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Abstract 41 

Objectives: The burden of dengue fever in Thailand is considerable, yet there are few large-42 

scale studies exploring the drivers of transmission. This study aimed to investigate the 43 

spatiotemporal patterns and climatic drivers of severe dengue in Thailand.  44 

Methods: Geographic Information System (GIS) techniques and spatial cluster analysis were 45 

used to visualize the spatial distribution and detect high-risk clusters of severe dengue in 76 46 

provinces of Thailand from January 1999 to December 2014. The seasonal patterns of severe 47 

dengue cases in different provinces were identified. A two-stage modelling approach combining 48 

a generalized linear model with a distributed lag non-linear model was used to quantify the 49 

effects of monthly mean temperature and relative humidity on the occurrence of severe dengue 50 

cases in 51 provinces of Thailand.     51 

Results: Significant severe dengue clustering was detected, especially during epidemic years, 52 

and the location of these clusters showed substantial inter-annual variation. Severe dengue cases 53 

in Northern and Northeastern Thailand peaked in June to August and this pattern was stable 54 

across the study period, whereas the seasonality of severe dengue cases in other regions 55 

(especially Central Thailand) was less predictable. The risk of the occurrence of severe dengue 56 

cases increased with an increase in mean temperature in Northeastern Thailand, Central Thailand, 57 

and Southern Thailand, with peaks occurring between 24 °C to 30 °C in Northeastern Thailand 58 

and 27 °C to 29 °C in Southern Thailand West Coast, respectively. Relative humidity 59 

significantly affected the occurrence of severe dengue cases in Northeastern and Central 60 

Thailand, with optimal ranges observed for each region.       61 



Conclusions: Our findings substantiate the potential for developing climate-based dengue early 62 

warning systems for Thailand, and have implications for informing pre-emptive vector control.  63 

Keywords: Relative humidity; Severe dengue; Temperature; Thailand 64 
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1. Introduction 79 

Dengue fever (DF), the most important arboviral disease in the world in terms of numbers 80 

affected (Bhatt et al., 2013), has caused substantial health and economic burdens to households, 81 

health care systems and governments (Castro et al., 2017; Shepard et al., 2016). More than half 82 

of the world’s population is living in areas at risk of DF (Castro et al., 2017). Countries located 83 

in the tropics and subtropics, such as Thailand, are particularly prone, causing considerable costs 84 

that are both direct (e.g., medical cost) and indirect (e.g., reduced workplace productivity), of 85 

greatest burden to people who are at socioeconomic disadvantage (Lee et al., 2017b; Tozan et al., 86 

2017). Dengue infection causes flu-like illness, and occasionally it develops into a life-87 

threatening complication called severe dengue (also known as dengue hemorrhagic fever).        88 

Understanding the spatial pattern of DF and identifying its dominant determinants will help 89 

facilitate judicious resource allocation, especially for resource-constrained countries and regions, 90 

and will help the development of tailored DF control and prevention programs (Acharya et al., 91 

2016; Wangdi et al., 2018). The transmission of DF involves a complex interaction of the dengue 92 

virus, mosquitoes (mainly Aedes aegypti and Ae. albopictus) and susceptible people. Currently, 93 

DF prevention is largely reliant on vector control. Hence, the identification of seasonal DF 94 

pattern is a critical step in informing optimal timing of vector control intensification. Prior 95 

studies have widely reported distinct seasonal pattern of DF (Hu et al., 2010; Wangdi et al., 96 

2018). However, studies explicitly exploring the dynamic change of DF seasonality across 97 

different years are still limited (Stoddard et al., 2014).  98 

The potential drivers of DF transmission are multiple, but, as with all major vector-borne disease, 99 

climatic factors (e.g., temperature, relative humidity, and rainfall) are known to be strongly 100 



associated with DF transmission (Morin et al., 2013; Wongkoon et al., 2013b). These climatic 101 

factors affect DF transmission through their impacts on dengue virus replication and 102 

transmission, vector ecology, as well as human behaviors (Morin et al., 2013; Xu et al., 2017). 103 

However, due to the complex nature of climate-DF relationship, the dominant climatic drivers of 104 

DF transmission may vary regionally (Lauer et al., 2018) and this association is often non-linear 105 

(Wu et al., 2018; Xu et al., 2017). Large-scale studies are required to inform projections of DF 106 

risk areas under climate change scenarios (Ebi and Nealon, 2016) and yet there are relatively few 107 

examples of these (Johansson et al., 2009; Lee et al., 2017a).    108 

Seventy percent of severe dengue occurs in Asia (Bhatt et al., 2013), and the disease and 109 

economic burdens of severe dengue in Thailand are considerable (Bhatt et al., 2013; Lee et al., 110 

2017b; Tozan et al., 2017). The tropical climate of Thailand encourages very high mosquito 111 

density and is ideal for the transmission of DF. Further, Thailand is a popular tourist spot in Asia, 112 

a source of labor for other countries and increasingly industrialized. The increased human 113 

movement associated with these characteristics will increase the importations of virus from other 114 

endemic areas and may contribute to seeding dengue epidemics (Tian et al., 2017). Regarding 115 

the associations between climatic factors and severe dengue in Thailand, Lauer et al. (2018) used 116 

models with severe dengue incidence only and models with the inclusion of climatic covariates 117 

to forecast several dengue incidence in Thailand, and found the inclusion of climatic covariates 118 

did not consistently add value to the forecasts compared with the incidence-only models. They 119 

speculated that this finding was either because the associations of climate covariates with dengue 120 

differ across time and space, or because the associations are spurious. No study has substantiated 121 

their speculations so far, and we attempted to fill this gap in the present study.  122 



This study used monthly data on severe dengue cases in Thailand between January 1999 and 123 

December 2014 to address three objectives: 1) Identify the possible high-risk clusters of severe 124 

dengue in Thailand; 2) Compare the inter-annual seasonality of severe dengue in different 125 

provinces of Thailand from 1999 to 2014; and 3) Quantify the associations of mean temperature 126 

and relative humidity with severe dengue in Thailand and regions within it.    127 

   128 

2. Methods 129 

2.1 Data collection 130 

Thailand is situated in the tropical area of Southeast Asia between latitudes 5
o
 37' N to 20

o
 27' N 131 

and longitudes 97
o
 22' E to 105

o
 37' E. Its climate is under the influence of seasonal monsoon 132 

winds. Thailand can be divided into six subnational regions according to the climate pattern and 133 

meteorological conditions, namely Northern Thailand, Northeastern Thailand, Central Thailand, 134 

Eastern Thailand, Southern Thailand West Coast, and Southern Thailand East Coast 135 

(Supplementary Figure S1).  136 

Thailand has 77 provinces. Monthly data on severe dengue cases and yearly population data 137 

from 1999 to 2014 for each province of Thailand, except for Bueng Kan, were obtained from a 138 

published paper (Lauer et al., 2018). Daily data on relative humidity and mean temperature for 139 

61 provinces, from 1999 to 2008, were supplied by Meteorological Department, Ministry of 140 

Digital Economy and Society, Thailand. We aggregated the daily data on relative humidity and 141 

mean temperature into monthly data by calculating the mean of the daily values. To quantify the 142 

associations of mean temperature and relative humidity with severe dengue, 51 provinces with 143 

complete climate data and less than 20% missing data on severe dengue were selected. Details of 144 



these 51 provinces (the corresponding subnational region it belongs to, average value of mean 145 

temperature, and average value of relative humidity) were given in Supplementary Table S1. The 146 

proportions of these 51 provinces in all provinces of Northern Thailand, Northeastern Thailand, 147 

Central Thailand, Eastern Thailand, Southern Thailand West Coast, and Southern Thailand East 148 

Coast were 60% (9/15), 60% (12/20), 50% (9/18), 75% (6/8), 83% (5/6), and 100% (10/10), 149 

respectively.  150 

2.2 Data analysis 151 

The spatiotemporal pattern analysis used the whole data set from 76 provinces. As there were 152 

missing values of monthly severe dengue data in some provinces, it was not possible for us to 153 

sum the monthly severe dengue data into annual estimates for each province. As such, for each 154 

year, we divided the average value of severe dengue case numbers in available months by yearly 155 

population to obtain the severe dengue incidence for every province. Spatial cluster analysis was 156 

conducted to identify the randomly distributed severe dengue cases and to explore high-risk 157 

clusters. A Poisson regression model was performed to compute the mean relative risk of severe 158 

dengue for each cluster (Qi et al., 2012).   159 

Current evidence suggests that the associations of mean temperature and relative humidity with 160 

the occurrence of DF cases can be non-linear (Wu et al., 2018). Therefore we used a generalized 161 

linear model and a distributed lag non-linear model to examine the effects of mean temperature 162 

and relative humidity on the occurrence of severe dengue cases (Gasparrini et al., 2010). One to 163 

three months of lag were used in the analysis based on the findings of prior studies in Guangzhou, 164 

China, and Mekong Delta region, Vietnam (Phung et al., 2016; Wu et al., 2018). Specifically, 165 

there were two stages in the analysis. Herein, we use mean temperature as an example to clarify 166 

the details. Stage I: for each province, the relationship between mean temperature and the 167 



occurrence of severe dengue cases was modelled using a cross-basis. The cross-basis was 168 

defined by a B-spline with two degrees of freedom (dfs) for the space of mean temperature. The 169 

spline for mean temperature was centered at the value corresponding to the point of minimum 170 

severe dengue risk. Month and year were included as dummy variables in the model to control 171 

for seasonality and long-term trend. Stage II: multivariate meta-analysis was used to pool the 172 

association of mean temperature with the occurrence of severe dengue case (Gasparrini and 173 

Armstrong, 2013). Finally, we obtained the associations between mean temperature and 174 

occurrence of severe dengue cases across three lags (one, two, and three months) for subnational 175 

regions (i.e., Northern, Northeastern, Central, Eastern, Southern Thailand West Coast, and 176 

Southern Thailand East Coast) and for the whole of Thailand. The following equation was used 177 

in the stage I analysis: 178 

Yt ~ Poisson (µt) 179 

Log (µt) = α + β Tt,l + η1 Month + η2Year 180 

Where t is the month of the observation, Yt is the observed monthly dengue number in month t, α 181 

is the model intercept, Tt,l is a matrix obtained by applying the DLNM to temperature, β is the 182 

vector of coefficients for Tt,l and l is the lag months. Sensitivity analysis for severe dengue 183 

seasonality assessment was performed by filling in missing severe dengue data using imputation 184 

approach. Visualization of monthly severe dengue incidence and identification of high-risk 185 

clusters was conducted using ArcGIS 10.5 (ESRI Inc., Redlands, CA, USA) and SaTScan. 186 

Modelling the association of mean temperature and relative humidity with severe dengue was 187 

done using “dlnm” (Gasparini, 2011) and “mvmeta” packages, and missing data were filled in 188 

using the “zoo” package in R 3.4.4.   189 



3. Results 190 

Temporal pattern of severe dengue cases in Thailand and subnational regions  191 

Analysis of decomposed pattern of monthly severe dengue cases in Thailand from 1999 to 2014 192 

suggested that there were severe dengue epidemics in 2001, 2002, 2010, and 2013 (Figure 1A). 193 

A distinct seasonality of severe dengue occurrence in Thailand was observed in Figure 1A with 194 

considerable inter-annual variation in the regions affected (Figure 1B).  195 

Spatial patterns of severe dengue incidence across different years   196 

Figure 2A illustrated the spatial pattern of monthly severe dengue incidence in Thailand each 197 

year and Figure 2B illustrated the spatial shifting in the primary cluster each year. Monthly 198 

severe dengue incidence in provinces of Southern Thailand (i.e., Southern Thailand West Coast 199 

and Southern Thailand East Coast) appeared to be consistently high across different epidemic 200 

years. Monthly severe dengue incidence in Central Thailand was amongst the highest in 2001 but 201 

remained low during other epidemic years (i.e., 2002, 2010, and 2013).   202 

Seasonality of severe dengue cases in Thailand and subnational regions   203 

Figure 3A delineated the seasonal patterns of severe dengue cases in all 76 selected provinces 204 

(from top to bottom: Northern Thailand to Southern Thailand West Coast), suggesting that there 205 

was a distinct seasonality of severe dengue cases for most provinces of Thailand. Specifically, 206 

severe dengue cases peaked in June to August in Northern and Northeastern Thailand. The 207 

seasonality of severe dengue cases in Central Thailand was less distinct than upper Thailand (i.e., 208 

Northern and Northeastern Thailand). Severe dengue cases in Eastern Thailand, Southern 209 

Thailand East Coast, and Southern Thailand West Coast consistently peaked in May to August. 210 



Sensitivity analysis results showed that the seasonal patterns of severe dengue cases in these 76 211 

provinces did not change substantially after filling in the missing data (Figure S2).  212 

Figure 3B showed the year to year change in the seasonality of severe dengue cases in 213 

subnational regions, indicating that the seasonality of severe dengue cases in Northern and 214 

Northeastern Thailand was stable across years. In comparison, the seasonality of severe dengue 215 

cases in Central Thailand changed substantially from year to year. The seasonality of severe 216 

dengue cases in Eastern Thailand, Southern Thailand West Coast, and Southern Thailand East 217 

Coast also changed from year to year, although not as dramatically as Central Thailand.  218 

Effects of mean temperature and relative humidity on the occurrence of severe dengue cases 219 

in Thailand and subnational regions  220 

Figures 4 (A and B) and 5 (A and B) presented the effects of mean temperature and relative 221 

humidity on the occurrence of severe dengue cases. Complete results (log (RR) and 95% 222 

confidence interval) for three-month lag were presented because this lag corresponded to the 223 

lowest quasi Akaike's Information Criterion (QAIC).  224 

In general, mean temperature significantly affected the occurrence of severe dengue cases in 225 

Thailand (Figure 4A). Specifically, the occurrence of severe dengue cases in Central Thailand 226 

was most sensitive to mean temperature effect, followed by Southern Thailand East Coast, 227 

Southern Thailand West Coast, and Northeastern Thailand (Figure 4B). Interestingly, the shape 228 

of the relationship between mean temperature and the occurrence of severe dengue, as well as the 229 

threshold temperature (i.e., temperature corresponding to the lowest risk of severe dengue case 230 

occurrence) varied across different regions. Relative humidity also had a significant effect on the 231 

occurrence of severe dengue cases in Thailand (Figure 5A). The occurrence of severe dengue 232 



cases in Northeastern Thailand was most sensitive to relative humidity effect, followed by 233 

Central Thailand (Figure 5B). The shape of the relationship between relative humidity and the 234 

occurrence of severe dengue cases, as well as the threshold relative humidity (i.e., relative 235 

humidity corresponding to the lowest risk of severe dengue case occurrence) also varied across 236 

these two sensitive regions. Figure S3 presented the residual plots of the mean temperature and 237 

relative humidity models in Figure 4A and Figure 5A. We did not observe distinct patterns in 238 

these residual plots.  239 

 240 

4. Discussion 241 

This study presents one of the two attempts to analyze the spatiotemporal patterns of severe 242 

dengue in Thailand (Lauer et al., 2018). Results demonstrate that while local severe dengue 243 

clusters arise in different locations year-to-year making them difficult to predict, consistent 244 

regional patterns were identified and these can be exploited in developing forecasting tools. 245 

Severe dengue cases consistently peaked from June to August in Northern and Northeastern 246 

Thailand. Additionally, severe dengue was driven by mean temperature in Central and Southern 247 

Thailand, whereas it was more driven by relative humidity in Northeastern Thailand. The 248 

heterogeneous associations of mean temperature and relative humidity with severe dengue in 249 

different regions of Thailand suggest that considering regional heterogeneity when including 250 

climatic covariates in the incidence-only model to forecast dengue incidence may increase the 251 

accuracy of the forecasting (Lauer et al., 2018).       252 

The intensity of severe dengue transmission depends on the circulating serotype of dengue virus, 253 

mosquito density, the immunity level of population, and the environment. As such, we tried to 254 



understand the possible reasons behind the shifting pattern of high-risk cluster across different 255 

epidemic years in Thailand from these four aspects. Although the increase in average age of 256 

severe dengue patients in Thailand has been widely documented (Cummings et al., 2009), 257 

children remained the predominant group affected by severe dengue (Limkittikul et al., 2014), 258 

and therefore the varying high-risk cluster was unlikely to be caused by spatial change in herd 259 

immunity. The proportions of different dengue virus serotypes (i.e., DENV-1, DENV-2, DENV-260 

3, and DENV-4) had an appreciable change from 2005 to 2009 and there was an increase in the 261 

proportion of DENV-2 in all subnational regions (Limkittikul et al., 2014). Due to the lack of 262 

mosquito density data, we were unable to identify the roles that mosquito density played in 263 

driving the spatiotemporal pattern of severe dengue, but Xu et al. have found that mosquito 264 

density and climate variation largely explained the temporal dynamic of DFs in Guangzhou, 265 

China (Xu et al., 2017). Hu et al. have also observed that maximum temperature and rainfall 266 

affected spatial pattern of DFs in Queensland, Australia (Hu et al., 2012). Thus, we could not 267 

rule out the possibility that mosquito density and climatic factors may work independently or 268 

interactively to affect the spatial pattern change of severe dengue in Thailand.     269 

Monsoon weather pattern predominates in Thailand, and the peak season of severe dengue cases 270 

in Thailand that we observed in this study coincided with Thailand’s rainy season (May/June to 271 

October). A study in Sisaket, Thailand, has observed that numbers of Aedes larvae were higher in 272 

the rainy season than in the winter and summer seasons (Wongkoon et al., 2013a). However, 273 

Johansson et al. found that the effect of rainfall on DF in Thailand was not stable (Johansson et 274 

al., 2009). Regarding the possible entomological factors that caused dengue seasonality in 275 

Thailand, Hartley et al. found that vector mortality and biting rate stood out (Hartley et al., 2002). 276 

The distinct and stable seasonality in Northern and Northeastern Thailand observed in this study 277 



suggest that pre-season vector control in these regions might ease severe dengue burden (Vogel, 278 

2018). The less-distinct and temporally-varying severe dengue seasonality in Central Thailand 279 

could partially be attributable to the fact that water containers were present all year around (Tonn 280 

et al., 1969). Climatic factors may also play a role in driving severe dengue seasonality in 281 

Central Thailand (Do et al., 2014), especially in light of the significant findings on the effects of 282 

mean temperature and relative humidity on the occurrence of severe dengue cases in Central 283 

Thailand in this study.          284 

In general, increased ambient temperature speeds up dengue virus replication rate within the 285 

mosquitos and shortens its extrinsic incubation period, facilitating its transmission (Morin et al., 286 

2013). Ambient temperature also acts as an important regulator of mosquito development and 287 

survival, as well as mosquito reproductive behavior (Morin et al., 2013). The complexity of 288 

temperature impacts on dengue viruses and mosquitoes, as well as the findings from previous 289 

studies (Wu et al., 2018; Xu et al., 2017), motivated us to assess the possible non-linear 290 

relationship between temperature and the occurrence of severe dengue cases. We observed that 291 

generally there was an optimal temperature range for the occurrence of severe dengue cases in 292 

Thailand, although we also observed heterogeneity in terms of this temperature range across 293 

different regions. Specifically, the occurrence of severe dengue cases roughly favoured an 294 

ambient mean temperature range of 24°C to 30°C in Northeastern Thailand, and 27°C to 29°C in 295 

Southern Thailand West Coast. In Central Thailand and Southern Thailand East Coast, the risk of 296 

the occurrence of severe dengue cases increased when temperature increased, and remained 297 

stable or dipped slightly when temperature reached high level. Prior studies in Thailand have 298 

also found significant effect of temperature on the occurrence of DF cases or severe dengue 299 

cases (Johansson et al., 2009; Nitatpattana et al., 2007; Promprou et al., 2005; Thammapalo et al., 300 



2005), although all of them assumed a linear relationship between temperature and dengue 301 

occurrence. Rueda et al. have found that the development rates of immature Aedes aegypti 302 

increased with incubation temperatures to 34 °C and then slowed, and Ae. aegypti survival 303 

peaked at 27°C (Rueda et al., 1990), which also indicated that there may be an optimal 304 

temperature range for dengue transmission (Mordecai et al., 2017).  305 

The present study has also found significant effect of relative humidity on the occurrence of 306 

severe dengue cases in Northeastern Thailand and Central Thailand. Similar to temperature, there 307 

were also optimal relative humidity ranges that the occurrence of severe dengue cases favoured. 308 

Promprou et al. have found a significant relationship between relative humidity and the 309 

occurrence of severe dengue cases in Southern Thailand using correlation analysis and linear 310 

regression analysis (Promprou et al., 2005). Wongkoon et al. have also observed that relative 311 

humidity was an important climate predictor of dengue case number in Southern Thailand 312 

(Wongkoon et al., 2018). Studies conducted in Manila (Philippines) (Sumi et al., 2016), Mekong 313 

Delta region (Vietnam) (Dung et al., 2016), and Singapore (Earnest et al., 2011) have found an 314 

increase of DF cases with the increase of relative humidity, but Xiang et al. have found that, 315 

when relative humidity was beyond 78.9%, DF cases decreased when relative humidity increased 316 

(Xiang et al., 2017). The heterogeneous findings in these studies might partially be due to the 317 

assumption made on the nature of relative humidity and DF relationship prior to data analysis. 318 

Biologically, Ae. aegypti eggs can tolerate a wide range of relative humidity values, but Ae. 319 

albopictus eggs favor high relative humidity (Juliano et al., 2002). Nevertheless, mosquitoes may 320 

bite more at low humidity, possibly increasing the transmission of dengue virus (Wu et al., 2009). 321 

Thoroughly understanding how climatic factors affect the transmission of dengue virus and the 322 



occurrence of severe dengue cases is of great significance because climate change will increase 323 

global surface temperature and may alter the distribution of relative humidity among regions.       324 

The associations between climatic factors and the occurrence of severe dengue cases that we 325 

found in this study suggest the possibility of developing a dengue early warning system based on 326 

climate, and the appreciable heterogeneity of these associations across different regions indicates 327 

that region-specific early warning might be more ideal. Optimal lead time is a pivotal factor in 328 

developing dengue early warning system. The three-month-optimal-lag that we observed in this 329 

study is consistent with findings from Cambodia (Choi et al., 2016) but inconsistent with  330 

findings from the Mekong Delta region, Vietnam (Dung et al., 2016), and Guangzhou, China 331 

(Xiang et al., 2017). A prior study in Singapore reported that a dengue early warning forecast 332 

given three months prior to the onset of a possible epidemic would give local authorities enough 333 

time to mitigate an outbreak (Hii et al., 2012). The heterogeneous lag patterns across different 334 

countries observed in existing literature suggested that optimal lead time for dengue early 335 

warning might be country- or region-specific.     336 

This study has two major strengths. First, we explored the dynamic spatial patterns of severe 337 

dengue incidence across different years in Thailand, and described regional differences in terms 338 

of the seasonality of severe dengue cases, facilitating future dengue prevention and control 339 

resource allocation and implementation of vector control. Second, we quantified the effects of 340 

mean temperature and relative humidity on the occurrence of severe dengue cases. The 341 

identifications of climate-sensitive regions and optimal ranges of mean temperature and relative 342 

humidity for the occurrence of severe dengue cases may shed some light on adequately 343 

understanding how climate change may affect the occurrence of severe dengue cases in Thailand 344 

in the future.  However, projecting future severe dengue burden under climate change scenarios 345 



still needs to consider many other factors (e.g., mosquito density and future shifting in 346 

demographics, etc.). Three weaknesses of this study should also be acknowledged. First, we were 347 

unable to examine how mosquito density may affect the spatiotemporal patterns of severe 348 

dengue as we did not have mosquito data. Second, we also did not have data on rainfall and 349 

evaporation, which restricted us from exploring the relationship between rainfall, evaporation 350 

and the occurrence of severe dengue cases in Thailand, although a recent study has found that 351 

relative humidity appeared to be the most important climatic factor in predicting the temporal 352 

pattern of dengue incidence in Manila, the Philippines (Carvajal et al., 2018). Third, we were 353 

only able to quantify the associations of mean temperature and relative humidity with severe 354 

dengue in 51 provinces due to data unavailability.  355 

 356 

5. Conclusion 357 

Severe dengue in Thailand clustered in certain provinces, especially during epidemic years. The 358 

high-risk cluster changed across years, calling for further research to understand the fundamental 359 

reasons behind this pattern. Pre-season vector control in Northern and Northeastern Thailand 360 

could potentially ease severe dengue burden. Regional heterogeneity existed in terms of the 361 

effects of mean temperature and relative humidity on the occurrence of severe dengue cases in 362 

Thailand. As climate change continues, severe dengue burden in Central Thailand, Northeastern 363 

Thailand, and Southern Thailand may change in the future, and evaluating the magnitude of this 364 

possible change may help future dengue resource allocation in Thailand.     365 
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Abstract 41 

Objectives: The burden of dengue fever in Thailand is considerable, yet there are few large-42 

scale studies exploring the drivers of transmission. This study aimed to investigate the 43 

spatiotemporal patterns and climatic drivers of severe dengue in Thailand.  44 

Methods: Geographic Information System (GIS) techniques and spatial cluster analysis were 45 

used to visualize the spatial distribution and detect high-risk clusters of severe dengue in 76 46 

provinces of Thailand from January 1999 to December 2014. The seasonal patterns of severe 47 

dengue cases in different provinces were identified. A two-stage modelling approach combining 48 

a generalized linear model with a distributed lag non-linear model was used to quantify the 49 

effects of monthly mean temperature and relative humidity on the occurrence of severe dengue 50 

cases in 51 provinces of Thailand.     51 

Results: Significant severe dengue clustering was detected, especially during epidemic years, 52 

and the location of these clusters showed substantial inter-annual variation. Severe dengue cases 53 

in Northern and Northeastern Thailand peaked in June to August and this pattern was stable 54 

across the study period, whereas the seasonality of severe dengue cases in other regions 55 

(especially Central Thailand) was less predictable. The risk of the occurrence of severe dengue 56 

cases increased with an increase in mean temperature in Northeastern Thailand, Central Thailand, 57 

and Southern Thailand, with peaks occurring between 24 °C to 30 °C in Northeastern Thailand 58 

and 27 °C to 29 °C in Southern Thailand West Coast, respectively. Relative humidity 59 

significantly affected the occurrence of severe dengue cases in Northeastern and Central 60 

Thailand, with optimal ranges observed for each region.       61 



Conclusions: Our findings substantiate the potential for developing climate-based dengue early 62 

warning systems for Thailand, and have implications for informing pre-emptive vector control.  63 

Keywords: Relative humidity; Severe dengue; Temperature; Thailand 64 
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1. Introduction 79 

Dengue fever (DF), the most important arboviral disease in the world in terms of numbers 80 

affected (Bhatt et al., 2013), has caused substantial health and economic burdens to households, 81 

health care systems and governments (Castro et al., 2017; Shepard et al., 2016). More than half 82 

of the world’s population is living in areas at risk of DF (Castro et al., 2017). Countries located 83 

in the tropics and subtropics, such as Thailand, are particularly prone, causing considerable costs 84 

that are both direct (e.g., medical cost) and indirect (e.g., reduced workplace productivity), of 85 

greatest burden to people who are at socioeconomic disadvantage (Lee et al., 2017b; Tozan et al., 86 

2017). Dengue infection causes flu-like illness, and occasionally it develops into a life-87 

threatening complication called severe dengue (also known as dengue hemorrhagic fever).        88 

Understanding the spatial pattern of DF and identifying its dominant determinants will help 89 

facilitate judicious resource allocation, especially for resource-constrained countries and regions, 90 

and will help the development of tailored DF control and prevention programs (Acharya et al., 91 

2016; Wangdi et al., 2018). The transmission of DF involves a complex interaction of the dengue 92 

virus, mosquitoes (mainly Aedes aegypti and Ae. albopictus) and susceptible people. Currently, 93 

DF prevention is largely reliant on vector control. Hence, the identification of seasonal DF 94 

pattern is a critical step in informing optimal timing of vector control intensification. Prior 95 

studies have widely reported distinct seasonal pattern of DF (Hu et al., 2010; Wangdi et al., 96 

2018). However, studies explicitly exploring the dynamic change of DF seasonality across 97 

different years are still limited (Stoddard et al., 2014).  98 

The potential drivers of DF transmission are multiple, but, as with all major vector-borne disease, 99 

climatic factors (e.g., temperature, relative humidity, and rainfall) are known to be strongly 100 



associated with DF transmission (Morin et al., 2013; Wongkoon et al., 2013b). These climatic 101 

factors affect DF transmission through their impacts on dengue virus replication and 102 

transmission, vector ecology, as well as human behaviors (Morin et al., 2013; Xu et al., 2017). 103 

However, due to the complex nature of climate-DF relationship, the dominant climatic drivers of 104 

DF transmission may vary regionally (Lauer et al., 2018) and this association is often non-linear 105 

(Wu et al., 2018; Xu et al., 2017). Large-scale studies are required to inform projections of DF 106 

risk areas under climate change scenarios (Ebi and Nealon, 2016) and yet there are relatively few 107 

examples of these (Johansson et al., 2009; Lee et al., 2017a).    108 

Seventy percent of severe dengue occurs in Asia (Bhatt et al., 2013), and the disease and 109 

economic burdens of severe dengue in Thailand are considerable (Bhatt et al., 2013; Lee et al., 110 

2017b; Tozan et al., 2017). The tropical climate of Thailand encourages very high mosquito 111 

density and is ideal for the transmission of DF. Further, Thailand is a popular tourist spot in Asia, 112 

a source of labor for other countries and increasingly industrialized. The increased human 113 

movement associated with these characteristics will increase the importations of virus from other 114 

endemic areas and may contribute to seeding dengue epidemics (Tian et al., 2017). Regarding 115 

the associations between climatic factors and severe dengue in Thailand, Lauer et al. (2018) used 116 

models with severe dengue incidence only and models with the inclusion of climatic covariates 117 

to forecast several dengue incidence in Thailand, and found the inclusion of climatic covariates 118 

did not consistently add value to the forecasts compared with the incidence-only models. They 119 

speculated that this finding was either because the associations of climate covariates with dengue 120 

differ across time and space, or because the associations are spurious. No study has substantiated 121 

their speculations so far, and we attempted to fill this gap in the present study.  122 



This study used monthly data on severe dengue cases in Thailand between January 1999 and 123 

December 2014 to address three objectives: 1) Identify the possible high-risk clusters of severe 124 

dengue in Thailand; 2) Compare the inter-annual seasonality of severe dengue in different 125 

provinces of Thailand from 1999 to 2014; and 3) Quantify the associations of mean temperature 126 

and relative humidity with severe dengue in Thailand and regions within it.    127 

   128 

2. Methods 129 

2.1 Data collection 130 

Thailand is situated in the tropical area of Southeast Asia between latitudes 5
o
 37' N to 20

o
 27' N 131 

and longitudes 97
o
 22' E to 105

o
 37' E. Its climate is under the influence of seasonal monsoon 132 

winds. Thailand can be divided into six subnational regions according to the climate pattern and 133 

meteorological conditions, namely Northern Thailand, Northeastern Thailand, Central Thailand, 134 

Eastern Thailand, Southern Thailand West Coast, and Southern Thailand East Coast 135 

(Supplementary Figure S1).  136 

Thailand has 77 provinces. Monthly data on severe dengue cases and yearly population data 137 

from 1999 to 2014 for each province of Thailand, except for Bueng Kan, were obtained from a 138 

published paper (Lauer et al., 2018). Daily data on relative humidity and mean temperature for 139 

61 provinces, from 1999 to 2008, were supplied by Meteorological Department, Ministry of 140 

Digital Economy and Society, Thailand. We aggregated the daily data on relative humidity and 141 

mean temperature into monthly data by calculating the mean of the daily values. To quantify the 142 

associations of mean temperature and relative humidity with severe dengue, 51 provinces with 143 

complete climate data and less than 20% missing data on severe dengue were selected. Details of 144 



these 51 provinces (the corresponding subnational region it belongs to, average value of mean 145 

temperature, and average value of relative humidity) were given in Supplementary Table S1. The 146 

proportions of these 51 provinces in all provinces of Northern Thailand, Northeastern Thailand, 147 

Central Thailand, Eastern Thailand, Southern Thailand West Coast, and Southern Thailand East 148 

Coast were 60% (9/15), 60% (12/20), 50% (9/18), 75% (6/8), 83% (5/6), and 100% (10/10), 149 

respectively.  150 

2.2 Data analysis 151 

The spatiotemporal pattern analysis used the whole data set from 76 provinces. As there were 152 

missing values of monthly severe dengue data in some provinces, it was not possible for us to 153 

sum the monthly severe dengue data into annual estimates for each province. As such, for each 154 

year, we divided the average value of severe dengue case numbers in available months by yearly 155 

population to obtain the severe dengue incidence for every province. Spatial cluster analysis was 156 

conducted to identify the randomly distributed severe dengue cases and to explore high-risk 157 

clusters. A Poisson regression model was performed to compute the mean relative risk of severe 158 

dengue for each cluster (Qi et al., 2012).   159 

Current evidence suggests that the associations of mean temperature and relative humidity with 160 

the occurrence of DF cases can be non-linear (Wu et al., 2018). Therefore we used a generalized 161 

linear model and a distributed lag non-linear model to examine the effects of mean temperature 162 

and relative humidity on the occurrence of severe dengue cases (Gasparrini et al., 2010). One to 163 

three months of lag were used in the analysis based on the findings of prior studies in Guangzhou, 164 

China, and Mekong Delta region, Vietnam (Phung et al., 2016; Wu et al., 2018). Specifically, 165 

there were two stages in the analysis. Herein, we use mean temperature as an example to clarify 166 

the details. Stage I: for each province, the relationship between mean temperature and the 167 



occurrence of severe dengue cases was modelled using a cross-basis. The cross-basis was 168 

defined by a B-spline with two degrees of freedom (dfs) for the space of mean temperature. The 169 

spline for mean temperature was centered at the value corresponding to the point of minimum 170 

severe dengue risk. Month and year were included as dummy variables in the model to control 171 

for seasonality and long-term trend. Stage II: multivariate meta-analysis was used to pool the 172 

association of mean temperature with the occurrence of severe dengue case (Gasparrini and 173 

Armstrong, 2013). Finally, we obtained the associations between mean temperature and 174 

occurrence of severe dengue cases across three lags (one, two, and three months) for subnational 175 

regions (i.e., Northern, Northeastern, Central, Eastern, Southern Thailand West Coast, and 176 

Southern Thailand East Coast) and for the whole of Thailand. The following equation was used 177 

in the stage I analysis: 178 

Yt ~ Poisson (µt) 179 

Log (µt) = α + β Tt,l + η1 Month + η2Year 180 

Where t is the month of the observation, Yt is the observed monthly dengue number in month t, α 181 

is the model intercept, Tt,l is a matrix obtained by applying the DLNM to temperature, β is the 182 

vector of coefficients for Tt,l and l is the lag months. Sensitivity analysis for severe dengue 183 

seasonality assessment was performed by filling in missing severe dengue data using imputation 184 

approach. Visualization of monthly severe dengue incidence and identification of high-risk 185 

clusters was conducted using ArcGIS 10.5 (ESRI Inc., Redlands, CA, USA) and SaTScan. 186 

Modelling the association of mean temperature and relative humidity with severe dengue was 187 

done using “dlnm” (Gasparini, 2011) and “mvmeta” packages, and missing data were filled in 188 

using the “zoo” package in R 3.4.4.   189 



3. Results 190 

Temporal pattern of severe dengue cases in Thailand and subnational regions  191 

Analysis of decomposed pattern of monthly severe dengue cases in Thailand from 1999 to 2014 192 

suggested that there were severe dengue epidemics in 2001, 2002, 2010, and 2013 (Figure 1A). 193 

A distinct seasonality of severe dengue occurrence in Thailand was observed in Figure 1A with 194 

considerable inter-annual variation in the regions affected (Figure 1B).  195 

Spatial patterns of severe dengue incidence across different years   196 

Figure 2A illustrated the spatial pattern of monthly severe dengue incidence in Thailand each 197 

year and Figure 2B illustrated the spatial shifting in the primary cluster each year. Monthly 198 

severe dengue incidence in provinces of Southern Thailand (i.e., Southern Thailand West Coast 199 

and Southern Thailand East Coast) appeared to be consistently high across different epidemic 200 

years. Monthly severe dengue incidence in Central Thailand was amongst the highest in 2001 but 201 

remained low during other epidemic years (i.e., 2002, 2010, and 2013).   202 

Seasonality of severe dengue cases in Thailand and subnational regions   203 

Figure 3A delineated the seasonal patterns of severe dengue cases in all 76 selected provinces 204 

(from top to bottom: Northern Thailand to Southern Thailand West Coast), suggesting that there 205 

was a distinct seasonality of severe dengue cases for most provinces of Thailand. Specifically, 206 

severe dengue cases peaked in June to August in Northern and Northeastern Thailand. The 207 

seasonality of severe dengue cases in Central Thailand was less distinct than upper Thailand (i.e., 208 

Northern and Northeastern Thailand). Severe dengue cases in Eastern Thailand, Southern 209 

Thailand East Coast, and Southern Thailand West Coast consistently peaked in May to August. 210 



Sensitivity analysis results showed that the seasonal patterns of severe dengue cases in these 76 211 

provinces did not change substantially after filling in the missing data (Figure S2).  212 

Figure 3B showed the year to year change in the seasonality of severe dengue cases in 213 

subnational regions, indicating that the seasonality of severe dengue cases in Northern and 214 

Northeastern Thailand was stable across years. In comparison, the seasonality of severe dengue 215 

cases in Central Thailand changed substantially from year to year. The seasonality of severe 216 

dengue cases in Eastern Thailand, Southern Thailand West Coast, and Southern Thailand East 217 

Coast also changed from year to year, although not as dramatically as Central Thailand.  218 

Effects of mean temperature and relative humidity on the occurrence of severe dengue cases 219 

in Thailand and subnational regions  220 

Figures 4 (A and B) and 5 (A and B) presented the effects of mean temperature and relative 221 

humidity on the occurrence of severe dengue cases. Complete results (log (RR) and 95% 222 

confidence interval) for three-month lag were presented because this lag corresponded to the 223 

lowest quasi Akaike's Information Criterion (QAIC).  224 

In general, mean temperature significantly affected the occurrence of severe dengue cases in 225 

Thailand (Figure 4A). Specifically, the occurrence of severe dengue cases in Central Thailand 226 

was most sensitive to mean temperature effect, followed by Southern Thailand East Coast, 227 

Southern Thailand West Coast, and Northeastern Thailand (Figure 4B). Interestingly, the shape 228 

of the relationship between mean temperature and the occurrence of severe dengue, as well as the 229 

threshold temperature (i.e., temperature corresponding to the lowest risk of severe dengue case 230 

occurrence) varied across different regions. Relative humidity also had a significant effect on the 231 

occurrence of severe dengue cases in Thailand (Figure 5A). The occurrence of severe dengue 232 



cases in Northeastern Thailand was most sensitive to relative humidity effect, followed by 233 

Central Thailand (Figure 5B). The shape of the relationship between relative humidity and the 234 

occurrence of severe dengue cases, as well as the threshold relative humidity (i.e., relative 235 

humidity corresponding to the lowest risk of severe dengue case occurrence) also varied across 236 

these two sensitive regions. Figure S3 presented the residual plots of the mean temperature and 237 

relative humidity models in Figure 4A and Figure 5A. We did not observe distinct patterns in 238 

these residual plots.  239 

 240 

4. Discussion 241 

This study presents one of the two attempts to analyze the spatiotemporal patterns of severe 242 

dengue in Thailand (Lauer et al., 2018). Results demonstrate that while local severe dengue 243 

clusters arise in different locations year-to-year making them difficult to predict, consistent 244 

regional patterns were identified and these can be exploited in developing forecasting tools. 245 

Severe dengue cases consistently peaked from June to August in Northern and Northeastern 246 

Thailand. Additionally, severe dengue was driven by mean temperature in Central and Southern 247 

Thailand, whereas it was more driven by relative humidity in Northeastern Thailand. The 248 

heterogeneous associations of mean temperature and relative humidity with severe dengue in 249 

different regions of Thailand suggest that considering regional heterogeneity when including 250 

climatic covariates in the incidence-only model to forecast dengue incidence may increase the 251 

accuracy of the forecasting (Lauer et al., 2018).       252 

The intensity of severe dengue transmission depends on the circulating serotype of dengue virus, 253 

mosquito density, the immunity level of population, and the environment. As such, we tried to 254 



understand the possible reasons behind the shifting pattern of high-risk cluster across different 255 

epidemic years in Thailand from these four aspects. Although the increase in average age of 256 

severe dengue patients in Thailand has been widely documented (Cummings et al., 2009), 257 

children remained the predominant group affected by severe dengue (Limkittikul et al., 2014), 258 

and therefore the varying high-risk cluster was unlikely to be caused by spatial change in herd 259 

immunity. The proportions of different dengue virus serotypes (i.e., DENV-1, DENV-2, DENV-260 

3, and DENV-4) had an appreciable change from 2005 to 2009 and there was an increase in the 261 

proportion of DENV-2 in all subnational regions (Limkittikul et al., 2014). Due to the lack of 262 

mosquito density data, we were unable to identify the roles that mosquito density played in 263 

driving the spatiotemporal pattern of severe dengue, but Xu et al. have found that mosquito 264 

density and climate variation largely explained the temporal dynamic of DFs in Guangzhou, 265 

China (Xu et al., 2017). Hu et al. have also observed that maximum temperature and rainfall 266 

affected spatial pattern of DFs in Queensland, Australia (Hu et al., 2012). Thus, we could not 267 

rule out the possibility that mosquito density and climatic factors may work independently or 268 

interactively to affect the spatial pattern change of severe dengue in Thailand.     269 

Monsoon weather pattern predominates in Thailand, and the peak season of severe dengue cases 270 

in Thailand that we observed in this study coincided with Thailand’s rainy season (May/June to 271 

October). A study in Sisaket, Thailand, has observed that numbers of Aedes larvae were higher in 272 

the rainy season than in the winter and summer seasons (Wongkoon et al., 2013a). However, 273 

Johansson et al. found that the effect of rainfall on DF in Thailand was not stable (Johansson et 274 

al., 2009). Regarding the possible entomological factors that caused dengue seasonality in 275 

Thailand, Hartley et al. found that vector mortality and biting rate stood out (Hartley et al., 2002). 276 

The distinct and stable seasonality in Northern and Northeastern Thailand observed in this study 277 



suggest that pre-season vector control in these regions might ease severe dengue burden (Vogel, 278 

2018). The less-distinct and temporally-varying severe dengue seasonality in Central Thailand 279 

could partially be attributable to the fact that water containers were present all year around (Tonn 280 

et al., 1969). Climatic factors may also play a role in driving severe dengue seasonality in 281 

Central Thailand (Do et al., 2014), especially in light of the significant findings on the effects of 282 

mean temperature and relative humidity on the occurrence of severe dengue cases in Central 283 

Thailand in this study.          284 

In general, increased ambient temperature speeds up dengue virus replication rate within the 285 

mosquitos and shortens its extrinsic incubation period, facilitating its transmission (Morin et al., 286 

2013). Ambient temperature also acts as an important regulator of mosquito development and 287 

survival, as well as mosquito reproductive behavior (Morin et al., 2013). The complexity of 288 

temperature impacts on dengue viruses and mosquitoes, as well as the findings from previous 289 

studies (Wu et al., 2018; Xu et al., 2017), motivated us to assess the possible non-linear 290 

relationship between temperature and the occurrence of severe dengue cases. We observed that 291 

generally there was an optimal temperature range for the occurrence of severe dengue cases in 292 

Thailand, although we also observed heterogeneity in terms of this temperature range across 293 

different regions. Specifically, the occurrence of severe dengue cases roughly favoured an 294 

ambient mean temperature range of 24°C to 30°C in Northeastern Thailand, and 27°C to 29°C in 295 

Southern Thailand West Coast. In Central Thailand and Southern Thailand East Coast, the risk of 296 

the occurrence of severe dengue cases increased when temperature increased, and remained 297 

stable or dipped slightly when temperature reached high level. Prior studies in Thailand have 298 

also found significant effect of temperature on the occurrence of DF cases or severe dengue 299 

cases (Johansson et al., 2009; Nitatpattana et al., 2007; Promprou et al., 2005; Thammapalo et al., 300 



2005), although all of them assumed a linear relationship between temperature and dengue 301 

occurrence. Rueda et al. have found that the development rates of immature Aedes aegypti 302 

increased with incubation temperatures to 34 °C and then slowed, and Ae. aegypti survival 303 

peaked at 27°C (Rueda et al., 1990), which also indicated that there may be an optimal 304 

temperature range for dengue transmission (Mordecai et al., 2017).  305 

The present study has also found significant effect of relative humidity on the occurrence of 306 

severe dengue cases in Northeastern Thailand and Central Thailand. Similar to temperature, there 307 

were also optimal relative humidity ranges that the occurrence of severe dengue cases favoured. 308 

Promprou et al. have found a significant relationship between relative humidity and the 309 

occurrence of severe dengue cases in Southern Thailand using correlation analysis and linear 310 

regression analysis (Promprou et al., 2005). Wongkoon et al. have also observed that relative 311 

humidity was an important climate predictor of dengue case number in Southern Thailand 312 

(Wongkoon et al., 2018). Studies conducted in Manila (Philippines) (Sumi et al., 2016), Mekong 313 

Delta region (Vietnam) (Dung et al., 2016), and Singapore (Earnest et al., 2011) have found an 314 

increase of DF cases with the increase of relative humidity, but Xiang et al. have found that, 315 

when relative humidity was beyond 78.9%, DF cases decreased when relative humidity increased 316 

(Xiang et al., 2017). The heterogeneous findings in these studies might partially be due to the 317 

assumption made on the nature of relative humidity and DF relationship prior to data analysis. 318 

Biologically, Ae. aegypti eggs can tolerate a wide range of relative humidity values, but Ae. 319 

albopictus eggs favor high relative humidity (Juliano et al., 2002). Nevertheless, mosquitoes may 320 

bite more at low humidity, possibly increasing the transmission of dengue virus (Wu et al., 2009). 321 

Thoroughly understanding how climatic factors affect the transmission of dengue virus and the 322 



occurrence of severe dengue cases is of great significance because climate change will increase 323 

global surface temperature and may alter the distribution of relative humidity among regions.       324 

The associations between climatic factors and the occurrence of severe dengue cases that we 325 

found in this study suggest the possibility of developing a dengue early warning system based on 326 

climate, and the appreciable heterogeneity of these associations across different regions indicates 327 

that region-specific early warning might be more ideal. Optimal lead time is a pivotal factor in 328 

developing dengue early warning system. The three-month-optimal-lag that we observed in this 329 

study is consistent with findings from Cambodia (Choi et al., 2016) but inconsistent with  330 

findings from the Mekong Delta region, Vietnam (Dung et al., 2016), and Guangzhou, China 331 

(Xiang et al., 2017). A prior study in Singapore reported that a dengue early warning forecast 332 

given three months prior to the onset of a possible epidemic would give local authorities enough 333 

time to mitigate an outbreak (Hii et al., 2012). The heterogeneous lag patterns across different 334 

countries observed in existing literature suggested that optimal lead time for dengue early 335 

warning might be country- or region-specific.     336 

This study has two major strengths. First, we explored the dynamic spatial patterns of severe 337 

dengue incidence across different years in Thailand, and described regional differences in terms 338 

of the seasonality of severe dengue cases, facilitating future dengue prevention and control 339 

resource allocation and implementation of vector control. Second, we quantified the effects of 340 

mean temperature and relative humidity on the occurrence of severe dengue cases. The 341 

identifications of climate-sensitive regions and optimal ranges of mean temperature and relative 342 

humidity for the occurrence of severe dengue cases may shed some light on adequately 343 

understanding how climate change may affect the occurrence of severe dengue cases in Thailand 344 

in the future.  However, projecting future severe dengue burden under climate change scenarios 345 



still needs to consider many other factors (e.g., mosquito density and future shifting in 346 

demographics, etc.). Three weaknesses of this study should also be acknowledged. First, we were 347 

unable to examine how mosquito density may affect the spatiotemporal patterns of severe 348 

dengue as we did not have mosquito data. Second, we also did not have data on rainfall and 349 

evaporation, which restricted us from exploring the relationship between rainfall, evaporation 350 

and the occurrence of severe dengue cases in Thailand, although a recent study has found that 351 

relative humidity appeared to be the most important climatic factor in predicting the temporal 352 

pattern of dengue incidence in Manila, the Philippines (Carvajal et al., 2018). Third, we were 353 

only able to quantify the associations of mean temperature and relative humidity with severe 354 

dengue in 51 provinces due to data unavailability.  355 

 356 

5. Conclusion 357 

Severe dengue in Thailand clustered in certain provinces, especially during epidemic years. The 358 

high-risk cluster changed across years, calling for further research to understand the fundamental 359 

reasons behind this pattern. Pre-season vector control in Northern and Northeastern Thailand 360 

could potentially ease severe dengue burden. Regional heterogeneity existed in terms of the 361 

effects of mean temperature and relative humidity on the occurrence of severe dengue cases in 362 

Thailand. As climate change continues, severe dengue burden in Central Thailand, Northeastern 363 

Thailand, and Southern Thailand may change in the future, and evaluating the magnitude of this 364 

possible change may help future dengue resource allocation in Thailand.     365 
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