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ABSTRACT Immunology is a central theme when it comes

to tuberculosis (TB). The outcome of human infection with
Mycobacterium tuberculosis is dependent on the ability of

the immune response to clear or contain the infection. In cases
where this fails, the bacterium replicates, disseminates within
the host, and elicits a pathologic inflammatory response, and
disease ensues. Clinical presentation of TB disease is remarkably
heterogeneous, and the disease phenotype is largely dependent
on host immune status. Onward transmission of M. tuberculosis
to new susceptible hosts is thought to depend on an excessive
inflammatory response causing a breakdown of the lung matrix
and formation of lung cavities. But this varies in cases of underlying
immunological dysfunction: for example, HIV-1 infection is
associated with less cavitation, while diabetes mellitus
comorbidity is associated with increased cavitation and risk

of transmission. In compliance with the central theme of
immunology in tuberculosis, we rely on detection of an adaptive
immune response, in the form of interferon-gamma release assays
or tuberculin skin tests, to diagnose infection with M. tuberculosis.
Here we review the immunology of TB in the human host,
focusing on cellular and humoral adaptive immunity as well as
key features of innate immune responses and the underlying
immunological dysfunction which associates with human TB risk
factors. Our review is restricted to human immunology, and we
highlight distinctions from the immunological dogma originating
from animal models of TB, which pervade the field.

Immunity to Mycobacterium tuberculosis is an inter-
play between the innate and adaptive immune response,
both cellular and humoral. This interplay is not static
but changes over time as we grow, age, and respond to
our environment. Animal models enable examination
of individual components of the immune response at

distinct time points during the course of infection. This
has enabled identification and understanding of key
immune mechanisms for M. tuberculosis control. How-
ever, rational development of interventions, such as
more effective vaccines and other host-directed thera-
pies, has to take into consideration the enormous het-
erogeneity of the interactions between M. tuberculosis
with human innate and adaptive immune responses,
which are profoundly influenced by genetic variation,
environment, and comorbidities.

Recent technological advances now being applied to
the field of tuberculosis (TB) have pushed the boundaries
of our understanding of the host-pathogen interactions.
These include the use of highly sensitive imaging such
as positron emission tomography/computed tomogra-
phy (PET/CT; "*fluorodeoxyglucose positron emission
and computerized axial tomographic scanning) to
identify subclinical TB lesions in asymptomatic indi-
viduals to study early stages of human infection; the
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explosion of high-throughput “omics” technologies
for unbiased transcriptomic, genomic, proteomic, and
metabolomic investigation of blood and tissues isolated
from the site of disease; and the ability to isolate human
M. tuberculosis-specific T cell populations by the use
of M. tuberculosis peptide-specific tetramers and flow
cytometry. Moreover, rigorous design of clinical studies,
improved and standardized clinical definitions, and
extensive collection of clinical data and appropriate
specimens for immunological studies have significantly
advanced our understanding of human immunology.
Together, these advances have led to a revolution in how
we understand the different stages of M. tuberculosis
infection and the interplay of innate and adaptive im-
munity in humans (Fig. 1).

ACQUISITION OF M. TUBERCULOSIS
INFECTION

The host-pathogen interaction between M. tuberculosis
and humans has been honed by thousands of years of
coevolution (1). The estimation that a third of the global
population is sensitized to M. tuberculosis (2) bears
testament to the supreme success with which the bacte-
rium infects, survives, and spreads within its human
host. Billions of humans have experienced acquisition
of M. tuberculosis infection. Despite this, our knowledge
of the immunological events that occur during expo-
sure and acute infection in humans is very limited. This is
primarily due to the lack of diagnostic tests that directly
identify M. tuberculosis in those with infection and to
our limited ability to study early disease processes at the
site of disease, such that the majority of human studies
investigate immune responses ex vivo in peripheral
blood or after in vitro infection of primary cells or cell
lines.

Primary Response to M. tuberculosis Infection
Meticulous clinical observation of TB contacts, com-
bined with serial tuberculin skin testing (TST) to detect
the onset of hypersensitivty to M. tuberculosis antigens,
allowed Arvid Wallgren to document the symptomology
of incident M. tuberculosis infection in 1948 (3). He
reported that most people who converted from a nega-
tive to a positive TST presented with erythema nodosum
and/or fever, while many also had elevated erythrocyte
sedimentation rates (3). This suggests that acute infec-
tion is associated with a systemic innate inflammatory
response that precedes the induction of a detectable
adaptive immune response. Erythema nodosum is still a
symptomatic trigger that may lead to investigation and

diagnosis of human infection with M. tuberculosis (4—6)
or Mycobacterium bovis (7).

The inflammatory processes that underlie erythema
nodosum, febrile illness, and erythrocyte sedimenta-
tion are thought to be causally linked to the delayed
hypersensitivity reaction that underlies priming of the
M. tuberculosis-specific T cell response. However, at
least in people without prior sensitization to mycobac-
teria, it is likely that innate immune responses to the
infecting pathogen precede these T cell-driven reactions.
It is thought that the first event that occurs upon in-
halation of M. tuberculosis-containing microdroplets is
that the bacilli are taken up by alveolar macrophages
(AMs). A number of important barriers and antimicro-
bial hurdles must be negotiated by aerosolized M. fu-
berculosis particles to reach the alveoli, most of which
are poorly understood in humans and are often neg-
lected. However, it is likely that the pathogen is partic-
ularly susceptible to mechanical and immunological
attack during its journey through the upper airways. A
better understanding of these events, and of the cellular
and humoral components that frequent the mucosal
surfaces, could lead to interventions that prevent infec-
tion at the port of entry. In fact, a sizable proportion of
people who are heavily exposed to M. tuberculosis do
not develop any evidence for immune sensitization (8, 9),
suggesting that prevention of infection is possible (10).

Alveolar macrophages

AMs are regarded as the sentinels of M. tuberculosis
infection. Their role in initial M. tuberculosis phago-
cytosis is unquestionable, according to animal models of
infection. Defining their role in the human response to
M. tuberculosis infection has been more problematic,
and our knowledge can only be inferred from studies of
cells collected by invasive bronchoalveolar lavage (BAL),
investigation of tissue sections from autopsies, or lung
resections (generally only indicated due to severe dis-
ease pathology). As a consequence, our picture of mac-
rophage responses to in vitro M. tuberculosis infection
is confounded by their removal from their tissue matrix
and surrounding immunological milieu, including acti-
vated cytokines and other interacting cell populations.
Although reductionist, the latter has provided enormous
insight into differences between human AMs and pe-
ripheral monocytes.

A number of studies of BAL-isolated AMs from
healthy donors have compared responses to in vitro in-
fection with virulent (H37Rv) or avirulent (H37Ra) lab-
oratory strains of M. tuberculosis (11-14). In comparison
to mouse studies indicating that tumor necrosis factor
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FIGURE 1 (A) Hypothesized stages of response to M. tuberculosis infection, beginning
with elimination mediated by innate immune cells without induction of a long-lasting
memory response; further stages of elimination may be mediated via acquired immune
mechanisms. If antigen-specific effector memory persists, this can be measured via IFN-y
release assays (IGRA) or tuberculin skin test (TST) and may provide protection from
infection for a variable period of time. If the acquired immunity does not eliminate the
bacteria, then infection will persist over a range of bacterial states. Increasing bacterial
load is hypothesized to correlate with progression to active TB. (B) For all exposed in-
dividuals, the risk of developing TB is highest immediately following exposure and changes
over time. The longitudinal risk of developing TB, predicted in the exposed individual, is
presented (adapted from references 204 and 205).
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(TNF) provides a protective response against M. tuber-
culosis infection and that it is vital for granuloma for-
mation, these studies showed that virulent M. tuberculosis
induces higher levels of TNF secretion from AMs than
avirulent M. tuberculosis, that TNF levels correlated with
increased M. tuberculosis growth, that TNF induces
apoptotic cell death in culture, that cytoxicity can be in-
hibited by anti-TNF treatment, and that exogenous ap-
plication of TNF increases both the intracellular bacterial
load and the number of infected AMs (13, 14). It is further
hypothesized that increased apoptosis may spread the
infection to neighboring AMs via efferocytosis, and ex-
tensive apoptosis has been demonstrated within caseating
granulomas of lung tissue samples from TB patients (12).

Phagocytosis by AMs is mediated primarily by com-
plement receptor 4 (CR4), whereas blood monocytes
utilize CR1, CR3, and CR4. As such, uptake of M. tu-
berculosis can be enhanced by increasing concentrations
of serum and decreased by heat inactivation of serum
(15). AMs are also more efficient than monocytes at
limiting intracellular growth of M. tuberculosis, and
they produce high levels of TNF (15). Interestingly,
phagocytosis alone is not responsible for TNF produc-
tion, as uninfected AMs within the same culture also
produce TNF. However, this does not occur if un-
infected AMs are separated from infected AMs via a
0.4-um transwell, indicating that cell-cell interaction or
a soluble factor larger than 0.4 pm is required for TNF
production in uninfected AMs (13).

AMs are highly heterogeneous in M. tuberculosis
phagocytic potential, despite homogeneity in phago-
cytosis of latex beads, such that up to only 20% of AMs
in culture become infected with M. tuberculosis, even
with excessive infection (multiplicity of infection of 10:1
for 18 h) (13). This may be mediated by variable surface
expression levels of CR, while differential cytokine re-
sponse can be linked to expression of pattern recognition
receptor (PRR) expression. Nucleotide-binding oligo-
merization domain-containing protein 2 (NOD2), Toll-
like receptor 2 (TLR2), and TLR4 expression on AMs is
highly correlated and variable between each AM (16).
The expression of PPR also changes on AMs from TB
patients following treatment, indicating that the phe-
notype of AM changes during infection (16). The dif-
ferential expression of these PPRs may be important for
primary restriction of M. tuberculosis replication be-
cause NOD2 activation in AMs by muramyldipeptide
(MDP) induces expression of interleukin-1p (IL-1p),
IL-6, and TNF; the antimicrobial peptide cathelicidin
(LL-37); and the autophagy enzyme IRGM, and it
restricts intracellular growth of M. tuberculosis (17).

Interestingly, LL-37 is not detected in AMs in tubercu-
lous granulomas, suggesting that LL-37 participates
only during early infection or that defects in LL-37
production can lead to M. tuberculosis growth and
progression to disease (18).

When comparing BAL from TB patients versus healthy
controls, TB AMs express higher concentrations of IL-
1B, IL-6, and TNF, and this correlates with higher pro-
tein levels in BAL fluid and with IL-6 and TNF in serum
(19). AMs from TB patients also show higher levels of
chemokines CXCL10 (IP-10), CXCLS8 (IL-8), and nu-
clear factor-kappa B (NF-kB) repressing factor (NRF),
and these levels correlate with higher bacillary loads in
the AMs. Interestingly, peripheral blood mononuclear
cells (PBMCs) from patients with high bacillary load also
have high expression of CXCL10 and CXCLS8, while
NREF levels are higher in AMs than in PBMCs (20).

The hyperreactivity of AMs in TB patients may be
either due to an innate defect leading to susceptibility
to TB or because M. tuberculosis infection changes
the phenotype of AMs. The observation that the AM
phenotype changes during therapy (16) supports the
finding that the infection is modifying AM function.
Recent evidence of a shift in the metabolic state of AMs
following infection also supports this hypothesis. Mac-
rophages can be classified as classical (M1) or alterna-
tively activated (M2), with pro- and anti-inflammatory
properties, respectively. M1s derive ATP via aerobic
glycolysis and M2s via oxidative phosphorylation.
M. tuberculosis infection of healthy donor AMs induces
a shift from oxidative phosphorylation to aerobic gly-
colysis, leading to increased IL-1B and prostaglandin
synthase PTGS2 and decreased IL-10, while blocking
this shift to aerobic glycolysis leads to increased intra-
cellular M. tuberculosis survival (21), suggesting that
AM polarization to M1 activates antimicrobial activity.

Neutrophils

Peripheral neutrophilia is a hallmark of TB disease in
humans and a predictor of poor outcome and morbidity
(22, 23). The lack of neutrophil involvement in murine
TB and the difficulties associated with studying neutro-
phils in vitro have led to limited investigation of their
role in human TB. A resurgence of interest in neutrophils
occurred after the first whole-blood microarray study
of TB patients compared with healthy controls, which
showed profound neutrophil involvement in the gene
expression signature that differentiated between TB pa-
tients and controls (24). While it seems clear that neu-
trophils promote pathology during disease development,
an understanding of their role in initial infection is more
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difficult to acquire. Recent TB contacts show increased
peripheral blood neutrophil counts compared to healthy
controls, and risk of M. tuberculosis infection has been
shown to be inversely associated with neutrophil count
(25). Neutrophil depletion from whole blood also de-
creases M. tuberculosis killing, which is primarily me-
diated through phagocytosis and the respiratory burst.
In addition, neutrophils can kill through the release
of antimicrobial peptides including human neutrophil
peptides (HNPs) 1-3, LL-37, and lipocalin 2 (25). Neu-
trophils can also capture mycobacteria in neutrophil
extracellular traps (NETs) composed of DNA coated
with antimicrobial peptides (26). Interestingly, individ-
uals of African ancestry have lower circulating neutro-
phil numbers and lower serum levels of HNP1-3 and
lipocalin 2 compared to Caucasian individuals (25, 27).
CXCLS8, one of the chemokines most highly expressed
by M. tuberculosis-infected AMs, with neutrophil re-
cruiting activity, has recently been shown to bind
M. tuberculosis directly and enhance phagocytosis and
killing by neutrophils (28). These data suggest that
neutrophils may have an early protective effect against
M. tuberculosis infection.

Innate T cells

Interest in lung-resident and germline-encoded lympho-
cyte populations has recently been growing, with the
rationale that these cells may act rapidly upon M. tu-
berculosis infection. These cells naturally reside at mu-
cosal sites in the airways and are thus ideally located to
respond to invading pathogens (reviewed in reference
29). This is an important advantage over conventional T
cell responses that require priming in primary lymphoid
tissue and subsequent differentiation into effector cells
before trafficking to the site of infection. Tissue-resident
T cells, such as mucosal-associated invariant T (MAIT)
cells, also possess immediate effector functions, includ-
ing cytokine expression and cytotoxicity, which further
enable immediate antimicrobial activity. It is currently
not known whether airway-resident lymphocytes play a
key role in resistance to infection with M. tuberculosis in
humans.

Most individuals who are exposed to M. tuberculosis
do appear to acquire an established infection and de-
velop readily detectable CD4 T cell responses to protein
components of M. tuberculosis. This immune response,
which typically persists for years and even decades,
forms the basis for the diagnosis of human infection with
M. tuberculosis, using TST or interferon gamma (IFN-y)
release assays (IGRAs). The utility of these diagnostic
methods has been extensively reviewed (30).

Human Immunology of Tuberculosis

The Granuloma

The structure of the granuloma is formed primarily
through the coalescence of recruited macrophages
around M. tuberculosis-infected macrophages, of which
some differentiate into epithelioid cells and some can
fuse to become multinucleated giant cells. In the typical
granuloma structure these macrophages are interspersed
with recruited neutrophils and are surrounded by a
lymphocyte cuff, including T cells and B cells. A recent
review of the historical literature has shown that gran-
ulomata are highly diverse, displaying a wide spectrum
of structures and sizes and cell composition, and that
this diversity can be observed even within a single host
(Fig. 2; reviewed in references 31 and 32). It is thought
that the granuloma functions to contain the spread of
M. tuberculosis, although it can also act as a physical
barrier, preventing the penetration of TB drugs and
protecting the organism from the adaptive immune
response. The phenotype of macrophages within the
granuloma can affect the likelihood that the granuloma
will contain M. tuberculosis, break down and transmit
M. tuberculosis, and initiate an inflammatory response
(33).

Adaptive Responses and the Spectrum
of M. tuberculosis Infection

B cells

The dominance of T cell responses and the concealment
of M. tuberculosis within the infected macrophage sug-
gest that antibodies would play a minor role in possible
prevention of infection with M. tuberculosis during ex-
posure. However, it has recently been recognized that
B cells and antibodies have a variety of mechanisms for
the modulation of the immune response to intracellular
bacteria that are likely to be important in the control of
M. tuberculosis (reviewed in references 34-37) (Fig. 3).
B cells are a major cellular component of the lung
granuloma, where they can process and present antigen
to T cells, secrete antibodies, and modulate inflamma-
tion through the production of IL-10 (reviewed in ref-
erence 37). Although likely to be important, few clinical
studies have examined the B cell response in M. tuber-
culosis infection. Plasmablasts and memory B cells are
elevated in M. tuberculosis-infected compared to unin-
fected controls (38), and iz vitro human B cells have
been shown to ingest mycobacteria, produce IgM, and
upregulate the expression of the costimulatory molecules
CD80 and CD86 and the chemokine CXCL10 (39, 40).
Further studies of the role of B cells in M. tuberculosis
infection are required.
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FIGURE 2 The spectrum of pulmonary TB lesions that can be found in the same host and
that represent different stages of disease. Primary TB is characterized by the hallmark
circular granuloma with caseating necrosis which forms within the center, surrounded by
a lymphocytic cuff. Conversely, post-primary TB is typically represented by a diverse range
of pathologies. Acute post-primary lesions are composed of paucibacillary lobular
pneumonia; these may either resolve (subacute dry), fibrose (chronic fibrosing) or necrose
(acute caseating). Caseating granulomas in post-primary TB are distinct from the granu-
lomas of primary TB in that they form around and in response to caseous necrosis of
pneumonic lesions (post-primary granuloma) rather than necrosis occurring in the center
of preformed lesions as occurs in primary TB. Cavities are formed from the dissolution of
these caseating pneumonic lesions. Six stages are represented by a 19th century drawing
and a 21st century photomicrograph of sections stained with hematoxylin and eosin or
trichrome, imaged at 40 to 400X. (Reproduced from references 31, 220, and 221).

T cells

A lot of emphasis has been placed on the M. tuberculosis
antigens targeted by T cell responses. Early literature has
focused on T cell responses that recognize a relatively
small set of immunodominant antigens, including early
secretory antigenic target-6 (ESAT-6), 10-kDa culture
filtrate protein antigen (CFP-10), TB10.4, and antigen
85A (Ag85A) and Ag85B (41-45). These were the first to
be incorporated as antigens into subunit vaccines (46, 47).
However, a recent unbiased, genome-wide analysis of
CD4 T cell responses to M. tuberculosis antigens in adults
with latent M. tuberculosis infection (LTBI) revealed that
the human CD4 T cell response targets a very broad array

of more than 80 antigens (48). These responses were
predominantly restricted to CD4 T cells and highly en-
riched for a CXCR3+CCR6+ subset that exhibits Th1-
response characteristics (48). Nearly half of the epitopes
identified in this study were derived from proteins that
had not previously been identified as T cell antigens. This
study and subsequent others demonstrate that the human
immune response to M. tuberculosis is very heteroge-
neous and as yet poorly defined (48-50). An intriguing
question is whether T cell recognition of distinct M. #u-
berculosis antigens is associated with TB disease risk.
Functional and phenotypic characteristics of M.
tuberculosis-specific T cell responses have received par-
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FIGURE 3 Role of antibodies in anti-M. tuberculosis (Mtb) infection. Antibodies may
directly bind to mycobacteria, triggering complement deposition and lysis of M. tuber-
culosis, or complement may mediate opsonophagocytosis of the organism. Alternatively,
M. tuberculosis-bound antibody may enhance macrophage uptake through Fc receptor
binding or activate NK cell activity through Fc receptor engagement. It is also possible for
immune complexes to form between mycobacterial antigen and antibody. Abbreviations:
FcyRIll, Fc gamma receptor llI; IgA, immunoglobulin A; IgG, immunoglobulin G; LAM, lipo-
arabinomannan; MAC, membrane-attack complex. (From reference 37 with permission.)

ticular attention in recent times, and interesting associa-
tions with the presentation of M. tuberculosis infection
have been described. While the M. tuberculosis-specific
T cell response in healthy people is dominated by CD4 T
cells (48), a number of studies have revealed an increased
contribution by CD8 T cells in patients with TB disease
(51-53). The mechanism for this finding is currently
not clear, but this pattern appears robust and has been
proposed as a diagnostic approach for TB disease (53).

A prominent theme has been the pattern of Th1 cy-
tokine coexpression, shown to be associated with the
degree of T cell differentiation in viral infections (54).
Comparative studies of patients with TB disease and
latently infected people have reported elevated frequen-
cies of M. tuberculosis-specific CD4 T cells expressing
only TNF or TNF+IFN-y+ CD4 T cells in TB patients,
while those with latent infection have higher frequencies
of polyfunctional TNF+IFN-y+IL-2+ M. tuberculosis-

specific CD4+ T cell responses (51, 55, 56). Further-
more, successful TB treatment appears to reverse this
functional pattern, because CD4 T cells coexpress IFN-y,
TNF, and IL-2 to a greater degree after cure (51, 56).
However, other studies have reported the opposite: ac-
tive TB disease was accompanied by greater frequencies
of polyfunctional TNF+IFN-y+IL-2+ CD4 T cells than
was LTBI (57-59). An immune correlates study in ba-
cillus Calmette-Guérin (BCG)-vaccinated infants aimed
to determine whether frequencies or cytokine coexpres-
sion patterns of mycobacteria-specific Th1-cytokine-
expressing CD4 or CD8 cells, measured at 10 weeks
of age, were associated with subsequent risk of TB dis-
ease (60). The study reported no association between
frequencies or cytokine expression patterns in BCG-
specific CD4 and CD8 T cells (61). However, more re-
cently, BCG-specific IFN-y-secreting T cells measured
by enzyme-linked immunosorbent spot assay (ELIspot)
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were found to be associated with reduced risk of devel-
oping TB disease in a South African infant cohort from
the same population (62).

Such functional differences in T cell cytokine expres-
sion may simply reflect differential levels of T cell ex-
posure to M. tuberculosis antigens, indicating in vivo
bacterial load (51). This hypothesis is supported by
phenotypic analyses of M. tuberculosis-specific T cells,
which suggest that higher bacterial load in active disease
is associated with greater T cell activation.

Activation of antigen-specific CD4 T cells, measured
by HLA-DR, CD38, or Ki67 expression, was signifi-
cantly higher in patients with active TB compared to
controls with LTBI (63). These activation markers
seemed to track antigen load well, as expression levels
gradually decreased during treatment of active disease,
suggesting that T cell expression of these activation
markers can be useful as treatment response markers
(63). A recent study investigated T cell activation as a
biomarker of risk of TB (see section on progression to

TB disease).

B cells and antibody responses

Many studies have assessed the ability of antibodies to
accurately diagnose active TB, and these studies will be
discussed below. In some studies the ability of antibodies
to differentiate M. tuberculosis-infected subjects (defined
as either TST+ or IGRA+) and uninfected controls has
also been assessed (Table 1). It is estimated that a third
of the world’s population is latently infected with
M. tuberculosis, although this varies greatly from region
to region (2) and latency is likely to represent a spec-
trum from transient exposure to subclinical TB disease
(64). Analysis of antibodies in those with M. tubercu-
losis infection, approximately 90% of whom are able
to contain infection, versus uninfected controls enables
the identification of antibody responses that may be
important in the control of M. tuberculosis infection.
M. tuberculosis infection induces mycobacteria-specific
antibodies against a broad range of antigens, with no
single antigen or group of antigens emerging as a pref-
erential target for an antibody response (Table 1). My-
cobacterial antigen-specific IgG, IgA, and IgM have
all been reported in M. tuberculosis infection (Table 1).
Perley et al. report approximately equal ratios of IgG
and IgM in response to live cell surface, whole cell
lysate, lipoarabinomannan (LAM), and cell wall and
secreted mycobacterial proteins in M. tuberculosis-
infected and uninfected controls (65). There are few
studies in HIV-infected populations and little evi-
dence for elevation of mycobacterial antibodies in HIV-

infected, M. tuberculosis-infected versus HIV-1-infected,
M. tuberculosis-uninfected populations (66, 67). All
studies agree that antibody levels in M. tuberculosis in-
fection are highly variable, with a high degree of overlap
between infected individuals and uninfected controls.
The greatest separation between M. tuberculosis-infected
and uninfected control populations was reported by
Baumann et al. (68), who found discrimination be-
tween M. tuberculosis-infected (defined as IGRA+ or
TST+) and uninfected controls with 80% sensitivity and
93% specificity using AlaDH (Rv2780)-specific IgA,
and 84.2% sensitivity and 93% specificity using NARL
(Rv0844c)-specific IgA. In a separate study, they re-
ported 74% sensitivity and 83% specificity using a com-
bination of IgA and IgG specific for LAM and PE35
(Rv3872) (68). Perley et al. found better discrimination
when measuring antibodies directed against the live cell
surface of mycobacteria when compared to cell wall,
LAM, or secreted proteins from M. tuberculosis (65).

T cell responses to M. tuberculosis-specific antigens,
including ESAT-6 and CFP-10, are used as the basis for
IGRAs to discriminate between M. tuberculosis-infected
and uninfected individuals (30). However, antibody
responses against M. tuberculosis-specific antigens are
generally poor at discriminating between infected and
uninfected individuals, although Hoff et al. found that
they performed better in low-burden settings (69-72).
It is important to note the potential bias because M.
tuberculosis infection is defined by a cellular immune
response measured by either TST reaction or IGRA re-
sponse to an M. tuberculosis-specific antigen. There
is currently no method that does not depend upon de-
tection of a cell-mediated immune response for the de-
tection of M. tuberculosis infection. While antibody
responses are higher in those with a positive TST or
IGRA, several studies have described high levels of
M. tuberculosis antibodies in individuals with TST
anergy, suggesting that antibodies can be elevated fol-
lowing M. tuberculosis exposure in the absence of a cell-
mediated immune response (73, 74).

BCG vaccination and antibodies

A detectable increase in mycobacterial specific antibody
is not always observed following BCG immunization
(75), most likely due to pre-existing high-titer antibody
induced by exposure to environmental mycobacteria
(76, 77). BCG, however, has been found to induce
modest levels of mycobacterial antigen-specific anti-
bodies in several studies (78-81). Higher levels of Ag85A
IgG antibodies in 4- to 6-month-old South African
infants vaccinated with BCG at birth were found to be
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TABLE 1 Antibodies in M. tuberculosis infection

HIV-1  Class of Detected difference?
Study design pos/neg antibody Antigen (% sensitivity; % specificity)
Chen J et al,, 2010 (70) LTBI versus controls (China) Neg 19G Rv1985c 62; 97
BaumannR et al,, 2015 (68) LTBI versus controls Neg IgA NARL (Rv0844c) 84.2; 93
(South Africa) IgA MPT83 (Rv2873) 63.2; 93
IgA 19 kDa (Rv3763) 78.9; 93
IgA, AlaDH (Rv2780) 89.5; 93
19G AlaDH (Rv2780) 26.3; 93
NS
IgA PstS3 (Rv0928) 57.9
Baumann R et al,, 2014 LTBI versus controls Neg IgM, IgA MPT32 (Rv1860) 49; 100
(222) (South Africa) IgA
IgA, 19G PE35 (Rv3872) PE35 + LAM
IgA, 1gG LAM 74; 83
IgA and IgG combined
IgA. 19G Tpx (Rv1932) NS
IgA. 19G 16 kDa (Rv2031c) NS
IgA HSP20 (Rv251c) NS
Hur Y et al., 2015 (71) LTBI versus controls, Neg 19G 38 kDa (Rv0934) NS
TST+ and IGRA+ 19G 16 kDa (Rv2031c) NS
(South Korea) 19G ESAT-6 (Rv3875) NS
19G CFP-10 (Rv3874) NS
19G LAM NS
Niki M et al., 2015 (72) LTBI versus controls, Neg 1gG/IgA HrpA (Rv0251c/hsp) IgG, P<0.01
IGRA+ (Tokyo) 1gG/IgA MDP1 (Rv2986¢) IgA, P < 0.05°
1gG/IgA ESAT-6 (Rv3875) NS
1gG/IgA CFP-10 (Rv3874) NS
1gG/IgA Ag85A (Rv3804c) NS
IgG/IgA 16 kDa (Rv2031c) NS
1gG/IgA HBHA (Rv0475) NS
Hoff S et al,, 2007 (69) Control versus LTBI Neg 19G ESAT-6-CFP10 fusion P<0.01
(Denmark, Brazil, Ethiopia, 19G Denmark P =0.043
Tanzania) I9G Brazil, Ethiopia P =0.038
Siev M et al.,, 2014 (67) Control versus Pos 19G MPT51 (Rv3803c) NS
TST+ (U.S) 19G echAl (Rv0222) NS
19G MS (Rv1837c) NS
19G 38 kDa (Rv0934) NS
Yu X et al,, 2012 (66) Control versus Pos 19G Arabinomannan NS
TST+ (U.S) IgM Arabinomannan NS
IgA Arabinomannan NS
Neg 19G Arabinomannan
IgM Arabinomannan NS
IgA Arabinomannan NS
Perley CC et al,, 2014 (65) Control versus Neg 19G Live cell surface P <0.001
IGRA+ (U.S) 19G Whole cell lysate P<0.01
19G IgG avidity, live cell surface P < 0.05°
19G 1gG avidity, whole cell lysate NS
19G LAM NS
19G Cell wall NS
19G Secreted proteins NS
19G 1gG avidity, LAM P <0.05
19G 1gG avidity, cell wall NS
19G 1gG avidity, secreted P < 0.001
proteins

aNS, not significant.
tDecreased in LTBL
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associated with reduced risk of developing TB disease
over the next 3 years of life (62). BCG-induced anti-
bodies may contribute toward a protective immune re-
sponse through mechanisms including the opsonization
of mycobacterial cells for uptake by phagocytes (82).

Mechanisms of antibody action

Kumar et al. found that treatment with sera from
M. tuberculosis-infected, healthy subjects enhanced up-
take and intracellular killing of mycobacteria by donor
myeloid-derived macrophages (MDM). Interestingly,
not all mycobacterial antigens opsonized mycobacteria,
and two antigens with approximate molecular weights
of 48 and 80 kDa (possibly M. tuberculosis 48 and
M. tuberculosis 81) were absent from opsonizing anti-
body extracts (83). Opsonized mycobacteria were killed
more rapidly with enhanced IFN-y and IL-6 production,
enhanced phagosome acidification, and increased in-
ducible nitric oxide synthase and nitric oxide production
(83). The enhanced uptake of serum-coated mycobac-
teria by neutrophils and monocyte/macrophages was
found to be IgG dependent in a separate study (82).

Antibody-inducing vaccines

There are no TB vaccine candidates currently in clini-
cal development that are designed for the specific en-
hancement of a B cell or antibody response, although
whole-cell mycobacterial vaccines such as VPM1002
(recombinant BCG) (84) and VAC (attenuated M. tu-
berculosis) (85) will induce a broad-spectrum response
including antibodies. It is possible to enhance antibody
responses to subunit TB vaccines through the use of
specific adjuvants (86). Alum is widely used for the in-
duction of antibodies, although it also skews toward
a Th2 type immune response and does not protect
against M. tuberculosis (86). There are, however, ad-
juvants such as MF59 which induce both a Th1 type
cellular response and antibody and have been shown to
enhance protection in mice challenged with M. tuber-
culosis (86).

PROGRESSION FROM M. TUBERCULOSIS
INFECTION TO TB DISEASE

Although most individuals who become infected with
M. tuberculosis remain asymptomatic, in some the im-
mune response fails to contain the infection and clini-
cal symptoms develop, including fevers, night sweats,
weight loss, and chronic coughing, among many others.
Definitive diagnosis of TB disease is based on detec-
tion of acid-fast bacilli, most often in sputum from the

patient. The risk of progression to disease is greatest
immediately following infection (87, 88); however,
M. tuberculosis can persist for years in asymptomatic
individuals. Long-term persistence of viable bacilli was
reported in 1927, when M. tuberculosis was cultured
from apparently healthy tissues of individuals with no
pathological evidence of TB who died from other causes
(89). Progression to active disease is possible even de-
cades after exposure (88) and is typically triggered by
immune compromise. This was elegantly demonstrated
by reactivation of LTBI in rheumatoid arthritis patients
who received anti-TNF blocking antibodies or other
immunotherapies (90, 91). Many factors, including the
magnitude of the infectious dose, the bacterial strain,
time since exposure, and a multitude of other risk factors
have been associated with risk of TB. Innate and adap-
tive immune mechanisms are clearly very important for
successful control of M. tuberculosis, since impairment
of immunity through steroids, chemotherapy, biologics,
and HIV coinfection predisposes to TB disease (reviewed
in reference 92).

Immune Mediators of TB Risk

TB susceptibility is driven by immune dysfunction,
whether during acute or chronic latent stages of M. tu-
berculosis infection. The control of infection requires
a precise balance between immune-mediated eradica-
tion of M. tuberculosis and limitation of inflammation
to prevent immunopathology. As such, it is thought
that any immune dysfunction which tips the balance in
either direction can lead to disease progression. Among
the greatest risk factors for TB are HIV-1 infection,
malnutrition, diabetes mellitus, smoking, vitamin D de-
ficiency, drug/alcohol abuse, male gender, age, and anti-
TNF therapy (93-97). These risk factors are not mutu-
ally exclusive and can exacerbate each other (98-102).
However, the phenotype of immunodeficiency induced
by each is different, and therefore the interrelationship
between comorbidities and disease susceptibility is com-
plex. Studies of the underlying causes of each of these
risk factors and their effects on TB risk can provide im-
portant insights into the mechanisms of protective im-
munity against M. tuberculosis in humans.

HIV

The resurgence of TB in sub-Saharan Africa is linked
to the onset of the HIV-1 pandemic (103). Coinfection
with HIV-1 is thought to increase susceptibility to TB
via a number of mechanisms, primarily through dys-
functional and decreased numbers of CD4 T cells and
impaired activation of T cell responses by phagocytes
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(100, 104-106). However, increased risk of TB typically
occurs in HIV-infected individuals prior to significant T
cell depletion (107), suggesting that HIV may alter cel-
lular responses to M. tuberculosis infection. HIV-1 and
M. tuberculosis coinfection of PBMCs or macrophages
has been shown to synergistically increase replication
of both pathogens in vitro (108, 109). M. tuberculosis
infection induces HIV-1 replication via a number of
mechanisms, including upregulating the transcription
factors, NF-«B (108), nuclear factor of activated T cells-
5 (NFATS), positive transcription elongation factor
(P-TEFDb), and loss of an inhibitory C/EBPB (110-112).
Induction of chemokines during M. tuberculosis infec-
tion also increases cellular recruitment of CCR5-positive
monocytes and CD4 T cells into the site of infection,
increasing the pool of cells that can be infected by HIV-1
(113). Conversely, the effect of HIV-1 on the macro-
phage response is variable and subtle, modifying cyto-
kine and chemokine production required for T cell
recruitment and activation (109, 114). In a large multi-
center study in India, Lagrange et al. found higher levels
and greater sensitivity for antibody-based TB diagnostic
tests among HIV-positive compared to HIV-negative TB
patients (115). In HIV-positive TB, secretion of BCG-
specific IgG antibodies from peripheral plasmablasts
was higher than in HIV-negative TB, and it increased
further as CD4 T cell counts declined (116). The higher
levels of antibody in HIV-positive TB likely reflect in-
creased systemic mycobacterial load. The interaction of
HIV with M. tuberculosis susceptibility is discussed in
detail in reference 117.

Diabetes mellitus
The link between type 2 diabetes mellitus (T2DM) and
increased TB risk has long been recognized (118), but
the immunological mechanisms are poorly understood.
Up to 22% of TB cases are attributed to T2DM in
countries where both conditions are endemic (119).
Recent systematic reviews have shown that individuals
with T2DM have a 3-fold greater risk of TB and in-
creased risk of mortality, delayed sputum conversion,
treatment failure, and relapse, as well as developing drug
resistance due to T2DM, interfering with rifampin me-
tabolism (120-124). TB patients with T2DM are also
more likely to have cavitary TB (124), while HIV-1 de-
creases this risk (125). Therefore, while HIV-1 increases
TB risk up to 50-fold (126), the increasing prevalence of
T2DM could have a relatively greater impact on TB
control in the future (127).

Two mechanisms underlying the T2DM-associated
risk for TB have been hypothesized: (i) dysregulated
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glucose metabolism results in hyperglycemia and insulin
resistance, enhancing M. tuberculosis replication, and
(ii) increased inflammation by adipose-resident mono-
cytes activated by free fatty acids and lipid interme-
diates, associated with insulin resistance, promotes a
generalized proinflammatory environment that favors
progression to TB disease (118, 128). In support of
the second hypothesis, it has recently been shown that
TB patients with T2DM have increased circulating
Th1 (IFN-y, TNF, IL-2), Th17 (IL-17A), and other pro-
inflammatory (IL-1B, IL-6, IL-18) cytokines, hyperreac-
tive T-helper cells, and reduced frequencies of regulatory
T cells (Tregs) (129-131). How T2DM-associated in-
flammation impacts TB susceptibility, TB immuno-
pathology, and M. tuberculosis killing is unknown, but
longitudinal studies investigating HbAlc levels in TB
patients during TB treatment have shown that glucose
intolerance decreases following successful TB treatment
(132, 133). This suggests that in some cases T2DM
may result from infection-induced impaired glucose
metabolism, rather than prior T2DM increasing TB risk.
Irrespective of the sequence of attainment, screening and
treatment for glucose intolerance during TB are likely to
improve treatment outcome.

Vitamin D

Vitamin D deficiency is common in active TB patients
(102, 134), is exacerbated in TB patients with HIV-1,
and is more prevalent in people with LTBI who progress
to active TB (135). Furthermore, individuals who carry a
vitamin D receptor (VDR) polymorphism at the Taql
locus (rs731236) or the vitamin D binding protein G¢2
haplotype (T420K amino acid change) and are vitamin
D deficient are more susceptible to TB (134, 136). The
effects of vitamin D on the immune system are pleio-
tropic (137). Consequently, the exact mechanisms by
which vitamin D may help prevent TB remain a subject
of contention. Moreover, the unique antimicrobial effect
of vitamin D metabolites, mediated by expression of
cathelicidin antimicrobial peptide (CAMP), is unique to
humans (and other primates), who have evolved three
vitamin D response elements in the CAMP promoter.
These promoter elements are missing from rodents and
cattle (138), species commonly studied as models of
human TB.

Vitamin D has two modes of action. One is fast-
activating via membrane VDR, increasing reactive oxy-
gen species (139), nitric oxide (140), and phagolysosome
fusion during mycobacterial infection (141). The other
occurs via binding to the nuclear VDR, forming a tran-
scription factor complex which targets more than 900
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promoters (142). VDR activation induces expression of
cathelicidin (proteolytically cleaved into LL-37), which
has direct antimycobacterial effects and also induces
autophagy (25, 101, 143). Vitamin D treatment also re-
duces matrix metalloproteinase (MMP) activity, which
is linked to lung matrix degradation and chemokine
processing (144, 145). Conversely, vitamin D drives the
adaptive response toward an anti-inflammatory state,
increasing IL-10 production and regulatory T cell dif-
ferentiation and inhibiting proinflammatory cytokines
(99, 146, 147). While a decrease in proinflammatory
responses during initial infection is counterintuitive
to a protective response, the anti-inflammatory effects of
vitamin D are likely to enhance resolution of pathologic
inflammation during TB treatment (148). The same may
occur during initial infection, limiting excessive inflam-
mation while enhancing antimycobacterial activity.
The antimicrobial effects of vitamin D metabolites
have also been shown to be crucial for the protective
activity of IFN-y. We and others have shown that stim-
ulating human monocytes and MDM with IFN-y in vi-
tamin D-sufficient media prior to infection increased
CAMP expression and autophagolysosomal fusion
and reduced intracellular M. tuberculosis growth (149,
150). Conversely, pre- and postinfection treatment of
MDM with IFN-y had no effect on vitamin D-mediated
M. tuberculosis growth restriction when vitamin D
metabolites were added postinfection (149). This sug-
gests that maintaining vitamin D sufficiency prior to
infection will enhance macrophage and T cell-mediated
innate cell responses during M. tuberculosis infection.

Malnutrition

Malnutrition has historically been associated with peaks
in TB incidence, but the direct effect of malnutrition on
TB risk is ill-defined (151). Body mass index (BMI) and
TB incidence have been demonstrated to have an inverse
relationship, with a 13.8% reduction in TB per unit in-
crease in BMI (152). Malnutrition can encompass both
macronutrient and micronutrient deficiencies; however,
the underlying interaction of each with host immunity
to increase TB risk is poorly understood. Studies have
shown that TB patients from various populations have
deficiencies of vitamins A, C, D, and E, zinc, and iron
(153). Vitamin D, being the most studied, has been de-
scribed above. Recent evidence suggests that vitamin C
has direct anti-M. tuberculosis activity, dependent on
high ferrous ion levels and reactive oxygen species pro-
duction (154). Vitamin A (retinol) deficiency is also as-
sociated with TB and may synergize with vitamin D, as
the retinol X receptor RXR forms a heterodimer with

the VDR to form a transcription factor complex, and
cotreatment with vitamin D3 plus retinoic acid inhibits
M. tuberculosis entry and survival within macrophages,
possibly through rescue of phagosome maturation arrest
(155). Vitamin A, via its active metabolite all-trans
retinoic acid, has recently been shown to induce myeloid
cells to express NPC2, which helps the cell effectively
remove cholesterol from the lysosomes so M. tubercu-
losis bacteria cannot access it. This increases lysosome
acidification and M. tuberculosis killing (156). More-
over, vitamin A adjunct therapy during intensive-phase
TB treatment enhances sputum smear conversion (157).

Inflammation and Progression to TB

TB disease is a chronic inflammatory condition, and the
pathology of the disease is a consequence of the host
immune response to the mycobacterium, rather than
direct destruction of tissue by M. tuberculosis itself. The
balance of sufficient inflammation for containment of
infection and immune pathology as a result of excessive
inflammation is critical to our understanding of human
TB disease. In 1891 Robert Koch reported results of a
study in which he repeatedly injected TB patients with
tuberculin (158). This treatment did not cure TB but,
rather, induced inflammation, swollen lymph nodes, and
tissue necrosis and in some patients resulted in death
(158). In addition to the magnitude of the inflammatory
response, the timing and location of the response are
also likely to be key for the balance between control of
infection and progression to active disease (reviewed in
reference 33). While animal models have revealed the
importance of individual cell types such as neutrophils,
classically and alternatively activated macrophages,
and specific cytokines such as IL-10 and TNF (159) in a
balanced inflammatory response, it has been harder
to understand these processes in human populations.
Genetics can influence the inflammatory response, but
the strongest driver of variability in the human inflam-
matory response appears to be our environment. In
an immune phenotyping study, differences in immune
cell populations were largely associated with environ-
mental and not genetic factors, with cytomegalovirus
identified as the major microbial driver of immune var-
1ation (160).

Type | interferons in TB

The type I interferon response is classically a response to
viral infection, and yet human biomarker studies have
identified IFN-a/p proinflammatory immune signatures
as key components of active TB disease (24, 161-164).
This response is likely driven by mycobacterial load
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because it associates with disease pathology and declines
in response to TB treatment (164, 165). In vitro experi-
ments show that type I interferons reduce the expression
of IFN-y and the ability of macrophages to respond to
IFN-y and control intracellular growth of M. tuber-
culosis (166). IL-1 can limit excessive type 1 interferon
activity in mice, suggesting that this pathway could
provide a target for host-directed therapy in TB (167).

Monocytes in TB disease
Monocytes are the primary target of mycobacterial
growth among PBMCs infected in vitro, and in periph-
eral blood, monocyte numbers expand during active
TB disease (168). In the 1930s it was recognized that
the ratio of monocytes to lymphocytes in peripheral
blood may be important for the resistance or suscepti-
bility to TB disease. During healing of lesions, an in-
crease of lymphocytes around the granuloma has also
been detected, and this correlated with an increase in
lymphocyte:monocytes in the periphery (169).
Monocytes can be phenotypically and functionally
distinct and can differentiate into M1 or M2 macrophages
with pro- and anti-inflammatory properties, respectively,
although this bipolar nomenculature is becoming more
contentious with the increasing emergence of more po-
larization states which are relative to the activation agent
(170). CD16+ “inflammatory” monocytes have recently
been shown to modulate immunity to mycobacteria
through the production of IL-10 (171). Monocytes can
also modulate immunity through amino acid catabolism,
in particular tryptophan and arginine, through the in-
duction of indoleamine 2,3-dioxygenase and arginase
(reviewed in reference 172). T cells are sensitive to amino
acid levels in the microenvironment, and depletion of
arginine and tryptophan can result in T cell anergy. In-
creased ratios of monocytes in peripheral blood are as-
sociated with increased type I interferon-related transcript
signatures and a reduction in ability to inhibit myco-
bacterial growth (173). The frequency of monocytes rel-
ative to lymphocytes has also been associated with risk
of progression to TB disease (174-177). Typically, M1
macrophages are associated with killing of mycobacteria,
whereas M2 macrophages are associated with tissue re-
pair and bacterial persistence (178, 179). Therefore, in
addition to monocyte quantity, the polarization state of
monocytes is likely important for maintenance of balance
in the inflammatory response in TB disease.

Tissue Remodeling
The ability of M. tuberculosis to induce degradation
of pulmonary extracellular matrix (ECM) contributes to
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its success as a pathogen. Induction of lung cavitation
allows bacilli to replicate in an immunologically privi-
leged site, promoting persistence and transmission, while
penetration of the alveolar basement membrane allows
extrapulmonary dissemination of infection. MMPs, a
family of zinc- and calcium-dependent endopeptidases,
are capable of degrading all components of the pulmo-
nary ECM. Moreover, MMPs also regulate the innate
immune response by controlling cytokine and chemo-
kine processing, apoptosis, and antimicrobial peptide
activation (for review, see reference 180). These potent
enzymes are expressed by a wide variety of cells, in-
cluding lymphocytes, resting monocytes, and activated
macrophages. MMP-1 (interstitial collagenase) and
MMP-9 (92-kDa gelatinase B) are the major secreted
MMPs of human monocytes and alveolar macrophages
under basal conditions (181). M. tuberculosis induces
expression of MMP-1, MMP-7,and MMP-10 in infected
human macrophages (144, 182), and increased ex-
pression of MMP-1, MMP-7, and MMP-9 has also
been demonstrated in cells isolated from the lungs of
TB patients. MMP-1 and MMP-7 have been shown to
colocalize to macrophages around the central area of
necrosis in tuberculous granulomata (182, 183). M. tu-
berculosis-induced MMP-1, MMP-7, and MMP-9 se-
cretion by mononuclear phagocytes has been shown to
be prostaglandin E2 (PGE2) dependent (182, 184, 185),
and IL-4 and IL-10 can inhibit monocyte secretion
of MMP-1, MMP-7, and MMP-9 (184, 186, 187). To-
gether this suggests that inhibiting MMP production
though reduced PGE2 signaling may limit cavitation
and potentially resolve pulmonary pathology during
treatment.

T Cell Responses during TB

A recent analysis of immune correlates in infants who
participated in the recent Phase IIb efficacy trial of
MVAS8SA (188) suggests that elevated CD4 T cell acti-
vation is associated with risk of TB. Infants who de-
veloped TB disease during follow-up in the trial had
significantly higher levels of total CD4 T cells expressing
HLA-DR at study baseline than infants who remained
healthy (62). Importantly, this association was repli-
cated in an independent cohort, M. tuberculosis-infected
adolescents, in whom elevated CD4 T cell activation was
also found to correlate with risk of TB (62).

Positive TST or IGRA tests can spontaneously revert
to negative (reviewed in reference 10). Reversion has
been reported in many studies throughout the last cen-
tury at rates of 10 to 50% (189-194). The mechanisms
of reversion are not understood, and immune suppres-
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sion, egress of M. tuberculosis-specific T cells from the
peripheral blood to sites of infection, or decreases in
bacillary load are possible underlying causes. However,
TST or IGRA reversion may also be indicative of clear-
ance of M. tuberculosis infection. The most compre-
hensive study of TST reversion was performed in the
1920s in household contacts of TB cases (193). Among
household contacts with at least two TSTs, 11.1%
reverted from positive to negative. These TST reverters
had a very low risk of active TB over the subsequent
5 years (0.72%). By contrast, 23.3% of the entire cohort
developed disease. The largest study of Quantiferon
Gold In-Tube (QFT) reversion was performed in South
African adolescents, in whom annual reversion rates
of 5.1% were reported (189). Although the number
of TB cases was too low for robust stratification of
disease risk in this study, incident TB was 8-fold higher
among QFT reverters than among individuals with con-
sistently negative QFT results (1.47 versus 0.18 cases/
100 person-years) (189). Additional studies are neces-
sary to establish the clinical significance of TST and
IGRA reversion.

B Cells and TB Antibody Responses

Although antibodies are induced against a broad range
of protein and nonprotein antigens in active TB disease,
they are not useful for diagnosis due to a lack of sensi-
tivity and specificity. There is evidence for reduced an-
tibody avidity in active TB disease and for perturbation
in Fc receptor expression, suggesting that phagocytosis
and antibody-mediated cellular cytotoxicity could be
dysregulated. Transcriptomic signatures for B cells are
also depressed in TB, suggesting downregulation or
exhaustion of the B cell response. B cells and antibodies
are involved in the immune response to TB, and the
interaction of antibodies with phagocytic cells through
Fc receptor engagement is emerging as a key area for
research.

The quantity of antibody produced during M. tuber-
culosis infection is related to bacterial load, and higher
antibody responses are observed in those at risk of dis-
ease and are correlated with mycobacterial load during
disease (195). This suggests that antibodies are impor-
tant in the control of active TB disease and has also led
to the development of antibody-based assays for TB
diagnosis. Antibody-based diagnostic assays are cheap
to produce and amenable to development as point-of-
care tests which can be used in remote settings because
they do not require specialist equipment. Much effort
has been invested in developing an antibody-based assay
for TB diagnosis, with limited success (196). In a sys-

tematic review and meta-analysis of the literature, which
included 67 studies amounting to 5,147 participants,
the sensitivity was 0 to 100% and specificity was 31 to
100% (196). It was concluded that antibody assays
produce inconsistent and inaccurate results, and these
data were used to inform a World Health Organization
policy statement against the use of serological tests (http://
whalibdoc.who.int/publications/2011/9789241502054
eng.pdf).

However, poor performance of antibodies as a diag-
nostic test does not translate to lack of importance in
immune control of TB disease. This section discusses
evidence from human studies of a role for antibodies in
the control of TB disease.

Antibody quality

The primary purpose of antibody measurement in hu-
man studies has been the diagnosis of TB disease, and
most studies focus on the quantity of antibody detected
and not antibody quality. Antibody avidity is variable in
TB patients (197) and shortly following TB treatment
there is an increase in antibody quantity and a decrease
in avidity, suggesting exhaustion of the B cell response
(198). Perley et al. found a decrease in avidity of anti-
body specific for the live cell surface of mycobacteria in
TB patients, suggesting conversion of antibodies to low-
avidity IgG or B cell exhaustion (65). Antibody avidity
was also higher in those previously immunized with
BCG, which raises the possibility of using vaccination to
improve antibody avidity as a potential mechanism for
protection against TB.

Antibody function

Given the extensive literature on antibody quantity in
TB, there are few studies assessing antibody function
using clinical samples. It is known that complement
binds efficiently to the surface of mycobacteria and that
the classical, lectin, and alternative complement path-
ways are activated (15, 199). Preincubation with human
serum containing mycobacterial specific IgG and IgM
further enhances complement binding to mycobacteria
(200). The ability of human sera to enhance uptake
of mycobacteria into the macrophage is retained after
heat treatment to inactivate complement, suggesting
that uptake of mycobacteria also occurs via engagement
of Fc gamma receptors on the phagocyte cell surface
(83). Fc gamma receptor expression has consistently
been identified in active TB disease biomarker studies
with decreased expression in TB disease, indicating that
downregulation of Fc gamma receptor may play a role in
pathogenesis of TB disease (161, 162, 201, 202).
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BIOMARKERS IN HUMAN TB

A major limitation of IGRA tests and TST is their in-
ability to differentiate between LTBI and active TB dis-
ease (reviewed in reference 203). These tests cannot
predict risk for progression to TB disease (30). More-
over, whole-blood transcriptomic signatures comparing
TB, LTBI, and healthy controls support the recent
change in dogma that LTBI represents a spectrum of
disease states (Fig. 1), rather than a single clinical stage
(204, 205). An important finding from whole-blood
transcriptional profiling is that the gene expression
signatures of some individuals clinically classified as
LTBI cluster with the signature of active TB patients.
These data suggest that these asymptomatic individuals
may have subclinical TB disease (24, 206).

A biomarker that accurately identifies those at high
risk for progression would allow targeted preventive
antimicrobial therapy to prevent TB disease. This would
be especially useful in settings of TB endemicity, where
treating all latently infected people for 6 to 9 months is
not feasible. Many investigators are therefore engaged in
projects aimed at identifying correlates of risk of TB. The
first study to report an association between gene ex-
pression in peripheral blood cells and risk of TB disease
compared 15 HIV-infected drug users who ultimately
progressed to active TB with 16 who remained disease
free. Expression of two transcripts, IL-13 and AIRE, was
found to correlate with risk of TB (207).

Transcriptomic Profiling

The unprecedented increase in our understanding of the
human immune response to M. tuberculosis in the past
decade is largely attributed to studies using whole-
genome transcriptional profiling during various stages
of pathogenesis and treatment (reviewed in reference
208). In general, these studies have characterized gene
expression in whole blood. While these studies have
been able to identify biomarkers with impressive diag-
nostic sensitivity for active TB, it is not possible to infer
correlates of protection against disease from such cross-
sectional study designs. To learn about mechanisms that
underlie protective responses or progression from infec-
tion to disease, longitudinal studies in which individuals
transition from LTBI to active TB are necessary. Three
recent studies with such longitudinal designs have been
completed. The first two were in BCG-vaccinated infants,
and the results are discussed in the T cell and antibody
sections above. The third was a large cohort study of
6,363 adolescents, half of whom were M. tuberculosis
infected, who were followed up for 2 years. Incident TB
disease was diagnosed during follow-up in 47 adolescents
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(209). A prominent IFN response signature distinguished
asymptomatic, HIV-uninfected persons who progressed
to TB disease from those who remained asymptomatic.
An additional fourth study adopted an alternate study
design using PET/CT imaging of HIV-infected individuals
with M. tuberculosis infection to identify those with sub-
linical TB and those at risk of TB (210). In those with
underlying HIV infection, IFN response signatures did
not readily discriminate between persons with subclinical
TB and controls, most likely because HIV infection leads
to increased expression of interferon transcripts in pe-
ripheral blood (H. Esmail, personal communication).
This suggests that discriminating interferon signatures for
TB risk may perform with reduced accuracy as predictive
biomarkers of disease risk in HIV-infected individuals.
However, additional signatures implicating myeloid in-
flammation and complement components were also
identified as correlates of TB risk in both studies. It is clear
that more such studies are required to delve deeper into
the processes that underlie the transitions between the
stages of M. tuberculosis infection in HIV-infected and
uninfected individuals.

Treatment Response

A large number of studies across various populations
have investigated serum biomarkers of TB and their
response during therapy. In addition to the classical
acute-phase markers C-reactive protein (CRP), serum
amyloid A (SAA), and albumin, other highly regulated
proteins in TB which change during TB therapy include
CXCL9, CXCL10, S100A9, MMP1, MMP9, D-dimer,
PGE-2, HGF, VEGF, and sIL-2R (148,211, 212). Serum
markers that can predict fast versus slow response to
therapy have also been identified in multiple studies.
However, performance of these biomarkers varies de-
pending on the cohort and the cut-off used to define fast
response. Some of the most consistent markers include
CRP, SAA, sTNF-R1, sIL-2R, and neutrophil-associated
proteins, including granzyme B and MMP1 (27, 213-
216). Ethnic genetic variation has been identified as a
key variable affecting the performance of biomarkers of
TB response (149), a finding that should be considered if
protein biomarkers are to be used in TB diagnosis and
the monitoring of therapy.

The measurement of antibody levels during TB drug
treatment has been inconsistent, with some studies re-
porting a decline in antibody over time of treatment and
others finding that antibody levels rise or do not change
(217, 218). As described above, biomarker studies have
identified changes in Fc gamma receptor expression in
active TB disease (164, 219).
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Transcriptomic signatures associated with B cells and
humoral immunity have also been identified in bio-
marker studies focused on the response to TB treatment
(164). Gene signatures associated with B cells are ini-
tially depressed and rise through therapy. This suggests
that B cells are depleted or less functional during active
disease, which is consistent with the observation of re-
duced antibody avidity in active TB (65).

CONCLUSION

Remarkable advances in our understanding of the im-
mune response have been made since the advent of
molecular biology and modern immunology. Among the
themes are the incredible heterogeneity in infection
states, disease presentation, and the complexity of the
host response to M. tuberculosis. However, the exact
immune mechanisms that underlie protective immunity
against M. tuberculosis in humans remain unknown.
Continued concerted research efforts and application of
modern technologies are likely to enhance our under-
standing of the immunopathogenesis of TB in humans
and facilitate rational development of highly effective
interventions.
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