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ABSTRACT  

Chlamydia trachomatis (Ct) is the most common infectious cause of blindness 

and bacterial sexually transmitted infection worldwide. Using Ct whole genome 

sequences obtained directly from conjunctival swabs, we studied Ct genomic diversity 

and associations between Ct genetic polymorphisms with ocular localization and 

disease severity in a treatment-naïve trachoma-endemic population in Guinea Bissau, 

West Africa. All sequences fall within the T2 ocular clade phylogenetically. This is 

consistent with the presence of the characteristic deletion in trpA resulting in a 

truncated non-functional protein and the ocular tyrosine repeat regions present in tarP 

associated with ocular tissue localization. We have identified twenty-one Ct non-

synonymous single nucleotide polymorphisms (SNPs) associated with ocular 

localization, including SNPs within pmpD (OR=4.07, p*=0.001) and tarP (OR=0.34, 

p*=0.009). Eight SNPs associated with disease severity were found in yjfH (rlmB) 

(OR=0.13, p*=0.037), CTA0273 (OR=0.12, p*=0.027), trmD (OR=0.12, p*=0.032), 

CTA0744 (OR=0.12, p*=0.041), glgA (OR=0.10, p*=0.026), alaS (OR=0.10, 

p*=0.032), pmpE (OR=0.08, p*=0.001) and the intergenic region CTA0744-

CTA0745 (OR=0.13, p*=0.043). This study demonstrates the extent of genomic 

diversity within a naturally circulating population of ocular Ct, and the first to 

describe novel genomic associations with disease severity. These findings direct 

investigation of host-pathogen interactions that may be important in ocular Ct 

pathogenesis and disease transmission.  
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INTRODUCTION  

The obligate intracellular bacterium Chlamydia trachomatis (Ct) is the leading 

infectious cause of blindness (trachoma) and the most common sexually transmitted 

bacterial infection1,2.  

Ct strains are differentiated into biovars based on pathobiological 

characteristics and serovars based on serological reactivity for the major outer 

membrane protein (MOMP) encoded by ompA3. Serovars largely differentiate 

biological groups associated with trachoma (A-C), sexually transmitted disease (D-K) 

and lymphogranuloma venereum (LGV) (L1-3). Despite diverse biological 

phenotypes, Ct strains share near complete genomic synteny and gene content4, 

suggesting that minor genetic changes influence pathogen-host and tissue-specific 

infection characteristics5-7. All published African ocular Ct genomes are situated on 

the ocular branch within the T2 clade of non-LGV urogenital isolates4. Currently 

there are only 31 published ocular Ct genome sequences4,9-12. In particular there 

appears to be limited genomic diversity between published Ct genomes from 

Gambian and Tanzanian populations8.  

The pathogenesis of chlamydial infection begins with epithelial inflammation 

and may progress to chronic immuno-fibrogenic processes leading to blindness and 

infertility, though many Ct infections do not result in sequelae13,14. Strain-specific 

differences related to clinical presentation have been investigated in trachoma8,15,16. 

These studies examined a small number of ocular Ct isolates from the major trachoma 

serotypes and found a small subset of genes in addition to ompA that were associated 

with differences in in vitro growth rate, burst size, plaque morphology, interferon-γ 

sensitivity and most importantly, intensity of infection and clinical disease severity in 

non-human primates (NHPs), suggesting that genetic polymorphisms in Ct may 
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contribute to the observed variability in severity of trachoma in endemic 

communities8.  

The obligate intracellular development of Ct has presented significant 

technical barriers to basic research into chlamydial biology. Only recently has genetic 

manipulation of the chlamydial plasmid been possible, allowing in vitro 

transformation and modification studies, though this remains technically challenging, 

necessitating alternative approaches17,18.  

Whole genome sequencing (WGS) has recently been used to identify regions 

of likely recombination in recent clinical isolates, demonstrating that WGS analysis 

may be an effective approach for the discovery of loci associated with clinical 

presentation6. Additionally, a number of putative virulence factors have been 

identified through WGS analysis and subsequent in vitro and animal studies5,19-30. 

However there are currently no published population-based studies of Ct using WGS 

with corresponding detailed clinical data, making it difficult to relate genetic changes 

to functional relevance and virulence factors in vivo.  

There is an increasing pool of Ct genomic data, largely from archived samples 

following cell culture and more recently directly from clinical samples31. WGS data 

obtained directly from clinical samples can be preferable to using WGS data obtained 

from cell cultured Ct, since repeated passage of Ct results in mutations that are not 

observed in vivo32-34.  

Ct bacterial load is associated with disease severity, particularly conjunctival 

inflammation, in active (infective) trachoma35. Conjunctival inflammation has 

previously been shown to be a marker of severe disease and plays an important role in 

the pathogenesis of scarring trachoma36-38. In this study we used principal component 

analysis (PCA) to reduce the dimensions of clinical grade of inflammation (defined 
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using the P score from the FPC trachoma grading system39) and Ct bacterial load to a 

single metric to define an in vivo conjunctival phenotype in active (infective) 

trachoma. PCA is a recognised dimension reduction technique used to combine 

multiple correlated traits into their uncorrelated principal components (PC)40-42, 

allowing us to examine the relationship between Ct genotype and disease severity. 

These data currently represent the largest collection of ocular Ct sequences from a 

single population from the trachoma-endemic region of the Bijagós Archipelago of 

Guinea Bissau, and provide a unique opportunity to gain insight into ocular Ct 

pathogenesis in humans. 

 

RESULTS  

Conjunctival swabs collected during a cross-sectional population-based 

trachoma survey on the Bijagós Archipelago yielded 220 ocular Ct infections detected 

by Ct plasmid-based droplet digital PCR (ddPCR). Of the 220 Ct infections detected, 

184 were quantifiable using Ct genome-based ddPCR. 

We obtained WGS data from 126 using cell culture (n=8) or direct sequencing 

from swabs with SureSelectXT target enrichment (n=118), representing the largest 

cross-sectional collection of ocular Ct WGS. Eighty-one of these sequences were 

subsequently included in the phylogenetic and diversity analyses and 71 were retained 

in the final genome-wide association (tissue localization (derived from the anatomical 

site of sample collection) and disease severity) analyses. The quality filtering process 

is illustrated in Figure 1 and detailed in Methods. Briefly, we used standard GATK 

SNP-calling algorithms where >10x mean depth of coverage is defined as a threshold 

value and performs well in variant calling, is highly sensitive and has a false positive 

rate of <0.05%43,44. 
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A total of 1034 unique SNP sites were identified within the 126 Bijagós Ct 

genomes relative to the reference strain Ct A/HAR-13. Following application of 

further threshold criteria based on minor allele frequency (MAF) and genome-wide 

missing data thresholds, we retained only high quality genomic data in the final 

association analyses (129 SNPs from 71 sequences). There were no significant 

differences between the 71 retained and the 55 excluded sequences with respect to 

demographic characteristics, bacterial load, disease severity scores or geographical 

location (Table 1). Clinical and demographic details of the survey participants in 

whom we did not identify Ct infection have been published previously45. Of the ten 

SNPs initially identified within the Ct plasmid sequences, none fulfilled the quality 

filtering criteria and were not retained for the genome-wide association analyses. 

 

Ocular C. trachomatis Phylogeny and Diversity 

For the phylogeny and diversity analyses 81 Bijagós Ct sequences were 

included on the basis of quality filtering criteria described in detail in Figure 1. SNP-

based phylogenetic trees constructed using all 1034 SNPs for sequences above 10x 

coverage (n=81), with 54 published Ct reference genomes, are shown in Figure 2.  

The Bijagós sequences are situated within the T2 ocular monophyletic lineage 

with all other ocular Ct sequences46 except those described by Andersson et al.10. 

However, our population-based collection of ocular Ct sequences has much greater 

diversity at whole genome resolution than previously demonstrated in African 

trachoma isolates4,8. We used a pairwise diversity (π) metric to compare two 

populations of ocular Ct from regions with similar trachoma endemicity and studies 

with similar design, sample size and available epidemiological metadata. These data 
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show much greater genomic diversity in the Bijagós ocular Ct sequences (π=0.07167) 

compared to the Tanzanian (Rombo) ocular Ct sequences (π =0.00047).  

By ompA genotyping, 73 of the Bijagós sequences are genotype A and eight 

are genotype B, supporting their classical ocular nature (Supplementary Information 

S1). The high resolution of WGS data obtained directly from clinical samples captures 

diversity that may be useful in strain classification, particularly as we found some 

evidence of clustering at village level, although the very small number of sequences 

per village means that it is not possible to provide accurate estimates of clustering in 

this study (Figure 3). 

Homoplasic SNPs and regions affected by recombination are shown in 

Supplementary Information S2 (a). Removal of these regions of recombination 

identified using the pairwise homoplasy index had no effect on phylogenetic 

relationships. Additionally, a site-wise log likelihood plot demonstrated that there was 

no clear genomic region where there was significant lack of confidence in the tree 

construction due to recombination (Supplementary Information S2 (b)). Whether 

regions containing recombination were included or excluded, tree topology remained 

essentially identical, indicating that branching order is not affected by the removal of 

these regions.  

 

Genome-wide analysis of C. trachomatis localization  

Candidate genes thought to be involved in or indicative of ocular localization 

or preference were examined to further characterize this population of ocular Ct. 

Polymorphisms and truncations in the tryptophan operon have previously been 

implicated in the inability of ocular Ct to infect and survive in the genital tract5. All 

sequences contained mutations in trpA resulting in truncation. The majority (80/81) 
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were truncated at the previously characterised deletion at position 5335. 

Polymorphims in trpB and trpR were less common (Supplementary Information S3). 

 The variable domain structure of the translocated actin-recruiting 

phosphoprotein (tarP) has also been implicated in tropism47. Ocular strains possess 

more actin-binding domains (three or four) and fewer tyrosine repeat regions 

(between one and three). Urogenital strain tarP sequences have low copy numbers of 

both and LGV strain sequences have additional tyrosine repeat regions. In this study, 

all sequences contain the expected three tyrosine repeat regions and three or four 

actin-binding domains (Supplementary Information S3).  

 The nine virulence associated polymorphic membrane proteins (Pmp) are 

variably related to tissue preference with all encoding genes except pmpA, pmpD and 

pmpE clustering by tissue location20. In this population all phylogenies of the six 

tropism-clustering pmps show that all sequences cluster with other ocular sequences 

(Supplementary Information S4).  

 Permutation-based re-sampling methods, commonly used in GWAS analyses, 

were used to account for multiple comparisons48-51. 1007 SNPs were tested in 157 Ct 

sequences (Figure 1) for association with ocular localization (defined by anatomical 

site of sample collection), comparing eight ocular, 17 urogenital and 13 LGV strains 

(Figure 4(a)). One hundred and five SNPs were significantly associated with ocular 

localization (p*<0.05) of which 21 were non-synonymous (details in Table 2(a) and 

Supplementary Information S5). These were within a number of genes known to be 

polymorphic, genes previously identified as tropism-associated (CTA0156, 

CTA0498/tarP and CTA0743/pbpB) and virulence factors (CTA0498/tarP and 

CTA0884/pmpD). No predicted protein localization was over-represented in the 
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ocular localization-related SNPs (p=0.6174), however early and very-late expressed 

genes were over-represented (p=0.0197). 

 

Markers of disease severity in ocular C. trachomatis infection 

Using permutation-based resampling methods, eight SNPs were found to be 

significantly associated with disease severity (Figure 4(b)). Seven of these are in 

coding regions (relative to Ct A/HAR-13). Five are present at nucleotide positions 

465330 (OR=0.13, p*=0.037), 32779 (OR=0.12, p*=0.032), 875804 (OR=0.10, 

p*=0.024), 939488 (OR=0.10, p*=0.026) and 1028728 (OR=0.08, p*=0.013) (where 

p* is the permuted p-value with a genome-wide threshold of 0.05) representing 

synonymous codon changes within the genes yjfH, trmD, alaS, glgA and pmpE 

respectively. Three further genome-wide significant synonymous SNPs were present 

at positions 827184 (OR=0.3, p*=0.041) within the predicted coding sequence (CDS) 

CTA0744, 285610 (OR=0.12, p*=0.027) within CTA0273 and 787841 (OR=0.13, 

p*=0.043) in the intergenic region between loci CTA0744-CTA0745 (Table 2(b) and 

Supplementary Information S6).  

 

DISCUSSION 

This is the first collection of clinical ocular Ct WGS from a single trachoma-

endemic population to be characterized, enabling us to describe the population 

diversity of naturally occurring Ct in a treatment-naïve population. We used detailed 

clinical grading combined with microbial quantitation to perform a genome-wide 

association study (GWAS) and investigated associations between Ct polymorphisms 

with ocular localization and disease severity in trachoma.  
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Unlike the recently published Australian Ct sequences10, all Bijagós sequences 

clustered as expected within the T2 ocular clade derived from an urogenital 

ancestor46,52, each with loci typically associated with ocular tissue localization (trpA 

and tarP).  Although the Bijagós sequences conform to the classical ocular genotype, 

the phylogenetic data show greater than expected diversity compared to historical 

reference strains of ocular Ct4 and a population of clinical ocular Ct sequences 

obtained from cultured clinical conjunctival swab specimens collected from another 

African trachoma-endemic population53 (Supplementary Information S7). Our use of 

direct WGS from clinical samples reveals the natural diversity of a population-based 

collection of endemic treatment-naïve ocular Ct infections. This diversity may 

indicate genome-wide selection for advantageous mutations as demonstrated in other 

pathogens54 or evidence that these are remnants of a previously larger and more 

diverse population in West Africa.  

The apparent village-level clustering provides new evidence that WGS has the 

necessary molecular resolution to fully investigate Ct transmission. Although the 

number of sequences from each village were very small, overall Ct genomic diversity 

supports our hypothesis of ongoing or recent transmission, since diversity requires 

mutation, recombination and gene flow. The data from this study demonstrates such 

mutation and indicates that WGS data may be useful in defining transmission 

networks and developing transmission maps, which have not been adequately defined 

using alternative Ct genotyping systems. Whole genome mapping has previously been 

shown to be a useful tool in the analysis of outbreaks and bacterial pathogen 

transmission55,56 and thus has multiple potential applications in epidemiological 

analysis and transmission studies. However, greater numbers of sequences per village 

are required to validate this finding. 

.CC-BY-NC 4.0 International licenseIt is made available under a 
(which was not peer-reviewed) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity.

The copyright holder for this preprint. http://dx.doi.org/10.1101/205336doi: bioRxiv preprint first posted online Oct. 18, 2017; 

http://dx.doi.org/10.1101/205336
http://creativecommons.org/licenses/by-nc/4.0/


	 11	

Such diversity is likely to be representative of recombination present in Ct57. 

Genome-wide recombination was common and widespread within these sequences. 

Extensive recombination has been noted in previous studies, and is thought to be a 

source of diversification with possible interstrain recombination4,57. Recombination 

may represent fixation of recombination in regions that are under diversifying 

selection pressure4.  

Recently a handful of bacterial GWAS studies have provided insight into the 

genetic basis of bacterial host preference, antibiotic resistance, and virulence58-63. 

Until now, most inferences regarding disease-modifying virulence factors in 

chlamydial infection have been derived from a limited number of comparative 

genomic studies where only a few virulence factors were associated with disease 

severity. Chlamydial genomic association data have previously been used to highlight 

genes potentially involved in pathoadaptation10,64 and tissue localization65.  

In the current GWAS we found 21 genome-wide significant non-synonymous 

SNPs associated with ocular localization and eight genome-wide significant 

synonymous SNPs associated with disease severity.  

Confidence that new SNPs identified in the ocular localization GWAS are 

candidate markers of pathoadaptation is supported by the observation that half of the 

SNPs identified have previously been described as polymorphic or recombinant 

within Ct and the ocular serovars8,66-68. Genes expressed early in the Ct developmental 

cycle (with a peak at six hours post-infection [HPI]) or very late in the Ct 

developmental cycle (with a peak after 24 HPI) were over-represented, supporting the 

hypothesis that early events in infection and intracellular growth are crucial events in 

Ct survival and pathogenicity. Amongst the early-expressed genes are CTA0156 

(encoding early endosomal antigen 1 [EEA1]69), CTA0498 (encoding translocated 
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actin-recruiting phosphoprotein [tarP]70) and CTA0884 (encoding polymorphic 

membrane protein D [PmpD]71), which have identified roles in entry to and initial 

interactions with host cells.  

The eight disease severity-associated SNPs are within less well-characterized 

genes, although there is some evidence of correlation of expression in the Ct 

developmental cycle (with a peak between 18 and 24 HPI). Apart from pmpE, there is 

a paucity of published data showing polymorphism in these genes. This suggests that 

these SNPs may be important in ocular Ct pathogenesis, rather than in longer-term 

chlamydial evolution. Three of these genes are putative Ct virulence factors, with 

functions in nutrient acquisition (glgA24,28,72), host-cell adhesion (pmpE73) and 

response to IFNγ-induced stress (trmD69). Homologues of alaS74,75 and CTA027376,77 

are known virulence factors in related Gram-negative bacteria, suggesting that these 

genes are potentially important in Ct pathogenesis. 

Transcriptome analysis of chlamydial growth in vitro has shown that there is 

highly upregulated gene expression of trmD (encoding a tRNA methyl–transferase) 

associated with growth in the presence of interferon gamma, thought to be important 

in the maintenance of chlamydial infection69. yjfH (renamed rlmB) is phylogenetically 

related to the TrmD family and encodes the protein RlmB, which is important for the 

synthesis and assembly of the components of the ribosome78. In Escherichia coli, 

Haemophilus influenzae and Mycoplasma genitalium, RlmB catalyses the methylation 

of guanosine 2251 in 23S rRNA, which is of importance in peptidyl tRNA 

recognition but is not essential for bacterial growth78,79. alaS encodes a tRNA ligase 

of the class II aminoacyl-tRNA synthetase family involved in cytoplasmic protein 

biosynthesis. It is not known to have virulence associations in chlamydial infection, 

but has been described as a component of a virulence operon in Haemophilus 
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ducreyi74 and H. influenzae75. The CDS CTA0273 encodes a predicted inner 

membrane protein translocase component of the autotransporter YidC, an inner 

membrane insertase important in virulence in E. coli76 and Streptococcus mutans77. 

This is the first study suggesting that these loci may be important in disease severity 

and host-pathogen interactions in chlamydial infection. A summary of available 

literature for these key ocular localization and disease severity-associated SNPs is 

tabulated in Supplementary Information S8. We cannot speculate further on the effect 

polymorphisms on expression. It is possible that the synonymous disease severity-

associated SNPs are linkage-markers for disease-causing alleles that were not 

included in the GWAS.  For both analyses, further mechanistic studies are required to 

establish causality, validity and to fully understand the nature of the associations 

presented in this study.  

Though we were intrinsically limited to those cases where infection was 

detectable and from which we were able to obtain Ct WGS data, our population-based 

treatment naïve sample attempts to provide a representative picture of what is 

observed in ocular Ct infection. We acknowledge that there may be Ct genotypes that 

are cleared by the immune system such that we do not capture them a cross-sectional 

study. We are limited to the small sample size in this study, but attempt to address the 

issues of statistical power and multiple testing by using a bi-dimensional conjunctival 

phenotype and permutation-based multivariable regression analysis. To date the 

majority of published microbial GWAS have sample sizes under 50080, including 

several key studies examining virulence59 and drug-resistance60 in Staphylococcus 

aureus with sample sizes of 75 and 90 respectively. 

The potential of bacterial GWAS has only recently been realized, and despite 

the limitations with sample size, its use to study Ct in this way is particularly 
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important, since in vitro models are intrinsically difficult to develop and it has not 

been possible to study urogenital Ct in the same way due to the lack of a clearly 

defined in vivo disease phenotype. The genomic markers identified in this study 

provide important direction for validation through in vitro functional studies and a 

unique opportunity to understand host-pathogen interactions likely to be important in 

Ct pathogenesis in humans. The greater than expected diversity within this population 

of naturally circulating ocular Ct and the clustering at village-level demonstrates the 

potential utility of WGS in epidemiological and clinical studies. This will enable us to 

understand transmission in both ocular and urogenital Ct infection and will have 

significant public health implications in preventing and eliminating chlamydial 

disease in humans. 

 

METHODS  

Survey, Clinical Examination and Sample collection 

Survey, clinical examination and sample collection methods have been 

described previously45,81. Briefly, we conducted a cross-sectional population-based 

survey in trachoma-endemic communities on the Bijagós Archipelago of Guinea 

Bissau. The upper tarsal conjunctivae of each consenting participant were examined, 

digital photographs were taken, a clinical trachoma grade was assigned and two 

sequential conjunctival swabs were obtained from the left upper tarsal conjunctiva of 

each individual using a standardized method45. DNA was extracted and Ct omcB 

(genomic) copies/swab quantified from the second conjunctival swab using droplet 

digital PCR (ddPCR)81,82.  

 We used the modified FPC (Follicles, Papillary hypertrophy, Conjunctival 

scarring) grading system for trachoma39. The modified FPC system allows detailed 
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scoring of the conjunctiva for the presence of follicles (F score), papillary 

hypertrophy (conjunctival inflammation) (P score) and conjunctival scarring (C score), 

receiving a grade of 0-3 for each parameter. A single validated grader conducted the 

examinations and these were verified by an expert grader (masked to the field grades 

and ddPCR results) using the digital photographs. Grader concordance was measured 

using Cohen’s Kappa, where a Kappa > 0.9 was used as the threshold to indicate good 

agreement. 

Conjunctival inflammation (P score) is known to have a strong association 

with Ct bacterial load in this and other populations35,83-86. For this study we used 

principal component analysis (PCA) to combine the presence of inflammation 

(defined by the P score using the FPC trachoma grading system39) with Ct bacterial 

load (defined by tertile cut-offs illustrated in Supplementary Information S9)87. The 

conjunctival disease phenotype is a dimension reduction of these two variables 

defining what we observed in the conjunctiva at the time of sampling (Figure 5). 

Dimension reduction using PCA to define complex disease phenotypes in GWAS is 

well-recognised, as it allows multiple traits to be included to capture a more complex 

phenotype and accounts for correlation between traits. This approach therefore may 

reveal novel loci or pathways that would not be evident in single-trait GWAS, where 

the full extent of genetic variation cannot be captured40.  

 

Preparation of chlamydial DNA for cell culture 

 For eight specimens, whole genome sequence (WGS) data were obtained 

following Ct isolation in cell culture (from the first conjunctival swab). Briefly, 

samples were isolated in McCoy cell culture by removing 100µl eluate from the 

original swab with direct inoculation onto a glass coverslip within a bijou containing 
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Dulbecco’s modified Eagles’ Medium (DMEM). The inocula were centrifuged onto 

cell cultures at 1800rpm for 30 minutes.  Following centrifugation the cell culture 

supernatant was removed and cycloheximide-containing DMEM added to infected 

cells which were then incubated at 370C in 5% CO2 for three days. Viable Ct 

elementary bodies (EB) were observed by phase contrast microscopy. Cells were 

harvested and further passaged every three days until all isolates reached a 

multiplicity of infection between 50-90% in 2xT25 flasks. Each isolate was prepared 

and EBs purified as described previously88. DNA was extracted from purified EBs 

using the Promega Wizard Genomic Purification kit according to the manufacturer’s 

protocol89.  

 

Pre-sequencing target enrichment 

For the remaining specimens (n=118), WGS data were obtained directly from 

clinical samples. DNA baits spanning the length of the Ct genome were compiled by 

SureDesign and synthesized by SureSelectXT (Agilent Technologies, UK). Ct DNA 

extracted from clinical samples was quantified and carrier human genomic DNA 

added to obtain a total of 3µg input for library preparation. DNA was sheared using a 

Covaris E210 acoustic focusing unit31. End-repair, non-templated addition of 3’–A 

adapter ligation, hybridisation, enrichment PCR and all post- reaction clean-up steps 

were performed according to the SureSelectXT Illumina Paired-End Sequencing 

Library protocol (V1.4.1 Sept 2012). All recommended quality control measures were 

performed between steps. 
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Whole genome sequencing and sequence quality filtering 

DNA was sequenced at the Wellcome Trust Sanger Institute using Illumina 

paired-end technology (Illumina GAII or HiSeq 2000). All 126 sequences passed 

standard FastQC quality control criteria90. Sequences were aligned to the most closely 

related reference genome, Chlamydia trachomatis A/HAR-13 (GenBank Accession 

Number NC_007429.1 and plasmid GenBank Accession Number NC_007430.1), 

using BWA91. SAMtools/BCFtools (SAMtools v1.3.1)92 and GATK93 were used to 

call SNPs. We used standard GATK SNP calling algorithms, where  >10x depth of 

coverage is routinely used as the threshold value93,94. This has been shown to be 

adequate for SNP calling in this context43,44,46,94. 

Variants were selected as the intersection dataset between those obtained 

using both SNP callers and SNPs were further quality-filtered. SNP alleles were 

called using an alternative coverage-based approach where a missing call was 

assigned to a site if the total coverage was less than 20x depth or where one of the 

four nucleotides accounted for at least 80% total coverage95. There was a clear 

relationship between the mean depth of coverage and proportion of missing calls, 

based on which we retained sequences with greater than 10x mean depth of coverage 

over the whole genome (81 sequences retained).  

Heterozygous calls were removed and SNPs with a minor allele frequency of 

less than 25% were removed. Samples with greater than 25% genome-wide missing 

data and 30% missing data per SNP were excluded from the analysis (n=10, 71 

sequences retained). The quality assessment and filtering process is shown in Figure 1. 

Detail of WGS data is contained in Supplementary Information S10. 
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Phylogenetic Reconstruction 

Samples were mapped to the ocular reference strain Ct A/HAR-13 and SNPs 

were called as described above. Phylogenies were computed using RAxML version 

7.8.296 from a variable sites alignment using a GTR+gamma model and are midpoint 

rooted. Recombination is known to occur in Ct4,6 and can be problematic in 

constructing phylogeny. We applied three compatibility-based recombination 

detection methods to detect regions of recombination using PhiPack97: the pairwise 

homoplasy index (Phi), the maximum Chi2 and the neighbour similarity score (NSS) 

across the genome alignment. We also examined the confidence in the phylogenetic 

tree by computing RAxML site-based likelihood scores96. Phylogenetic trees were 

examined adjusting for recombination using the methods described above.  

 Additionally, sequence data for the tryptophan operon (CTA0182 and 

CTA0184-CTA0186), tarP (CTA0498), nine polymorphic membrane proteins 

(CTA0447-CTA0449, CTA0884, CTA0949-CTA0952 and CTA0954) and ompA 

(CTA0742) were extracted from the 81 ocular Ct sequences from Guinea Bissau 

retained after quality control filtering described above, 48 ocular sequences 

originating from a study conducted in Kahe village, Rombo District, Tanzania53 and 

38 publicly available reference sequences. Phylogenies were constructed as described 

above.   

 Polymorphisms, insertions and deletions (INDELs) and truncations for the 

tryptophan operon were manually determined from aligned sequences using 

SeaView98. Tyrosine repeat regions and actin-binding domains in tarP were found 

using RADAR99 and Pfam100 respectively. 
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Pairwise diversity 

A comparison was made between the two population-based Ct sequence data 

sets from the Bijagós (Guinea Bissau) and Rombo (Tanzania) sequences whereby 

short read data from the 81 Bijagós sequences and 48 Rombo sequences were mapped 

against Ct A/HAR-13 using SAMtools. Within population pairwise nucleotide 

diversity was calculated using the formula: 

 

! = 2×%&'() 	%+'(	&,(-&	-+	!&+ 

 

where n is the number of sequences, x is the frequency of sequences i and j and πij is 

the number of nucleotide differences per site between sequences i and j101. Frequency 

of sequences was considered uniform within the populations and sites with missing 

calls were excluded on a per sequence basis. 

 

Genome-Wide Association Analyses 

To investigate the association between Ct polymorphisms with ocular 

localization and clinical disease severity, we used permutation-based logistic 

regression methods, which are powerful and well-recognised tools in GWAS, 

allowing for adjustment for population structure, age and gender in the model and 

accounting for multiple testing 48-51. 

We used permutation analyses of 100,024 phenotypic re-samplings, where the 

distribution of the p-value was approximated by simulating data sets through 

randomisation under the null hypothesis of no association between phenotype and 

genotype.	Genome-wide significance was determined as p*≤0.05, where p* was 

defined as the fraction of re-sampled (simulated) data that returned p-values that were 
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less than or equal to the p-values observed in the data87. All analyses were conducted 

using the R statistical package v3.0.2 (The R Foundation for Statistical Computing, 

http://www.r-project.org) using MASS, GLM and lsr. All R script used for these 

analyses is contained within Supplementary Information S11 and is released as a CC-

BY open resource (CC-BY-SA 3.0). 

 

Ocular localization  

Tissue localization is defined as the localization (or presence) of a detectable 

Ct infection to either the conjunctival epithelium or the urogenital tract. Short read 

data from the 129 clinical ocular sequences from the pairwise diversity analysis and 

38 publicly available reference sequences from ocular (n=8), urogenital (n=17) and 

rectal (n=13) sites were mapped against Ct A/HAR-13 using SAMtools. Only 

polymorphic sites were retained and SNPs were filtered as described above. The final 

analysis includes 1007 SNPs from 157 sequences, a phylogeny of which is contained 

within Supplementary Information S7. A permutation-based generalized linear 

regression model was used to test the association between collection site (ocular or 

urogenital tissue localization) and polymorphic sites. For each SNP the standard error 

for the t statistic was estimated from the model and used to calculate the odds ratios 

(OR) and 95% confidence intervals. A χ2 test was used to determine the association 

between ocular localization-associated SNPs and both gene expression stage and 

predicted localization of the encoded proteins. Developmental cycle expression stage 

for each transcript was based on data and groupings from Belland et al.69. Predicted 

localization of expressed proteins was defined using the consensus from three 

predictions using Cello102, pSORTB103 and LocTree3104.  
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Clinical Disease Severity  

A permutation-based ordinal logistic regression model was used to test the 

association between the disease severity score (using the in vivo conjunctival 

phenotype defined previously) and polymorphic sites. The final analysis includes 129 

SNPs from 71 sequences derived as described in Figure 1. For each SNP the standard 

error for the t-statistic was estimated from the model and used to calculate the odds 

ratios (OR) and 95% confidence intervals. Individuals’ age and gender were included 

as a covariate to the regression analysis. 

We investigated the effect of population structure on the results of the GWAS 

analysis using PCA105. The first three principal components (PC) captured the 

majority of structural variation but including these in the model had no effect and 

therefore these were not included in the final model.  

We corrected for genomic inflation if the occurrence of a polymorphism in the 

population was over 90% or there was a minor allele frequency of 3%.  

 

DATA AVAILABILITY 

All sequence data is available from the European Bioinformatics Institute (EBI) short 

read archive. See Supplementary Information S12 for details and accession numbers.  
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Table 1. Characteristics of ocular Chlamydia trachomatis sequences included in the disease severity association analysis 
 
Sequence ID Sample ID Average Depth of 

Coverage 
% Missing Reads*  Gender Age (years) Island of 

Origin 
Village Code Ocular  

Load** 
P 
Score*** 

11152_3_1 14344 764 0.35% M 4 Canhabaque 33 202632 1 
11152_3_10 17347 121 0.21% M 5 Bubaque 17 69093 2 
11152_3_11 4422 19 19.95% F 2 Bubaque 12 68782 2 
11152_3_12 11231 68 2.24% M 0 Soga 43 64036 1 
11152_3_13 15631 21 14.93% F 2 Canhabaque 33 55749 3 
11152_3_14 6105 1664 0.05% F 1 Bubaque 14 55202 3 
11152_3_15 12628 191 0.10% F 12 Canhabaque 29 54651 2 
11152_3_16 7524 2065 0.14% M 10 Canhabaque 35 54539 2 
11152_3_17 5016 61 0.44% F 1 Bubaque 15 46510 2 
11152_3_18 1485 44 1.21% F 4 Canhabaque 27 45929 1 
11152_3_19 15554 825 0.06% F 1 Canhabaque 33 44052 2 
11152_3_20 6094 3070 0.00% F 3 Bubaque 14 42917 2 
11152_3_22 5082 51 0.81% M 6 Bubaque 15 42427 1 
11152_3_23 12969 3643 1.81% F 3 Canhabaque 29 41308 3 
11152_3_25 8140 246 0.36% M 13 Bubaque 20 39816 2 
11152_3_26 6083 2746 0.00% F 23 Bubaque 14 38771 3 
11152_3_27 16621 1664 0.00% M 3 Canhabaque 37 33514 3 
11152_3_28 16852 143 0.16% M 5 Canhabaque 38 31228 2 
11152_3_29 16588 53 0.81% M 6 Canhabaque 37 29991 1 
11152_3_3 4180 51 0.92% M 2 Bubaque 12 140693 2 
11152_3_30 7612 107 0.44% F 3 Canhabaque 35 28528 2 
11152_3_31 6985 177 0.10% M 6 Bubaque 17 27924 2 
11152_3_32 4411 24 9.68% F 1 Bubaque 12 27584 2 
11152_3_33 4257 381 0.06% M 0 Bubaque 12 24033 3 
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11152_3_34 4400 48 0.98% M 6 Bubaque 12 23435 2 
11152_3_35 15180 571 0.35% F 7 Canhabaque 33 23254 0 
11152_3_36 13596 496 0.06% M 18 Canhabaque 23 22098 3 
11152_3_37 1672 20 18.42% M 6 Canhabaque 25 21630 3 
11152_3_38 5181 81 0.32% M 4 Bubaque 15 21339 2 
11152_3_39 15532 243 0.08% F 25 Canhabaque 33 21174 2 
11152_3_4 8074 150 0.13% M 4 Bubaque 18 131175 2 
11152_3_40 16984 145 0.19% M 4 Canhabaque 21 20113 1 
11152_3_41 1881 37 2.71% F 1 Canhabaque 32 15963 2 
11152_3_42 10032 101 0.16% M 2 Soga 42 15706 1 
11152_3_43 8492 70 2.60% M 1 Rubane 45 15582 2 
11152_3_44 13585 31 4.97% M 23 Canhabaque 23 15417 3 
11152_3_48 7535 61 0.84% M 18 Canhabaque 35 13439 3 
11152_3_5 7095 235 0.44% F 4 Bubaque 17 105453 3 
11152_3_50 6028 46 1.24% F 4 Bubaque 14 12961 2 
11152_3_52 10021 20 16.15% F 6 Soga 42 11840 1 
11152_3_55 12650 59 0.54% M 6 Canhabaque 29 9001 2 
11152_3_57 8965 21 16.60% M 27 Soga 43 7336 1 
11152_3_58 5104 33 3.68% M 2 Bubaque 15 7203 2 
11152_3_6 16599 52 0.73% M 9 Canhabaque 37 96333 2 
11152_3_62 7062 22 13.41% F 4 Bubaque 17 6986 3 
11152_3_63 8778 17 25.47% F 11 Rubane 46 6760 3 
11152_3_66 1892 45 1.25% F 2 Canhabaque 32 6374 1 
11152_3_7 10747 581 1.82% F 3 Soga 44 82916 2 
11152_3_70 13189 25 8.87% F 3 Canhabaque 24 4703 1 
11152_3_74 15499 24 10.49% M 5 Canhabaque 33 4226 1 
11152_3_76 726 417 0.06% F 3 Canhabaque 26 3753 0 
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11152_3_77 7579 105 0.52% F 5 Canhabaque 35 3468 1 
11152_3_78 12089 16 27.78% F 13 Canhabaque 47 3203 2 
11152_3_8 6996 38 2.03% M 3 Bubaque 17 82614 1 
11152_3_88 748 163 0.10% F 2 Canhabaque 26 1636 0 
11152_3_9 10967 20 17.52% F 2 Soga 44 81124 3 
11152_3_92 1463 73 0.30% F 42 Canhabaque 27 1273 2 
13108_1_14 24519 51 2.81% M 2 Rubane 45 29040 3 
13108_1_15 6941 33 1.81% M 36 Bubaque 17 13155 1 
13108_1_7 25124 27 5.27% M 4 Canhabaque 22 21750 3 
13108_1_9 22154 18 20.56% F 5 Soga 43 14349 1 
8422_8_49 2353 39 5.70% M 11 Canhabaque 35 96889 2 
8422_8_50 2366 82 1.08% M 1 Canhabaque 35 289778 2 
9471_4_86 12980 287 1.90% M 4 Canhabaque 29 85456 1 
9471_4_87 15367 215 0.46% M 1 Canhabaque 33 99064 1 
9471_4_88 15543 192 0.11% F 23 Canhabaque 33 49125 1 
9471_4_89 1870 119 0.14% M 3 Canhabaque 32 158548 3 
9471_4_90 2145 111 0.11% M 15 Canhabaque 32 140297 2 
9471_4_91 4158 94 0.14% M 4 Bubaque 12 63654 1 
9471_4_92 4169 85 0.13% F 3 Bubaque 12 274835 2 
9471_4_93 7590 242 0.51% F 1 Canhabaque 35 128025 3 
 
Sequences (n=55) were excluded from the association analysis if there was a) <10x coverage b)* >25% missing reads genome-wide and c) 
>25% missing (N) calls at the single nucleotide polymorphism (SNP) locus. Coverage and missing data were correlated and resulted in 
exclusion of the same samples irrespective of criteria chosen. 71 sequences were retained in the final disease severity analysis. **Ocular C. 
trachomatis load = omcB (C. trachomatis genome) copies per conjunctival swab measured using droplet digital PCR. *** P score = Conjunctival 
inflammation score (0-3) using the modified FPC (Follicles, Papillary Hypertrophy, Conjunctival Scarring) grading system for trachoma39. 
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Table 2. SNPs across the Chlamydia trachomatis genome identified using permutation-based genome-wide association analysis for (A) ocular 
localization (non-synonymous only) and (B) disease severity  
(A) 

SNP 
position 

ocular 
allele (%) 

uro-genital 
allele (%) 

name 
A/HAR13 

CDS/ 
NCR 

p-value p* OR 95% CI  t SE(t) MAF N calls at 
locus 

ocular AA urogenital AA 

168413 A (61.54) G ( 93.33) CTA_0156 CDS 5E-05 1E-04 21.56 6.11 137.2
5 

4.07 0.75 0.50 0.04 H R 

95863 A (60.47) G ( 86.67) CTA_0087 CDS 7E-05 1E-04 9.56 3.47 33.86 3.98 0.57 0.49 0.02 E G 

785083 A (62.20) G ( 96.67) pbpB CDS 2E-04 1E-04 45.92 9.34 831.4
1 

3.70 1.03 0.49 0.05 I V 

777345 A (58.59) G ( 96.67) karG CDS 3E-04 1E-04 40.71 8.29 736.7
9 

3.59 1.03 0.47 0.04 Y H 

156982 C (51.54) T ( 90.00) oppA_1 CDS 4E-04 1E-04 9.44 3.13 40.92 3.54 0.63 0.43 0.02 V I 

637206 A (56.59) C ( 96.67) sctR CDS 5E-04 1E-04 36.25 7.39 655.8
0 

3.48 1.03 0.45 0.03 K Q 

157069 A (51.54) G ( 86.67) oppA_1 CDS 7E-04 3E-04 6.81 2.48 24.09 3.39 0.57 0.44 0.02 S P 

367095 C (60.77) T ( 73.33) CTA_0348 CDS 1E-03 1E-03 4.23 1.81 10.82 3.20 0.45 0.46 0.01 T I 

544233 A (61.54) G ( 73.33) CTA_0510 CDS 1E-03 3E-04 4.23 1.81 10.82 3.20 0.45 0.46 0.02 R G 

954865 A (59.69) G ( 73.33) pmpD CDS 2E-03 1E-04 4.04 1.73 10.33 3.10 0.45 0.46 0.04 E G 

969418 C (59.06) T ( 73.33) sucD CDS 2E-03 1E-04 3.94 1.68 10.07 3.04 0.45 0.46 0.03 T I 

544610 A (61.54) G ( 70.00) atoS CDS 3E-03 1E-03 3.59 1.56 8.85 2.92 0.44 0.45 0.01 D G 

543548 T (60.63) C ( 70.00) CTA_0508 CDS 5E-03 1E-04 0.29 0.12 0.67 -2.83 0.44 0.45 0.06 F S 

969583 T (58.73) C ( 70.00) sucD CDS 7E-03 1E-04 0.30 0.12 0.70 -2.72 0.44 0.46 0.04 L P 

44611 C (60.63) T ( 66.67) CTA_0043 CDS 1E-02 1E-04 2.96 1.30 7.10 2.53 0.43 0.45 0.04 A V 

533906 T (74.62) C ( 50.00) CTA_0498 CDS 1E-02 9E-03 0.35 0.15 0.80 -2.51 0.42 0.31 0.01 L P 

295635 G (61.24) A ( 63.33) CTA_0284 CDS 2E-02 1E-04 0.38 0.16 0.86 -2.30 0.42 0.44 0.03 R K 

95527 C (60.77) T ( 60.00) CTA_0087 CDS 5E-02 4E-02 2.24 1.00 5.15 1.94 0.41 0.44 0.01 S L 

413567 A (60.47) G ( 60.00) CTA_0391 CDS 6E-02 1E-04 2.21 0.99 5.08 1.91 0.41 0.44 0.04 V A 

1027490 G (58.91) T ( 60.00) CTA_0948 CDS 7E-02 1E-04 2.13 0.96 4.91 1.83 0.41 0.45 0.01 P Q 

777183 T (58.59) C ( 60.00) karG CDS 7E-02 1E-04 0.47 0.21 1.06 -1.80 0.41 0.45 0.04 I V 

168413 A (61.54) G ( 93.33) CTA_0156 CDS 5E-05 1E-04 21.56 6.11 137.2 4.07 0.75 0.50 0.04 H R 
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(B) 

SNP 
Position 

Reference 
ALLELE 

Alternative 
ALLELE 

name 
A/HAR13 

CDS/NCR Strand p* p-value t SE(t) OR 95% C.I. 
(UL) 

 
(LL) 

MAF N Calls at 
Locus 

1028728 C T pmpE CDS - 0.013 0.011 -2.550 0.555 0.078 0.026 0.232 0.310 7.042 

875804 C T alaS CDS - 0.024 0.022 -2.298 0.530 0.100 0.036 0.284 0.310 4.225 

939488 G A glgA CDS - 0.026 0.023 -2.273 0.491 0.103 0.039 0.270 0.479 4.225 

285610 G A CTA_0273 CDS - 0.027 0.034 -2.123 0.526 0.120 0.043 0.336 0.310 4.225 

32779 G A trmD CDS + 0.032 0.031 -2.160 0.525 0.115 0.041 0.323 0.310 2.817 

465330 C G yjfH CDS - 0.037 0.042 -2.032 0.519 0.131 0.047 0.362 0.310 1.408 

787841 A G NA inter NA 0.038 0.038 -2.074 0.524 0.126 0.045 0.351 0.310 4.225 

827184 A G CTA_0774 CDS + 0.041 0.043 -2.020 0.516 0.133 0.048 0.365 0.310 1.408 

22049 G T ileS CDS + 0.057 0.050 -1.962 0.505 0.141 0.052 0.378 0.324 4.225 

152011 G A NA inter NA 0.058 0.050 -1.964 0.505 0.140 0.052 0.377 0.324 4.225 

710787 A C CTA_0675 CDS - 0.060 0.052 -1.941 0.517 0.144 0.052 0.396 0.310 4.225 

19085 T C NA inter NA 0.061 0.060 -1.882 0.530 0.152 0.054 0.430 0.296 5.634 

388175 G A CTA_0368 CDS - 0.061 0.059 -1.889 0.524 0.151 0.054 0.422 0.296 1.408 

696782 A T rpoD CDS - 0.064 0.062 -1.864 0.511 0.155 0.057 0.422 0.310 1.408 

286636 C T lgt CDS - 0.065 0.061 -1.876 0.511 0.153 0.056 0.417 0.310 0.000 

930453 C T mutS CDS - 0.067 0.061 -1.876 0.511 0.153 0.056 0.417 0.310 0.000 

465525 C T CTA_0439 CDS - 0.067 0.062 -1.865 0.472 0.155 0.061 0.391 0.493 1.408 

60858 G A CTA_0057 CDS - 0.068 0.070 -1.813 0.512 0.163 0.060 0.445 0.310 1.408 

835039 G A CTA_0782 CDS - 0.070 0.061 -1.876 0.511 0.153 0.056 0.417 0.310 0.000 

19005 A G NA inter NA 0.071 0.071 -1.807 0.525 0.164 0.059 0.459 0.296 2.817 

4554 A G gatB CDS + 0.071 0.070 -1.813 0.512 0.163 0.060 0.445 0.310 1.408 

303590 C A murE CDS - 0.072 0.061 -1.876 0.511 0.153 0.056 0.417 0.310 0.000 

215130 C T gyrA_1 CDS - 0.072 0.062 -1.864 0.511 0.155 0.057 0.422 0.310 1.408 

806382 C T CTA_0761 CDS + 0.073 0.058 -1.896 0.530 0.150 0.053 0.424 0.296 4.225 
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778783 G A rrf CDS - 0.077 0.075 -1.780 0.502 0.169 0.063 0.451 0.324 2.817 

136812 G A incF CDS + 0.079 0.075 -1.780 0.502 0.169 0.063 0.451 0.324 2.817 

169573 G A CTA_0156 CDS + 0.082 0.077 -1.771 0.523 0.170 0.061 0.474 0.310 9.859 

956953 C T pmpD CDS + 0.082 0.072 -1.800 0.523 0.165 0.059 0.461 0.296 2.817 

44990 A G ruvB CDS + 0.087 0.086 -1.718 0.493 0.179 0.068 0.472 0.338 2.817 

62140 G T sucA CDS + 0.091 0.078 -1.760 0.502 0.172 0.064 0.461 0.324 5.634 

542521 G A CTA_0507 CDS - 0.092 0.090 -1.696 0.494 0.183 0.070 0.483 0.338 2.817 

181019 C A CTA_0164 CDS - 0.095 0.096 -1.666 0.494 0.189 0.072 0.498 0.338 4.225 

151156 C G CTA_0140 CDS - 0.096 0.077 1.770 0.502 5.871 2.195 15.703 0.324 4.225 

1028728 C   A       pmpE      CDS   -      0.01 0.011 -2.550 0.555 0.08 0.03 0.23 0.31 13.58% 
1028728 C T pmpE CDS - 0.0134 0.0108 -2.5504 0.5550 0.0781 0.0263 0.2317 0.3099 7.0423 

875804 C T alaS CDS - 0.0242 0.0216 -2.2981 0.5295 0.1005 0.0356 0.2836 0.3099 4.2254 

939488 G A glgA CDS - 0.0259 0.0230 -2.2727 0.4906 0.1030 0.0394 0.2695 0.4789 4.2254 

285610 G A CTA_0273 CDS - 0.0269 0.0338 -2.1226 0.5264 0.1197 0.0427 0.3359 0.3099 4.2254 

32779 G A trmD CDS + 0.0318 0.0308 -2.1596 0.5248 0.1154 0.0412 0.3227 0.3099 2.8169 

465330 C G yjfH CDS - 0.0370 0.0422 -2.0315 0.5187 0.1311 0.0474 0.3625 0.3099 1.4085 

787841 A G NA inter NA 0.0377 0.0381 -2.0742 0.5236 0.1257 0.0450 0.3506 0.3099 4.2254 

827184 A G CTA_0774 CDS + 0.0413 0.0433 -2.0203 0.5164 0.1326 0.0482 0.3648 0.3099 1.4085 

22049 G T ileS CDS + 0.0568 0.0497 -1.9624 0.5052 0.1405 0.0522 0.3782 0.3239 4.2254 

152011 G A NA inter NA 0.0578 0.0495 -1.9642 0.5051 0.1403 0.0521 0.3775 0.3239 4.2254 

710787 A C CTA_0675 CDS - 0.0605 0.0523 -1.9409 0.5174 0.1436 0.0521 0.3958 0.3099 4.2254 

19085 T C NA inter NA 0.0608 0.0598 -1.8819 0.5298 0.1523 0.0539 0.4302 0.2958 5.6338 

388175 G A CTA_0368 CDS - 0.0610 0.0589 -1.8889 0.5238 0.1512 0.0542 0.4222 0.2958 1.4085 

696782 A T rpoD CDS - 0.0638 0.0623 -1.8643 0.5114 0.1550 0.0569 0.4223 0.3099 1.4085 

286636 C T lgt CDS - 0.0654 0.0606 -1.8764 0.5113 0.1531 0.0562 0.4172 0.3099 0.0000 

930453 C T mutS CDS - 0.0668 0.0606 -1.8764 0.5113 0.1531 0.0562 0.4172 0.3099 0.0000 

465525 C T CTA_0439 CDS - 0.0670 0.0622 -1.8650 0.4719 0.1549 0.0614 0.3905 0.4930 1.4085 
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60858 G A CTA_0057 CDS - 0.0684 0.0698 -1.8134 0.5121 0.1631 0.0598 0.4450 0.3099 1.4085 

835039 G A CTA_0782 CDS - 0.0700 0.0606 -1.8764 0.5113 0.1531 0.0562 0.4172 0.3099 0.0000 

19005 A G NA inter NA 0.0710 0.0707 -1.8074 0.5254 0.1641 0.0586 0.4595 0.2958 2.8169 

4554 A G gatB CDS + 0.0713 0.0698 -1.8134 0.5121 0.1631 0.0598 0.4450 0.3099 1.4085 

303590 C A murE CDS - 0.0718 0.0606 -1.8764 0.5113 0.1531 0.0562 0.4172 0.3099 0.0000 

215130 C T gyrA_1 CDS - 0.0722 0.0623 -1.8643 0.5114 0.1550 0.0569 0.4223 0.3099 1.4085 

806382 C T CTA_0761 CDS + 0.0726 0.0580 -1.8960 0.5297 0.1502 0.0532 0.4241 0.2958 4.2254 

778783 G A rrf CDS - 0.0767 0.0751 -1.7797 0.5021 0.1687 0.0630 0.4514 0.3239 2.8169 

136812 G A incF CDS + 0.0792 0.0751 -1.7797 0.5021 0.1687 0.0630 0.4514 0.3239 2.8169 

169573 G A CTA_0156 CDS + 0.0821 0.0765 -1.7712 0.5227 0.1701 0.0611 0.4740 0.3099 9.8592 

956953 C T pmpD CDS + 0.0823 0.0719 -1.7998 0.5226 0.1653 0.0594 0.4605 0.2958 2.8169 

44990 A G ruvB CDS + 0.0871 0.0858 -1.7181 0.4932 0.1794 0.0682 0.4717 0.3380 2.8169 

62140 G T sucA CDS + 0.0914 0.0784 -1.7601 0.5024 0.1720 0.0643 0.4605 0.3239 5.6338 

542521 G A CTA_0507 CDS - 0.0916 0.0899 -1.6960 0.4940 0.1834 0.0696 0.4830 0.3380 2.8169 

181019 C A CTA_0164 CDS - 0.0953 0.0958 -1.6656 0.4940 0.1891 0.0718 0.4979 0.3380 4.2254 

151156 C G CTA_0140 CDS - 0.0955 0.0767 1.7701 0.5019 5.8714 2.1953 15.7035 0.3239 4.2254 

 
(a) Ocular localization-associated non-synonymous SNPs (p-value < 0.1). Position of the SNPs and name of the impacted are from the Ct 

A/HAR13 (GenBank Accession Number NC_007429) genome. ‘Allele Percentage’ is the percentage of each group where the given 
allele was present. ‘CDS/NCR’ identifies whether the SNP was in a coding or non-coding region. ‘P*’ indicates p-values from 100,024 
simulations indicating genome wide significance at p*<0.05. ‘MAF’ is the minor allele frequency. ‘N Calls at Locus’ is the proportion of 
isolates which had no base called. ‘AA’ is the amino acid coded for. 

(b) Disease severity-associated SNPs (p-value < 0.1). Disease severity is defined by a composite in vivo conjunctival phenotype derived 
using principal component analysis using ocular C. trachomatis load and conjunctival inflammatory (P) score (using the modified FPC 
(Follicles, Papillary Hypertrophy, Conjunctival Scarring) trachoma grading system39). ‘Reference Allele’ indicates the reference allele on 
Ct A/HAR-13 (GenBank Accession Number NC_007429). ‘CDS/NCR’ identifies whether the SNP was in a coding or non-coding region. 
‘P*’=permuted p-value after 100,024 simulations indicating genome wide significance at p*<0.05. ‘T’ is the t statistic; SE(T) is the 
Standard Error of the t statistic. OR is the adjusted Odds Ratio (derived from the t statistic). 95% C.I.=95% confidence interval of the OR. 
‘MAF’ is the minor allele frequency. ‘N Calls at Locus’ is the proportion of isolates which had no base called. 
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Figure 1. Whole Genome Sequence (WGS) quality filtering processes and threshold criteria for inclusion in analyses    
Ct DNA detected using droplet digital PCR82. WGS data were obtained using SureSelect target enrichment31 (or chlamydial cell culture) and 
Illumina paired end sequencing. FastQC90 was used to assess basic WGS quality. SNP alleles were called against reference strain Ct A/HAR-
13 using an alternative coverage-based approach where a missing call was assigned to a site if the total coverage was less than 20x depth or 
where one of the four nucleotides accounted for at least 80% total coverage95. There was a clear relationship between the mean depth of 
coverage and genome-wide proportion of missing calls, therefore only sequences with greater than 10x mean depth of coverage over the whole 
genome were retained using the GATK Best Practice threshold93,94. Heterozygous calls were removed and SNPs with a minor allele frequency 
(MAF) of less than 25% were removed. Samples with greater than 25% genome-wide missing data and 30% missing data per SNP were 
excluded from the analysis. WGS sequence quality is shown in detail in Supplementary Information S12. *n=157 including the 71 Bijagós 
sequences in addition to 48 Rombo sequences and 38 reference sequences.  
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Figure 2. Maximum likelihood reconstruction of whole-genome phylogeny of ocular 
Chlamydia trachomatis sequences from the Bijagós Archipelago (Guinea Bissau) 
 

 
 
Maximum likelihood reconstruction of the whole-genome phylogeny of 81 Ct 
sequences from the Bijagós Islands and 54 Ct reference strains. Bijagós Ct 
sequences (n=81) were mapped to Ct A/HAR-13 using SAMtools92. SNPs were 
called as described by Harris et al.4 Phylogenies were computed with RAxML96 from 
a variable sites alignment using a GTR+gamma model and are midpoint rooted. The 
scale bar indicates evolutionary distance.  Bijagós Ct sequences in this study are 
coloured BLACK and reference strains are coloured by tissue localization 
(RED=Ocular, GREEN=Urogenital, BLUE=LGV). Branches are supported by > 90% 
of 1000 bootstrap replicates. Branches supported by 80-90% (ORANGE) and < 80% 
(BROWN) bootstrap replicates are indicated. 
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Figure 3. Maximum likelihood phylogenetic tree showing clustering of ocular 
Chlamydia trachomatis sequence types by village  
 
 

 
 
RAxML maximum likelihood phylogenetic reconstruction including all ocular Ct 
sequences retained in the final disease severity association analysis after quality 
filtering (n=71). Ocular Ct sequences labelled by village (villages numbered and 
coloured). Midpoint-rooted and mapped to reference Ct A/HAR-13. Branches are 
supported by > 90% of 1000 bootstrap replicates. Branches supported by 80-90% 
(ORANGE) and < 80% (BROWN) bootstrap replicates are indicated. 
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Figure 4. Single Nucleotide Polymorphisms on the Chlamydia trachomatis genome associated with (A) ocular localization and (B) disease 
severity at genome-wide significance  
 

(A) Ocular localization-associated SNPs across the C. trachomatis genome. 1007 SNPs were identified in coding and non-coding regions and were included 
in permutation-based linear regression models in the Ct genome-wide association analysis. The threshold for genome-wide significance is indicated by the 
dashed line (p*<0.05). The y-axis shows the -log10 p-value. A –log10 p-value of 1.3 is equivalent to a permuted p-value of 0.05 (p*<0.05). Synonymous 
(BLACK) and non-synonymous SNPs (RED) are indicated. Regions informative for ocular localization and genes of interest are labelled in BLUE. 
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(B) Disease severity-associated SNPs across the Ct genome. From 129 SNPs identified in coding and non-coding regions, SNPs associated with the disease 
severity phenotype at genome-wide significance are identified using permutation-based ordinal logistic regression models adjusting for age in the Ct genome-
wide association analysis. The threshold for genome-wide significance is indicated by the dashed line (p*<0.05). The y-axis shows the -log10 p-value. A log10 
p-value of 1.3 is equivalent to a permuted p-value of 0.05 (p*<0.05). Genes significantly associated with disease severity are labelled in BLUE.
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Figure 5. 
Composite in vivo conjunctival disease severity phenotype in ocular Chlamydia 
trachomatis infection 
 
A composite in vivo phenotype was derived using principal component analysis 
(PCA) for dimension reduction of two phenotypic traits: a disease severity score 
(using the P score value) and C. trachomatis load (where C. trachomatis load was 
log transformed and cut-offs determined from the resulting density plot (See 
Supplementary Information S9)). Each circle represents an individual infection 
(represented on the x axis (Index), n=81). Circle size reflects C. trachomatis load and 
circle colour reflects inflammatory P score (P0-P3) defined using the modified FPC 
(Follicles, Papillary Hypertrophy, Conjunctival Scarring) grading system for 
trachoma39
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