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A B S T R A C T

Generating autologous tissue grafts of a clinically useful volume requires efficient and controlled expansion of
cell populations harvested from patients. Hollow fibre bioreactors show promise as cell expansion devices,
owing to their potential for scale-up. However, further research is required to establish how to specify
appropriate hollow fibre bioreactor operating conditions for expanding different cell types. In this study we
develop a simple model for the growth of a cell layer seeded on the outer surface of a single fibre in a perfused
hollow fibre bioreactor. Nutrient-rich culture medium is pumped through the fibre lumen and leaves the
bioreactor via the lumen outlet or passes through the porous fibre walls and cell layer, and out via ports on the
outer wall of the extra-capillary space. Stokes and Darcy equations for fluid flow in the fibre lumen, fibre wall,
cell layer and extra-capillary space are coupled to reaction–advection–diffusion equations for oxygen and lactate
transport through the bioreactor, and to a simple growth law for the evolution of the free boundary of the cell
layer. Cells at the free boundary are assumed to proliferate at a rate that increases with the local oxygen
concentration, and to die and detach from the layer if the local fluid shear stress or lactate concentration exceed
critical thresholds. We use the model to predict operating conditions that maximise the cell layer growth for
different cell types. In particular, we predict the optimal flow rate of culture medium into the fibre lumen and
fluid pressure imposed at the lumen outlet for cell types with different oxygen demands and fluid shear stress
tolerances, and compare the growth of the cell layer when the exit ports on the outside of the bioreactor are open
with that when they are closed. Model simulations reveal that increasing the inlet flow rate and outlet fluid
pressure increases oxygen delivery to the cell layer and, therefore, the growth rate of cells that are tolerant to
high shear stresses, but may be detrimental for shear-sensitive cells. The cell layer growth rate is predicted to
increase, and be less sensitive to the lactate tolerance of the cells, when the exit ports are opened, as the radial
flow through the bioreactor is enhanced and the lactate produced by the cells cleared more rapidly from the cell
layer.

1. Introduction

The aim of in vitro tissue engineering is to produce cells and tissues
in the laboratory that can be used to replace or repair damaged or lost
tissues in a patient's body. Generating these cells and tissues from the
patient's own cells (autologous cells) has several advantages, including
decreased likelihood of immune rejection, but requires expansion of
the original cell population taken from the patient. This can be
achieved by seeding the cells onto a biomaterial scaffold and incubating
the cell-scaffold construct in a bioreactor.

Hollow fibre bioreactors (HFBs) show great promise as cell expan-

sion devices. They consist of a cylindrical glass module housing a single
or multiple porous, hollow, biodegradable polymer fibres. Nutrient-rich
culture medium is pumped through the fibre lumen(s) and forced
through the fibre wall(s) (membranes) to cells seeded in the surround-
ing space (the extra-capillary space or ECS). There are ports at either
end of the ECS, which may be opened to promote radial flow through
the bioreactor, or left closed (see Fig. 1). With the ECS ports open, and
hence at atmospheric pressure, the flow through the membrane is
controlled by fixing the fluid pressure at the downstream lumen outlet,
and this allows the nutrient delivery and fluid shear stress experienced
by the cells in the ECS to be controlled. Cells can either be seeded
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directly onto the outer surface of the fibres, or in a hydrogel throughout
the ECS (Wung et al., 2014). As well as enabling the chemical and
mechanical environment of the cells to be controlled, HFBs provide a
highly efficient means of expanding cells due to the large surface area of
the fibres available for cell proliferation relative to the bioreactor
volume—as many cells can be cultured in a 0.5 l HFB as in a 1000 l
standard culture flask (Wung et al., 2014).

Despite these advantages, there is still potential to improve opera-
tion and scale up of HFBs for clinical use. In particular, better
understanding of the combined effects of cell seeding and operating
conditions on cell population growth in HFBs is required.
Mathematical modelling of cell growth in HFBs can help significantly
in this regard by predicting parameter ranges for which growth is
maximised, and thereby streamlining the choice of parameters and
operating conditions to test experimentally, saving time and money. In
this study we focus on the relatively simple single-fibre HFB shown in
Fig. 1, to gain deeper insight into the factors that affect growth.

Experiments with the single-fibre HFB have shown that cells seeded
onto the outer surface of the fibre will proliferate over the surface until
they reach confluence given the right culture conditions and culture
period (Ellis and Chaudhuri, 2007; Meneghello, 2010). Additionally,
once cells have reached confluence, they can proliferate outwards into
the ECS to establish a tissue layer multiple cells deep (Tharakan and
Chau, 1986; Lu et al., 2005; Ye et al., 2007; De Napoli et al., 2011).
Although oxygen concentration, lactate concentration and fluid shear
stress are known to affect the rate of cell proliferation and death, how
they interact and affect the rate and extent of cell layer growth into the
ECS have not yet been investigated. This is the primary purpose of our
study, which will be achieved through mathematical modelling.

Previous modelling studies of HFBs have focussed on describing
fluid and solute transport through the bioreactor (Kelsey et al., 1990;
Piret and Cooney, 1991; Sullivan et al., 2006; Shipley et al., 2010,
2011; Ye et al., 2006) and considered the timescales associated with
these transport processes rather than the longer timescale associated
with cell proliferation (see Shipley et al., 2010, 2011; Brotherton and
Chau, 1996 for more detailed reviews). Hence the effects of cell
proliferation on fluid flow and solute transport in the bioreactor have
generally been ignored. Most transport models for HFBs are based on
the Krogh cylinder approximation (Brotherton and Chau, 1996). In
Krogh cylinder models, the flow and mass transport in the fibre lumen
are modelled using the Stokes flow equations and advection–diffusion
equations respectively, and convection effects in the membrane and
ECS are usually ignored, which is representative of the HFB set-up in
Fig. 2(a) with the ECS ports closed. When flow through the membrane
and ECS has been considered (which is relevant when one or more ECS
ports are open), it has been modelled using Darcy's law, and nutrient
uptake and waste product synthesis have been described by adding
appropriate reaction terms to the ECS mass transport equations. In
terms of nutrient transport and consumption, oxygen is the most
widely modelled solute (Schonberg and Belfort, 1987; Piret and
Cooney, 1991; Patzer II, 2004; Sullivan et al., 2006; Davidson et al.,
2010; Shipley et al., 2011; Pearson et al., 2014), but glucose (Ye et al.,
2006; Abdullah et al., 2009; Das, 2007) and proteins (Labecki et al.,
1996, 2004; Shipley et al., 2009) have also been considered. By

contrast, the transport of lactate, a waste product of cell metabolism
toxic to cells in high concentrations, has only been modelled recently
(Shipley and Waters, 2012).

Shipley and Waters (2012) developed a model of fluid flow and
oxygen and lactate transport in a single-fibre HFB with a cell-packed
ECS in the absence of growth, and predicted that improving oxygen
delivery to, and lactate removal from, the cells by opening the ECS
ports would enable a larger cell population to be cultured in the
bioreactor. Here we extend their model to allow for a non-uniform
growing layer of cells attached to the outer surface of the fibre in the
ECS. We assume that the rate of growth of the cell layer depends on the
local oxygen and lactate concentrations and the fluid shear stress
experienced by the cells. We consider both the flow configuration in
which the ECS ports are closed (no flow in the membrane or ECS) and
that in which they are open (flow throughout the bioreactor). The
lumen outlet pressure controls the ratio of the flow through the
membrane to that through the lumen. Although promoting radial flow
through the bioreactor improves oxygen delivery and lactate removal to
and from the cells, it also increases the shear stresses that the cells are
exposed to, which can lead to cell death and detachment from the cell
layer. Incorporating the effect of excess shear stress on the cell layer
growth allows us to predict the optimal lumen inlet flow rate and lumen
outlet pressure to maximise the growth of the cell layer for cells with
different nutrient demands and sensitivity to shear stress. Modelling
lactate transport and cell death due to excess lactate allows us to
investigate the sensitivity of the cell layer growth to the lactate
tolerance of the cells.

In addition to being the first model for a freely growing cell layer in
a HFB, the work presented here differs from most previous theoretical
studies of cell culture in HFBs in two key respects. First it accounts for
the potentially negative effects on growth of high shear stress from high
lumen inlet flow rates and lumen outlet pressures. Second it considers
the feedback effect of tissue growth on fluid flow and solute transport in
the bioreactor. The only other studies that have considered these effects
are the multiphase models of cell culture in the single-fibre HFB of
Pearson et al. (2014, 2015a,b) and our previous study on cell
population expansion in the single-fibre HFB (Chapman et al., 2014).
Multiphase models are continuum models that account for interactions
between the flow, solute transport and cells by treating the cells and
culture medium as separate phases with their own time- and space-
dependent volume fractions. Mass transfer between the phases is
described using constitutive source/sink terms in the mass conserva-
tion equations for each phase. Pearson et al. (2015b) used a 2D
multiphase framework to describe shear-stress-dependent proliferation
in a cell layer of constant depth in a HFB. They used the model to
predict the effects of altering the flow rate into the ECS and the cell
layer depth on the cell yield. We take a different approach here, by
assuming that there is no movement of cells within the cell layer and
that cell proliferation and death are localised to its outer surface, where
they induce growth/recession of the cell layer, with the cell volume
fraction in the cell layer remaining fixed. In our previous study
(Chapman et al., 2014), we developed a 2D model of oxygen- and
shear-stress-dependent cell aggregate growth along the outer surface of
the fibre in a single-fibre HFB, applicable to the initial stages of cell
culture, and used it to predict the lumen inlet flow rate, lumen outlet
pressure and initial seeding distribution that minimised the time taken
for the aggregates to reach confluence over the fibre surface. The model
developed here is applicable to a later stage of cell culture, after the
cells have reached confluence, when they are proliferating out into the
ECS. The modelling framework presented here is similar to that used in
Chapman et al. (2014), with equations for fluid and solute transport
through the bioreactor coupled to equations representing cell popula-
tion growth. However, here we consider an axisymmetric cylindrical
geometry with a distinct cell layer rather than a simplified 2D geometry
with cell aggregates, and employ additional equations to describe the
fluid flow and solute transport through the cell layer as well as its

Fig. 1. Photograph of a single-fibre HFB module. ECS=extra-capillary space. Adapted
from Shipley and Waters (2012).
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growth. In addition to using the model to predict the optimal lumen
inlet flow rate and lumen outlet pressure to maximise the growth of the
cell layer, we also briefly explore the potential impact of non-uniformity
in the initial cell layer depth on its subsequent growth.

The paper is organised as follows. The model set-up and governing
equations for the system with the ECS ports open are presented in
Section 2. Model parameterisation, reduction and solution are sum-
marised in Section 3 (further details can be found in the Appendices).
In Section 4 we compare the fluid flow and oxygen and lactate
distributions for static cell layers of uniform depth and non-uniform
depth, and describe how the flow and solute distributions change over
time for a growing cell layer. We then present the results of simulations
of cell layer growth for different cell types, including predictions of the
optimal lumen inlet flow rate and lumen outlet pressure for growth. We
summarise the key differences in the flow, solute transport and growth
when the ECS ports are closed in Section 5. In Section 6 we discuss our
key findings and suggest possible model extensions.

2. Model description

2.1. Model set-up

Fig. 2(a) shows a schematic of the single-fibre HFB set-up with a
cell layer surrounding the fibre. We assume that the lumen is
cylindrical with a circular cross-section and that the fibre, cell layer
and ECS are coaxial and annular in cross-section. For simplicity, we
view the flow and solute distributions as symmetric about the lumen
axis, and treat the ECS ports as being distributed over the whole of the
outer wall of the ECS following Shipley et al. (2010) and Shipley and
Waters (2012) (Fig. 2(b)). The system can therefore be described using
axisymmetric cylindrical polar coordinates (r, z), where r is the radial
distance from the lumen axis and z is the distance along the lumen axis
from the inlet at z=0 to the outlet at z=L. The corresponding unit
vectors in the r- and z-directions are denoted by er and ez. The radius of
the lumen and outer radii of the fibre and ECS are denoted by Rl, Rm
and Re.

Culture medium is pumped into the lumen inlet at a prescribed
volumetric flow rate Ql in, and a pressure Pl out, is imposed on the fluid at
the lumen outlet. When the ECS ports are open, Pl out, controls the ratio
of the flow through the membrane to that down the lumen.

Oxygen enters the system at constant concentration Cin via the
culture medium pumped into the lumen inlet, is transported through
the bioreactor by a combination of advection and diffusion, and is
consumed by the cells in the cell layer. Lactate is produced by the cells
in the cell layer as a by-product of respiration and transported out of
the system by advection and diffusion. While high oxygen levels

promote proliferation, excess lactate causes cell death.
Cell proliferation and death are assumed to be localised to the outer

surface of the cell layer, and to occur at a rate dependent on the local
oxygen and lactate concentrations and interstitial fluid shear stress. As
the cell layer grows or recedes, the flow, oxygen uptake and lactate
production change, and this in turn affects the growth. Thus, the radial
position of the outer surface of the cell layer, Rc, varies with axial
position and time, i.e. R R z t= ( , )c c .

Typically L ≈ 10 cm, R ≈ 100–200 μml , R R( − ) ≈ 200–400 μmm l and
R ≈ 1 mme . The aspect ratio of the fibre lumen, ϵ, is therefore very small

R
L

ϵ = ≈ 2 × 10 ≪ 1,l −3
(1)

as are those of the membrane, cell layer and ECS. We exploit this fact to
simplify the model of the fluid flow, solute transport and cell layer
growth given in Sections 2.2.1–2.2.3, so that we can make analytical
progress in solving the model.

2.2. Governing equations

The model for the cell layer growth is composed of equations
describing the fluid flow through the bioreactor (Section 2.2.1),
equations for the transport and consumption/production of oxygen
and lactate overlaid on the fluid transport model (Section 2.2.2), and
equations for the growth of the cell layer coupled to the fluid and solute
transport equations (Section 2.2.3). All values for the parameters that
appear in the following equations, the dimensional analysis of the
model, and an explanation of how parameters unobtainable from the
literature were estimated are given in Section 3, and Appendices A and
B.

2.2.1. Fluid transport
The flow in the lumen and ECS can be modelled as steady,

incompressible Stokes flow:

μ p i l e∇ u u ∇· = 0, ∇ = for = , ,i i i
2 (2)

where ui (i l e= , ) and pi (i l e= , ) are the fluid velocity and pressure in
the lumen and ECS (denoted by subscripts l and e), and μ is the
dynamic fluid viscosity.

Following several other authors (Brotherton and Chau, 1996; Ye
et al., 2006; Abdullah and Das, 2007; Shipley and Waters, 2012), we
model the membrane and cell layer as rigid porous media and describe
the fluid flow through them using the incompressible Darcy flow
equations

ϕ ϕ k
μ

p i m c∇ u u ∇·( ) = 0, = − , = , ,i i i i
i

i (3)

Fig. 2. (a) Schematic of the single-fibre HFB module with a cell layer on the outer surface of the fibre and open ECS ports. (b) 2D cross-section of the model set-up showing the
distributed ECS port. Arrows show the direction of fluid flow into the lumen and out of the lumen outlet and ECS port(s). Notation as described in main text.
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where subscripts m and c denote the membrane and cell layer, ϕi
(i m c= , ) are the membrane and cell layer porosities (assumed con-
stant since the cell volume fraction in the cell layer is taken to be fixed),
ui and pi (i m c= , ) are the interstitial fluid velocities and pressures
(averaged over the fluid volume), and ki (i m c= , ) are the fluid
permeabilities of the membrane and cell layer.

We now give the boundary conditions for the fluid transport: first
those on the interfaces between the lumen, membrane, cell layer and
ECS and on the outer wall of the ECS, and then the axial boundary
conditions at the ends of each region. For these boundary conditions,
we require the definition of the fluid stress tensors in the different
regions, σi (i l m c e= , , , ), corresponding to Eqs. (2) and (3)

σ p μ i l eI ∇u ∇u= − + ( + ( ) ), = , ,i i i i
T (4)

σ p i m cI= − , = , .i i (5)

At the lumen–membrane and membrane–cell layer interfaces we
prescribe continuity of normal fluid velocity and normal stress.
Following previous studies (Shipley and Waters, 2012; Pearson et al.,
2014, 2015b), we assume that the stress is transmitted via the fluid
phase, so that the continuity conditions at the lumen–membrane and
membrane–cell layer interfaces are

σ σϕ r Ru e u e e e e e· = · , · · = · · on = ,l r m m r r l r r m r l (6)

σ σϕ ϕ r Ru e u e e e e e· = · , · · = · · on = .m m r c c r r m r r c r m (7)

By (5), the normal stress condition on the membrane–cell layer
interface is equivalent to continuity of pressure

p p r R= on = .m c m (8)

On the moving outer boundary of the cell layer, r R z t= ( , )c , we impose
continuity of the normal fluid velocity relative to the moving boundary

(i.e. conservation of mass) and continuity of normal stress

( )
σ σ

ϕ
r R z t

u n u n
n n n n

· − = · − ,
· · = · · on = ( , ),

c c c
R
t e c

R
t

c c c c e c c

∂
∂

∂
∂

c c

(9)

where R t∂ /∂c is given by the growth law prescribed in Eqs. (32) and (35)
in Section 2.2.3, and R z R zn e e= ( −∂ /∂ )/ 1 + (∂ /∂ )c r c z c

2 is the outward-
pointing unit normal to the cell layer boundary.

Flow of the culture medium past the permeable boundary of the
membrane will cause a boundary layer to develop on the membrane
surface in which the tangential fluid velocity is non-vanishing (Beavers
and Joseph, 1967). This can be modelled using a Beavers–Joseph
boundary condition (Shipley et al., 2010). However, following Shipley
et al. (2010), who showed that the slip at the permeable boundary of
the PLGA-PVA membrane has a negligible impact on the flow, we apply
a no-slip boundary condition for the tangential component of the fluid
velocity on r R= l

ϕ r Ru e u e· = · on = .l z m m z l (10)

Similarly, we assume that the slip at the outer surface of the porous cell
layer is negligible, and impose no slip there

ϕ r R z tu t u t· = · on = ( , ),c c c e c c (11)

where R z R zt e e= (∂ /∂ + )/ 1 + (∂ /∂ )c c r z c
2 is the tangent vector to the

surface. To test the validity of this assumption the magnitude of the slip
at the outer surface of the cell layer should be determined from
measurements of the flow distribution with a cell layer attached to
the hollow fibre. However, in the absence of such experimental data, we
make the simplifying assumption that the cell layer permeability is low
enough for (11) to provide a reasonable approximation to the Beavers–
Joseph boundary condition.

Table 1
Typical bioreactor dimensions, fluid transport parameter values and mass transport parameter values for the single-fibre HFB module.

Parameter Description Typical value Reference

Bioreactor dimensions
Rl Lumen radius 200 μm Shipley et al. (2010)

Rm Fibre outer radius 400 μm Shipley et al. (2010)

Re ECS outer radius 1000 μm Shipley et al. (2010)

L Lumen length 10 cm Shipley et al. (2010)

Fluid transport
ρ Fluid density 1000 kg m−3 Elert (2015)

μ Fluid dynamic viscosity 1.00 × 10 Pa s−3 Elert (2015)

ϕm Membrane porosity 0.77 Meneghello et al. (2009)
ϕc Membrane porosity 0.6 Shipley and Waters (2012)
km Membrane permeability 2.39 × 10 m−16 2 Chapman et al. (2014)

kc Cell layer permeability 7.5 × 10 m−13 2 Appendix B.1

Ql in, Lumen inlet flow rate 3.33 × 10 –3.33 × 10 m s−10 −8 3 −1 (0.2–2 ml min−1 ) Shipley et al. (2010), Shipley and Waters (2012)

U Q πR= /(2 )l in l,
2 Typical axial lumen flow velocity 0.013–0.13 m s−1 –

Pl out, Lumen outlet pressure 1.027 × 10 –2.068 × 10 Pa5 5 (14.9–30.0 psi)* Shipley et al. (2010)

Patm Atmospheric pressure 1.013 × 10 Pa5 (14.7 psi) Elert (2015)

Mass transport
Oxygen
Dl Lumen diffusivity 3 × 10 m s−9 2 −1 Shipley and Waters (2012)

Dm Membrane diffusivity 3 × 10 m s−10 2 −1 Shipley and Waters (2012)

Dc Cell layer diffusivity 6 × 10 m s−9 2 −1 Shipley and Waters (2012)

De ECS diffusivity 3 × 10 m s−9 2 −1 Shipley and Waters (2012)

Lactate
Dl Lumen diffusivity 1.4 × 10 m s−9 2 −1 Holm et al. (1981)

Dm Membrane diffusivity 1.4 × 10 m s−10 2 −1 †

Dc Cell layer diffusivity 6 × 10 m s−9 2 −1 Eggleton et al. (1928)

De ECS diffusivity 1.4 × 10 m s−9 2 −1 Holm et al. (1981)

* In all simulations Pl out, is chosen below the threshold pressure at which there is backflow at the lumen outlet for the chosen lumen inlet flow rate.
† No experimental data, so Dm=0.1Dl assumed for lactate from relationship for oxygen.
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We treat the ECS ports as being distributed over the entire curved
wall of the ECS (r R z L= , ∈ [0, ]e ), henceforth referred to as ‘the ECS
port’, and set the fluid pressure to atmospheric pressure and the axial
velocity to zero on this boundary

p P r Ru e= , · = 0 on = .e atm e z e (12)

Shipley et al. (2010) confirmed that this approach gives excellent
agreement between model predictions and experimental measure-
ments of the lumen and ECS flow rates when there is no cell layer, as
the bulk of the pressure drop from the lumen to the ECS occurs across
the membrane. Whilst the precise details of the flow in the cell layer
and ECS will determine how closely the model predictions agree with
experimental flow rate measurements when there is a growing cell
layer, the membrane permeability will still be the key determinant of
the flow in the ECS, since it is much lower than the cell layer
permeability (see Table 1). Treating the ECS port as a distributed port
should therefore still give a good approximation to explicitly modelling
flow through the two ECS ports.

The ends of the fibre are glued into place with epoxy resin and the
walls of the ECS are solid, so there is no flow out of the ends of the
membrane, cell layer and ECS. Hence,

z Lu e u e u e· = · = · = 0 on = 0, .m z c z e z (13)

In the experimental set-up, the volumetric flow rate of fluid into the
lumen and normal stress at the lumen outlet are fixed, so

∫π r r Qu e2 · d = ,
r

R
l z z l in

=0
=0 ,

l

(14)

σ P z L r Re e· · = on = , 0 < < .z l z l out l, (15)

These conditions are sufficient to determine the fluid pressures and
velocities in the reduced model for the fluid flow obtained by exploiting
the small aspect ratio of the bioreactor (see Appendices A and C).

2.2.2. Mass transport: oxygen and lactate
As the timescales for advection, diffusion and consumption of

oxygen and production of lactate are much shorter than the timescale
for cell layer growth for the flow rates we consider (see Section 3), we
assume that the solute transport is quasi-steady on the growth time-
scale, and thus governed by steady advection–diffusion equations in
the lumen and ECS

c D c i l e∇ u·( ) = ∇ for = , ,i i i i
2 (16)

where ci (i l e= , ) is the solute (oxygen or lactate) concentration and Di
(i l e= , ) are the assumed constant solute diffusivities in the lumen and
ECS. In the membrane, the transport is governed by

ϕ c ϕ D c∇ u ∇ ∇·( ) = ·( ),m m m m m m (17)

where cm is the solute concentration (per unit volume of fluid) and Dm
is the effective solute diffusivity (accounting for dispersion effects). In
the cell layer, there is also oxygen uptake and lactate production, so the
solute transport is described by the reaction–advection–diffusion
equation

ϕ c ϕ D c mϕ c∇ u ∇ ∇·( ) = ·( ) + ( ),c c c c c c c c (18)

where cc is the solute concentration and Dc is the effective solute
diffusivity, and the reaction term mϕ c( )c c describes the rate of oxygen
uptake (for m = −1) or lactate production (for m=1) by the cells. Eqs.
(17) and (18) are derived by volume averaging (reaction-)advection–
diffusion equations for the solute concentrations in the pore space over
the membrane and cell layer, respectively (see Gray, 1975; Quintard
and Whitaker, 1994 for further details).

Oxygen uptake by cell populations in HFBs is typically modelled by
Michaelis–Menten kinetics (Abdullah and Das, 2007; Chen and
Palmer, 2009; Das, 2007; Pillarella and Zydney, 1990; Shipley et al.,
2011), for which

c V c
C c

( ) =
+

,c
max c

c1/2 (19)

where Vmax (in mol m s−3 −1) is the maximal uptake rate per unit volume
of the cell layer and C1/2 is the concentration at which the uptake rate is
half-maximal. Here we restrict attention to cell types for which
c C≫c 1/2 (see Section 3), so that (19) can be approximated as constant

c V( ) ≈ ,c max (20)

and (18) can be solved analytically for a given position of the outer
boundary of the cell layer, r R z t= ( , )c . We also assume that the lactate
production rate is approximately constant, since the culture medium is
sufficiently glucose-rich and the lactate concentration kept sufficiently
low by lactate buffering for this to be a reasonable approximation (see
Shipley and Waters, 2012).

Since the oxygen and lactate distributions are assumed to be
axisymmetric, we impose no diffusive flux through r=0

D c r∇ e· = 0 on = 0.l l r (21)

At the lumen–membrane and membrane–cell layer interfaces we
impose continuity of solute concentration and flux

c c c D c ϕ c D c r Ru ∇ e u ∇ e= , ( − )· = ( − )· on = ,l m l l l l r m m m m m r l (22)

c c ϕ c D c ϕ c D c r Ru ∇ e u ∇ e= , ( − )· = ( − )· , on = .m c m m m m m r c c c c c r m

(23)

At the outer surface of the cell layer we impose continuity of the
concentration and flux relative to the moving boundary

c c

ϕ c R
t

ϕ D c c D c r R z tu n ∇ n u ∇ n

= ,

· − ∂
∂

− · = ( − )· on = ( , ).

m c

c c c c
c

c c c c e e e e c c
⎛
⎝⎜

⎞
⎠⎟

(24)

With the normal velocity continuity conditions in (6), (7) and (9), the
flux conditions above reduce to continuity of diffusive flux

D c ϕ D c r R∇ e ∇ e· = · on = ,l l r m m m r l (25)

ϕ D c ϕ D c r R∇ e ∇ e· = · on = ,m m m r c c c r m (26)

ϕ D c D c r R z t∇ n ∇ n· = · on = ( , ).c c c c e e c c (27)

There is no concentration flux out of the ends of the membrane, cell-
layer and ECS, so

D c z L i m c e∇ e· = 0 on = 0, for = , , .i i z (28)

Experimentally, the oxygen concentration at the lumen inlet is held
constant and there is no lactate in the culture medium entering the
lumen, so

c
C

z r R= for oxygen,
0 for lactate,

on = 0, 0 < < .l
in

l
⎧⎨⎩ (29)

Following Shipley and Waters (2012), we assume that the culture
medium leaving the lumen outlet and ECS port is well-mixed and
impose zero-diffusive-flux at these outlets for both the oxygen and
lactate transport

D c z L r R∇ e· = 0 on = , 0 < < ,l l z l (30)

D c r R∇ e· = 0 on = .e e r e (31)

2.2.3. Cell layer growth
We assume that the cell density in the cell layer is constant and

that changes in the cell number occur at its outer surface, which
moves outwards if the cell proliferation rate exceeds the cell death
rate and inwards if the death rate exceeds the proliferation rate
(due to cells that die detaching from the surface and being carried
away by the flow). Cells in the bulk of the cell layer are assumed to
be stationary and quiescent due to contact inhibition (Engel et al.,
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2005; Machide et al., 2006; Lee et al., 2003; Guo et al., 1989).
Cell proliferation and death are assumed to depend on the oxygen

and lactate concentrations, c and l, and interstitial fluid shear stress σ
(the shear stress on the cells due to the flow through the spaces
between the cells) at the surface of the cell layer. We assume that the
growth depends on the interstitial shear stress rather than the shear
stress on the cells from the ECS flow tangential to the surface, as the
interstitial shear stress is an order of magnitude larger for the flow
configuration considered here, both when the ECS ports are open and
when they are closed. Thus the normal velocity of the outer surface of
the cell layer is given by

R
z

R
t

G c l σ1 + ∂
∂

∂
∂

= ( , , ) ,c c
r R z t

2 −1/2

= ( , )c

⎛
⎝
⎜⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠
⎟⎟

(32)

where the growth function G is to be prescribed. We note that this
model is equivalent to the thin-rim (fast-consumption) limit of a two-
phase free-boundary model for the cells and culture medium in which
fast nutrient consumption at the tissue surface prevents nutrient
transport to the tissue interior so that cell proliferation is consigned
to the free boundary (King and Franks, 2006), except that in the
present model growth in the cell layer interior is prevented by contact
inhibition rather than lack of nutrients.

We estimate the interstitial shear stress from the interstitial fluid
velocity by assuming that the flow through the interstitial spaces can be
approximated as Poiseuille flow through a circular duct of diameter d
with mean velocity u| |c . With r∼ as the local radial coordinate, the
interstitial velocity profile is therefore

u r
d

u≈ 2| | 1 − 4 ,
∼

p c
2

2

⎛
⎝⎜

⎞
⎠⎟ (33)

so the interstitial shear stress on the cells is

σ μ
u
r

μ r
d

μ
d

u u=
∂
∂

≈ 16 | | = 8 | | .∼
∼p

r d

c

r d

c

= /2
2

= /2∼ ∼ (34)

Following previous studies (McElwain and Ponzo, 1977; Jones
et al., 2000; Lewis et al., 2005), and based on experimental evidence
that the proliferation rate of many cell types increases with oxygen
availability (Wang et al., 2005; Kim et al., 2001; Murrell et al., 1990),
we assume that the cell proliferation rate increases linearly with the
oxygen concentration provided it exceeds the minimum threshold
required for proliferation, Cmin. As data on the relationships between
cell death and lactate concentration, and cell death and shear stress, is
more limited, we assume that cells die and detach from the cell layer
surface at a constant rate when either the lactate concentration exceeds
the threshold at which it is toxic to the cells, Lmax, and/or the shear
stress exceeds a critical threshold, Σd. The effects of excess lactate and
shear stress are taken to be multiplicative, so that cells die at a faster

rate when both l L> max and σ Σ> d . We use a smoothed Heaviside
function rather than a normal Heaviside function to describe the
lactate and shear stress effects as l and σ cross Lmax and Σd, as a normal
Heaviside function would lead to discontinuities in R t∂ /∂c and very
sharp changes in R z t( , )c that would be difficult to resolve numerically
and for which the reduced model derived in the small aspect ratio limit
(Appendix A) would not be valid. Since the cell layer stops growing if it
fills the entire ECS or recedes to the fibre surface (which is taken to
represent all the cells dying), R R z t R≤ ( , ) ≤m c e. Thus we arrive at the
following form for G

G c l σ A c C c C Σ σ s

B B l L s B σ Σ s

( , , ) = [ ( − )H( − )F( − , )

− [(1 + F( − , ))(1 + F( − , )) − 1]]
p min min d s

d L max L s d s (35)

where H(·) is the Heaviside function and x s sxF( , ) = (1 + tanh( ))1
2 is the

smoothed Heaviside function with smoothing factor s; the constant Ap
is the growth rate of the cell layer per unit concentration if c C> min and
there is no cell death (l L< max and σ Σ< d); and Bd, BL and Bs together
determine the recession rate of the cell layer if l L> max and/or σ Σ> d

and there is no cell proliferation (c C< min or σ Σ> d).
Finally, we prescribe the initial depth of the cell layer as a function

of z

R z R z( , 0) = ( ).c c init, (36)

The full model for the flow, solute transport and cell layer growth is
thus given by Eqs. (2)–(32) and (34)–(36).

3. Model parameterisation and reduction

Typical values of the model parameters are given in Tables 1–3.
Where parameters are not obtainable from the literature, we determine
them via physical arguments in Appendix B. We nondimensionalise
Eqs. (2)–(36) and exploit the small aspect ratio of the bioreactor to
simplify the system (see Appendix A for details). For the inlet flow rates
in Table 1, the reduced Reynolds number for the flow (the ratio of
inertial to viscous forces in the fluid), Re ρUL μϵ =ϵ /2 2 , is in the range
5.3 × 10 –5.3 × 10−3 −2 (i.e. viscous forces in the fluid dominate inertial
forces), so we are justified in neglecting inertia in the lumen and ECS
flow equations (2). The reduced Péclet numbers in the different regions
(the ratios of the rates of axial advection to those of radial diffusion),

Pe UL Dϵ = ϵ /i i
2 2 (i l m c e= , , , ), are all (1), so advection and diffusion
are equally important. Although the maximum oxygen uptake/lactate
production rate, Vmax, is cell-type dependent (see Table 2), we assume
that the dimensionless uptake/production rate is (1) to retain a
balance between the rates of uptake/production and diffusion in the
reduced model, thus keeping our analysis as general as possible. We
estimate the cell layer growth rate per unit concentration, Ap, for
different cell types (Table 3) from their cell doubling times (see

Table 2
Cell culture, oxygen uptake, and lactate production parameter values for different cell types.

Solute Cell type Cell density

(cells m )−3
Cin (mol m )−3 C1/2 (mol m )−3 V (mol m s )max −3 −1 Reference

Oxygen Neonatal rat cardiomyocytes 1012 0.22 6.9 × 10−3 2.64 × 10−3 Radisic et al. (2005)

Primary rat hepatocytes 0.22 6.24 × 10−3 1.76 × 10−3 1.25 × 1013 Sullivan et al. (2007)

Pancreatic βTC3 cells 0.22 1.0 × 10−2 2.8 × 1014 6.37 × 10−3 Tziampazis and Sambanis (1995), Stabler et al.
(2009)

Bovine chondrocytes 1.4 × 1014 0.1 5.0 × 10−3 4.8 × 10−5 Malda et al. (2004), Obradovic et al. (1999), Fermor
et al. (2007)

Human foreskin fibroblasts (HFFs) 1.15 × 10−4 0.19 2.1 × 10−3 3.8 × 1012 Korin et al. (2007)

Lactate Rabbit articular chondrocytes
(monolayer)

– 3.45 × 10−4 Tomita et al. (2001)

Bovine articular chondrocytes (3D
culture)

1.4 × 1014 – 1.32 × 10−5 Obradovic et al. (1999)

Cin, C1/2 and Vmax as defined in Eqs. (29) and (19). Adapted from Shipley and Waters (2012).
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Appendix B.2). Since the cell layer growth timescale is much longer
than the timescales for advection and solute diffusion, we are justified
in assuming that the flow and solute transport are quasi-steady on the
growth timescale (see Appendix B.2).

In our simulations we vary seven parameters to determine their
effect on the cell layer growth: the lumen inlet flow rate Ql in, , the lumen
outlet pressure Pl out, , the maximum oxygen uptake/lactate production
rate, Vmax, the growth rate Ap, and the oxygen and lactate concentration
thresholds and shear stress threshold for cell proliferation and death,
Cmin, Lmax and Σd. In the absence of experimental data for the
concentration at which lactate becomes toxic to the cells, Lmax, we
follow Whittaker et al. (2009) and fix L = 0.4 mol mmax

−3 as a default
value for all cell types in our simulations.

Full details of how the reduced equations governing the cell layer
growth ((A.2)–(A.26) in Appendix A) are solved are given in Appendix
C. Briefly, we integrate the fluid and solute transport equations (2)–(3)
and (16)–(18), over the depth of each region to derive a PDE for the
lumen pressure (C.4) and expressions for the fluid pressures, flow
velocities and solute concentrations in each region in terms of the
lumen pressure (C.7)–(C.18). The coupled flow, solute transport and
cell layer growth problem is then solved numerically for a given starting
position of the outer surface of the cell layer. At each time step, the
lumen pressure PDE is solved for the current position of the outer
surface of the cell layer and the solution used to update the flow
velocities, solute concentrations and position of the outer surface of the
cell layer according to the growth law (32).

4. Results

4.1. Flow profiles and oxygen and lactate distributions

4.1.1. Uniform vs non-uniform cell layer depth
Before simulating the cell layer growth, we compared the flow, and

oxygen and lactate distributions in layers of rat cardiomyocytes of fixed
uniform and non-uniform depths to assess the impact of non-uni-
formity in the depth on oxygen delivery to, and lactate removal from,
the cells. Variations in the cell layer depth can arise experimentally
from non-uniformity in the initial cell seeding on the surface of the
fibre or in the subsequent cell proliferation, or both. Fig. E1 in
Appendix E shows that the uniformity of the cell layer depth has little
effect on the fluid pressure distribution, and therefore the flow profiles
(Fig. E2), in the bioreactor. This is because the majority of the pressure
drop from the lumen to the ECS occurs across the membrane and not
the more permeable cell layer. However, the uniformity of the cell layer
can have a significant effect on the oxygen and lactate distributions. For
example, changing from a constant cell layer depth to one that
decreases linearly along the fibre (but keeping the volume of the cell
layer the same), switches the minimum oxygen and maximum lactate
concentrations from being at the ECS wall around the lumen outlet

(r R R∈ [ , ]c e , z=L) (Figs. E3(a) and E4(a)) to the ECS wall around the
lumen inlet (r R R∈ [ (0), ]c e , z=0) (Figs. E3(b) and E4(b)). This is
because more oxygen is taken up and more lactate produced where
the cell layer is thicker, since the number of cells in the cross-section of
the cell layer is greater (as the cell density is assumed constant). The
sensitivity of the solute distributions to the uniformity of the cell layer
depth suggests that fine control over the culture conditions may be
required to maintain uniform solute distributions, and hence uniform
growth, for cells with high nutrient demands.

4.1.2. Changes in flow profiles and solute distributions with growth
The cell layer grows outwards from the fibre provided that the shear

stress is below the threshold at which cells die (σ Σ| <r R d= c ), there is
sufficient oxygen (c C| >r R min= c ), and either the lactate concentration is
below the threshold at which it causes cell death (l L| <r R max= c ) or the
positive effect of oxygen on growth outweighs the negative effect of
lactate. As the cell layer grows, the surface oxygen concentration c|r R= c

decreases and the surface lactate concentration l|r R= c increases, causing
growth to slow over time. If l L| <r R max= c and c|r R= c decreases to Cmin (or
c C| >r R min= c and l L| >r R max= c ) and the positive and negative effects of
oxygen and lactate on the growth balance each other, then the cell layer
attains a steady state depth. Since the radial flow velocity in the ECS
decreases with r (as shown in Fig. E2b), the shear stress on the cells at
the outer surface decreases as the layer grows. Hence, if σ|r R= c is
initially below Σd, it will remain so as the cell layer grows (see
Fig. 4(c)). Conversely, if σ|r R= c is initially above Σd, then the cell layer
recedes and the shear stress on the surface cells increases. Hence, the
layer will continue to recede until it reaches the fibre surface (see
Figs. 5 and 6, which are discussed in detail in Section 4.2.1).

4.2. Cell layer growth simulations

For sustained growth of the cell layer it is required that
c C| >r R min= c , l L| <r R max= c , and σ Σ| <r R d= c . In this investigation we
assume that the bioreactor dimensions and membrane properties
(its depth and permeability) are fixed, and that our control
parameters are Ql in, and Pl out, and the initial depth of the cell layer
R z R( ( ) − )c init m, , as these are the parameters that can be readily
prescribed experimentally. As the governing equations for the flow,
solute transport and cell layer growth must be solved numerically,
it is not possible to define analytical operating equations for Ql in,
and Pl out, based on the conditions on c, l and σ as in Shipley et al.
(2011) and Shipley and Waters (2012). Instead, we perform
numerical simulations to compare the growth of cell types with
different oxygen demands and shear stress tolerances for flow rates
and outlet pressures typical of those used in
experiments: Q ∈ [3.33 × 10 m s , 3.33 × 10 m s ]l in,

−9 3 −1 −8 3 −1 and
P ∈ [1.027 × 10 Pa, 2.068 × 10 Pa]l out,

5 5 . We consider two cell types:
rat cardiomyocytes, which have high oxygen requirements (max-

Table 3
Cell layer growth parameter values.

Cell type Ap (μm h /(mol m )−1 −3 ) Bd (μm h−1) C (mol m )min −3 L (mol m )max −3 Σd (Pa) References

Neonatal rat
cardiomyocytes

2.3 0.5 6 × 10 –8 × 10−3 −2 0.4 0.03 Takamiya et al. (2011), Korin et al. (2007)

Primary rat hepatocytes 2.3 0.5 2.1 × 10−2 0.4 2 Davidson et al. (2010), Nyberg et al. (1994)

Pancreatic βTC3 cells – – 1.46 × 10−2 0.4 1.4 Tziampazis and Sambanis (1995), Stabler et al. (2009),
Sankar et al. (2011)

Bovine chondrocytes 1.8 0.2 2.2 × 10 –1.32 × 10−3 −2 0.4 2 Galban and Locke (1997), Whittaker et al. (2009)

HFFs 12.1 2.3 2.1 × 10−2 0.4 0.03 Korin et al. (2007)

Ap, Bd, Cmin, Lmax and Σd as defined in Eq. (35). See Appendix B for explanation of how Ap is estimated. Weight factors for cell layer recession rate for excess lactate and excess shear

stress, BL and Bs, taken to be 1 in all simulations. Smoothing factors for lactate and shear-stress dependence functions in (35) chosen as s = 10s 5 and sL=10.
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imum oxygen uptake rate V = 2.64 × 10 mol m smax
O −3 −3 −1,

C = 8 × 10 mol mmin
−2 −3) and are assumed to have low shear stress

tolerance (Σ = 0.03 Pad ), and bovine chondrocytes, -
which have low oxygen requirements V( = 4.8 × 10 mol m smax

O −5 −3 −1,
C = 5 × 10 mol m )min

−3 −3 and can withstand higher shear stresses
(Σ = 2 Pad ). We assume that initially the cells form a layer of
uniform depth 50 μm (i.e. approximately 5 cells deep) along the
length of the fibre, so that R z R z( , 0) = ( ) = 450 μmc c init, . The simula-
tions enable us to predict values of Ql in, and Pl out, that maximise the
average depth to which the cell layer grows in a set time or
minimise the time it takes to grow to fill the ECS. We also briefly
consider the impact of variation in the initial cell layer depth with z
on the cell layer growth, and the sensitivity of the growth to the
lactate toxicity threshold, Lmax.

The simulations are run for a maximum period of T=60 days, or
until a stopping criterion is reached (the cell layer grows to fill the
entire ECS, recedes to the fibre surface or reaches a steady state). A
maximum culture time of 60 days is chosen since significant degrada-
tion of the PLGA in the membrane occurs for longer times (Hoque
et al., 2012; Azimi et al., 2014), increasing the membrane permeability
and invalidating our assumption that it remains constant. Once 60 days
have elapsed, the mean and standard deviation of the final outer radius

of the cell layer, ∫R R z T z= ( , ) dc L
L

c
1

0
and ∫ R z T R zSD = ( ( , )− ) d

L

L
c c

1
0

2 ,

are recorded.

4.2.1. Impact of flow rate and outlet pressure on growth
The oxygen and lactate concentrations and shear stress at the outer

surface of the cell layer, and hence the growth rate of the cell layer,
depend onQl in, and Pl out, . Figs. 3(a) and (b) show how Rc varies withQl in,
and Pl out, for cardiomyocytes and chondrocytes respectively.

The cell layer fails to fill the ECS (which would correspond to
R = 1000 μmc ) in 60 days for either cell type for any of the flow rates
and outlet pressures considered. However for the cardiomyocytes, Rc

attains its maximum value, 871 μm, when Q = 3.33 × 10 m sl in,
−8 3 −1 and

P = 1.965 × 10 Pal out,
5 (shown by the green circle in Fig. 3(a)), and

decreases sharply when P > 1.965 × 10 Pal out,
5 (to the right of the

vertical green line in Fig. 3(a)). This change is due to the changes in
the balance of the effects of increased oxygen concentration and

increased shear stress at the surface of the cell layer as Ql in, and Pl out,
increase (l L≪ max for both cell types over the range of flow rates and
outlet pressures considered). For P < 1.965 × 10 Pal out,

5 , the shear
stress σ is below the cell death threshold, Σ = 0.03 Pad , over the whole
length of the fibre, so no cell death occurs (Fig. 4), and cell proliferation
increases as Ql in, and Pl out, increase due to improved oxygen delivery.
For P > 1.965 × 10 Pal out,

5 , as Pl out, increases σ exceeds Σd over an
increasing length of the fibre, so cells die and the cell layer recedes
towards the fibre surface at r = 400 μm (Fig. 5). For chondrocytes, Rc

increases monotonically asQl in, and Pl out, increase, since the shear stress
is much lower than the threshold at which they die, Σ = 2 Pad .

Our model predicts that the growth rate of the cardiomyocyte layer
is maximised if we fix the flow rate and outlet pressure to be
Q = 3.33 × 10 m sl in,

−8 3 −1 and P = 1.965 × 10 Pal out,
5 ; for the chondro-

cytes the growth rate is maximised when Q = 3.33 × 10 m sl in,
−8 3 −1 and

P = 2.068 × 10 Pal out,
5 (green circle in Fig. 3(b)).

For the cardiomyocytes, the standard deviation in the outer radius
of the cell layer at t=60 days, SD, decreases as Ql in, decreases and as
Pl out, increases for P < 1.931 × 10 Pal out,

5 , ranging from 0.2 μm (when
Q = 2 × 10 m sl in,

−8 3 −1 and P = 1.931 × 10 Pal out,
5 ) to 44 μm (when

Q = 3.33 × 10 m sl in,
−8 3 −1 and P = 1.034 × 10 Pal out,

5 ). For the chondro-
cytes, SD also decreases as Ql in, decreases and Pl out, increases, but is
much smaller than for the cardiomyocytes for each combination of Ql in,
and Pl out, , SD = 0–2 μm. The greater variation in the depth of the cell
layer for the cardiomyocytes is due to their greater oxygen uptake rate.
Their greater uptake rate means that at low outlet pressures increasing
the flow rate only increases oxygen delivery to the upstream end of the
cell layer, so it grows more quickly than the downstream end.

4.2.2. Impact of variation in initial cell layer depth on growth
In the previous simulations the initial depths of the cell layers were

uniform along the fibre. However, since the oxygen and lactate
distributions are affected by the degree of uniformity of the cell layer,
variation in its initial depth along the fibre can significantly affect its
subsequent growth. Such variation in the cell layer depth often arises as
a result of spatial heterogeneity in the cell seeding distribution, so in
this section we explore its potential impact on the growth of the cell
layer.

We simulate the growth of the layer of rat cardiomyocytes described

Fig. 3. Contour plots showing how Rc, the mean outer radius of the cell layer at t=60 days, depends on the lumen inlet flow rate Ql in, and lumen outlet pressure Pl out, for (a) rat

cardiomyocytes and (b) bovine chondrocytes, when the ECS port is open. Standard deviation in the cell layer depth at t=60 days: (a) SD = 0.2–44 μm (b) SD = 0–2 μm. The reduced model

for the flow, solute transport and cell layer growth (Eqs. (A.24)–(A.26) and (C.4)–(C.18) in Appendices A and C) corresponding to Eqs. (2)–(36) was solved with R z( ) = 450 μmc init, .

Parameter values: (a) V = 2.64 × 10 mol m smax
O −3 −3 −1, V = 1.32 × 10 mol m smax

L −3 −3 −1, C = 8 × 10 mol mmin −2 −3, L = 0.4 mol mmax −3, Σ = 0.03 Pad , (b) V = 4.8 × 10 mol m smax
O −5 −3 −1,

V = 1.32 × 10 mol m smax
L −5 −3 −1, C = 1.32 × 10 mol mmin −2 −3, L = 0.4 mol mmax −3, Σ = 2 Pad . All other parameter values as in Tables 1–3. Green circles mark the values of Ql in, and

Pl out, at which Rc is maximised. Vertical green line in (a) shows the outlet pressure above which recession of the cell layer occurs, P = 1.965 × 10 Pal out, 5 , since σ Σ> d . White region

corresponds to outlet pressures at which there is backflow at the lumen outlet for the given inlet flow rate. (See online version of paper for colour version of this figure.)
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in Section 4.1.1, whose depth decreases linearly along the fibre (as a
simple example of a non-uniform cell layer), at the flow rate and outlet
pressure predicted to be optimal for the growth of the uniform layer in
Section 4.2.1 (Q = 3.33 × 10 m sl in,

−8 2 −1 and P = 1.965 × 10 Pal out,
5 ). We

obtain a very different result from Fig. 4, as shown in Fig. 6. Since the
non-uniform cell layer is initially thinner at its downstream end, the
shear stress on the cells at the surface is higher than for the uniform
layer and exceeds Σd. Hence the cell layer quickly recedes towards the
fibre surface at its downstream end (for z > 7.38 cm), but grows
outwards over the upstream part of the fibre (z < 7.36 cm) (Fig. 6(d)),
where σ Σ< d (Fig. 6(c)). The shear stress on the cells at the down-
stream end increases as the cell layer recedes, so the layer continues to
recede until it reaches the membrane at r = 400 μm after 5 days.
Consequently, after 60 days the mean final outer radius of the cell layer,
R = 750 μmc is much smaller (and the standard deviation in the final
outer radius, SD = 211 μm, much larger) than for the initially uniform
cell layer with the same flow rate and outlet pressure. Whilst the
change in the depth of the cell layer between z = 7.36 cm and
z = 7.38 cm in Fig. 6(d) appears sharp, it should be noted that the cell

layer is less than 0.5 mm deep, so the gradient of the surface in this
region is of order 1. Nevertheless, the change in depth may be sharper
than would occur in practice, and reflects the simplicity of the form of
shear stress dependence assumed in the cell layer growth law (35).

Reducing Pl out, brings the shear stress on the cells near the outlet
below Σd, so that the cell layer grows outwards over its whole length to
a mean outer radius of R = 870 μmc after 60 days. However, the cell
layer remains thicker at its upstream end and the standard deviation in
the final outer radius (SD = 16 μm) is larger than for the uniform cell
layer. Similar results are observed when the initial depth of the cell
layer increases with z (R z R z z( , 0) = ( ) = (419 + 6. 1 × 10 ) μmc c init,

−4 )—
the cell layer recedes at the downstream end—(where σ Σ> d) if
Q = 3.33 × 10 m sl in,

−8 3 −1 and P = 1.965 × 10 Pal out,
5 , so that

R = 705 μmc and SD = 14 μm, but grows over its whole length at lower
outlet pressures.

5. Comparison with flow, solute transport and growth with
ECS port closed

Finally we briefly describe the key differences in the flow, solute

Fig. 4. Evolution of (a) the surface oxygen concentration c|r Rc= , (b) surface lactate concentration l|r Rc= , (c) surface interstitial shear stress σ|r Rc= and (d) outer surface r R z t= ( , )c of a

layer of rat cardiomyocytes. Mean and standard deviation of outer radius at t=60 days: R = 871 μmc , SD = 3 μm . Initial cell layer depth and parameter values as in Fig. 3(a) with

Q = 3.33 × 10 m sl in, −8 3 −1, P = 1.965 × 10 Pal out, 5 . Arrows indicate direction of increasing time, solid lines the dependent variables at regular intervals of 6 days, dash-dot line in (c) the

shear stress cell death threshold Σd, and dashed line in (d) the initial cell layer outer radius R z( ) = 450 μmc init, .
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transport and cell layer growth when the ECS port is closed.

5.1. Flow

When the ECS port is closed, there is no normal flow out of, or axial
flow along, the ECS outer boundary,

r Ru e u e· = 0, · = 0 on = ,e r e z e (37)

so the axial flow in the lumen dominates the radial flow and flow is
negligible in the rest of the bioreactor (see Appendix D.1). For the cell
types and range of flow rates considered here, the interstitial shear
stress remains far below the cell death threshold, Σd. Thus changes in
the interstitial shear stress due to changes in Ql in, and Pl out, do not affect
the growth of the cell layer.

5.2. Solute transport

As before, we nondimensionalise the governing equations ((2)–
(13), (14)–(36), (37)) and exploit the small aspect ratio of the
bioreactor to simplify the resulting system as in Appendix A. The mass
transport problem for the oxygen and lactate reduces to solving an

advection–diffusion equation for the lumen concentration at each
growth time step (see Appendix D.2). Since radial flow through the
bioreactor is much weaker than when the ECS port is open, the rates at
which oxygen is transported through the membrane to the cells and
lactate is advected away from the cell layer are much lower.
Consequently the minimum oxygen and maximum lactate concentra-
tions are much lower and higher respectively. For example, for the
uniform cell layer in Fig. 4(d) (R = 450 μmc ) the minimum oxygen
concentration with the ECS port closed is 0.108 mol m−3 (compared to
0.216 mol m−3 with the port open) and the maximum lactate concentra-
tion is 0.119 mol m−3 (more than 60 times higher than with the port
open).

With the ECS port closed, the leading order oxygen and lactate
concentrations at the outer surface of the cell layer, and therefore the
cell layer growth rate, depend on Ql in, (through its effect on the oxygen
and lactate transport through the lumen) but not on Pl out, . As when the
ECS port is open, the growth rate of the cell layer decreases as it grows
out into the ECS, since the surface oxygen concentration decreases with
distance from the fibre. Since cell layer growth does not affect the
dominant flow in the bioreactor, it only affects the oxygen and lactate
distributions by altering uptake/production and diffusion within the

Fig. 5. Evolution of (a) c|r Rc= , (b) l|r Rc= , (c) σ|r Rc= and (d) R z t( , )c for a layer of rat cardiomyocytes with too high an outlet pressure. Cell layer in (d) recedes to fibre surface at r = 400 μm.

Parameter values as in Fig. 4 with Q = 3.33 × 10 m sl in, −8 3 −1, P = 2.068 × 10 Pal out, 5 . Lines and arrows as in Fig. 4.
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ECS (it changes the latter as the solutes diffuse more slowly in the cell
layer than in the free fluid in the ECS).

5.3. Growth

The reduced system for the flow, solute transport and growth with
the ECS port closed is solved as described in Appendix D.3, and used to
simulate the growth of initially uniform layers of rat cardiomyocytes
and bovine chondrocytes as in Section 4.2.1. Fig. 7 shows how Rc, the
mean outer radius of the cell layer at t=60 days, varies with Ql in, for the
cardiomyocytes and chondrocytes (R z( ) = 450 μmc init, as in Fig. 3). The
cardiomyocyte layer quickly reaches a steady state depth
(R = 463–466 μmc ), since the surface oxygen concentration c|r R= c ra-
pidly approaches Cmin. By contrast, the depth of the chondrocyte layer
has not reached equilibrium after 60 days, when R = 656–657 μmc . In
this case the oxygen uptake rate is lower, so c|r R= c remains well above
Cmin as the cell layer grows. For both cardiomyocytes and chondrocytes
lactate levels remain below the threshold for cell death,
L = 0.4 mol mmax

−3, throughout the simulation period.

The cardiomyocyte layer grows far less than when the ECS port is
open (R = 463–466 μmc compared to 516–871 μm when
P < 1.965 × 10 Pal out,

5 ), whereas the reduction in growth is very small
for the chondrocyte layer (R = 656–657 μmc compared to 665–675 μm).
The reduction in growth when the ECS port is closed is due to reduced
radial flow and oxygen delivery to the cells. The effect is more
pronounced for the cardiomyocytes as they consume oxygen at a
higher rate, causing the oxygen concentration at the outer surface of
the cell layer to decrease more rapidly as it grows.

Fig. 7 shows that increasing Ql in, has only a modest effect on the
final cell layer depth for both cardiomyocytes and chondrocytes. This is
because increasing Ql in, increases only advective transport through the
lumen at leading order when the ECS port is closed, leading to a
marginal increase in the oxygen concentration at the inner surface of
the membrane, which propagates through the membrane and cell layer
by diffusion. The variation in the cell layer depth at t=60 days for the
cardiomyocytes is much smaller when the ECS port is closed
(SD = 0.5–1.4 μm) than when it is open (SD = 0.2–44 μm), as expected
given that the cardiomyocyte layer grows very slowly. The reduction is

Fig. 6. Evolution of (a) c|r Rc= , (b) l|r Rc= , (c) σ|r Rc= and (d) R z t( , )c for an initially non-uniform layer of rat cardiomyocytes. Cell layer grows outwards at upstream end (z < 7.36 cm), but

recedes to fibre surface in 5 days at downstream end (z > 7.38 cm) (d) where σ Σ> d (c). Note the scales on the axes, from which it can be seen that the gradient of the surface between the

regions of growth and recession is of order 1. Initial cell layer outer radius R z z( ) = (480−6. 1 × 10 ) μmc init, −4 . Mean outer radius at t=60 days, R = 750 μmc . Parameter values as in Fig. 4

(Q = 3.33 × 10 m sl in, −8 3 −1, P = 1.965 × 10 Pal out, 5 ). Lines and arrows as in Fig. 4.
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less pronounced for the chondrocytes (SD = 0.1–0.4 μm compared to
SD = 0–2 μm).

From these results it is clear that opening the ECS port and using
higher flow rates and outlet pressures can enhance cell layer growth.
However, it is important to know the level of shear stress that the cells
can withstand.

5.4. Sensitivity of growth to lactate concentration

So far, we have assumed that the lactate concentration at which cell
death occurs is the same for all cells (L = 0.4 mol mmax

−3), and have
found that for the cell types and operating conditions considered the
lactate concentration at the outer surface of the cell layer remains much
lower than Lmax. In the absence of cell-type-specific data for Lmax, the
sensitivity of the cell layer growth to Lmax warrants further investiga-
tion. Therefore we now simulate the growth of an initially uniform rat
cardiomyocyte layer as Lmax varies in the range 0.001–0.4 mol m−3.
Fig. 8 shows how the growth of the cell layer (measured as the
difference, RΔ c , between its mean final outer radius, Rc, and initial
outer radius, R = 450 μmc init, ) varies with Lmax when the ECS port is
closed and when it is open. With the ECS port closed, the cell layer

recedes if L < 0.14 mol mmax
−3 (i.e. if Lmax is to the left of the vertical line

in Fig. 8(a)), the recession increasing as Lmax decreases, but grows if
L > 0.14 mol mmax

−3. For L > 0.25 mol mmax
−3, growth is approximately

constant. With the ECS port open, the cell layer grows even for low
values of Lmax, the amount of growth increasing as Lmax increases until
L = 0.15 mol mmax

−3. For L > 0.15 mol mmax
−3 growth does not change

with Lmax. The fact that growth is more sensitive to the value of Lmax

when the ECS port is closed, and that the cell layer may recede if Lmax is
low, further underlines the benefits of operating the bioreactor with the
ECS port open.

6. Discussion

The simulation results show that opening the ECS ports, increasing
Ql in, and increasing Pl out, all improve growth, provided that the shear
stress on the cells at the surface does not exceed that at which the cells
die or detach from the layer (both processes being captured by
recession of the cell layer in the model). Our results also show that
the improvement in growth associated with opening the ECS ports is
greater for cells with higher oxygen demands (Fig. 3).

Increasing Ql in, and/or Pl out, increases the oxygen concentration and

Fig. 7. Variation in the mean, Rc, and standard deviation, SD, of the cell layer outer radius at t=60 days with Ql in, for (a) rat cardiomyocytes and (b) bovine chondrocytes, when the ECS

port is closed. Parameter values: (a) as in Fig. 3(a); (b) as in Fig. 3(b). Solid line shows Rc, dashed line SD.

Fig. 8. Variation in the growth of a rat cardiomyocyte cell layer with the lactate cell death threshold Lmax after 60 days of culture with the ECS port (a) closed and (b) open. Vertical line

in (a) shows minimum lactate threshold for cell layer growth, L = 0.14 mol mmax −3, for given operating conditions. Initial cell layer outer radius R z( ) = 450 μmc init, . Cell layer growth

measured by R R RΔ = −c c c init, . Parameter values as in Fig. 4.
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decreases the lactate concentration at the cell layer surface, but also
increases the shear stress on the cells. For shear-sensitive cells it is
necessary to avoid imposing too high an outlet pressure and inlet flow
rate. In view of this, we have used the model to predict the inlet flow
rate and outlet pressure that maximise the growth of initially uniform
layers of rat cardiomyocytes (assumed to be shear-sensitive) and
bovine chondrocytes (shear-tolerant) when the ECS ports are open,
and have predicted a lower optimal Pl out, for rat cardiomyocytes (Fig. 3).
This highlights the extent to which the optimal flow rate and outlet
pressure will be cell-type-specific. Cells should be cultured at the
highest possible Ql in, and Pl out, for which the interstitial shear stress in
the cell layer remains below Σd, to maximise oxygen delivery and
lactate clearance.

Although our model simulations predict that cells such as cardio-
myocytes, with high oxygen demands (high Vmax

O and Cmin), should be
grown with the ECS ports open, it may be better to keep the ECS ports
closed for cells that are very sensitive to shear stress (have a very low
Σd) or have sufficiently low oxygen requirements that the culture
medium can be recycled directly from the outlet to the inlet (i.e. does
not need to be replaced) without any adverse effect on the growth.
When the ECS port is open, the predicted percentage increase in the
cell number for an initially uniform layer of cardiomyocytes is 1300%
after 60 days (for Q = 3.33 × 10 m sl in,

−8 3 −1 and P = 1.965 × 10 Pal out,
5 ),

based on the volume change of the cell layer and assuming that the cells
are all spherical with a fixed radius of 10 μm (Table B1), while for
chondrocytes it is 600% (for Q = 3.33 × 10 m sl in,

−8 3 −1 and
P = 2.068 × 10 Pal out,

5 ). When the ECS port is closed, the percentage
increases in cell number for cardiomyocytes and chondrocytes are 30%
and 500% respectively (for Q = 3.33 × 10 m sl in,

−8 3 −1). We anticipate
that opening the ECS port and using a high flow rate and outlet
pressure could lead to similar improvements in growth for rat
hepatocytes and pancreatic beta cells to those for rat cardiomyocytes,
given their similar oxygen requirements and higher shear stress
tolerances (Tables 2 and 3).

For the cell types we have considered, the surface lactate concen-
tration remains well below the estimated toxicity threshold, Lmax, for
typical operating conditions (see Figs. 4–6), and oxygen is the growth-
rate limiting solute. However, in the absence of experimental estimates
of Lmax, we have used the model to predict the sensitivity of the cell
layer growth to Lmax. Our results suggest that the range of values of Lmax

for which the lactate concentration is growth-rate limiting (or causes
recession of the cell layer) is smaller when the ECS ports are open.
Therefore it may be better for the ECS ports to be open if Lmax is not
known for the cell type being cultured (provided the cells are not highly
shear-sensitive).

Our simulations demonstrate that cell layer growth (and the
optimal flow rate and outlet pressure) may be sensitive to variation
in the initial cell layer depth along the fibre (Fig. 6). They predict that
the cell layer will grow less and have a less uniform depth after 60 days
if its initial depth is non-uniform. This suggests that cell seeding and
initial culture conditions should be aimed at producing a uniform cell
layer depth (by making the initial cell density on the fibre surface and
the solute distributions as uniform as possible) to maximise growth and
the uniformity of the final cell layer. However, in practice it can be
difficult to achieve such uniformity in the initial cell density and
therefore in the growth (Chapman et al., 2014). We have considered
initial cell layers, r R z= ( )c init, , whose depth is uniform or decreases/
increases linearly with distance along the fibre as an initial exploration
of the impact of non-uniformity on the cell layer growth. However,
further investigation of choices for R z( )c init, is needed to confirm
whether non-uniformity has only a negative impact on the growth.

Simulating growth with different R z( )c init, across a range of experi-
mental values of Ql in, and Pl out, would also enable the prediction of
optimal combinations of R z( )c init, , Ql in, and Pl out, .

There are several ways in which this study could be extended and
the accuracy of its predictions improved. The first step would be to
validate the model predictions against experiments for specific cell
types. This would involve estimating parameters such as the lactate
toxicity threshold Lmax and shear stress death threshold Σd, and the
death rates under excess lactate and shear stress, B BL d and B Bs d . It may
be necessary to use a more detailed growth law to capture the precise
dependence of the proliferation and death rates on the oxygen and
lactate concentrations.

Although contact inhibition is believed to be significant for the cell
types considered here, it would be instructive to consider simulations
in which growth occurs throughout the cell layer, rather than just at the
free surface, to see how the growth predictions differ. An assessment of
which assumption is more realistic, i.e. surface or volumetric growth,
could then be made by comparing model predictions to experimental
measurements of cell layer growth.

A simplifying assumption made in deriving the model was that the
cell layer is initially axisymmetric and remains so as it grows. In
practice, there will be some azimuthal variation in the cell layer depth,
and this may affect cell layer growth. However, to include such
variation in the model would require fully 3D simulations, which
would be highly computationally expensive, and hence lie beyond the
scope of this study.

Further possible extensions include using a multiphase description
of the cell layer to account for variation in the cell layer porosity with
time due to cell proliferation and extra-cellular matrix deposition
(Pearson et al., 2015b), and using a more detailed model of cell
metabolism incorporating glucose and protein transport (Shipley et al.,
2009) and coupling between the oxygen, glucose and lactate concen-
trations (Casciari et al., 1992).

7. Conclusions

We have developed a model of cell layer growth in a single-fibre
HFB by extending a previous HFB fluid and mass transport model
(Shipley and Waters, 2012). Our model incorporates dependence of cell
layer growth on local oxygen and lactate concentrations and on local
fluid shear stress. This enables predictions to be made of the effect of
varying the lumen inlet flow rate and lumen outlet pressure on the
growth of different cell types. We have observed that opening the ECS
ports and increasing the flow rate and outlet pressure enhance growth
for shear-tolerant cells by increasing oxygen delivery, but that it may be
necessary to use lower outlet pressures for shear-sensitive cells to
maximise growth.

Once parameterised against experimental data, our model could be
used to make quantitative predictions of the optimal operating condi-
tions for different cell types.
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Appendix A. Nondimensionalisation

We nondimensionalise Eqs. (2)–(36) for the fluid transport, oxygen and lactate transport and cell layer growth with the following scalings:
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where U Q πR= /(2 )l in l,
2 is a typical lumen flow velocity; P μU L= /(ϵ )l

2 , P μ UR k= ϵ /i l i (i m c= , ), P μU L= /e are the pressure scales in the different
regions; and CL is a typical lactate concentration. We then exploit the small aspect ratio of the bioreactor to neglect terms at leading order in

R Lϵ = / ≪ 1l . From here on we omit hats on dimensionless variables.
The mass conservation and radial and axial momentum conservation equations in the lumen and ECS in (2) become
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so there is no axial flow in the membrane or cell layer at leading order.
In dimensionless coordinates the lumen–membrane and membrane–cell layer interfaces, cell layer outer surface and ECS outer boundary are

given by r=1, r R R R= / ≕m l m, r R z t= ( , )c and r R R R= / ≕e l e respectively. The dimensionless continuity conditions at the lumen–membrane and
membrane–cell layer interfaces are
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where κ R k≔ϵ /m l m
2 2 is a dimensionless parameter representing the permeability of the membrane and κ k k≔ /c m c is the ratio of the membrane and cell

layer permeabilities. Both κm and κc are assumed to be (1) to retain as many physical effects as possible at leading order.
At the moving surface of the cell layer, the normal velocity continuity condition in (9) becomes
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where we have neglected the contribution from the cell layer growth, ϕ L U R A C(1 − )( / )/( / )c l p in
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The normal stress condition at the moving boundary of the cell layer reduces to
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The no-slip conditions at the lumen–membrane interface and the moving boundary, (10) and (11), reduce to

u r= 0 on = 1,l z, (A.9)

u r R z t= 0 on = ( , ).e z c, (A.10)

At the outer boundary of the ECS, the dimensionless boundary conditions are
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The dimensionless lumen inlet flow rate and outlet pressure are
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p P z r= on = 1, 0 < < 1.l l out, (A.13)

The advection–diffusion equations in the lumen, membrane and ECS, (16) and (17), and the reaction–advection–diffusion equation in the cell
layer (18) become
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dimensionless oxygen uptake and lactate production rates respectively (the ratio of the rates of uptake/production to that of radial diffusion of the
solute).

The dimensionless zero-diffusive-flux condition on the lumen axis is
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The dimensionless concentration and diffusive flux continuity conditions at the interfaces between the different regions are
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The dimensionless inlet concentration is

c z r= 1 for oxygen,
0 for lactate,

on = 0, 0 < < 1,l
⎧⎨⎩ (A.21)

and the zero-diffusive flux conditions at the lumen outlet and outer boundary of the ECS are
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The dimensionless form of the cell layer growth law (32) is
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where
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and σ κ u= | |s c r, is now the dimensionless interstitial shear stress in the cell layer with proportionality constant κ k R d= 8 /( )s c l ; and c C C= /min min in and
l L C= /max max L are the dimensionless minimum oxygen and maximum lactate concentrations for cell proliferation; σ k Σ μ UR= /( ϵ )d c d l is the
dimensionless shear stress threshold for cell death/detachment; and β B B A C= /( )L L d p in , β B B A C= /( )s s d p in and β B B B A C= /( )L s L s d p in, are the ratios of
the cell layer recession rates due to excess lactate and excess shear stress, and the two combined, to the cell proliferation rate.

The initial condition for the position of the outer surface of the cell layer becomes

R z R z( , 0) = ( ).c c init, (A.26)

Appendix B. Parameter estimates

B.1. Cell layer permeability

The permeability of the cell layer, kc, is very difficult to measure experimentally and varies significantly with the initial seeding density and cell
type. Assuming that the cell layer is densely packed with cells, we can estimate its permeability from its porosity ϕc and the average cell radius dcell
using the Kozeny–Carman equation (Kozeny, 1927; Carman, 1937)
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c
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3

2

2

(B.1)

For a porosity of ϕ = 0.6c (Shipley and Waters, 2012) and a typical cell diameter of d = 10 μmcell , (B.1) gives k ≈ 7.5 × 10 mc
−13 2, which agrees

Table B1
Cell doubling time Td and estimated cell layer growth rate per unit oxygen concentration Ap for different cell types.

Cell type dcell (μm) Td (h) A d C T= /( )p cell in d (μm h (mol m )−1 −3 −1) Reference

Neonatal rat cardiomyocytes 10 20 2.3 Takamiya et al. (2011)
Primary rat hepatocytes 10 20 2.3 Davidson et al. (2010) and Nyberg et al. (1994)
Bovine chondrocytes 10 56 1.8 Galban and Locke (1997) and Whittaker et al. (2009)
HFFs 40 17 12.1 Korin et al. (2007)
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reasonably well with the range of values 10−12–10−8 used in other studies (Heath et al., 1990; Hay et al., 2001).

B.2. Cell layer growth rate

We estimate the growth rate of the cell layer per unit concentration, Ap, for different cell types from their cell doubling times (see Table B1). As
we have assumed that only the outermost layer of cells in the cell region proliferates, we can assume that in the absence of cell death the depth of the
cell region will increase by approximately one cell diameter dcell in the cell doubling time Td, so that

A d
C T

≈ .p
cell

in d (B.2)

Estimates for Ap for different cell types are given in Table B1. For simplicity we assume that the baseline recession rate of the cell layer due to cell
death and detachment from excess lactate or shear stress, Bd, is the same as the rate at which the cell layer grows due to cell proliferation, A Cp in, and
the dimensionless weights for the excess lactate and shear stress recession rates, BL and Bs, are both 1, so that β B B A C= /( ) = 1L L d p in ,
β B B A C= /( ) = 1s s d p in , and β B B B A C= /( ) = 1L s L s d p in, .

For the cell types in Table B1 the cell layer growth timescale R A C/( )l p in is ∼10 s5 , whereas the advection timescale L U/ is in the range 0.75–7.5 s
for the flow rates in Table 1, and the timescales for radial diffusion and uptake/production of oxygen and lactate are in the ranges 13–290 s and 30–
3000 s respectively. Hence, we are justified in assuming that the fluid and mass transport equations (2) and (16)–(18) are quasi-steady on the
growth timescale.

B.3. Shear stress parameters

To estimate the dimensionless shear stress constant, κ k R d= 8 /( )s c l , we need to estimate the size d of the interstitial spaces in the cell layer. Using
the empirical relationship for the permeability of a membrane and the average pore diameter derived by Bear (1988)

k Cd= ,c
2 (B.3)

where C = 6.54 × 10−4, and our estimate for kc from Appendix B.1 (7.5 × 10 m−13 2) gives d k C≈ / = 3.4 × 10 mc
−5 , so κ ≈ 8.9 × 10s

−4. The
maximum shear stress that the cells can withstand without dying or detaching from the surface of the cell layer, Σd, depends on the cell type. While
bovine chondrocytes grow well under shear stresses of up to 2 Pa (Smith et al., 1995), rat cardimyocytes can be damaged or killed by shear stresses
higher than 0.16 Pa (Radisic et al., 2005). The level of shear stress that cells can withstand generally decreases (from order 1 Pa to order 0.1 Pa and
smaller) as the length of time that they are exposed to it increases (Chapman et al., 2014, Supporting Information, Table S6). Studies with human
foreskin fibroblasts (HFFs) and mouse osteoblasts in micro-channel bioreactors have shown that cell detachment can occur at shear stresses as low
as 0.03 Pa (Korin et al., 2007; Leclerc et al., 2006). To incorporate the possibility of thinning of the cell layer due to cell detachment, we use values of
Σd, appropriate to the cell types we consider, in the range 0.03–2 Pa.

Appendix C. Solution of the reduced model

Integrating the lumen, membrane and cell layer flow equations (A.2)–(A.3) with respect to r and applying the boundary conditions (A.5)–(A.6),
(A.9)–(A.10) gives
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Applying (A.8) then gives a second order PDE for the lumen pressure

p
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where
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m c c c m (C.5)

with boundary conditions (from (A.12) and (A.13))

p
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t p t P
∂
∂

(0, ) = −16, (1, ) = .l
l l out, (C.6)

Using (C.4) and integrating the ECS flow equations (A.4) subject to the boundary conditions (A.7) and (A.11), the fluid pressures and radial flow
velocities simplify to

p
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Substituting these and (C.1) into the solute transport equations (A.14)–(A.16), integrating with respect to r subject to the boundary conditions
(A.17)–(A.23) gives

c r z t( , , ) = 1 for oxygen,
0 for lactate,l
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C.1. Numerical solution of the leading order system

The leading order system for the fluid flow, oxygen and lactate transport and cell layer growth is given by Eqs. (A.24)–(A.26) and (C.4)–(C.18).
We solve this system numerically using the method of lines, i.e. by discretising the system in z (with a grid space of zΔ = 2 × 10−3) and solving the
resulting time-dependent ordinary differential equation (ODE) system using the MATLAB ODE solver ode113).

The algorithm for determining the cell layer growth can be summarised as follows:

1. Prescribe the initial position of the cell layer outer surface, i.e. set R z R z( , 0) = ( )c c init, .
2. Determine the fluid pressures and velocities and solute concentrations throughout the bioreactor for the given position of the cell layer outer

surface, by solving (C.4)–(C.6) for pl (using the MATLAB boundary value problem solver bvp4c) and evaluating (C.7)–(C.18).
3. Evaluate the oxygen and lactate concentrations and shear stress at r R z t= ( , )c and use these to update R z t( , )c according to the growth law (A.24).
4. Repeat Steps 1–3 until the simulation time (60 days) elapses, or the system reaches a steady state, or the cell layer grows to fill the entire ECS or

recedes to the fibre surface (whichever occurs first).

The convergence of the numerical scheme was verified by reducing zΔ and the time step and checking that the results were the same to a relative
tolerance of 0.01%.

Appendix D. Reduced model for cell layer growth with ECS port closed

D.1. Fluid transport

When the ECS port is closed, the dimensionless boundary conditions on the ECS outer boundary are

u u r R= 0, = 0 on = .e r e z e, , (D.1)

Hence, at leading order in ϵ there is only flow in the lumen (steady Poiseuille flow) and no axial or radial flow in the rest of the bioreactor,
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u u i m c e, = 0, = , , .i r i z, , (D.5)

D.2. Mass transport

The reduced system for the solute transport with the ECS port closed (from (A.14) to (A.23)) is
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where we have substituted for ul z, in (D.6) from (D.3) and used u u, = (ϵ )i r i z, ,
2 (i m c e= , , ) in (D.7) and (D.8). Integrating (D.7) and (D.8) and

applying boundary conditions (A.19)–(A.20) yields
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and C z t( , )m is determined from the concentration continuity condition on the lumen–membrane interface in (A.18)

C z t c z t( , ) = (1, , ).m l

To close the system we need to solve the equation for the lumen concentration (D.6) subject to the boundary conditions (from (A.18) and (A.22))
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Since γ varies with z, we solve (D.6), (D.13)–(D.14) numerically.

D.3. Numerical solution of the leading order system

The leading order system for the fluid flow, oxygen and lactate transport and cell layer growth when the ECS port is closed is given by Eqs.
(A.24)–(A.26), (D.3)–(D.5), (D.6) and (D.9)–(D.14). The algorithm used to solve this system is essentially the same as that used when the ECS port
is open (Appendix C.1)—at each time step the steady flow and solute transport problems are solved for the current position of the outer surface of
the cell layer, r R z t= ( , )c , and the solutions used to update Rc. However, in step 2 of the algorithm the advection–diffusion equation for the lumen
concentration (D.6) is solved subject to (D.13)–(D.14), and (D.3)–(D.5) and (D.9)–(D.12) are used to determine the lumen pressure, lumen axial
velocity and solute concentrations throughout the bioreactor. We solve (D.6) using the finite difference method with a grid of 501 by 201 nodes in
the z- and r-directions respectively ( zΔ = 2 × 10−3, rΔ = 5 × 10−3) and central difference approximations of the derivatives. The convergence of the
numerical scheme was verified by reducing zΔ and the time step and checking that the results were the same to a relative tolerance of 0.01%.

Appendix E. Flow profiles and solute distributions: uniform vs non-uniform cell layer

Figs. E1–E4 show the dimensional fluid pressure, flow velocity profiles and solute distributions for a rat cardiomyocyte layer with a uniform
depth of 50 μm (R z t( , ) = 450 μmc ) and one of the same volume whose depth decreases linearly from 80 μm to 19 μm along the fibre.
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Fig. E1. Typical fluid pressure in the bioreactor, p, for (a) a uniform depth cell layer, R = 450 μmc and (b) a non-uniform cell layer, R z= (480–6.1 × 10 ) μmc −4 . Parameter values:

Q = 3.33 × 10 m sl in, −8 3 −1, P = 1.379 × 10 Pal out, 5 . All other parameter values as in Table 1. Lumen axis running from right to left. Black dashed lines indicate the membrane surfaces and

the white dashed lines the outer surface of the cell layer.

Fig. E2. (a) Lumen axial flow velocity ul z, and (b) radial flow velocity ur for the uniform depth cell layer in Fig. E1(a). Profiles for the non-uniform cell layer in Fig. E1(b) are almost

identical. All parameter values and dashed lines as in Fig. E1.

Fig. E3. Oxygen concentration in the bioreactor, c, for (a) the uniform depth rat cardiomyocyte layer and (b) the non-uniform depth rat cardiomyocyte layer. Fluid transport parameter
values as in Fig. E1, and oxygen transport parameter values for rat cardiomyocytes as in Table 2. Dashed lines as in Fig. E1.
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