this was not formally tested in this analysis.  

The importance of persistent high coverage in community-based interventions has been 

highlighted in both modelling studies380–382 and field trials74,383. While other factors (such as the 

choice of chemo-prophylactic drug used and combination with vector control or other 

interventions), these studies also emphasise the importance of intervention duration. Modelling 

studies suggest that multiple MDA rounds over at least 2 years are likely to result in the greatest 
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reduction in parasite prevalence (Figure 7.12). The fact that this trial only had one year of 

intervention is likely to be a major reason why an effect is difficult to observe according to any 

endpoint, not just serological ones. 

 

Figure 7.12 Modelling-based estimates of impact of MDA coverage and frequency on reduction in 
parasite prevalence 

Percentage reduction in mean annual all-age PCR prevalence of Plasmodium falciparum in the third year after mass 

drug administration.380 

 

 

Validating selection of optimal serological biomarkers in Namibia populations 

Results from Chapter 6 suggest that Etramp5.Ag1, Rh2.2030, and EBA175 are robust measures of 

short-term changes in transmission. However, there may be several reasons why these markers 

are not applicable in the Namibian context. If there are underlying population differences in 

immune response to these markers, the same endpoints used in Gambia may not be effective in 

Namibia. While the selection of markers in Chapter 5b was based on longitudinal data from The 

Gambia, extending this analysis to similar datasets in Namibia will help to validate whether the 

same markers have similar correlations to previous infection. Data is currently available from a 

cohort study conducted in the Zambezi region using the same serological markers discussed here, 

but analysis is not yet complete for inclusion in this chapter.  

Spatial clustering and effect of population movement 

The impact of spatial clustering of infection and population movement on transmission was not 

explored in this chapter, but would be useful follow-on analysis. As discussed in Chapter 1, 

previous research by Smith et al in and near the Zambezi region have made several important 

observations. A case-control study in Ohangwena and Omusati (north central Namibia) between 

2013 and 201436 found evidence of spatial clustering of malaria infections around passively 

detected cases. They found a ten-fold increase the odds of infection (as determined by loop-

mediate isothermal amplification (LAMP) methods) within households of index cases from the 
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health facility and a five-fold increase in odds of infection in the neighbours of index case 

households compared to randomly selected control households. It also found that the majority 

of these infections were asymptomatic and at densities below the detection limit of standard 

RDTs, raising important implications for the success of RACD strategies in these settings.  

Health facility data from the same region between 2012 and 2014 also observed excessive risk of 

malaria in males travelling to Angola (OR 43.58 95%CI 2.12 – 896) with no corresponding risk 

associated with travel by females.224 Additionally, individuals living within 15 km of the Angolan 

border were found to have a nearly three-fold increase in odds of malaria infection, after 

adjusting for individual and environmental covariates. While these studies were conducted in a 

region with particularly high cross-border travel to Angola, the study assessed in this chapter is 

also in a region of travel to Angola (though to a lesser degree), Zambia and Botswana. These 

countries may represent locations of relatively less malaria compared to Angola, but spatial 

analysis can help to confirm whether importation is a potential risk.  

As discussed in Chapter 1, the spatial distribution of transmission is of particular importance in 

cluster randomised trials. If there is a large degree of mobility, the risk of contamination between 

study arms may be high, leading to a reduction in the ability to measure intervention effects 

accurately. Several study designs have been proposed that can account for these factors (Figure 

7.13), in the context of a hypothetical transmission-blocking vaccine (TBV) CRT. Some suggest the 

inclusion of buffer zones (e.g., “fried egg” design) around a sentinel population that is monitored 

to measure the intervention effect. More complex is a gradient design with a buffer zone that 

allows measurement in a central sentinel group for intervention effect as well as individuals in 

the buffer zone to assess the intervention effect at the edges of the cluster that may be impacted 

by contamination. 

Figure 7.13 Study designs accounting for spill-over and contamination in cluster randomised trials 
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Study design and sample size for serological endpoints in cluster randomised trials 

It was observed in Chapter 6 that the sensitivity of these markers were slightly diminished in 

lower transmission settings in The Gambia. If differences in this trial are too small, than 

serological markers may still not be sensitive enough to detect differences. This raises 

considerations with regard to designing cluster trials with serological endpoints in mind. The 

ability to power a study based on these endpoints will need to use a sampling frame with 

sufficient cluster size and age distribution in order to fit antibody acquisition (or sero-conversion 

rates) with precision.  

As reflected in the large variation in sero-conversion rates, future study designs based on 

serological endpoints may need to account for baseline population immune responses. Antibody 

responses to MSP119 and AMA1 may have several uses. First, they could be used for baseline 

stratification of study clusters, whereas trial outcomes could be measured with serological 

markers more associated with recent infection, such as Etramp5.Ag1. This would have the effect 

of reducing the between-cluster variation within a strata and the design effect, potentially 

improving study power and precision77. 

There is still the possibility that MSP119 or AMA1 could be used as endpoints if baseline levels are 

taken into account, or if restricted to particular age groups. Results in this chapter suggest that 

MSP119 may have the potential be detect some short-term changes in transmission relatively 

better than AMA1.   

To determine optimal sampling frames for trials in the future, a simulation study can be designed 

that estimates sample size and age distribution requirements, by addressing the following: 

 Precision in cluster-level antibody acquisition or sero-conversion rate estimates 

 Number of clusters to detect a minimum intervention effect size 

 Improving balance between study arms by accounting for antibody levels in restricted 

randomisation 

 Comparison of sample sizes based on different CRT designs (can include two-arm or 2x2 

factorial design if there are more than two interventions) 

 Impact of intervention coverage or mobility / contamination between clusters 

Sample size requirements to estimate precise sero-conversion rates have previously been 

explored by Sepulveda et al249 and similar methods should be extended to antibody acquisition 

models. 

The frequency of sampling may also vary depending on the kinetics of the serological marker 

used and consideration of whether serological endpoints are robust enough to determine 
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intervention efficacy based on repeated cross-sectional samples (and how many) or if cohort or 

longitudinal data is needed. A proposed sampling strategy for a hypothetical transmission 

blocking vaccine (TBV) trial is illustrated in Figure 7.14, where serological endpoints are collected 

in addition to parasitological endpoints such as PCR and microscopy. This raises factors to 

consider in future trials with the serological biomarkers assessed in this chapter, such as the 

frequency of sampling depending on the longevity of antibodies, the serological unit that will be 

used for evaluation (odds of sero-positivity, sero-prevalence, change magnitude of antibody 

levels), and whether serological endpoints will only be measures in certain sentinel populations 

(e.g., children vs. adults). 

Overall, there are numerous studies being implemented or planned assessing the impact of 

community-based interventions to reduce transmission in elimination and pre-elimination 

settings. Serological endpoints could potentially be considered in any of these studies, which 

would be useful for correlating with other trial endpoints across various transmission settings. 

These are discussed in more detail in Chapter 8. 

 

Figure 7.14 Proposed sampling frame for a cluster randomised trial measuring the impact of a 
transmission reducing intervention (transmission block vaccine) using multiple endpoints 
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Appendix 7 
 

FIGURE 7.15 EXAMPLE OF SERO-CONVERSION RATES FIT INDEPENDENTLY FOR EACH CLUSTER 
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FIGURE 7.16 EXAMPLE OF ANTIBODY ACQUISITION MODELS FIT INDEPENDENTLY FOR EACH CLUSTER 
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FIGURE 7.17 ANTIBODY ACQUISITION MODELS FIT BY STUDY ARM WITH CLUSTER-LEVEL RANDOM EFFECTS 

MSP119 Ab acquisition by study arm.  Study arms are RACD only = blue (top left), RACD + RAVC = green (top 

right), rfMDA only = red (bottom left), and rfMDA + RAVC = yellow (bottom right).  Filled circles are EA-specific 
mean MFI for clusters with >75% intervention coverage and empty circles for clusters with <75% coverage. 
Vertical dashes indicate the 95% confidence interval of the age-adjusted mean MFI by EA. Shaded areas and solid 
lines show the 95% credible interval and mean of the Ab acquisition model fit overall with cluster-level random 
effects; dotted line is mean of model fit adjusted for intervention coverage. 
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AMA1 Ab acquisition by study arm 
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Etramp5.Ag1 Ab acquisition by study arm 
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Rh2.2030 Ab acquisition by study arm 
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EBA175 Ab acquisition by study arm 
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 Discussion 
 
The research presented in this thesis has sought to address current challenges facing the 

standardised and accurate measurement of malaria infection in low transmission settings, 

particularly in the context of cluster-level surveillance and efficacy trials. The relative sensitivity 

of RDTs and microscopy compared to PCR for measuring population parasite prevalence globally 

has been quantified and found to vary by age and transmission intensity (Chapter 3). The 

relationship of these parasitological endpoints with commonly used sero-epidemiological 

markers - MSP119 and AMA1 - has also been characterised across a large range of cross-sectional 

studies and transmission intensities (Chapter 4), investigating the potential utility of malaria 

serology at the macro-scale for the first time.  

In Chapter 5, the use of a much larger panel of P.falciparum serological markers was explored. 

The association of Pf-specific Ab responses with recent malaria infection was estimated and 

identified several antigens highly predictive of infection in the previous six months. These findings 

suggest that a number of new serological markers could provide estimates of time since last 

infection in future diagnostic assays. The use of these markers to monitor changes in malaria 

transmission at the cluster-level was applied to disease surveillance in The Gambia in Chapter 6 

and to cluster randomised trials in Namibia in Chapter 7 and were found to align overall with 

other measures of malaria infection and transmission. However, results differed by antigen, age, 

and transmission intensity and suggest the need for further research. Overall, the findings in this 

thesis contribute to the evidence base that serology has the potential to be used not only to 

quantify  historical trends in malaria transmission, but as a standardised measure of short-term 

changes in infection in routine surveillance or in efficacy trials.  

This chapter discusses implications for current malaria control and elimination efforts as well as 

potential areas for further research. The application of serological measures of malaria can be 

thought of in several stages. First, do serological measures offer added value (i.e., sensitivity / 

specificity) over existing measures of infection at the individual or population level and in which 

contexts (Chapter 3-5)? Second, as addressed in Chapters 6 and 7, what are the use-case 

scenarios in which serological metrics should be applied and how can they be standardised for 

routine use across a range of epidemiological settings. A more challenging question, beyond the 

scope of the research in this thesis, is what the public health impact of serological measures of 

transmission may be when deployed in control and elimination strategies.  
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8.1 Implications in the context of current malaria control and elimination 
 

Standardising sero-diagnostics for routine use in surveillance cluster randomised trials 

While the analysis in Chapters 5-7 of novel serological biomarkers for monitoring malaria 

infection suggest that several antigens could be used in surveillance and cluster randomised 

trials, the details of how they will be integrated into diagnostic platforms and the interpretation 

of what they indicate about transmission need to be refined. What has not been explored at 

length in this thesis is the potential for markers to differentiate between recent infection 

(Etramp5.Ag1, GexP18) vs. historical transmission or population-level of protective immunity 

(MSP119, AMA1), the latter of which could have strong application in monitoring risk of 

reintroduction (e.g., loss of population protective immunity) after local elimination.  

A range of factors influencing the suitability and application of serological markers based on their 

relative characteristics are illustrated in Figures 8.1 and 8.2.  

 

Figure 8.1 Classes of suitability of serological markers for surveillance and cluster randomised trials  
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Figure 8.2 Factors influencing the suitability of serological markers for surveillance and cluster randomised trials  
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Use in current and future community-based interventions 

As discussed in Chapter 7, the use of serological endpoints may have utility in a number of future 

trials assessing community-based interventions, including ivermectin, primaquine, and 

transmission-blocking vaccines. They could also serve as a secondary endpoints to measure herd 

effects in individually randomised trials for pre-erythrocytic or blood stage vaccines.  Additionally, 

as opposed to a use as a specific trial endpoint, serology may have very strong application for 

baseline stratification to balance clusters between trial study arms or for risk stratification in 

elimination strategies (i.e., identification of transmission foci to be targeted for response).  

For example, in eastern Myanmar, targeted MDA efforts have used cross-sectional surveys to 

estimate village level prevalence of P.falciparum and P.vivax by RDT, microscopy, and qPCR. This 

data was used to classify villages as malaria hotspots above a 40% prevalence threshold and 

targeted for MDA384,385. The use of ultra-sensitive qPCR as the most sensitive measure of 

prevalence in these studies faces blood volume and technical constraints. Here, the introduction 

of serological methods of detection could serve as a more rapid and cost-effective alternative. 

Responses could potentially be triggered based on a threshold of sero-prevalence or antibody 

intensity at the cluster level if well validated biomarkers for a suitable window of recent infection 

can be defined. For example, in the central highlands of Madagascar, school-based serological 

surveys were used as a reference for malaria incidence as part of a focal IRS strategy based on 

health facility-based cases.386  

For surveillance, the most immediate application of serology is to monitor longitudinal changes 

in transmission before and after the scale-up of interventions, as illustrated by IFA antibody titre 

data from the Garki Project.109 However, the use of serological surveillance has been largely 

confined to research settings. In order to integrate its use into routine monitoring programmes, 

it will be necessary to consider where along the continuum of transmission it will be most useful, 

from activities to achieve elimination to confirming the absence of transmission. The WHO 

reference manual on malaria surveillance, monitoring and evaluation highlights the granularity 

and frequency of data required as countries progress towards elimination (Figure 8.3).60 As 

discussed above, the serological markers used may potentially vary depending on the application, 

as indicated by these surveillance guidelines, and the ideal populations and frequency for 

sampling will need to be determined. Alternatively, a combined panel of markers optimised 

across multiple use-case scenarios could be considered. In parallel, strong analytical methods 

need to be developed, depending on the marker and unit being used. Chapters 6 and 7 highlight 

the analytical challenges introduced by new serological markers of recent infection, but also 

develops potential quantitative methods for their use in efficacy trials.
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Figure 8.3 Surveillance system processes and requirements along the continuum of malaria transmission settings  
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8.2 Applications for future work  
 

Solutions for in-country analysis of immuno-epidemiological malaria data 

In Chapter 5, a number of methods were explored for the standardisation and epidemiological 

analysis of serological data based on new multiplex immunoassays. The initial work here would 

be most useful if they can be translated into user-friendly platforms for laboratories in country. 

In particular, the development of cloud-based solutions could enable twinning of data sharing 

and analysis in regions with mid-level infrastructure.  

Similar platforms have been developed for analysis of both clinical and epidemiological 

surveillance data. For example, Epi Info developed by the US Centers for Disease and Control 

provided tablet/smart phone or web/cloud-based solutions for data collection, analysis and 

visualisation. These platforms have been used for outbreak investigation and small- to mid-sized 

disease surveillance systems387. ClinEpiDB is a similar data access and visualisation platform for 

epidemiological studies.388  

Cloud-based analytics in genomics represent a more advanced example of potential platforms. 

These have built open source and web-based applications for users without programming or 

informatics knowledge to download tools and/or upload and analyse their own data389. With 

relatively smaller datasets and a more focused set of analytical requirements, these platforms 

could easily be adapted for Luminex serological data. 

 

Multi-disease diagnostic platforms for surveillance and outbreak response 

Multiplexing platforms, such as the Luminex or other qSAT platforms, provide an opportunity to 

collect data on a large number of diseases using a single serum sample or dried blood spot.243,291 

Several studies have begun to investigate the use of this platform for the combined detection of 

malaria and other pathogens.108,390 This will become increasingly important in areas where 

malaria transmission declines to near zero levels and it is no longer cost-effective to conduct 

malaria-specific surveys or surveillance platforms for identifying asymptomatic cases or resolving 

non-malaria febrile illnesses.  

The benefits of multi-disease platforms has been raised particularly in neglected tropical 

diseases, where cross-disease surveillance has been suggested for simultaneous mapping of 

human and zoonotic infections, guiding and monitoring control interventions, assessing vaccine 

coverage, and post-MDA surveillance.106 
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Another potential application of multi-disease diagnostic platforms is for surveillance during 

outbreak response. While the 2014-2015 West African Ebola outbreak is estimated to have 

caused over 11,000 deaths391, declines in health facility attendance and disruptions in 

community-based malaria control programmes are also estimated to have caused up to an 88% 

increase in untreated malaria cases in Sierra Leone alone.392,393 Increases in individuals presenting 

with fever-like symptoms led to further complications in the identification and treatment of 

suspected Ebola cases (33-54% of patients admitted to treatment units during the outbreak did 

not have Ebola virus disease394). These challenges emphasise the need for malaria and other 

infectious disease control efforts to be sustained or heightened during epidemics as well as the 

importance of differential diagnosis amongst febrile illnesses. 

The WHO Guidance on temporary malaria control measures in Ebola-affected countries 

recommends community chemotherapy through MDA in areas of high malaria transmission and 

low treatment access.395 However, when faced with financial and logistical constraints during 

outbreak response, achieving adequate intervention coverage can be challenging. Targeting 

interventions where they will be most cost-effective requires sensitive field diagnostics and 

accurate epidemiological data on the demographic or geographical locations most susceptible to 

outbreaks.244 Additionally, in situations where the co-circulation of multiple infectious pathogens 

is high, malaria can also serve as a pathfinder or sentinel sample through which to screen for 

other diseases of public health importance. 

The eventual development of a field-deployable multi-disease diagnostic platform could provide 

Ministries of Health with information on the distribution and prevalence of multiple infectious 

diseases can help to inform future geographical reconnaissance for targeted infectious disease 

control efforts in resource-limited scenarios, such as the roll-out of focal mass drug 

administration, indoor residual spraying or other interventions. A multiplexed diagnostic 

platform would minimise the number of tests and volume of blood required for testing, enabling 

efficient and rapid assessment in these outbreak scenarios. 

8.3 Conclusions 
 

The research presented in these thesis has aimed to develop new methods for measuring malaria 

transmission in elimination settings. It has shown that in numerous contexts, serological 

measures of transmission may have utility above currently used diagnostics, particularly in low 

transmission settings. Additionally, it has established the use of an in-country multiplex 

immunoassay for malaria in a sub-Saharan African setting, which has helped to build the platform 

for future operational and analytical solutions for routine or high throughput sample processing 
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and epidemiological analysis. It has also found that a number of new candidate serological 

markers have the potential to improve the measurement of recent malaria infection at both the 

individual and population level. More importantly, the application of these new markers can be 

used at the cluster or village level to monitor changes in transmission, which correlate with 

known differences in malaria prevalence between transmission seasons and geographical 

regions. For the first time, serological endpoints have been used to assess the effectiveness of 

community-based interventions between study arms of a cluster randomised trial. The 

methodologies developed here provide a strong foundation for the use of serological metrics as 

trial endpoints, risk stratification or routine surveillance that can interpreted in a manner that is 

similar to currently used clinical or parasitological metrics, allowing for easier comparability 

across studies and endpoints. While a number of methodological issues still require refinement, 

serology shows strong promise as an additional tool in our current efforts to achieve malaria 

elimination globally.  
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