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a  b  s  t  r  a  c  t

Outbreaks  of  novel  pathogens  such  as SARS,  pandemic  influenza  and  Ebola  require  substantial  invest-
ments  in  reactive  interventions,  with  consequent  implementation  plans  sometimes  revised  on a weekly
basis.  Therefore,  short-term  forecasts  of  incidence  are  often  of  high  priority.  In  light  of  the  recent  Ebola
epidemic  in  West  Africa, a forecasting  exercise  was  convened  by  a network  of  infectious  disease  mod-
ellers.  The  challenge  was to forecast  unseen  “future”  simulated  data  for four  different  scenarios  at  five
different  time  points.  In a similar  method  to that  used  during  the recent  Ebola  epidemic,  we estimated
current  levels  of  transmissibility,  over  variable  time-windows  chosen  in  an  ad  hoc  way.  Current  esti-
mated  transmissibility  was  then  used  to forecast  near-future  incidence.  We  performed  well  within  the
challenge  and  often  produced  accurate  forecasts.  A retrospective  analysis  showed  that  our  subjective
enewal equation
CMC

method  for  deciding  on the  window  of  time  with  which  to estimate  transmissibility  often  resulted  in
the  optimal  choice.  However,  when  near-future  trends  deviated  substantially  from  exponential  patterns,
the  accuracy  of our  forecasts  was  reduced.  This  exercise  highlights  the  urgent  need  for  infectious  disease
modellers  to  develop  more  robust  descriptions  of processes  – other  than  the  widespread  depletion  of
susceptible  individuals  – that  produce  non-exponential  patterns  of  incidence.

©  2017  The  Authors.  Published  by  Elsevier  B.V.  This  is  an open  access  article  under  the  CC  BY  license
. Introduction

In epidemiology, and particularly in the context of outbreaks,
athematical modelling is now frequently used to forecast future

ncidence (Chretien et al., 2015; Nsoesie et al., 2014). Such fore-
asts were initially performed to improve the situational awareness
f key stakeholders. Increasingly, forecasting incidence is used in
he context of advocacy planning, to monitor the situation, and
o help implement, prioritise and evaluate control strategies. Dur-
ng the recent Ebola epidemic in West Africa, such forecasts were
lmost continuously performed: many were shared with policy

akers with some published in peer-reviewed literature (WHO

bola Response Team, 2015a; Meltzer et al., 2014; WHO  Ebola
esponse Team, 2014; Gomes et al., 2014; Merler et al., 2015).

∗ Corresponding author at: MRC  Centre for Outbreak Analysis and Modelling,
mperial College London, St Mary’s Campus, Norfolk Place, London W2 1PG, UK.

E-mail address: s.riley@imperial.ac.uk (S. Riley).

ttps://doi.org/10.1016/j.epidem.2017.02.012
755-4365/© 2017 The Authors. Published by Elsevier B.V. This is an open access article u
(http://creativecommons.org/licenses/by/4.0/).

While all methods for forecasting future incidence seek to char-
acterise the central predicted trend and the dispersion around
it based on covariates, they vary according to the nature of the
underlying model, with some methods relying on a purely sta-
tistical approaches (Goldstein et al., 2011) and some relying on a
mechanistic models of disease transmission (Meltzer et al., 2014).
Recent forecasting exercises in the context of influenza (Influenza
Forecasting, 2017), Dengue (Dengue Forecasting, 2017) or Chikun-
gunya (Chikungunya Forecasting, 2017) highlight the diversity of
possible models with some clearly belonging to one of the afore-
mentioned categories while others take a more nuanced approach
perhaps best described as semi-mechanistic. In all models, a care-
ful balance must be reached between obtaining accurate forecasts
while accounting for all uncertainties, both in the data themselves
and in the dynamics of transmission.
During the recent Ebola epidemic, our team helped support the
World Health Organization (WHO) and the Ministries of Health
of the three most affected countries (Guinea, Liberia and Sierra
Leone). In a wide collaborative effort, we were able to gain valu-

nder the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Table 1
Estimated instantaneous reproduction numbers (Rt) and serial intervals (in days) for the 5 time-points and 4 scenarios.

Scenario Line-list Case-count Field-report Time-point R0 (median) R0 (IQR) SI (median) SI (IQR)

1
√ √ √

1 1.03 [0.86; 1.25] 15.4 [11.3; 18.7]
2  1.33 [1.27; 1.40] 13.3 [10.1; 16.0]
3  0.87 [0.85; 0.90] 12.5 [9.8; 14.8]
4  0.87 [0.85; 0.90] 12.5 [9.8; 14.8]
5  0.79 [0.75; 0.82] 12.7 [10.3; 14.7]

2
√  √

1 1.62 [1.49; 1.75] 14.2a

2 0.89 [0.86; 0.92]
3  1.00 [0.96; 1.05]
4  0.91 [0.89; 0.94]
5  0.72 [0.70; 0.74]

3
√  √

1 1.69 [1.55; 1.83] 14.2a

2 1.28 [1.20; 1.37]
3  1.32 [1.28; 1.37]
4  1.05 [1.02; 1.08]
5  0.69 [0.67; 0.71]

4
√  √

1 1.43 [1.29; 1.58] 14.2a

2 1.39 [1.31; 1.46]
3  1.12 [1.09; 1.15]
4  0.88 [0.85; 0.91]
5  0.98 [0.96; 0.99]
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QR: interquartile range.
a Indicated that in the absence a line-list, the distribution of the serial interval w

ccuracy of data and reports progressively decreased from scenario 1 to scenario 4.

ble insights into the transmissibility, epidemiology and impact of
ntervention strategies (WHO  Ebola Response Team, 2015a, 2014,
015b; Nouvellet et al., 2015; WHO  Ebola Response Team, 2016;
arske et al., 2017). We  were also involved in producing regu-

ar forecast of future incidence (e.g. WHO  Ebola Response Team,
015a, 2014), using a semi-mechanistic model based on a renewal
quation (Fraser, 2007).

As the Ebola epidemic was declining, the Research and Policy
or Infectious Disease Dynamics (RAPIDD) program, from the US
ational Institute of Health’s Fogarty International Center, gave
ight teams (including us) the opportunity to assess their mod-
ls against simulated data. Simulated data (based on Gomes et al.,
014; Merler et al., 2015) for 4 outbreak scenarios, differing in
he assumptions underlying transmissibility and degree/quality
f data reporting, at 5 different time-points during the outbreak
ere provided together with ‘field reports’ outlining the epidemi-

logical situation (see SI.1). For each scenario and time-point, we
ere tasked with providing short-term forecasts (4 weeks into the

uture) and an estimate of the current level of transmissibility. Here
e present the method used by the ‘Imperial College Team’ and
ow it performed.

. Methods

At each of the five time points, and for each scenario, we  were
rovided with a case-count dataset that consisted of weekly counts
f newly confirmed cases (Table 1). A field report was also provided,
ontaining information on interventions, e.g.: timing of a recently
mplemented intervention or increased bed capacity (see SI.1).

Our approach was to estimate the current reproduction num-
er (the average number of secondary cases generated by a typical

nfected individual, Rt) and to use that to forecast future incidence
Figs. 1–2). The current reproduction number was estimated using
he case-count dataset, assuming constant transmissibility during

 chosen time-window (see the Estimation and Forecast sections
elow).
For scenario 1, we were also provided with a line-list. The
ine-list contained detailed data for each individual and was used
xclusively to infer a serial interval distribution and gain epi-
emiological insights into the current situation (see preliminary
ken from WHO  Ebola Response Team (2015a). Unknown at the time of challenge,

analyses and Fig. 3). The line-list focused on confirmed cases, and
was affected by both under-reporting and delays in reporting (see
‘Preliminary analyses’ below).

2.1. Estimation of the reproduction number

The reproduction number used to forecast future incidence was
estimated from the case-count data.

Several methods to estimate the reproduction number exist,
e.g. see Van Kerkhove et al. (2015) for various methods linked to
the estimation of the basic and effective reproduction of Ebola
virus. Here we relied on a well-established and simple method
that assumed the daily incidence, It, could be approximated with a
Poisson process following the renewal equation (Fraser, 2007):

It∼Pois

(
Rt

t∑
s=0

It−sωs

)
,

where Rt is the instantaneous reproduction number and ω the serial
interval distribution. From this a likelihood of the data given a set of
model parameters can be calculated, as well the posterior distribu-
tion of Rt given previous observations of incidence and knowledge
of the serial interval (Cori et al., 2013). The serial interval was
assumed to be gamma  distributed with parameters taken either
from the literature (WHO  Ebola Response Team, 2015a) (i.e. for
scenario 2–4), or estimated from the line-list (i.e. scenario 1, see
preliminary analyses below).

We  used this approach to estimate Rt over three alternative
time-windows defined by assuming a constant Rt for either the
2, 3 or 4 weeks prior to the most recent data-point. We  made
no assumptions regarding the epidemiological situation and trans-
missibility prior to each time-window. Therefore, no data prior to
the time-window were used to estimate Rt and instead we  jointly
estimated Rt as well as back-calculated the incidence before the
time-window. Specifically, we jointly estimated the Rt and the

incidence level 100 days before the time-widow. Past incidence
was then calculated using the known relationship between the
serial interval, growth rate and reproduction number (Wallinga
and Lipsitch, 2007). The joint posterior distribution of Rt and the
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Fig. 1. Schematic of our forecasting process. First the line-list, if present, was  used
to  1) estimate the serial interval distribution, and 2) gain insight into the drivers of
transmission and give us better situational awareness. Then we  used the incidence
of  confirmed cases provided in the case-count and the serial interval distribution
(either from the literature or from the line-list) to estimate the instantaneous repro-
duction number Rt . The estimation relied on the renewal equation and assumed
transmissibility to be constant during a chosen time-window (either 2, 3 or 4 weeks).
Then based on the ‘field report’ provided, assessment of the line-list (when present),
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nd general trends in past incidence, an Rt estimate was chosen (by choosing a
ime-window) to be used to predict 4 weeks of future incidence. The same renewal
quation was  used for forecasting relying on posterior distribution of the estimated
t .

arly epidemic curve (from which forecasts were generated) was
nferred using Markov Chain Monte Carlo (MCMC) sampling.

Because the case-count data reported cases by week rather than
y day, we inferred the daily incidence data using data augmen-
ation (Cauchemez et al., 2006; O’Neill and Roberts, 1999). We
ssumed that cases followed a multinomial distribution within the
eek. At each iteration of the MCMC,  a new distribution of cases
ithin each week was proposed by sequentially shifting a third of

ases by ±1 day and the likelihood reassessed to accept/reject the
roposed distribution of cases within the week.
.2. Forecast for future incidence

We  simulated future incidence using a branching process model
ased on the renewal equation (Fraser, 2007), assuming the same
ics 22 (2018) 29–35 31

Poisson offspring distribution used for inference (see equation
above). The serial interval for forecast was  identical to that used in
inferring the reproduction number above. For each simulation, the
initial incidence and Rt were sampled from the joint posterior dis-
tributions (see section “Estimation of the reproduction number”).
Medians, 95% credible intervals (95% CrIs) and interquartile ranges
(IQRs) were generated from 10,000 simulations.

Estimated Rt and incidence forecasts for the 4 weeks ahead
were produced for each of the three time-windows, one of which
was chosen for ‘submission’ to the model assessment exercise. The
choice of time-window was  somewhat subjective, based on the
field report provided, an assessment of the line-list (see below,
we did not use specific numerical output from line-list analysis),
and an assessment of the general trends in incidence. The choice of
the time-window ultimately aimed to balance more precise esti-
mation (favouring long windows with more data), with accurately
reflecting the most recent and anticipated future transmissibility
(favouring short windows limited to very recent data).

2.3. Preliminary analyses

Preliminary analyses relied on the line-list, and mirrored to
some extent the work-flow we used in 2014-15 to analyse the
West African epidemic. For this exercise, the line-list included time-
stamped clinical events for each patient from exposure until death
or recovery: reported exposure, symptom onset, hospitalisation,
entry in an Ebola Treatment Unit; whether the patient was under
surveillance from contact tracing activities prior to infection and
how many of the patient’s contacts were being followed (reflecting
forward contact tracing); who was the likely infector; whether the
patient died, and if so, whether the burial was  conducted safely.

First, incidence time-series were computed and plotted. How-
ever, the line-list was unreliable to assess incidence (Fig. 3A) due to
under-reporting throughout the epidemic (e.g. case-count dataset
shows much higher incidence than the weekly aggregated counts
from the line-list). Additionally and especially relevant for real-
time forecasting, the most recent few weeks of data in the line-list
were even less reliable; this simulated the delays in updating the
line-list. Therefore, while we analysed the line-list to gain epidemi-
ological insights, the line-list was not directly used to assess the
transmissibility used in the forecast.

Then, using pairs of infector-infectees for which dates of symp-
tom onset were known, we computed the observed serial interval
(the time between symptom onset of a case and symptom onset of
their infector). We  fitted a gamma  distribution to these observed
serial intervals by maximum likelihood (WHO  Ebola Response
Team, 2014). Using this serial interval distribution, the instanta-
neous reproduction number (Rt) was estimated on a daily basis
using the EpiEstim R package (Cori et al., 2013) with a 2-week slid-
ing window. This reproduction number provided insights into the
trend in transmissibility, but was not used for forecasting.

Additionally, for each patient, we extracted all delays using
the clinical histories provided. To estimate temporal variation in
the delays, we  calculated for each day the median delay over
the previous 2 weeks. Then, for each delay, we  plotted the daily
delay (median) against the daily Rt above (median). The correla-
tions between Rt and the various delays were examined visually
(and with univariable linear models) to identify possible drivers of
changes in transmission.

We also quantified the number of times a patient was  recorded
as being an infector in the line-list. The incomplete nature of the

data available precluded direct estimation of the reproduction
number from such contact data, but it still allowed us to compare
transmission between different groups. For instance, we compared
our transmission rates from patients who  had safe burials versus
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Fig. 2. Weekly incidence of confirmed cases for each scenario with forecasts (A-D). Dots represent the observed incidence while the solid lines show the median prediction
(shaded envelopes show the interquartile range, IQR, and the 95% credible interval, CrI) at each time-point. Coloured open dots show the observed incidence used for inferring
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he  reproduction numbers between the start (vertical dotted lines) and the end (da
ncidence in the forecast periods. Weekly observations predicted and subsequently
he  3rd time-point overlap with incidence used for the 4th time-point forecasts). G

atients with unsafe burials (assuming data were missing at ran-
om).

The line-list preliminary analyses retrospectively informed us
n the impact of interventions or situational changes (e.g. observed
ncrease in safe burials), which were not reflected in the ‘field
eport’. For instance, Fig. 3C–D helped us build a narrative where
ontact tracing activities appear to decrease the delay between
nset of symptom and hospitalisation, resulting in decreased trans-
issibility, presumably from quicker case isolation. Therefore,

ny future increase in contact tracing activities or evident recent
ecreasing trend in the delay from symptom onset to hospitalisa-
ion would lead us to expect a further decrease in transmissibility.

ore generally, if the daily instantaneous reproduction number
stimated from the line-list showed a consistently decreasing trend
as opposed to a stable trend), again we would expect a further
ecrease in transmissibility (as opposed to relatively constant trend

n transmissibility): essentially we conducted a subjective assess-
ent of accelerations/decelerations in transmissibility.

.4. Retrospective analyses

After the challenge ended, we were able to retrospectively assess
he quality of our forecasts. For each scenario and each time-point,
e extracted the number of observed weekly incidence counts that

ell in our predicted IQR. IQR was chosen as it provides a good mea-
ure for accuracy in the central trend and formed the basis for the
erformance metrics used to compare model performances in this
hallenge. For a model which forecasts well, we expect 50% of our
redicted incidence to fall within the IQR. The 95% CrIs are pre-

ented in figures to assess the estimation of uncertainties around
ur forecasts.

For each forecasting time-point, we measured the fit of fore-
asts versus observations using the mean squared error (MSE). This
ertical lines) of the chosen time-windows. Filled coloured dots show the observed
for inference are shown as solid dots (e.g. in scenario 3, the incidence predicted for
en dots were not used for inference and never predicted.

allowed us to define the optimal time-window (i.e. 2, 3 or 4 weeks)
for our model, which we  compared to our subjective choice of time-
window (for each scenario/time-point). We were therefore able to
assess the appropriateness of both the model and – to some degree
– our choice of time-window.

The measure of fit, corrected for the number of points (n)
used for fitting (i.e. MSE × (n) / (n − 1), equivalent to the unbiased
sample variance), was  also calculated within the time-windows,
quantifying the fit of the model to the data used in the inference of
Rt. Therefore, we  could define the optimal time-windows in terms
of fit used for the inference of Rt. In this post hoc report, we call
this time-window the ‘naïve rational’ time-window: ‘rational’ as it
is entirely and solely determined by the case incidence, however
‘naïve’ as it does not account for any other source of information
which may  be available. For instance, the ‘naïve rational’ approach
would overlook valuable information such as knowing that contact
tracing causes lower onward transmission, and that contact tracing
efforts have recently increased.

3. Results

3.1. The 4 scenarios

In retrospect, scenario 1 was  perhaps the most straightfor-
ward of the 4 scenarios from a forecasting perspective (Fig. 2). It
appeared to be simulated from a prolonged and consistent expo-
nential growth phase, followed by a sharp drop in transmissibility

and then a consistent exponential decay phase. The other 3 scenar-
ios were more complex, consisting of multiple phases with clearly
differing rates of transmission and, in retrospect, little evidence of
sustained exponential growth (or decline).
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Fig. 3. Sample of information extracted from the line-list to inform our analysis. The example shown refers to the fourth time-point of scenario 1. A. Weekly incidence
of  confirmed cases from the line-list and the case-count data. B. Serial interval distribution observed and fitted using line-list data. C. Daily estimates of the reproduction
number (Rt) (median and 95% CrI) on two-week sliding time-windows. The red horizontal dashed line represents the threshold 1, below which an epidemic is considered
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nder  control. D. Median (solid line) delay from onset to hospitalisation (blue cur
urveillance prior to infection due to contact tracing activities. The shaded areas sh
his  figure legend, the reader is referred to the web  version of this article.)

.2. Forecasting scenario 1

In terms of forecast, with the exception of the first time-point,
ur method performed well (Fig. 2A). Overall, 11 observed inci-
ence points (out of 20) were included in our predicted IQR (well
ithin the expected range). All observed incidence points were

ncluded in our predicted 95% CrI. In retrospect, if we  had been
ble to choose the correct time-windows for every forecasts, up to
6 out of the 20 points could have been included in our predicted
QR. Based on our simple measure of fit, our choice of time-window

as optimal for 3 time-points (out of 5) and outperformed the naïve
ational choice for 3 time-points (see Fig. S1-2 in SI.2).

The comparison of the line-list data to the case-count data
howed that not all confirmed cases entered the line-list (Fig. 3A),
nd these discrepancies were especially important during the most
ecent few weeks included in the datasets. We  therefore concluded
hat the case-count data were more reliable than the line-list data
or forecasting. However, the line-list data were key in estimating
he serial interval at each time-point (Fig. 3B and Table 1), with
ur best estimate (i.e. based on the most complete dataset) of the
edian as 12.7 days (95% CrI [10.3; 14.7]). Additionally, the line-list

ata allowed us to better understand the drivers of transmissibility.
or instance, increased contact tracing was highly correlated with

 reduction in the delay from onset to hospitalisation (Fig. 3D). Fur-
hermore, cases entering the line-list through contact tracing had

 significant lower case reproduction number (result not shown).
his allowed us to hypothesise that contact tracing allowed quicker

dentification of cases, resulting in quicker hospitalisation and iso-
ation. In turn this was ultimately reflected in lower intensity of
ransmission (Rt) at the population level.
ociated with left y-axis) and proportion of cases in the line-list who  were under
e 95% confidence intervals (CIs). (For interpretation of the references to colour in

However, subjective choices driven by analysis of the line-list
did not always improve forecasts. An increase in the proportion of
safe burials recorded in the line-list close to the first time-point
drove us to mistakenly choose a short time-window for our first
forecast.

3.3. Forecasting scenario 2

The forecasts for scenario 2 were less accurate than for scenario
1, with good performance in the three most recent time-points of
the outbreak (Fig. 2B) but significant inaccuracies in the first two.
Out of 20 observations, 8 were included in our predicted IQR; and
15 observed incidence points were included in our predicted 95%
CrI. The former only improved to 9 points when choosing the best
time-window. Based on our measure of fit, we chose the optimal
time-windows for 3 time-points and our choice was always better
than the naïve rational choice (see Fig. S1-2 in SI.2).

3.4. Forecasting scenario 3

The forecasts were comparable in performance to that of sce-
nario 2 (Fig. 2B–C), with inaccurate predictions for 2 time-points
during the initial growth as well as the down-turn of the outbreak.
Other time-points were well predicted. Only 6 out of 20 observa-
tions were included in our predicted IQR, due to the poor fit during
the first and third time-points. 17 observed incidence points were

included in our predicted 95% CrI. However, even in retrospect,
those inaccurately forecasted time-points would be extremely dif-
ficult to predict due to sharp changes in incidence. With an optimal
choice of time-window, 9 observations would have been included
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n the predicted IQR. We  only chose the optimal time-window in
 instances, but we still outperformed the naïve rational choice 3
imes (see Fig. S1-2 in SI.2).

.5. Forecasting scenario 4

While scenario 4 forecasts were good for the first 3 time-points,
he most recent 2 time-points were poorly predicted. Overall, 9
bservations were included in our predicted IQR; with 15 observed
ncidence points included in our predicted 95% CrI. By choosing an
ptimal time-window, up to 16 observations would have been in
he predicted IQR. We chose the optimal time-window only once,
hile the naïve rational choice was optimal at 3 time points, asso-

iated with 15 observations included in the predicted IQR (see Fig.
1-2 in SI.2).

. Discussion

We  have described our participation in a blinded forecasting
xercise based on the recent West African Ebola epidemic, predict-
ng in real-time future weekly case incidence. The simulated weekly
ncidence often fell within the IQR of our forecast (i.e. overall out
f 80 data-points, 34 were included in our IQRs), and within the
5% CrI (i.e. overall out of 80 data-points, 67 were included in our
5% CrIs). Therefore our simple approach performed well with good
ccuracy in forecasting the central tendency in the data, as well
s characterising accurately the uncertainty. Our approach worked
est when near-future patterns of incidence were well described
y an exponential trend. Our results highlight the need for a bet-
er understanding of infectious disease transmission processes that
ead to non-exponential changes in incidence. As highlighted by
iboud et al., (2016), such non-exponential growth may  reflect het-
rogeneity in contact rate, early onset of interventions or changes
n population behaviour.

As illustrated here, forecasting can be challenging as we intend
o produce accurate trends while correctly accounting for uncer-
ainties surrounding both the data and the transmission dynamics
f the disease. As we did during the recent West African outbreak,
e chose a simple approach, which offers the benefit of robustness

t the cost of a weakly mechanistic underlying model. Therefore,
lthough our model could in theory be used to measure the impact
f control strategies (see International Ebola Response Team, 2016),
t would not be the optimal tool to achieve this objective.

While simple, robust and performing well, our method required
s to subjectively choose a time-window. This choice allowed us to
ccount for additional information from the ‘field report’ provided,
he line-list (when available), and an assessment of the general
rends in recent incidence. We  showed that this procedure was in

ost instances superior to a method relying on the fit of data within
he time-window (i.e. ‘naïve rational’ strategy). While an alternative
o this subjective method would be to use a more complex model
i.e. a more detailed description of transmission mechanisms), the
enefit of simplicity was viewed as favourable compared to perhaps
ore robust but highly uncertain and more complex modelling.
Our analyses showed that the ‘field report’, the provided line-list

nd/or our current understanding of the disease could be mislead-
ng. For instance, we initially assumed that safe burial practices

ould considerably limit onward transmission. For the first time-
oint for scenario 1, the line-list revealed a recent increase in safe
urial practices, leading us to mistakenly choose a time-window
ssociated with lower estimated transmission intensity (Fig. 1A).

his error reflected the limits of our subjective understanding of
isease transmission.

While not always optimal in retrospect, the human component
f our methodology needs to be further acknowledged in the pro-
ics 22 (2018) 29–35

cess of forecasting, at least to assess its impact. While trying to
minimise it, ultimately, the choice of a model and its assumptions
implies a subjective understanding of the disease dynamics. For
instance weather forecasting, which has seen a sustained increase
in forecast accuracy in the past 30 years (Haiden et al., 2015), typi-
cally operates with a combination of models (ensemble forecasting)
but still acknowledges a human component, which is progres-
sively diminished in importance (Roebber and Bosart, 1996). Given
that disease dynamics are ultimately greatly influenced by human
behaviour, it seems in fact quite natural to have a ‘human’ compo-
nent in infectious disease modelling. ultimately, we think that the
field should strive to accurately report the subjective choices within
the methodology for the sake of both simplicity and reproducibility
and rely on ensemble forecasts (rather than forecasts from a sin-
gle model). We also think it is crucial that researchers are upfront
about the subjective nature of their forecasts.

We enjoyed participating in the challenge and we  see consid-
erable value is similar future exercises as a way of maintaining
scientific focus in this challenging topic between outbreaks. Many
of the issues faced during this exercise were similar (although to a
lesser extent) to those experienced during the recent West African
outbreaks (see Cori et al., 2017, for a full discussion of the chal-
lenges of data analyses in real-time during outbreaks). To name a
few: data cleaning remains a significant task (as errors were added
to the simulated data) and the choice of using a data-rich line-list
versus a more limited case-count dataset (which are not necessar-
ily consistent with one another) for forecasting is challenging (see
WHO  Ebola Response Team, 2015a, 2014 for instance). Also, the
quick pace of analyses and required updates could easily result in
human and communication errors.

To conclude, the forecasting challenge proved useful to further
reflect on the methodology we  had used during the recent West
African Ebola epidemic, a luxury of time sometimes difficult to
achieve in the midst of an emergency. Furthermore, the joint work
on this project (e.g. workshops organised by RAPIDD) has allowed
us to explore new ideas as well as further our links with external
partners who  could prove crucial (in terms of preparedness) should
another outbreak requiring rapid forecasting occur.
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