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Abstract

Background

We comparatively assessed the performance of six simple obesity indices to identify adults

with cardiovascular disease (CVD) risk factors in a diverse and contemporary South Asian

population.

Methods

8,892 participants aged 20–60 years in 2010–2011 were analyzed. Six obesity indices were

examined: body mass index (BMI), waist circumference (WC), waist-height ratio (WHtR),

waist-hip ratio (WHR), log of the sum of triceps and subscapular skin fold thickness (LTS),

and percent body fat derived from bioelectric impedance analysis (BIA). We estimated mod-

els with obesity indices specified as deciles and as continuous linear variables to predict

prevalent hypertension, diabetes, and high cholesterol and report associations (prevalence

ratios, PRs), discrimination (area-under-the-curve, AUCs), and calibration (index χ2). We

also examined a composite unhealthy cardiovascular profile score summarizing glucose,

lipids, and blood pressure.

Results

No single obesity index consistently performed statistically significantly better than the oth-

ers across the outcome models. Based on point estimates, WHtR trended towards best

performance in classifying diabetes (PR = 1.58 [1.45–1.72], AUC = 0.77, men; PR = 1.59

[1.47–1.71], AUC = 0.80, women) and hypertension (PR = 1.34 [1.26,1.42], AUC = 0.70,

men; PR = 1.41 [1.33,1.50], AUC = 0.78, women). WC (mean difference = 0.24 SD [0.21–

0.27]) and WHtR (mean difference = 0.24 SD [0.21,0.28]) had the strongest associations

with the composite unhealthy cardiovascular profile score in women but not in men.
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Conclusions

WC and WHtR were the most useful indices for identifying South Asian adults with prevalent

diabetes and hypertension. Collection of waist circumference data in South Asian health

surveys will be informative for population-based CVD surveillance efforts.

Introduction

Against the backdrop of the global nutrition and epidemiologic transitions [1,2], measuring

and tracking overweight and obesity in adulthood is gaining importance in low- and middle-

income countries. Epidemiologists and clinicians commonly employ anthropometric indices

as convenient and informative body composition metrics to gauge population- and individ-

ual-level risk for cardiovascular disease (CVD) [3–7]. In addition, advancing technology has

made alternative approaches for measuring percent body fat, such as bioelectric impedance

analysis (BIA), feasible in large-scale field settings. In light of constraints of time, inconve-

nience, resources, and participant fatigue, identifying the best metric of obesity as it relates to

particular health outcomes can allow investigators and clinicians to make informed decisions

about which body composition measures to include.

The existing literature suggests that ethnicity is an important consideration when choosing

anthropometric indicators of CVD risk. The relationship between anthropometric and BIA-

based indices of body fat and true body fat vary by ethnicity, and additionally, the empirical

correlation between anthropometrically-measured obesity and cardiovascular disease risk fac-

tors also differs by ethnicity. Specifically, Asians appear to have higher overall body fat per unit

of body mass index (BMI) and higher truncal fat per kilogram of total body fat compared with

Whites [8–11]. South Asians further stand apart from other ethnic groups by being more likely

to have diabetes and cardiovascular conditions compared to non-South Asians at any given

BMI [12–15]. There are relatively few recent data, however, simultaneously examining how

multiple obesity indices relate to multiple domains of cardiovascular health and to overall car-

diovascular risk in the apparently aberrant South Asian ethnic group.

We comparatively evaluated the performance of six indices of obesity—body mass index

(BMI), waist circumference (WC), waist-height ratio (WHtR), waist-hip ratio (WHR), and log

of the sum of triceps and subscapular skin fold thickness (LTS), and percent body fat derived

from BIA (BIA)—as tools to identify adults with CVD risk factors in a diverse and contempo-

rary population (2010–2012) of urban South Asian adults ages 20–60 years. The performance

of each obesity indicator was assessed on the basis of predictive value, calibration, and discrim-

ination in classifying individuals with prevalent diabetes, hypertension, and elevated total

blood cholesterol. We also examined the relation between obesity indices and a composite

unhealthy cardiovascular profile score.

Methods

Study population and data collection

The Center for Cardio-metabolic Risk Reduction in South Asia (CARRS) Surveillance Study is

an ongoing multi-center, community-based cohort study designed to estimate the prevalence

and incidence of cardio-metabolic risk factors and diseases in Chennai, India, New Delhi,

India and Karachi, Pakistan [16]. These three diverse cities were selected to reflect the region’s

rapid socioeconomic and epidemiologic transitions. In 2010–2011, 16,288 adults ages 20 years

and older were enrolled in CARRS (response rates: 94.7% for questionnaire and 84.3% for bio-
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specimens). The CARRS study was approved by the Institutional Ethics Committee of the

Public Health Foundation of India (TRC-IEC-34/09 (IRB no. IRB00006658) and the Institu-

tional Review Board of Emory University (IRB00044159). Participants provided written con-

sent to participate in the study. Data collection was conducted by trained field researchers.

Bio-specimens were analyzed by accredited laboratories that were RIQAS (Randox Interna-

tional Quality Assessment Scheme) certified as an external quality assurance mechanism.

Detailed information on sampling and data collection has been previously published [16]. See

S1 File for the baseline questionnaire.

For the present analysis, participants ages> 60 years were excluded (n = 1,666) due to the

potential loss of muscle mass related to age in older adults [17], 28% of participants were

excluded due to missing anthropometric measures, 2% were excluded due to missing body fat

percent, and 6% were excluded because of missing laboratory data needed for cardiovascular

risk factor definitions. The primary analysis reported here used baseline data (2010–2011)

from 8,892 participants with complete anthropometric and CVD risk factor data.

Indices of obesity

Height, weight, and waist data were measured by trained field staff at the home of participants.

Five anthropometric measures were examined. Body mass index (BMI; weight in kilograms

divided by the square of height in meters) was used to measure general obesity. Central obesity

was measured using waist-based measures: waist circumference (centimeters; WC), waist-

height ratio (waist in meters divided by height in meters; WHtR), and waist-hip ratio (waist in

meters divided by hip circumference in meters; WHR). The log of the sum of triceps and sub-

scapular skinfold thickness (in centimeters; LTS) was examined as an alternative measure of

body fat that is not often reported in large surveys [18,19]. Finally, BIA-derived percent body

fat [20] was measured by portable Tanita body composition analyzers (Tanita BC-418 in Chen-

nai and New Delhi and Tanita BC-545 in Karachi). BIA uses electrical impedance measured

through specific body parts (right arm, left arm, right leg, left leg, trunk), height, weight, and

“athletic build” (defined as individuals engaged in intense physical exercise�10 hours per

week currently or in the past) to estimate fat free mass, which is then used to compute percent-

age body fat. To measure electrical impedance, participants stand on the instrument’s weigh-

ing platform with bare feet to make contact with electrodes while their bare hands are gripped

around the instrument’s handles. The Tanita instruments used DXA as the reference method

and Asian-specific equations to compute percentage body fat. While the Tanita Asian-specific

equations are proprietary, independent validation studies have indicated that this method will

underestimate fat mass and percent body fat (correlations ranging from .60 [men] to .64

[women] between BIA methods and the DXA the gold standard [21]). We add to this literature

by providing correlations of BIA with other anthropometric measures and associations of BIA

with cardiovascular risk factors in South Asians.

Cardiovascular profiles

Three CVD risk factors were examined: elevated cholesterol, hypertension, and diabetes. Ele-

vated cholesterol was defined as total blood cholesterol� 200 mg/dL or taking cholesterol

lowering medication. Hypertension was based on the average of up to three blood pressure

readings and defined as systolic blood pressure� 140 or diastolic blood pressure� 90 mmHg

or taking blood pressure lowering medication. Diabetes was defined as fasting blood glucose�

126 mg/dl or HbA1c� 6.5% or taking glucose lowering medication.

Unlike binary risk factors, continuously measured levels of metabolic biomeasures are not

subject to differences in choice of cut-points and provide additional granularity of information
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beyond dichotomized disease states. We therefore also examined as an outcome a composite

of seven metabolic biomeasures in their continuous form: total blood cholesterol (mg/dL), tri-

glycerides (mg/dL), low-density lipoprotein cholesterol (mg/dL), systolic blood pressure

(mmHg), diastolic blood pressure (mmHg), fasting blood glucose (mg/dL), and glycosylated

hemoglobin (HbA1c, %). Because these biomeasures tend to be correlated with one another,

we used principal components analysis to summarize them into a single composite unhealthy

cardiovascular profile score. Principal components analysis is a technique to reduce multiple

correlated variables to a smaller set of uncorrelated “components.” These components are the

sum of the initial variables weighted to account for the empirical variability of each indicator.

The first principal component by definition is a continuous variable that contains the largest

amount of variance across the indicators and is per convention treated as the summary “index”

used in further analysis [22]. In our analysis, the first principal component explained 39% of

the variance among the seven indicators in the analytic sample. This level of variance explained

indicated its suitability as a coherent summary risk score, and we describe this as the unhealthy

cardiovascular profile score. The score was standardized to have mean = 0 and SD = 1, with a

higher score indicating worse cardiovascular health. Correlations of individual cardiovascular

indicators with the final cardiovascular risk factor score ranged from .56 to .70. Mean values of

the seven indicators used to build the score by quartile of the score are shown in S1 Table. We

note that mean levels of biomarkers were higher in progressively higher quartiles. For example,

the difference in mean levels between the worst (highest) and best (lowest) quartiles were ~20

mmHg for diastolic blood pressure and ~40 mg/dL for fasting plasma glucose.

Covariates

Sex, age in years, and city of residence were incorporated into the analyses as stratification

(sex) or predictor (age, age-squared, and city of residence) variables in the models.

Statistical analysis

Means, standard errors, and correlations of anthropometric indices and BIA-derived body fat

were computed. In subsequent analyses, obesity measures were treated as exposures and indi-

vidual CVD risk factors and the unhealthy cardiovascular profile score were treated as

outcomes.

The first set of models estimated associations between deciles of obesity indices and CVD

risk factors in order to facilitate comparisons across exposure measures, allow for potential

non-linear relationships, and identify potential thresholds of CVD risk. These models directly

estimated the prevalence ratios of binary cardiovascular risk factors at each decile relative to

the lowest decile using Poisson regression with robust variance estimation [23]. Linear regres-

sion was used to estimate mean differences in the unhealthy cardiovascular profile score at

each decile of obesity relative to the lowest decile. Deciles were included in outcome models as

a 10-level categorical variable with the lowest decile as the referent.

A second set of models estimated associations of obesity indices specified as continuous

exposures with outcomes. These models summarized the linear association between obesity

indices and outcomes and included a squared term for each obesity index as this improved the

fit of all estimated models. Model accuracy was assessed on the basis of “predictive value”

(prevalence ratio associated with the obesity index and its square term), calibration (χ2 for the

obesity index and its squared term), and discrimination (areas under the receiver operator

characteristic curves, AUC) in each outcome model. The prevalence ratios, associated χ2 val-

ues, and predicted probabilities for the AUC calculation were obtained from Poisson regres-

sion models with robust variance estimation [23]. In models assessing accuracy, obesity
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indices were standardized to have M = 0, SD = 1 in order to compare prevalence ratio esti-

mates across exposure measures.

All analyses were stratified by sex and were age-standardized to the South Asian population

[24]. Models were also adjusted for continuous age in years, age-squared, and city of residence.

Data were analyzed using SAS 9.4 statistical software (SAS Institute, Cary, NC).

Because 28% of the original sample was excluded due to missing anthropometry data, we

conducted a sensitivity analysis by creating ten completed datasets using multiple imputation

[25]. STATA statistical software was used to perform multiple imputation, and logistic regres-

sion models with continuous anthropometric measures were estimated using SAS software.

Results largely remained the same and are shown in S5 Table.

Results

A total of 3772 men and 5120 women ages 20–60 years were included in the primary analysis.

Table 1 shows the age and residence of participants alongside the distribution (mean and stan-

dard error) of anthropometry and obesity measures in the sample. On average, men compared

with women had lower BMI, WHtR, LTS, and BIA, and higher WC and WHR.

Table 2 shows the correlation among the six examined measures of obesity. Correlations

among the obesity indices ranged from 0.44 to 0.96 for men and 0.26 to 0.97 for women, and all

correlations were statistically significantly greater than zero (statistical tests not shown). WC,

WHtR, and BMI were most highly correlated (r>0.80 among men and women). WHR, despite

being a waist-based measure, displayed lower correlations with WC and WHtR (r ranging from

.61 to .63 for women and .68 to .73 for men) than correlations observed between WC, WHtR,

Table 1. Participant characteristics.

Men

(n = 3772)

Women

(n = 5120)

Means ± SD

Demographic characteristics

Mean Age, y 39.62 ±11.15 38.57 ±10.58

City of residence

Chennai, % 42% 47%

Delhi, % 36% 30%

Karachi, % 23% 23%

Anthropometric measures

Height, m 1.66 ± 0.07 1.52 ± 0.06

Weight, kg 67.15 ±14.95 61.46 ±14.22

WC, cm 87.85 ±13.57 83.82 ±13.40

Subscapular skinfold, mm 20.66 ± 9.01 23.60 ± 7.92

Triceps skinfold, mm 13.85 ± 6.90 21.41 ± 7.41

Obesity Indices*

BMI 24.29 ± 4.96 26.49 ± 5.80

WHtR 0.53 ± 0.08 0.55 ± 0.09

WHR 0.94 ± 0.08 0.85 ± 0.08

LTS 3.45 ± 0.47 3.76 ± 0.36

BIA 21.93 ± 8.06 35.34 ± 9.31

BMI, body mass index; WC, waist circumference; WHtR, waist-height ratio; WHR, waist-hip ratio; LTS, log of the sum of triceps and subscapular skinfolds;

BIA, bioelectric impedance analysis derived percent body fat.

*WC is shown under anthropometric measures but is examined as an obesity index throughout the paper.

https://doi.org/10.1371/journal.pone.0174251.t001
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and BMI. In general, correlations with LTS were stronger among men than women. BIA, which

includes height and weight in the input equation, was most strongly correlated with BMI, but

also showed reasonably high correlations with WC and WHtR (r ranging from .72 to .75 in the

sample).

Fig 1A and 1B display associations (PRs or mean difference) between deciles of obesity indi-

ces and cardiovascular risk factors in men and women, respectively; the first (lowest) decile is

the reference category. Corresponding point estimates with 95% confidence intervals are

reported in S2 Table and S3 Table for men and women, respectively. Across binary CVD risk

factors, the PR point estimate was higher in each progressive decile of the specified obesity mea-

sure relative to the lowest decile. This positive gradient in PRs by decile of obesity measure fol-

lowed a curvilinear pattern for elevated cholesterol and the unhealthy cardiovascular profile

score in men, but a largely linear pattern in all other models. Among men and women, there

were few statistically significant differences between PRs at any given decile across obesity indi-

ces. Among women, we found that WHtR demonstrated the strongest associations (point esti-

mates) with all CVD risk factors and unhealthy cardiovascular profile score in nearly all deciles.

Fig 2A and 2B show associations (PRs or mean differences) between standardized, continu-

ously measured obesity indices and prevalent CVD risk factors in men and women respec-

tively adjusted for age and city of residence. Data are shown in table form in S4 Table. PR

estimates represent the relative prevalence of each CVD risk factor associated with +1 SD dif-

ference in the obesity index. The mean difference in unhealthy cardiovascular profile score

associated with +1 SD difference in the obesity index is also shown.

In models of elevated cholesterol, BIA had the largest PR point estimate of the 6 obesity

indices in both men and women (Fig 2A and 2B), although the confidence intervals around

the point estimate overlapped with those of the other obesity measures (S4 Table). The obesity

indices were not distinguishable with respect to discriminating elevated cholesterol based on

AUC. In men, BIA had the highest point estimates for all accuracy measures (PR = 1.211,

AUC = 0.626, χ2 = 23.5). In women, BIA had the highest PR and χ2 (PR = 1.12, χ2 = 11.1)

whereas the highest AUC was observed for WHtR (AUC = 0.690).

In models of diabetes, all obesity indices showed statistically significant associations (Fig 2A

and 2B). Though the associations of the 6 obesity indices with diabetes were not statistically

Table 2. Unadjusted inter-correlations of obesity indices.

Sex Obesity index BMI WC WHtR WHR LTS BIA

Men BMI 1.00 . . . . .

WC 0.85 1.00 . . . .

WHtR 0.85 0.96 1.00 . . .

WHR 0.48 0.73 0.74 1.00 . .

LTS 0.73 0.70 0.68 0.44 1.00 .

BIA 0.78 0.74 0.75 0.49 0.65 1.00

Women BMI 1.00 . . . . .

WC 0.81 1.00 . . . .

WHtR 0.82 0.97 1.00 . . .

WHR 0.25 0.64 0.63 1.00 . .

LTS 0.66 0.63 0.61 0.26 1.00 .

BIA 0.81 0.73 0.72 0.26 0.65 1.00

BMI, body mass index; WC, waist circumference; WHtR, waist-height ratio; WHR, waist-hip ratio; LTS, log of the sum of triceps and subscapular skinfolds;

BIA, bioelectric impedance analysis derived percent body fat.

https://doi.org/10.1371/journal.pone.0174251.t002
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Fig 1. Associations (PRs or mean difference) between deciles of obesity indices and cardiovascular risk factors in

urban South Asian men (panel A) and women (panel B). Models compare cardiovascular outcomes in higher compared to the
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distinguishable among men, among women we observed WC and WHtR to have larger PRs,

larger AUCs (indicating better discrimination), and larger index χ2 (indicating better model

fit) than WHR and LTS. WHtR had the highest PR for diabetes (PR = 1.578 in men and

PR = 1.586 in women), WC had the highest AUC (AUC = 0.770 in men and AUC = 0.800 in

women), and BMI had the highest χ2 in men (χ2 = 119.4) and WHtR had the highest χ2 in

women (χ2 = 143.9).

Models of hypertension followed a pattern similar to models of diabetes (Fig 2A and 2B).

All obesity indices showed statistically significant associations with hypertension. WHtR had

the highest PR for hypertension (PR = 1.337 in men and PR = 1.412 in women); BMI had the

highest AUC in men (AUC = 0.7057) and WHtR had the highest AUC in women (AUC =

0.784); and BMI had the highest χ2 in men (χ2 = 97.6) and WHtR had the highest χ2 in women

(χ2 = 129.5).

Models of the composite unhealthy cardiovascular profile score estimated the mean differ-

ence in the score (expressed as SDs) associated with a +1 SD of each obesity index; no AUC is

computed for these models because the score was treated as a linear outcome. LTS was the

most strongly correlated with the score in men (difference = 0.281 SD) while WHtR was most

correlated with the score in women (difference = 0.241 SD), and variable χ2 in men was highest

for BMI (χ2 = 242.9) and in women was highest for WC (χ2 = 192.9).

Discussion

Based on a large contemporary cohort of regionally diverse urban South Asians, we found that

commonly used indices of obesity were highly correlated. The associations of obesity indices

with binary CVD risk factors and an unhealthy cardiovascular profile score were positive and

largely linear across all levels of obesity indices. Our comprehensive analysis—considering

strength of associations, discrimination, and calibration—found that no single obesity index

consistently and statistically significantly performed better than the others. We note, however,

that WC and WHtR tended toward the best performance in discriminating and classifying

prevalent diabetes and hypertension based on point estimates of associations, AUCs, and

model fit. Although BIA and LTS may be best-suited to identify elevated cholesterol among

men, we did not find evidence that they were superior to the more commonly used metrics of

BMI and WC. Finally, CVD risk factors were progressively more prevalent in each decile of

anthropometry, with no threshold after which prevalence was markedly higher than the previ-

ous decile. This reiterates that anthropometric cutoffs to classify cardiovascular health are sub-

ject to arbitrary definitions of what level of cardiovascular risk is deemed adverse.

There has been much interest in whether measures of general obesity (e.g., BMI) or central

obesity (e.g., WC-derived indicators) are superior at discriminating CVD risk factors [26].

BMI has long been recommended to assess adult overweight and obesity [27] and is the most

commonly reported metric of obesity in the literature [7]. Indeed, the present study and a pre-

vious meta-analysis [26] demonstrate that BMI has strong potential to discriminate and clas-

sify CVD risk factors. WC and WHR have been advocated to complement BMI in chronic

disease risk classification because it proxies abdominal adiposity [28–32]. With the caveat that

lowest decile of each anthropometric index and were adjusted for age in years, age-squared, and city of residence. Deciles were

included in the outcome models as a 10-level categorical variable with the first decile as the reference category. Prevalence ratios

are shown for diabetes, elevated cholesterol, and hypertension and mean differences (betas) are shown for the cardiovascular

risk index. The y-axis differs across the plots to allow for better visualization of the point estimates Data are available in table form

in S2 Table and S3 Table. Abbreviations: BMI, body mass index; WC, waist circumference; WHtR, waist-height ratio; WHR,

waist-hip ratio; LTS, log of the sum of triceps and subscapular skinfolds; BIA, bioelectric impedance analysis derived percent

body fat.

https://doi.org/10.1371/journal.pone.0174251.g001
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Fig 2. Summary performance of obesity indices in classifying CVD risk factors in men (panel A) and women (panel B):

Associations (prevalence ratios or mean difference), discrimination (area under the curve, AUC), and calibration (quasi-
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the performance of obesity indices were statistically indistinguishable, among contemporary

urban South Asian adults, WHtR tended to be most strongly related to CVD risk factors based

on point estimates alone. Among men, +1 SD of WHtR (i.e., 0.08 unit of WHtR) was associ-

ated with a 9% higher probability of elevated cholesterol, 57% higher probability of diabetes,

32% higher probability of hypertension, and +0.27 SD of the unhealthy cardiovascular profile

score; among women, the corresponding figures for a +1 SD (i.e., 0.09 unit of WHtR) were

8%, 59%, 41%, and +0.24 SD. WHtR was also the most strongly associated obesity indices with

the composite unhealthy cardiovascular profile score in women.

Of all the outcomes, the strongest relationships were observed between obesity indices and

diabetes, with +1 SD of an obesity index being associated with between 43% to 58% higher

prevalence of diabetes. The strong, positive, and largely linear association between obesity

indices and diabetes in South Asians has been described previously [33,34]. The weakest rela-

tionships were observed between obesity indices and elevated cholesterol, with +1 SD of an

obesity index associated with between 6% to 21% higher prevalence of elevated cholesterol.

The plots of PRs by deciles in Fig 1A showed that the association between obesity and elevated

cholesterol may be curvilinear in men, and thus the summary linear models may not be appro-

priate when investigating this outcome.

The focus of this paper was classifying prevalent binary CVD risk factors and a composite

measure of unhealthy cardiovascular profiles using simple indices of obesity. A strength of this

analysis was our ability to simultaneously assess multiple anthropometric measures of obesity

using recent, objectively collected data with uniform protocols from geographically diverse,

population based samples of South Asians in urban Pakistan and North and South India. A

limitation of the analysis includes the inability to report on future risk of disease associated

with obesity indicators. Yet, even after excluding individuals with prior diagnoses of diabetes

and hypertension in respective models, results were very similar (data not shown; results

available from authors upon request). This strengthens the case for using anthropometric in-

dicators to classify cardiovascular risk factors in individuals not yet diagnosed with these con-

ditions. We are also unable to generalize to rural settings where the need for cost-effective

approaches to CVD screening are even greater. A comparison of the performance of general

and central obesity indicators in predicting future cardiovascular risk among both rural- and

urban-dwelling South Asians will be a valuable addition to this literature as requisite data

become available.

Clinicians and epidemiologists continue to debate which measure(s) of anthropometry

should be used to define obesity and identify individuals at high risk for cardiovascular disease,

particularly as they apply to South Asians. The lack of a robust and clear inflection point

after which CVD factors escalate poses an ongoing challenge for defining cut-points to distin-

guish “obese” from “non-obese.” Our findings add further support to the utility of WC and

WHtR to gauge the presence of CVD risk factors [12,28,35,36]. The results also suggest that

reliance on BMI alone may hinder surveillance efforts due to its lower sensitivity in identifying

CVD risk factors in the South Asian population. Yet, to our knowledge, WC data are not rou-

tinely collected in current national health surveys in the region [7]. In light of the mounting

evidence that waist-based measures offer the best performance in classifying diabetes and

hypertension—two leading causes of death and disability in South Asians—clinical assessments

likelihood under the independence model criterion; lower value indicates better model fit). All obesity indices were

standardized to mean = 0 and SD = 1 to facilitate comparisons across measures. Associations were adjusted for age in years, the

age-squared, and city of residence. Data are available in table form in S4 Table. Abbreviations: BMI, body mass index; WC, waist

circumference; WHtR, waist-height ratio; WHR, waist-hip ratio; LTS, log of the sum of triceps and subscapular skinfolds; BIA,

bioelectric impedance analysis derived percent body fat; AUC, area under the curve.

https://doi.org/10.1371/journal.pone.0174251.g002
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and population-based surveys of South Asians would do well to include WC in the battery of

anthropometric measures.
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