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Molecular surveillance of drug resistance markers through time provides crucial information on genomic
adaptations, especially in parasite populations exposed to changing drug pressures. To assess temporal
trends of established genotypes associated with tolerance to clinically important antimalarials used in
Kenya over the last two decades, we sequenced a region of the pfcrt locus encompassing codons 72–76
of the Plasmodium falciparum chloroquine resistance transporter, full-length pfmdr1 – encoding multi-
drug resistance protein, P-glycoprotein homolog (Pgh1) and pfdhfr encoding dihydrofolate reductase, in
485 archived Plasmodium falciparum positive blood samples collected in coastal Kenya at four different
time points between 1995 and 2013. Microsatellite loci were also analyzed to compare the genetic
backgrounds of parasite populations circulating before and after the withdrawal of chloroquine and
sulfadoxine/pyrimethamine. Our results reveal a significant increase in the prevalence of the pfcrt K76
wild-type allele between 1995 and 2013 from 38% to 81.7% (p < 0.0001). In contrast, we noted a signifi-
cant decline in wild-type pfdhfr S108 allele (p < 0.0001) culminating in complete absence of this allele in
2013. We also observed a significant increase in the prevalence of the wild-type pfmdr1 N86/Y184/D1246
haplotype from 14.6% in 1995 to 66.0% in 2013 (p < 0.0001) and a corresponding decline of the mutant
pfmdr1 86Y/184Y/1246Y allele from 36.4% to 0% in 19 years (p < 0.0001). We also show extensive genetic
heterogeneity among the chloroquine-sensitive parasites before and after the withdrawal of the drug in
contrast to a selective sweep around the triple mutant pfdhfr allele, leading to a mono-allelic population
at this locus. These findings highlight the importance of continual surveillance and characterization of
parasite genotypes as indicators of the therapeutic efficacy of antimalarials, particularly in the context
of changes in malaria treatment policy.
� 2014 The Authors. Published by Elsevier Ltd. on behalf of Australian Society for Parasitology Inc. This is
an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).
1. Introduction

Understanding the evolution of resistance-associated genes is
crucial in evaluating drug efficacy. Molecular trends underlying
such phenotypes as tolerance or susceptibility can be effectively
monitored by exploring loci selectively influenced by antimalar-
ial pressure. Consequently, a temporal molecular map can be
constructed from the adaptive changes observed in these mark-
ers over time, particularly in populations exposed to changing
drug pressures. Extensive use of chloroquine (CQ) as a mono-
therapy led to significant increase in levels of resistance across
many malaria-endemic countries prompting policy changes. In
Africa, Malawi (in 1993) was the first to replace CQ with
sulfadoxine/pyrimethamine (SP) as the first-line treatment for
uncomplicated malaria, shortly followed by Kenya (in 1998)
and a number of other countries (Shretta et al., 2000; Kamya
et al., 2002; Eriksen et al., 2005). However, widespread reports
of declining SP efficacy at the coast (Nzila et al., 2000) and other
parts of Kenya (van Dillen et al., 1999; Omar et al., 2001) soon
emerged prompting another first-line antimalarial policy change
in 2004 (Amin et al., 2007) to the currently preferred Coartem™,
an artemether–lumefantrine (AL) combination rolled out in
government clinics since 2006.

Clinical resistance to CQ has been strongly associated with
genetic replacements in the Plasmodium falciparum chloroquine
resistance transporter, Pfcrt (PF3D7_0709000), with the lysine to
threonine replacement at codon 76 (K76T) considered most critical
(Fidock et al., 2000). However, the existence of chloroquine-
sensitive (CQS) strains associated with K76T mutation suggests
that other genes could also be involved in CQ resistance
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(Sa et al., 2009). Indeed, there is persuasive evidence that muta-
tions in pfmdr1 (PF3D7_0523000), encoding the P. falciparum
homolog of the human P-glycoprotein, are also involved in
modulating CQ sensitivity as parasites bearing pfmdr1 86Y,
1034C, 1042D and 1246Y alleles have been shown to exhibit
impaired transportation and accumulation of CQ into the food vac-
uole hence reduced CQ sensitivity (Koenderink et al., 2010). On the
other hand, the molecular basis of resistance to SP in vitro has been
linked to point mutations in the parasite’s dihydrofolate reductase,
pfdhfr (PF3D7_0417200) and dihydropteroate synthase, pfdhps
(PF3D7_0810800) genes (Peterson et al., 1988; Triglia et al.,
1997). Alterations in pfdhfr proceed stepwise, with the gatekeeper
mutation from serine to asparagine at codon 108 (S108N) preced-
ing subsequent changes at codons 50, 51, 59 and 164 that further
compound the extent of resistance. Treatment failure with SP
occurs when one or more mutations are also present in pfdhps
(Wang et al., 1997; Hallett et al., 2006).

While the discontinuation of CQ use was expected to at least
disrupt the selective pressure on pfcrt and pfmdr1, artemisinin
partner drugs have been documented to exert opposing pressure
on these loci in East Africa (Dokomajilar et al., 2006; Humphreys
et al., 2007; Mwai et al., 2009a; Sisowath et al., 2009; Conrad
et al., 2014). In fact, studies in Tanzania suggest that AL selects
for lumefantrine (LM)-tolerant parasites (Martensson et al.,
2005; Sisowath et al., 2005; Malmberg et al., 2013a). Interest-
ingly, these putatively LM-tolerant parasites have wild-type
pfmdr1 (asparagine at codon 86) and, in some cases, wild-type
pfcrt (lysine at position 76) alleles, both associated with CQ sus-
ceptibility. Mutations that render an organism resistant to drugs
may be associated with loss of fitness and consequently, parasite
populations with these mutations would be outgrown by their
drug-sensitive counterparts when drug pressure is withdrawn
(Levy, 1994). CQ has now been out of clinical use for 15 years
in Kenya while SP, for nearly half the time – though still effective
for intermittent preventive treatment in pregnancy (IPTp) with a
nation-wide coverage of 30–39% as at 2011 (van Eijk et al., 2013).
This is an index of the proportion of pregnant women protected
by IPTp, computed as the total number of protected births divided
by the total number of malaria-exposed births. Complete or par-
tial reversion to CQS alleles has been reported in Malawi (Kublin
et al., 2003; Frosch et al., 2014), Tanzania (Temu et al., 2006),
western Kenya (Eyase et al., 2013), and the Kenyan coast (Mwai
et al., 2009b; Mang’era et al., 2012), among other sites. On the
other hand, antifolate-resistant genotypes has remained high
along the coast (Kiara et al., 2009), presenting a threat to the
long-term future of IPTp. However, in Kilifi – a malaria endemic
area along coastal Kenya, the overall temporal structure of drug
resistant alleles especially with the introduction of AL pressure
and intermittent deployment of SP is yet to be determined. On
the backdrop of such changing antimalarial pressures on the
parasite population since 1998, it would be instructive to also
characterize the genetic background flanking the aforementioned
loci. This has been previously employed in profiling the spatial
origins and dissemination of resistant alleles (Wootton et al.,
2002; Roper et al., 2004) and more recently in determining if
the parasite populations between different time points are genet-
ically comparable (Laufer et al., 2010; Nwakanma et al., 2014). In
this study, we sought to assess the frequency of alleles of the
drug resistance genes pfmdr1, pfcrt, and pfdhfr during a 19-year
period of changing antimalarial policy and compare parasites’
genetic backgrounds. Our results provide crucial insights into
the parasites’ genomic adaptations as they adjust to a landscape
of changing drug pressure and underline the need for comprehen-
sive genotypic data that can be used to audit the therapeutic
efficacy of drugs in clinical use and those previously withdrawn.
2. Materials and methods

2.1. Sample population and ethics statement

Isolates were selected from a database of frozen blood samples
by identifying malaria-positive samples collected before adminis-
tration of treatment from patients presenting to Kilifi District
Hospital with malaria. Samples clustering within 4 time points
spanning 19 years of changing drug policy i.e. 1995, 1999/2000,
2006/2007 and 2012/2013 were randomly chosen for analysis
(Fig. 1). The extraction and use of these samples was reviewed
and approved by the Ethics Review Committee of Kenya Medical
Research Institute under protocol number SSC 2533.

2.2. DNA preparation and PCR

Parasite genomic DNA was extracted from frozen erythrocytes
using the automated QIAxtractor system (Qiagen, UK) according
to the manufacturer’s instructions and eluted DNA frozen at
�20�C. A segment of pfcrt exon 2 encompassing codons 72–76
was amplified using primers described elsewhere (Chan et al.,
2012). To determine the presence of any additional mutations
(presumably due to drug pressure), we amplified full-length
pfmdr1 and pfdhfr genes using High Fidelity Taq polymerase
(Roche). Details of PCR conditions and amplification primers
sequences are available in Supplementary Table 1. The generated
PCR products were visualized on 1% agarose gels under ultraviolet
illumination.

2.3. Sequencing

PCR products were purified using ethanol precipitation and
directly sequenced using the PCR and additional sets of internal
primers, BIG DYE terminator chemistry v3.1 (Applied Biosystems,
UK) and an ABI 3130xl capillary sequencer (Applied Biosystems,
UK). Nucleotide positions which displayed a peak within a peak
in the electropherogram were noted as a ‘‘mixed’’ but excluded
from further analysis. Sequences were assembled, edited and
aligned using SeqMan and MegAlign (DNASTAR, Madison, WI).
SNPs were identified and using their corresponding amino acids,
haplotypes were defined. The sequencing primers are also listed
in Supplementary Table 1.

2.4. Microsatellite analysis

We employed 8 microsatellite markers to compare CQS samples
collected during CQ use (1995) and after withdrawal (2013).
These comprised loci flanking pfcrt at �45.1 kb, �17.7 kb, �4.8 kb,
�4.5 kb, 1.5 kb, 3.9 kb, 18.8 kb and 45.3 kb. We also interrogated
the genetic relatedness of parasites bearing the triple mutant pfdhfr
allele, before SP introduction (1995) and in 2013 by genotyping
microsatellite loci flanking the gene at �7.5 kb, �4.4 kb, �3.8 kb,
�0.06 kb, 0.1 kb, 0.45 kb, 1.3 kb, and 5.8 kb. In addition, we further
analyzed 8 putatively neutral microsatellite loci selected from a set
of 12 previously described (Anderson et al., 1999). The pfcrt and
pfdhfr microsatellite positions, primers and cycling conditions were
adopted as elsewhere (Alam et al., 2011) with slight modifications
as detailed in Supplementary Table 2. Microsatellite allele scoring
was done using the GeneMapper software, version 3.7 (Applied Bio-
systems), with samples presenting multiple alleles at any of the loci
omitted from downstream analyses. Summary indices including
allelic diversity and allelic richness were calculated using FSTAT
Version 2.9.3.2. Allelic diversity was calculated for all microsatellite
loci based on the allele frequencies, using the formula for ‘expected
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Fig. 1. Flow chart showing the four P. falciparum populations spread out through a 19-year time scale and punctuated with changing drug policies. Seminal reports on various
milestones in the epidemiology of antimalarial resistance in Africa are also highlighted.
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heterozygosity’ He = [n/(n � 1)][1 �
P

p2], where n is the number of
isolates analyzed and p represents the frequency of each different
allele at a locus. He has a potential range from 0 (no allele diversity)
to 1 (all sampled alleles differ).

2.5. Statistical analysis

All statistical analyses were conducted using STATA version 11
(Stata, College Station, TX). Changes in the prevalence of alleles
over time were evaluated for statistical significance using v2 statis-
tics for trend. For haplotype analysis, we excluded minority alleles
(<5% frequency) as it is difficult to make meaningful statements
about rare alleles. Logistic regression was used to assess temporal
changes in allele prevalence and statistical significance confirmed
using trend analysis for proportions (ptrend test). The odds ratio
(OR) with corresponding 95% confidence interval (CI) represent
the relative change between 2 years. To assess the extent of genetic
diversity between neutral alleles and those under selection,
differences between mean He values were compared using
Student’s t-test. The significance level was assessed at 5% for all
analyses.

3. Results

3.1. Prevalence of drug-resistant alleles

We evaluated 485 samples from microscopically-confirmed fal-
ciparum malaria cases, clustering within 4 time points spanning
19 years of changing drug policy (1995; n = 96, 1999/2000;
n = 131, 2006/2007; n = 139 and 2012/2013; n = 119), to determine
the prevalence of pfcrt, pfdhfr and pfmdr1 alleles in Kilifi. Of the 485
samples, 366 (75.5%) yielded single-genotype pfcrt sequences, 246
(50.7%) for pfdhfr and 231 (47.6%) for pfmdr1 as shown in Supple-
mentary Table 3. The rest of the samples in each group either had
multiple alleles (mixed genotype) or poor sequence data (1995;
n = 62 [21.5%], 1999/2000; n = 136 [34.6%], 2006/2007; n = 209
[50.1%] and 2012/2013; n = 165 [46.2%]). Sequences were submit-
ted to GenBank and are available under the accession codes
KJ689814–KJ690044 for pfmdr1 and KJ715966–KJ716212 for pfdhfr.
Note that only a short fragment of pfcrt was sequenced and as such
did not meet the length criteria for submission to GenBank. Our
data shows a resurgence in the proportion of the wild-type pfcrt
alleles over time, with �82% of the isolates bearing the pfcrt K76
allele (and by extension the C72/V73/M74/N75/K76 haplotype) in
2013 compared to 38% in 1995. The CQR alleles were most preva-
lent in 1999/2000 (pfcrt C72/V73/74I/75E/76T = 93.2%). We did
not observe any other polymorphisms along the entire 1827 bp
pfdhfr sequence apart from the known N51I, C59R and S108N
mutations (Supplementary Table 3). All the mutations existed as
6 different haplotypes with �89% of all the isolates at least poly-
morphic at one locus. Overall, the triple-mutant pfdhfr 51I/59R/
108N haplotype was the most predominant at �55% followed by
the double mutant pfdhfr 51I/C59/108N at 19.1%. The frequency
of the mutant parasites was already high (in 1995) even before
introduction of SP, as evidenced by a 76.6% prevalence among
double and triple mutants. No novel mutations were observed on
the full-length pfmdr1 either, with all the samples polymorphic at
only codons 86, 184 and 1246. We also observed repeat sequence
variation in the poly-asparaginated linker region as shown in
Supplementary Table 4. Overall, the double-mutant 86Y/Y184/
1246Y (32.9%) pfmdr1 haplotype was predominant, followed by
the wild-type haplotype, N86/Y184/D1246 (23.8%). 86Y/184F/
D1246 and 86Y/184F/1246Y haplotypes had the lowest frequencies
at 0.87% and 0.43%, respectively. The pfmdr1 N86 SNP was observed
in linkage with pfmdr1 D1246 (v2 = 64.02; p < 0.0001) and pfcrt K76
(v2 = 33.38; p < 0.0001) throughout the study period.
3.2. Temporal trends in SNPs and haplotype prevalence

3.2.1. Pfcrt
There was a statistically significant increase in pfcrt K76

between 1995 and 2012/2013 from 38% to 81.7% (Odds Ratio = 7.3;
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[95% CI 3.55–15.0]; p < 0.0001) as shown in Table 1. To probe the
potential influence of AL on the prevalence of pfcrt alleles, we
assessed our data on the basis of pre- and post-introduction of
AL in 2006, and report a significant increase in pfcrt K76 from
24% pre-AL (1995 and 1999/2000 group) to 76% post-AL (Odds
Ratio = 6.8; [95% CI 4.3–10.9]; p < 0.0001).

3.2.2. Pfmdr1
After excluding the rare alleles, our pfmdr1 analysis was only

restricted to 4 haplotypes. We observed an increase in the 86Y/
Y184/1246Y haplotype from 36.4% in 1995 to 57.5% in 1999/
2000 (Odds Ratio = 2.8; [95% CI 1.4–5.7]; p = 0.005). There was also
a significant increase in the wild-type N86/Y184/D1246 allele from
14.6% in 1995 to 66.0% in 2012/2013 (Odds Ratio = 11.4; [95% CI
4.3–29.8]; p < 0.0001) (see Table 1), an observation also noted in
2006/2007 although the increase was not statistically significant
(Odds Ratio = 1.1; [95% CI 0.4–3.6]; p = 0.827). We also investigated
the prevalence of haplotypes with regard to introduction of AL in
2006. The prevalence of the wild-type pfmdr1 allele also increased
post AL introduction, with 67.3% of the samples bearing the wild-
type N86/Y184/D1246 allele in 2006/2007 and 2012/2013 com-
pared to 32.7% in 1995 and 1999/2000 (Odds Ratio = 1.9; [95% CI
0.5–6.3]; p = 0.319).

3.2.3. Pfdhfr
There was a significant trend in the decline of wild-type pfdhfr

N51/C59/S108 (ptrend; p < 0.0001) allele culminating in the ulti-
mate fixation of the mutant variants in 2012/2013. Hence in contrast
to pfcrt, we observed no decline in the frequency of pfdhfr mutant
alleles after replacement of SP with Coartem™ (Table 1). There
was however a significant increase in the triple mutant 51I/59R/
108N haplotype from 37.1% at SP introduction in 1999 to 67.3% in
2013 (Odds Ratio = 3.5; [95% CI 1.6–7.6]; p = 0.002). We did not
observe any pfdhfr alleles with the 164L mutation in our analysis.

3.2.4. Pfcrt in combination with Pfmdr1
There is in vitro evidence strongly associating combined pfcrt

76T and pfmdr1 86Y genotypes with high CQ IC50s but increased
sensitivity to LM (Mwai et al., 2009a). We therefore examined
Table 1
Temporal trends in the prevalence of resistance-related haplotypes in Kilifi between 1995

Haplotype 1995 (freq %) 1999/00 (freq %) 2006/0

pfcrt _CVMNK⁄ 34.9 (30) 6.5 (7) 47.6 (5
pfcrt _CVIET 57.0 (49) 88.9 (96) 49.5 (5

N = 79 N = 103 N = 102

pfmdr1 _NFD 29.1 (16) 7.5 (6) 14.0 (6
pfmdr1 _NYD⁄ 14.6 (8) 12.5 (10) 14.0 (6
pfmdr1 _YYD 20.0(11) 16.3 (13) 34.9 (1
pfmdr1 _YYY 36.4 (20) 57.5 (46) 23.3 (1

N = 55 N = 75 N = 41

pfdhfr _NCS⁄ 21.3 (16) 17.7 (11) 0 (0)
pfdhfr _IRN 53.3 (40) 37.1 (23) 74.5 (3
pfdhfr _ICN 16.0 (12) 27.4 (17) 15.7 (8
pfdhfr _NRN 9.3 (7) 17.7 (11) 9.8 (5)

N = 75 N = 62 N = 51

pfmdr1 _NFD +p fcrt _K76 17.0 (8) 1.5 (1) 17.9 (5
pfmdr1 _NFD +p fcrt _76T 14.9 (7) 7.7 (5) 3.6 (1)
pfmdr1 _NYD +p fcrt _K76⁄ 12.8 (6) 3.1 (2) 7.1 (2)
pfmdr1 _NYD +p fcrt _76T 4.3 (2) 9.2 (6) 14.3 (4
pfmdr1 _YYD +p fcrt _76T 14.9 (7) 15.4 (10) 25.0 (7
pfmdr1 _YYY +p fcrt _K76 14.9 (7) 1.5 (1) 17.9 (5
pfmdr1 _YYY +p fcrt _76T 21.3 (10) 61.5 (40) 14.3 (4

N = 47 N = 65 N = 28

Wild-type alleles are indicated with an asterisk (⁄) and significant p-values highlighted
frequency over time.
the trends in the selection of different allelic combinations in these
two genes. We observed a significant increase in the combined
wild-type pfmdr1 N86/Y184/D1246 + pfcrt K76 alleles from 12.8%
in 1995 to 52.6% in 2012/2013 (Odds Ratio = 7.6; [95% CI
2.6–22.1]; p < 0.0001). Though the pfmdr1 N86/Y184/D1246 + pfcrt
76T combination also rose during this period, the increase was not
significant (Odds Ratio = 3.4; [95% CI 0.62–18.7]; p = 0.157). We
noted a significant decrease in pfmdr1 86Y/Y184/1246Y + pfcrt
76T from 21.3% in 1995 to 0% in 2012/2013 (ptrend; p < 0.0001)
but an increase of the same allele from 21.3% to 61.5% during the
period around extensive CQ use (Odds Ratio = 5.9; [95% CI
2.5–14.0]; p < 0.0001), only later declining in 2006/2007 and
2012/2013 (Table 1)

3.3. Microsatellite analysis

We characterized microsatellite polymorphisms at 8 loci flank-
ing pfdhfr in all 74 evaluable triple mutant samples (n = 39 in 1995
and n = 35 in 2012/2013) and pfcrt in all 95 evaluable wild-type
samples (n = 30 in 1995 and n = 65 in 2012/2013). The triple
mutant pfdhfr and the wild-type pfcrt alleles were used for this
temporal microsatellite analysis since these were the two forms
showing evidence of significant positive selection over time. We
also typed 8 neutral microsatellite markers in 141 samples
(n = 47 in 1995 and n = 94 in 2012/2013) to illustrate the selection
landscape and diversity around pfdhfr and pfcrt. Among the resis-
tant pfdhfr parasites, our results reveal substantial allele-sharing
before and after SP introduction (Fig. 2a). Markers distal to pfdhfr
(�7.5 kb, �4.4 kb, 1.3 kb and 5.8 kb) exhibited greater diversity,
consistent with the tenets of selective sweep (Nair et al., 2003).
The mean expected heterozygosity (He ± SD) at the 8 loci around
pfdhfr were low but comparable between 1995 (0.23 ± 0.1) and
2012/2013 (0.21 ± 0.08) as shown in Supplementary Table 5a.
Compared to the neutral loci in 1995 and 2012/2013, these means
were significantly lower (unpaired Student’s t-test; p < 0.0001),
thus affirming the selective sweep around the pyrimethamine-
resistant (PYR-R) alleles as shown in Fig. 3A. In contrast, there
was high diversity among the CQS parasites (Fig. 2b) with mean
He around the C72/V73/M74/N75/K76 alleles recorded in 1995
and 2013.

7 (freq %) 2012/13 (freq %) Parametric
trend test slope

Parametric trend
test p-value

0) 77.0 (67) 0.03 <0.0001
2) 17.2 (15) �0.03 <0.0001

N = 82

) 31.9 (15) 0.00498 0.2228
) 66.0 (31) 0.02749 <0.0001
5) 2.1 (1) �0.00574 0.1486
0) 0.0 (0) �0.02673 <0.0001

N = 47

0 (0) �0.013 <0.0001
8) 67.3 (35) 0.013 0.0041
) 19.2 (10) �0.0005 0.8921

13.5 (7) 0.0006 0.8451
N = 52

) 34.2 (13) 0.013 0.0013
0.0 (0) �0.008 0.0091
52.6 (20) 0.023 <0.0001

) 13.2 (5) 0.005 0.1421
) 0.0 (0) �0.007 0.0886
) 0.0 (0) �0.004 0.1616
) 0.0 (0) �0.022 <0.0001

N = 38

bold. The negative sign on the values of the slope of the trend denote a decrease in
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Fig. 2a. Microsatellite haplotypes around a 13.3 kb region flanking pfdhfr in parasites collected in 1995 (n = 39) and 2013 (n = 35) bearing the triple mutant allele. The figure
shows extensive allele-sharing among the samples and similarities in genetic backgrounds between Kenyan samples and Southeast Asian strains. Microsatellite sizes are
indicated in nucleotide base pairs and alleles identical to triple mutant P. falciparum K1 strain are shown in gray shading.
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Fig. 2a (continued)
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(0.70 ± 0.09) and 2013 (0.72 ± 0.09) as shown in Supplementary
Table 5b. This was comparable to the means around the neutral
markers around the same period, 0.77 ± 0.05 in1995 and
0.73 ± 0.12 in 2013 (Fig. 3B).

4. Discussion

Following widespread CQ resistance, Kenya switched to SP as
the first-line antimalarial against uncomplicated malaria in 1998
(Shretta et al., 2000). However, clinical resistance to SP soon
prompted the adoption of artemisinin-based combination therapy
(ACT) with Coartem™ as the first-line regimen and SP relegated to
intermittent use during pregnancy (Amin et al., 2007). Our results
confirm the progressive resurgence of CQS parasite populations in
Kilifi, and suggest that the mutant pfdhfr alleles are maintained at
high frequencies a decade after withdrawal of SP. We have further
demonstrated extensive genetic heterogeneity in CQS parasites
before and after CQ withdrawal, in contrast to the near-clonal tri-
ple mutant pfdhfr population during the same period.

The significant increase in pfcrt C72/V73/M74/N75/K76 allele in
2006/2007 and 2012/2013, coincides with the period after CQ
withdrawal. This fits the expectations of a fitness cost-associated
selection model where the survival advantage conferred to CQ-
resistant parasites in the presence of the drug is lost on withdrawal
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Fig. 2b. Microsatellite haplotypes around a 90.4 kb region flanking pfcrt in parasites collected in 1995 (n = 30) and 2013 (n = 65) bearing the wild-type allele. Alleles identical
to the wild-type P. falciparum 3D7 strain are shown in gray shading. The high diversity among the wild-type samples is clearly evidenced by the number of unique alleles at
each locus.
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of CQ pressure as observed in The Gambia (Ord et al., 2007), and is
consistent with recent reports from coastal Kenya (Mwai et al.,
2009b; Mang’era et al., 2012) and other parts of Africa (Laufer
et al., 2010; Ndiaye et al., 2012; Malmberg et al., 2013b). This
increase is also attributable to AL use which has been
demonstrated to select for LM-tolerant parasites, which coinciden-
tally harbor the wild-type pfcrt K76 allele (Martensson et al., 2005;
Sisowath et al., 2005; Henriques et al., 2014). Though these trends
reveal a recovery in the frequency of CQS parasites from 38% to
�82% in 19 years (1995–2013) compared to 5–40% in 13 years



Fig. 2b (continued)

J. Okombo et al. / International Journal for Parasitology: Drugs and Drug Resistance 4 (2014) 152–163 159
(1993–2006) from the same population (Mwai et al., 2009b), this
rate is however still lower compared to changes in some parts of
Africa (Table 2). This could be due to extensive use of the CQ ana-
log, amodiaquine (AQ), in parts of Kenya (including Kilifi) as
second-line antimalarial even before CQ withdrawal and long after
SP introduction (Amin et al., 2007), maintaining selective pressure
on CQR parasites. Also, CQ was still widely retailed for self-medica-
tion even 4 years after its official withdrawal (Amin et al., 2007)



Fig. 2b (continued)
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Fig. 3. (a) and (b) Change in diversity in microsatellite loci around triple mutant pfdhfr and wild-type pfcrt alleles in 1995 and 2013. Panel A shows the variation in expected
heterozygosity (He) (y-axis) around the triple mutant pfdhfr (51I/59R/108N) in 1995 and 2013. The dashed (1995) and solid (2013) horizontal lines represent the estimates of
the mean He of neutral loci examined at both times and visually depict the low diversity in mutant pfdhfr relative to neutral loci. Panel B illustrates variation around CQS
parasites and is juxtaposed to (A) to show difference in diversity. Diversity around wild-type pfcrt alleles was notably comparable to that of neutral alleles as evidenced by
proximity of the plot to the mean He around neutral microsatellite (horizontal lines) in contrast to the plot of diversity around pfdhfr that lie much lower.

160 J. Okombo et al. / International Journal for Parasitology: Drugs and Drug Resistance 4 (2014) 152–163
hence also maintaining pressure on the resistant variants, thus
highlighting the implications of unsynchronized cross-over in
treatment policies. Recent reports on the re-emergence of CQS par-
asites have prompted debate on the possible re-introduction of CQ
(albeit in combination with another drug) in the event of wide-
spread resistance to LM. Our analysis of a different set of microsat-
ellite markers to those used in Malawi (Laufer et al., 2010) showed
that high genetic diversity is maintained in CQS populations
between 1995 and 2013, similar to the observations in Malawi. It
therefore seems CQS diversity may not have been entirely extin-
guished under decades of drug pressure, as indicated by the high
mean expected heterozygosity values comparable to the neutral
loci (Fig. 3b). These findings also corroborate observations from
Ghana where a similar degree of diversity was noted among the
CQS parasites (Alam et al., 2011) (see Table 3).

Our results also indicate a steady increase in the prevalence of
pfmdr1 N86 and D1246 alleles while pfmdr1_184F only slightly
increased in 2006 and 2013. This wane in the pfmdr1 86Y and
1246Y mutant alleles, coupled with the rise of the Y184F mutation,
alludes to disparate selective pressure on this locus, eliminating
some mutations while driving others to high prevalence. Indeed,
there is compelling evidence implicating AL in these trends. In
Zanzibar, a 2.7 fold increase in frequency of pfmdr1 N86 was
observed after 42 days following treatment with AL (Sisowath
et al., 2005) while pfmdr1 N86 and 184F alleles have recently been
associated with in vivo selection by AL in east (Dokomajilar et al.,
2006; Gadalla et al., 2011) and west Africa (Lekana-Douki et al.,
2011; Dahlstrom et al., 2014). In addition, pfmdr1 184F has been
found to be under selection among parasite populations in Cambo-
dia (Vinayak et al., 2010), where artemisinin delayed parasite
clearance has been described. These have implications for the use-
ful therapeutic life of Coartem™ since the increase of parasites har-
boring combined wild-type pfmdr1 N84/Y186/D1246 and pfcrt K76
alleles in the population could be the first step in the selection of
LM-tolerant parasites which would consequently form the back-
drop for developing Coartem™ resistance, perhaps mediated by
changes at other loci.

The high prevalence of PYR-R parasites in our population mir-
rors results from other studies using samples from this location
(Kiara et al., 2009; Mwai et al., 2009b) and could be partly due to
SP use in IPTp as the PYR component of the drug selects for fitter
drug-tolerant variants. However, the high parasite proportions
already bearing the resistant genotypes before its introduction
absolve intermittent SP use alone as primary driver for the high



Table 2
Comparative pfcrt K76 and pfmdr1 N86 allele frequency changes in various malaria-endemic African countries relative to withdrawal and introduction of CQ and ACTs,
respectively.

Country CQ Withdrawal/ACT Year of Study % Frequency Change Reference

Introduction Pfcrt _K76 Pfmdr1 _N86

Malawi 1993/2008 1992–2000 15.0–87.0 69.0–75.0 Kublin et al. (2003)
Mozambique 2002/2008 2006–2010 3.90–67.6 25.3–69.1 Raman et al. (2011)
Zanzibar 2001/2003 2003–2010 4.00–37.0 25.0–48.0 Froberg et al. (2012)
Mozambique 2002/2008 2009–2010 43.9–66.4 64.7–84.1 Thomsen et al. (2013)
Tanzania 2001/2006 2006–2011 49.0–85.0 14.0–61.0 Malmberg et al. (2013b)
Uganda 2000/2004 2003–2012 0.00–17.0 10.0–51.0 Mbogo et al. (2014)
Senegal 2003/2006 2000–2009 27.6–40.5 67.0–78.0 Ly et al. (2012)
The Gambia 2004/2008 2000–2008* 23.7–40.7 21.7–74.2 Nwakanma et al. (2014)

⁄ This Gambian study was conducted between 1984 and 2008. Over subsequent survey time points, proportions of isolates with resistant pfcrt 76 and pfmdr 86 alleles
increased progressively to peak in 2000. This, therefore, is the point from which we begin to analyze the frequency change from mutant to wild-type alleles.

Table 3
Allelic diversity (expected heterozygosity, He) and allelic richness (Rs) at 8 neutral microsatellite loci in various chromosomes within the genome in samples collected at two
different time points.

Sample population – 1995 (n = 47) Sample population – 2013 (n = 94)

Microsatellite locus Allelic richness (Rs) Expected heterozygosity (He) Allelic richness (Rs) Expected heterozygosity (He)

Population sampled (n = number of individual isolates)
Poly-a 12.0 0.819 13.0 0.839
PfPK2 9.0 0.739 12.0 0.861
ARA2 11.0 0.791 11.0 0.688
TA87 9.0 0.702 18.0 0.847
TA42 14.0 0.760 12.0 0.649
2490 11.0 0.715 13.0 0.661
TA60 11.0 0.785 9.0 0.510
TA109 14.0 0.849 18.0 0.780

Mean ± SD 11.4 ± 1.9 0.77 ± 0.05 13.3 ± 3.2 0.73 ± 0.12

The sample population represents the evaluable genotypes in the two time points. Though the original total samples available for genotyping was 96 and 119 in 1995 and
2012/2013 respectively, samples presenting >1 allele at any of the 8 loci were excluded leading to the loss of a substantial number of samples (ultimately n = 47 and n = 94 in
1995 and 2012/2013, respectively). This sampling variance, however, did not occasion any significant difference between the mean He in 1995 and 2013.
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mutant frequencies. Selection pressure could possibly have been
enhanced by similar-acting antifolate combination drugs, notably
cotrimoxazole. This drug possesses only mild antimalarial potency
but is a common prophylactic prescription against opportunistic
respiratory tract infections among HIV patients (White, 2004),
hence may also have perpetuated the mutant populations. Despite
reports of the pfdhfr 164L mutation in western (McCollum et al.,
2006; Hamel et al., 2008) and coastal Kenya (Kiara et al., 2009), this
allele was absent in our analysis. However, there is need to contin-
ually monitor pregnant women and pediatric cases which are
potential sources of amplification and dissemination of parasites
bearing this allele due to their predisposition to IPT. The reduced
mean heterozygosity in the loci flanking pfdhfr relative to the neu-
tral loci indicates that the pfdhfr 51I/59R/108N haplotype has
undergone rapid expansion in coastal Kenya. Most samples with
this allele bore microsatellite profiles identical to those of South-
east Asian strains, supporting earlier assertions of a Southeast
Asian origin of PYR-R east African parasites (Roper et al., 2004).
Nonetheless, we also observed few unique profiles specific to Kilifi,
which could either be pfdhfr 51I/59R/108N indigenes or recombi-
nant hybrids of the Southeast Asian and local parasites. Despite
the high proportion of parasites harboring resistance-associated
mutations, SP-IPT has been effective in preventing the adverse con-
sequences of malaria on maternal and fetal outcomes in Africa
(World Health Organization, 2012). However, recent reports on
alarming rates of recrudescence following SP-IPTp (Mutabingwa
et al., 2009; Moussiliou et al., 2013) coupled with our microsatel-
lite data revealing clonality in pfdhfr parasite genotypes that can
endure SP pressure, raise concern about the continued use of SP
in IPT strategies.
5. Conclusion

We have shown increases in the pfcrt C72/V73/M74/N75/K76
and pfmdr1 N84/Y186/D1246 alleles over time in Kilifi after with-
drawal of CQ and introduction of AL. The temporal selection of CQS
alleles which are also putatively LM-tolerant raises concern on the
effectiveness of LM as a partner drug since it could potentially form
the starting point for AL resistance. We have also captured the
early events in the dynamics of the resistant pfdhfr alleles through
to their fixation in the population. The significance of such retro-
spective surveillance brings into focus the need for temporal mon-
itoring of the recently identified artemisinin resistance marker
(Ariey et al., 2014) to track its progression in populations. We con-
cede that the study would have been even more comprehensive
had it been powered and designed to also explore adaptive copy
number evolution in pfmdr1 and pfdhfr over time. This phenome-
non, in pfmdr1, has been associated with reduced sensitivity to
LM (Price et al., 2006) while GTP-cyclohydrolase 1 (encoding the
first enzyme in the folate pathway) has been shown to exhibit
antifolate-selected copy number polymorphism (Nair et al.,
2008). Nonetheless, this report reiterates the need for continued
surveillance while seeking more suitable alternative drugs or a
vaccine.
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