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Abstract

Background: Factors driving inter-individual differences in immune responses upon different types of prenatal malaria
exposure (PME) and subsequent risk of malaria in infancy remain poorly understood. In this study, we examined the
impact of four types of PME (i.e., maternal peripheral infection and placental acute, chronic, and past infections) on
both spontaneous and toll-like receptors (TLRs)-mediated cytokine production in cord blood and how these innate
immune responses modulate the risk of malaria during the first year of life.

Methods: We conducted a birth cohort study of 313 mother-child pairs nested within the COSMIC clinical trial
(NCT01941264), which was assessing malaria preventive interventions during pregnancy in Burkina Faso. Malaria
infections during pregnancy and infants’ clinical malaria episodes detected during the first year of life were recorded.
Supernatant concentrations of 30 cytokines, chemokines, and growth factors induced by stimulation of cord blood
with agonists of TLRs 3, 7/8, and 9 were measured by quantitative suspension array technology. Crude concentrations
and ratios of TLR-mediated cytokine responses relative to background control were analyzed.

Results: Spontaneous production of innate immune biomarkers was significantly reduced in cord blood of infants
exposed to malaria, with variation among PME groups, as compared to those from the non-exposed control group.
However, following TLR7/8 stimulation, which showed higher induction of cytokines/chemokines/growth factors than
TLRs 3 and 9, cord blood cells of infants with evidence of past placental malaria were hyper-responsive in comparison
to those of infants not-exposed. In addition, certain biomarkers, which levels were significantly modified depending on
the PME category, were independent predictors of either malaria risk (GM-CSF TLR7/8 crude) or protection (IL-12 TLR7/
8 ratio and IP-10 TLR3 crude, IL-1RA TLR7/8 ratio) during the first year of life.

Conclusions: These findings indicate that past placental malaria has a profound effect on fetal immune system and
that the differential alterations of innate immune responses by PME categories might drive heterogeneity between
individuals to clinical malaria susceptibility during the first year of life.
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Background
Despite the widespread implementation of Intermittent
Preventive Treatment with sulfadoxine-pyrimethamine
(IPTp-SP) to prevent malaria during pregnancy, infants in
endemic countries are often born to mothers with placental
malaria (PM). This is likely to increase their risk of a mal-
aria infection in early childhood [1–7]. Factors explaining
the association between PM and risk of malaria infection
during infancy are still not well understood, but this associ-
ation has been correlated with changes in malaria-specific
fetal immunity [8]. Cord blood mononuclear cells of
neonates born to mothers with PM can specifically respond
to plasmodial asexual blood stage antigens, impacting on
immune response to Plasmodium falciparum infection
during infancy [9–15]. This prenatal exposure to malaria-
infected erythrocytes or their soluble products can lead to
fetal immune priming to malaria blood stage antigens or to
fetal immune tolerance in some infants [11, 16–20]. None-
theless, factors that lead to this inter-individual difference
in immune responses to malaria antigens upon prenatal
exposure are unknown.
In early infancy, innate immunity is the main defense

barrier of the host, as newborns have a naïve adaptive im-
mune system [21, 22]. The immune cellular response starts
with the recognition of pathogen molecules known as
pathogen-associated-molecular patterns (PAMPs) by cells
of the innate immune system through pattern recognition
receptors (PRRs). Among these receptors, it has been
shown that toll-like receptors (TLRs) are key initiators of
innate immunity and promoters of adaptive immunity via
direct and indirect mechanisms [23–25]. Ligands binding
to TLRs generate intracellular signals, activate gene expres-
sion, and enhance the release of cytokines and chemokines
[26, 27], which are important players in the pathogenesis
of and protection against malaria [28]. Therefore, in early
life, protection from infections relies extensively on innate
immunity, and hence, factors that modulate the develop-
ment of fetal innate immunity may drive variation in sus-
ceptibility to malaria between individuals in early infancy.
A few studies have reported that history of P. falciparum

infections during pregnancy may have an effect on neonatal
innate immune responses upon TLRs stimulation with im-
plications for the outcome of newly encountered infections
in early life [11, 29, 30]. Cytokine responses upon TLRs
stimulation of cord blood cells have been found to be pro-
foundly affected by either maternal peripheral infections
occurring late in pregnancy [29, 30] or past PM [11]. In
addition, it has been shown that exposure to malarial anti-
gens in utero has different effects on the immune environ-
ment at birth, such as the number and/or activation status
of immune cell populations, including antigen-presenting
cells, regulatory, and effector CD4+ T cells, depending on
the type of exposure [10–15]. Overall, these data indicate
that maternal peripheral and placental infections during

pregnancy have an impact on cord blood cytokine
responses to TLR agonists and that time and type of
malaria exposure can skew cytokine responses towards a
regulatory/tolerogenic or to a proinflammatory profile. In
this regard, a tolerogenic profile would render infants more
susceptible to malaria infections during the first year of life,
whereas a proinflammatory profile can lead to more severe
malaria episodes, whereas a Th1/Th17 profile could be
protective.
Human TLRs that are known to be stimulated by malaria

parasite-derived molecules include TLR2 (by glycosylpho-
sphatidylinositol), TLR4 (by hemozoin), and TLR9 (by
hemozoin and parasite DNA) [31–34]. However, the clin-
ical relevance of TLR-mediated immune responses in the
susceptibility to malaria has been mainly reported for endo-
somal PRRs such as TLR3, TLR7/8, and TLR9 in African
children. Indeed, higher TLR3- and TLR7/8-mediated
interleukin (IL)-10 responses at birth were found to be as-
sociated with a significant increased risk of P. falciparum
infection in infants in Benin [30], whereas polymorphisms
in TLR9 gene were associated with difference in susceptibil-
ity to malaria in Burundian and Ghanaian children [35, 36].
In this study, we assessed the effect of different types

of prenatal malaria exposure (PME) on endosomal
TLR-mediated cytokine responses in cord blood samples
collected at birth, and we investigated the subsequent
risk of malaria during the first year of life in a highly
seasonal malaria endemic area of Burkina Faso.

Methods
Study design and participants
A prospective birth cohort study was nested within the
COSMIC trial (NCT01941264). In brief, COSMIC was a
cluster randomized controlled trial investigating the pro-
tective efficacy of adding community-scheduled screening
and treatment of malaria during pregnancy (CSST) to the
standard IPTp-SP (CSST/IPTp-SP; intervention arm) com-
pared to IPTp-SP alone (control arm) in Burkina Faso,
Benin, and The Gambia [37]. The CSST extension strategy
was implemented through monthly screening using rapid
diagnostic tests (RDTs) and treatment of malaria infections
with artemether-lumefantrine (AL). Pregnant women in
both arms who experienced clinical malaria during preg-
nancy were also treated with AL. In addition, all pregnant
women in the two arms were further screened for malaria
during antenatal care (ANC) booking using light micros-
copy (LM). Furthermore, additional blood spots on filter
papers during community screening (CSST/IPTp-SP arm)
and at each ANC visit (both CSST/IPTp-SP and IPTp-SP
arms) were collected for posterior malaria diagnostic by
quantitative real-time polymerase chain reaction (qPCR).
At the time of delivery, placenta biopsies and cord blood
samples in heparin containing tubes were collected from
mother-child pairs. Placenta histology was performed later
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on within the parent COSMIC trial, while cord blood sam-
ples were immediately processed. Of the 734 mother-child
pairs enrolled in the birth cohort in Burkina Faso, a sub-
group of 313 mothers and their offspring were included
for the present study. Those mother-child pairs were se-
lected based on the history of malaria infection during
pregnancy (using LM and RDT results) and the availability
of cord blood samples for immunological assays at delivery
(Fig. 1). The study was conducted in the rural health dis-
trict of Nanoro, a high and seasonal malaria transmission
area in Centre-West of Burkina Faso [38].

Recruitment and follow-up
The recruitment procedure of the mother-child pairs and
details of the 1-year follow-up of infants included in the
birth cohort study have been previously described [39, 40].
Shortly, pregnant women from Nanoro participating in the
COSMIC trial were asked at antenatal care visits to partici-
pate in the birth cohort study prior to delivery. At delivery,
healthy newborns with their mothers were enrolled after
informed consent was obtained. Exclusion criteria were
presence of major congenital malformation, chronic dis-
ease, or signs of cerebral asphyxia. Clinical malaria episodes
in infants were monitored by passive case detection, for
which mothers were encouraged to seek care in peripheral
health centers at any time their child felt sick. At each
attendance to health facilities, a clinical examination was
performed and mothers were asked for previous health
events. In the case of fever (axillary temperature ≥ 37.5 °C)
or history of fever in the previous 24 h, a malaria RDT was

performed and positive infants were treated according to
national guidelines.

Sample collection
Sample collection procedures have been described else-
where [41]. In brief, at time of delivery, approximately
200 μL of maternal peripheral blood was obtained by
finger-prick for blood smear preparation and blood spot
on filter paper. A placental tissue section was collected
from the maternal side and preserved in 10% neutral buf-
fer formalin at 4 °C for histology examination. In addition,
cord blood (approximately 10 mL) was collected in
heparin-containing tubes by venipuncture of the umbilical
vein for TLRs stimulation assays. The remaining cord
blood in the heparinized tube was transferred from the
peripheral health centers to the laboratory at the Clinical
Research Unit of Nanoro (CRUN) for processing within
4 h. Peripheral blood was collected post-partum by
finger-prick from each infant visiting the health facilities
with presence of fever or history of fever in the previous
24 h, and used for RDT, blood smear, and spots on filter
paper (Whatman 3MM).

Toll-like receptors stimulation assay
TLRs stimulations of cord blood mononuclear cells were
performed using fresh whole cord blood samples. Briefly,
cord blood samples were diluted 1:1 with RPMI 1640
(1X, Gibco) and five aliquots of 200 μl were prepared.
One aliquot was left unstimulated and the other four
were stimulated either with the synthetic analog of

Fig. 1 Categories of prenatal malaria exposure (PME). Pregnant women infected during pregnancy with placental malaria (PM; acute, chronic, or
past) or without PM (exposed/no PM) were recruited from both COSMIC study arms [37]. Pregnant women included in the non-exposed control
group were only recruited among the CSST/IPTp-SP intervention arm: all of them had negative RDT/LM results for malaria infection in monthly
screenings and at antenatal care visits that were later on confirmed by qPCR and, with no evidence of placental malaria
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dsRNA-PolyI:C (TLR3 ligand; 10 μg/mL; InvivoGen, San
Diego, USA), imidazoquinoline (R848, TLR7/8 ligand;
10 μg/mL; InvivoGen, San Diego, USA), the synthetic type
B unmethylated CpG dinucleotide (ODN2006-1, TLR9
ligand, 5 μM; InvivoGen, San Diego, USA) or with a mix-
ture of phorbol myristate acetate (PMA), and ionomycin
as positive control (PMA 0.1 μg/mL and ionomycin 1 μg/
mL; Sigma-Aldrich, Schnelldorf, Germany). After 24 h of
incubation at 37 °C in 5% CO2, supernatants were
collected following a centrifugation at 500g for 5 min, then
frozen at − 80 °C. Culture supernatants were subsequently
shipped frozen to ISGlobal (Barcelona) for cytokines,
chemokines, and growth factors measurement.

Cytokines, chemokines, and growth factors quantification
Supernatants were thawed at room temperature, centri-
fuged at 1000g for 10 min and then diluted in a ratio of
1:5 in RPMI 1640 (1X, Gibco). Cytokines, chemokines,
and growth factors levels were determined using a fluor-
escent bead-based multiplex immunoassay (Human
Cytokine Magnetic 30-Plex Panel kits, Novex®, Life
Technologies™, USA). Twenty-five microliters of each
supernatant were tested in single replicates applying a
modification of the manufacturer’s protocol, which im-
plies using half the volume of each reagent except for
the washing buffer. The 30-Plex panel kit includes the
following: interleukin (IL)-2, IL-4, IL-5, IL-6, IL-7, IL-8,
IL-10, IL-13, IL-15, IL-17, IL-1β, IL-1RA, IL-2R,
IL-12(p40/p70), tumor necrosis factor (TNF), interferon
(IFN)-γ, IFN-α, IFN-γ inducible protein 10 (IP-10),
monocyte chemottractant protein (MCP)-1, macrophage
inflammatory protein (MIP)-1α, MIP-1β, eotaxin,
RANTES, monokine-induced by IFN-γ (MIG), vascular
endothelial growth factor (VEGF), hepatocyte growth
factor (HGF), epidermal growth factor (EGF), fibroblast
growth factor (FGF) basic, granulocyte-colony stimulat-
ing factor (G-CSF), and granulocyte-macrophage colony
stimulating factor (GM-CSF). Samples were acquired on
a Luminex® 100/200™ instrument using Xponent 3.1
software. Median fluorescent intensity (MFI) data was
analyzed using the drLumi 0.1.2 R package [42], in
which concentration of each analyte was determined by
interpolating the MFI to a standard curve (plotted
using a 5- or 4-parameter logistic function) of twofold
16 serial dilutions prepared from a reference sample
provided by the manufacturer. The limits of quantifica-
tion (lower, LLOQ and upper, ULOQ) for each analyte
and plate were obtained applying the 20% coefficient of
variation method [43–45] in drLumi. Any analyte with
a value below the LLOQ was given a value of half the
LLOQ for that analyte, and any analyte with a value
above the ULOQ was given a value of two times the
ULOQ of that analyte.

Malaria detection and definitions
SD-Bioline malaria antigen P.f® test (05FK50, Standard
Diagnostics, Inc., Korea) detecting PfHRP2 was used for
malaria RDT according to the manufacturer’s instructions.
The microscopic examination of thick blood smears
stained with Giemsa (10%) was performed according to
standard procedures [46]. Dried blood spots on filter
paper were used for DNA extraction (QIAamp 96 DNA
blood kit, Qiagen, Germany) and, P. falciparum detection
of Pf-varATS by qPCR, as previously described [41]. Data
on past history of malaria infections during pregnancy and
histological examination of placental tissues were obtained
from the COSMIC trial [37]. A clinical malaria episode
was defined as the detection of P. falciparum parasites by
qPCR and presence of fever. PM infections were defined
by histological examination as follows: (i) acute infection
(parasites present, malaria pigment absent), (ii) chronic
infection (parasites and malaria pigment present), (iii) past
infection (parasites absent but pigment present), and (iv)
no infection (both parasites and malaria pigment absent).
PME was categorized based on placental infection (past,
chronic, acute) and maternal peripheral infection as
shown in Fig. 1. The non-exposed control group was
composed of pregnant women only recruited among the
CSST/IPTp-SP intervention arm who had negative RDT/
LM and qPCR results at each screening and ANC visit
and negative placental histology.

Statistical analysis
Statistical analysis was performed using R statistical
package version 3.2.3 [47]. Cytokine concentrations
(both crude and ratios between stimulated and unstimu-
lated samples) were log10-transformed after assessing the
distribution of each cytokine using normality plots for
each cytokine across TLR stimulations. To explore sam-
ple clusters by TLR stimulation, data were plotted by
using principal component analysis (PCA) and the first
two components were used to show associations.
To assess the effect of PME on TLR-mediated cytokine

responses, ANOVA test was used to compare the mean of
cytokine responses between groups of PME for significant
variance among the mean of cytokine responses.
Benjamini-Hochberg method was applied to adjust p values
for multiple comparisons [48]. Maternal- and infant-related
co-variables including gravidity, low birth weight (LBW),
birth season, newborn sex, and ethnicity were used to
adjust the effect of PME on cytokine responses in linear
regression models.
The association between TLR-mediated cytokine re-

sponses at birth and the risk of clinical malaria during
the first year of life was assessed in univariable and mul-
tivariable Cox proportional-hazard models. Proportion-
ality of hazards assumption and functional form of each
variable adjusted in the Cox models was examined using
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Schoenfeld residuals analysis and p-splines, respectively.
Secondary variables that showed significant association
with malaria during the first 12 months of life were de-
termined in Kaplan-Meier survival analyses (log-rank
test P value < 0.05) and included in the Cox
proportional-hazard regression models. A P value < 0.05
was considered statistically significant.

Results
Characteristics of study participants
The characteristics of the participants included in this
study are presented in Table 1. The mean age of pregnant
women at enrollment was 26.1 years, and the majority of
them were multigravida (63%). More than two thirds of
deliveries (77.6%) occurred during the malaria high-trans-
mission season (July–December). The mean birth weight
of the newborns was 3009 g, while 9.6% had a low birth
weight (LBW). In total, 291 newborns (93%) were exposed
to malaria parasites and/or antigens in utero. The majority
of the newborns were born to mothers with past PM
(59.1% [185/313]) followed by those born to mothers who
had either clinical malaria (N = 6) or asymptomatic
infection (N = 55) during pregnancy but with no evidence
of PM at delivery (19.5% [61/313]). Few infants were born
to mothers with acute PM at delivery (2.2% [7/313]). There
was a higher but non-significant proportion of females
than males among the newborns (P = 0.158).

TLR-mediated cytokine responses
Overall variance of cytokine responses between subjects
and stimuli is shown in Fig. 2 by PCA. PC1 and PC2
contribute to explain 59.2% and 5.2% of the variance, re-
spectively. Overall, the responses to TLR3 and TLR9
clustered together with the unstimulated samples in con-
trast to distinct clustering of TLR7/8 responses, suggest-
ing that TLR3 and TLR9 ligands did not induce—or
induced low responses—for most of the analytes. This
pattern is further illustrated by log10 of ratios of stimu-
lated and unstimulated samples for each TLR agonist
(Additional file 1: Figure S1 and S2), which show that
few cytokines were produced above the background level
following stimulations of TLR3 or TLR9. Compared to
unstimulated samples, IP10 was the only analyte signifi-
cantly induced by the TLR3 agonist (ANOVA, P <
0.001), while those significantly induced in response to
TLR9 included IFN-α, IL-1RA, MCP-1, and IP-10
(ANOVA, P ≤ 0.006). For TLR7/8 stimulation, all ana-
lyzed cytokines (with the exception of eotaxin, P = 0.319)
had a significantly higher concentration than that of
unstimulated samples (ANOVA, P < 0.05).

PME and cytokine responses at birth
Variation in cytokine production by PME category is
shown as boxplots in Additional file 2: Figure S3–S6.

Results indicate that PME modifies innate immune
responses to TLR stimulations at different magnitudes,
depending on the PME category. The main effect was
observed in responses to TLR7/8 stimulation (Add-
itional file 2: Figure S5), being past PM more frequently
associated with a significantly higher production of cyto-
kine levels (i.e., IFN-α, IL-2, MIP-1α, RANTES, FGF,
G-CSF, GM-CSF) compared with the non-exposed
control group (ANOVA, P < 0.05). As expected, there
was little variation in cytokine levels according to PME
category following stimulations by TLR3 or TLR9, as
these PRRs ligands induced very low cytokine produc-
tion. The concentrations of cytokines in unstimulated
samples also differed between PME categories. Overall,
there was a tendency of lower cytokine levels among in-
fants prenatally exposed to malaria (any category) than
in non-exposed infants (Additional file 2: Figure S3).
The significant variations were mostly observed with
past PM on IL-1β, TNF, IL-7, IL-15, IL-2, IL-4, G-CSF,
GM-CSF, HGF, and VEGF and with chronic PM on IL-7,
IL-15, IL-2, IFN-γ, IL-17, and GM-CSF (ANOVA, P <
0.05). The comparison of biomarker levels in unstimu-
lated samples from the exposed infants did not show a
significant difference between PME groups. However,
the trend analysis revealed a significant trend towards
decreasing production among unstimulated samples
from infants born to mothers with peripheral infection
to those born to mothers with PM (past, chronic, and
acute, respectively) for some biomarkers including IL-10
(P for trend = 0.024), IL-12 (P for trend = 0.042), and
GM-CSF (P for trend = 0.032).
Innate immune response to TLR stimulation by PME

was further investigated using multivariable linear re-
gression models. The co-factors, besides PME, affecting
cytokine responses in each stimulation assessment used
in subsequent models are listed in Additional file 3:
Table S1. The confounding factors, including gravidity,
ethnicity, birth season, LBW, and newborn sex, were
controlled for in subsequent models. Results confirmed
that following stimulation with TLR7/8 agonist, infants
born to mothers with past PM produced a significantly
larger breadth of analytes compared to non-exposed in-
dividuals (17 cytokines related to all the functional clas-
ses analyzed, except anti-inflammatory and Th17-related
cytokines) (Table 2). Significant differences were also ob-
served in infants born to mothers with chronic PM (i.e.,
MIP-1α, MIP-1β, FGF, G-CSF, and GM-CSF) (P < 0.05,
Table 2). In the case of infants born to mothers with
acute PM, only two growth factors (FGF and GM-CSF)
had significantly higher mean ratios compared to
non-exposed infants, whereas only GM-CSF was higher
in infants born to mothers infected during pregnancy
but with no PM at delivery. Stimulation of TLR3
resulted in higher IP-10 responses among infants born
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to mothers with past and chronic PM (P = 0.026 and P =
0.008, respectively), but lower IL-5 responses (P = 0.046
and P = 0.033, respectively). Finally, TLR9-mediated FGF
and G-CSF responses were found to be significantly
higher in infants born to mothers with past PM compared
to the control group (P = 0.028 and P = 0.016, respect-
ively), whereas IL-5 responses were significantly lower in
infants born to mothers with chronic PM compared with
those in the non-exposed control group (P = 0.009).
Results from the multivariable models confirmed de-

creased levels of cytokines in unstimulated samples from
infants prenatally exposed to malaria compared to the

non-exposed control group: lower cytokine responses
were found in past PM exposed group (20 cytokines
from all the functional classes analyzed), chronic PM (10
cytokines from all the functional classes, except proin-
flammatory cytokines), acute PM (IL-7 only), and for
peripheral infections during pregnancy (IL-7, IL-15,
IL-13, IL-17, HGF, VEGF).

TLR-mediated cytokine responses and risk of clinical
malaria during the first year of life
Data on malaria incidence and prevalence among the
overall birth cohort has been described elsewhere [39].

Table 1 Characteristics of study participants

Characteristics Overall cohort
(N = 313)

Non-exposed
(N = 22)

Exposed no PM
(N = 61)

Past PM (N =
185)

Chronic PM
(N = 38)

Acute PM
(N = 7)

P value

Maternal characteristics

Age (years, mean ± SD) 26.1 ± 6.2 28.4 ± 6.4 27.7 ± 6.0 25.5 ± 6.0 23.8 ± 5.7 28.3 ± 7.2 < 0.001

Gravidity (N (%)) < 0.001

Primigravida 58 (18.5) 1 (4.5) 2 (3.3) 40 (21.6) 15 (39.5) 0 (0.0)

Secundigravida 58 (18.5) 2 (9.1) 10 (16.4) 38 (20.5) 7 (18.4) 1 (14.3)

Multigravida 197 (63.0) 19 (86.4) 49 (80.3) 107 (57.9) 16 (42.1) 6 (85.7)

ITN use (N (%)) 219 (70.0) 19 (86.4) 47 (77.0) 128 (69.2) 21 (55.3) 4 (57.1) 0.061

MiP preventive strategy in COSMIC
trial (N (%))

< 0.001

Standard IPTp-SP 109 (34.2) – 23 (37.7) 68 (36.8) 14 (36.8) 4 (57.1)

CSST/IPTp-SP 204 (65.2) 22 (100.0) 38 (62.3) 117 (63.2) 24 (63.2) 3 (42.9)

SP doses uptake (women who received
≥ 2 doses, N (%))

293 (93.6) 21 (95.5) 55 (90.2) 178 (96.2) 32 (84.2) 7 (100.0) 0.055

AL treatment (women treated at least
once, N (%))

67 (21.4) – 7 (11.5) 43 (23.2) 14 (36.8) 3 (42.8) 0.002

Gestational age at enrollment (median
(IQR), weeks)

20 (19–22) 20 (18–26.5) 20 (20.5–25.5) 20 (19–21) 20 (16–21) 20 (20–25) 0.445

Infants characteristics

Sex (females, N (%)) 169 (54.0) 7 (31.8) 36 (59.0) 105 (56.8) 19 (50.0) 2 (28.6) 0.110

Birth season (malaria high-transmission
season, N (%))

243 (77.6) 14 (63.6) 44 (72.1) 141 (76.2) 37 (97.4) 7 (100.0) 0.002

Birth weight (g, mean ± SD) 3009 ± 429.6 3119.1 ± 441.7 3041.5 ± 360.5 2988.2 ± 439.1 2967.1 ±
499.8

3169.3 ± 228.4 0.470

LBW (< 2500 g) (no. (%)) 30 (9.6) 1 (4.5) 3 (4.9) 20 (10.8) 6 (15.8) 0 (0.0) 0.371

Ethnicity (N (%) 0.017

Mossi 276 (88.2) 21 (95.4) 55 (90.1) 164 (88.6) 31 (81.6) 5 (71.4)

Gourounsi 34 (10.8) 1 (4.6) 4 (6.6) 21 (11.4) 7 (18.4) 2 (28.6)

Fulani 3 (1.0) 0 (0.0) 2 (3.3) 0 (0.0) 0 (0.0) 0 (0.0)

Follow-up time (total time at risk,
person-months)

2782.6 175.1 544.7 1664.1 330.4 68.3

Clinical malaria episode (N (%)) 189 (60.4) 11 (50.0) 37 (60.7) 113 (61.1) 24 (63.2) 4 (57.1) 0.872

Time to first clinical malaria episode
(median, months)

10.3 10.2 10.6 10.2 10.5 11.4 0.990

PM placental malaria, SD standard deviation, LBW low birth weight, ITN insecticide-treated net, IQR interquartile range, MiP malaria in pregnancy, COSMIC
community-based scheduled screening and treatment of malaria in pregnancy: a cluster randomized trial, IPTp-SP intermittent preventive treatment during
pregnancy with Sulfadoxine-pyrimethamine, CSST/IPTp-SP community-based scheduled screening and treatment of malaria in combination with the standard IPTp-
SP, AL artemether-lumefantrine
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In the subgroup of infants included in the present ana-
lysis, malaria incidence was 60.4% (189/313) with a me-
dian survival time of 10.3 months (Table 1). Among the
potential confounding factors analyzed (i.e., gravidity,
PME, LBW, birth season, newborn sex, ethnicity,
insecticide-treated net (ITN) usage by mothers), PME
(Fig. 3) and LBW (Fig. 4) were found to be significantly
associated with the risk of clinical malaria and, thus,
were included in the Cox multivariable regression ana-
lyses. In particular, we found that infants born to
mothers with PM had a significantly lower risk of clin-
ical malaria during the first 6 months of life, while they
were at higher risk of clinical malaria from age 6 to
12 months, compared to infants born to mothers with
no PM. In addition, infants born with LBW had a signifi-
cant shorter time to first clinical malaria episode than
those born with a normal birth weight. Although birth
season was not significantly associated with the risk of
clinical malaria (Fig. 5), it was included in the models
using an interaction term with the timing of clinical
malaria to account for differences in the risk of infection
between infants due to the high seasonality in malaria
transmission in Burkina Faso.
Using crude concentration of cytokines, we found that

higher concentrations of eotaxin (in both unstimulated and
TLR7/8-stimulated samples), IL-7 (in TLR3-stimulated
samples), GM-CSF (in TLR7/8-stimulated samples), and
IL-1β (in TLR9-stimulated samples) in the cord blood at
birth were significantly associated with an increased risk of
subsequent clinical malaria episodes during the first year of
life (Table 3). In contrast, an increase in the concentration
of IP-10 in TLR3 and TLR9 stimulations was associated
with a decreased risk of clinical malaria occurrence in early
infancy. When considering biomarkers ratios, increases in
TLR3-mediated IL7 response were predictive of an in-
creased risk of clinical malaria attack, while higher
TLR9-mediated eotaxin responses and TLR7/8-mediated

IL-1RA and IL-12 responses had a protective effect against
developing a malaria episode during the first year of life
(Table 3). Remarkably, TLR-mediated responses of some
biomarkers, which showed a significant prediction of mal-
aria protection/risk during the first 12 months of life (i.e.,
IL-12 TLR7/8 ratios, IL-1RA TLR7/8 ratios, GM-CSF
TLR7/8 crude, IP-10 TLR3 crude), were significantly
influenced by in utero exposure to malaria parasites
(Additional files 2 and 3) indicating the clinical rele-
vance of the modulation of newborn’s innate immune
responses by PME.

Discussion
In this study, we investigated the impact of different mani-
festations of malaria in pregnancy on both spontaneous
and TLR-mediated cytokine production by cord blood cells
at birth and we assessed whether these cytokines predicted
malaria risk/protection in infancy. Overall, we found that
PME has a profound effect on the fetal immune system
and that the differential modulation of infants’ innate
immune responses by PME could have important implica-
tions with regards to malaria susceptibility in infancy. In-
deed, we observed that spontaneous cytokine, chemokine,
and growth factor production were all significantly lower
in samples from exposed versus non-exposed infants.
However, following TLR7/8 stimulation, cord blood cells
from mothers with past PM (pigment only) were hyper-re-
sponsive in comparison to those without evidence of pre-
natal exposure. Importantly, we identified some responses
(both spontaneous and following TLR stimulation) associ-
ated with differential malaria risk in infancy.
To our knowledge, this study reports for the first time

the effect of these categories of PME on TLR-mediated
innate immune responses, as previous studies have
focused on the overall effect of PM and/or other types of
PME on PRR-mediated cytokines responses [9, 29, 30,
49]. It has been shown that malaria pigment in the

Fig. 2 Principal component analysis of cytokine responses to TLR agonists. PCA showing the variance in cytokine responses to the three TLR
agonists and unstimulated samples. Ellipses represent the clusters estimated based on principal components 1 and 2
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Table 2 Multivariable linear regression analyses assessing the effect of prenatal malaria exposure (PME) categories on TLR-mediated
cytokine responses at birth

Cytokines* Exposed/no PM vs non-exposed Past PM vs non-exposed Chronic PM vs non-exposed Acute PM vs non-exposed

Coeff (SE) P Coeff (SE) P Coeff (SE) P Coeff (SE) P

TLR7/8 responses using log10 of ratio cytokines concentrations

Pro IFN-α 0.15 (0.08) 0.079 0.19 (0.08) 0.018 0.09 (0.09) 0.359 0.08 (0.15) 0.591

IL-1RA 0.15 (0.12) 0.223 0.22 (0.11) 0.049 0.15 (0.14) 0.263 0.22 (0.22) 0.308

IL-1β 0.13 (0.20) 0.522 0.36 (0.18) 0.049 0.32 (0.22) 0.140 0.11 (0.35) 0.765

TNF 0.28 (0.24) 0.238 0.55 (0.22) 0.013 0.31 (0.26) 0.229 0.36 (0.42) 0.387

Th1 IL-12 0.18 (0.16) 0.259 0.34 (0.14) 0.015 0.30 (0.17) 0.074 0.30 (0.27) 0.276

IL-2 0.12 (0.07) 0.092 0.15 (0.06) 0.019 0.14 (0.08) 0.081 0.09 (0.12) 0.448

IL-2R 0.16 (0.10) 0.103 0.23 (0.09) 0.012 0.19 (0.11) 0.081 0.15 (0.18) 0.398

IFN-γ 0.18 (0.12) 0.137 0.29 (0.11) 0.008 0.25 (0.13) 0.056 − 0.03 (0.21) 0.898

Th2 IL-13 0.14 (0.13) 0.272 0.25 (0.12) 0.031 0.25 (0.14) 0.079 0.26 (0.22) 0.237

Chemokines MIP-1α 0.47 (0.27) 0.085 0.72 (0.25) 0.004 0.59 (0.30) 0.049 0.57 (0.48) 0.237

MIP-1β 0.36 (0.25) 0.143 0.56 (0.22) 0.013 0.52 (0.26) 0.049 0.54 (0.43) 0.214

RANTES 0.17 (0.10) 0.097 0.23 (0.09) 0.015 0.21 (0.11) 0.062 0.07 (0.18) 0.697

Growth factors EGF 0.10 (0.06) 0.087 0.12 (0.05) 0.017 0.09 (0.06) 0.125 0.09 (0.10) 0.360

FGF 0.16 (0.09) 0.069 0.22 (0.08) 0.005 0.23 (0.09) 0.017 0.32 (0.15) 0.037

G-CSF 0.18 (0.13) 0.170 0.35 (0.12) 0.004 0.29 (0.14) 0.047 0.38 (0.23) 0.099

GM-CSF 0.34 (0.16) 0.033 0.53 (0.14) < 0.001 0.36 (0.17) 0.032 0.64 (0.27) 0.020

HGF 0.08 (0.06) 0.151 0.11 (0.05) 0.029 0.06 (0.06) 0.299 0.04 (0.10) 0.676

TLR9 responses using log10 of ratio cytokines concentrations

Th2 IL-5 − 0.08 (0.07) 0.283 − 0.11 (0.07) 0.008 − 0.20 (0.08) 0.009 − 0.14 (0.13) 0.267

Growth factors FGF 0.08 (0.07) 0.231 0.14 (0.06) 0.028 0.15 (0.07) 0.050 0.14 (0.12) 0.234

G-CSF 0.11 (0.08) 0.187 0.17 (0.07) 0.016 0.15 (0.09) 0.082 0.09 (0.09) 0.505

TLR3 responses using log10 of ratio cytokines concentrations

Th2 IL-5 − 0.06 (0.06) 0.392 − 0. 12(0.06) 0.046 − 0.15 (0.07) 0.033 − 0.02 (0.11) 0.841

Chemokines IP-10 0.13 (0.11) 0.222 0.22 (0.10) 0.026 0.32 (0.12) 0.008 0.10 (0.19) 0.584

Unstimulated samples using log10 of crude cytokines concentrations

Pro IFN-α − 0.11 (0.07) 0.154 − 0.14 (0.07) 0.038 − 0.15 (0.08) 0.069 − 0.01 (0.13) 0.948

IL-1RA − 0.24 (0.12) 0.055 − 0.23 (0.11) 0.040 − 0.23 (0.14) 0.086 − 0.37 (0.21) 0.084

IL-1β − 0.35 (0.24) 0.152 − 0.58 (0.22) 0.008 − 0.50 (0.26) 0.057 − 0.62 (0.42) 0.142

TNF − 0.40 (0.26) 0.117 − 0. 61(0.23) 0.009 − 0.49 (0.28) 0.079 − 0.47 (0.45) 0.296

Anti IL-10 − 0.22 (0.32) 0.485 − 0.60 (0.29) 0.041 − 0.45 (0.35) 0.204 − 0.92 (0.56) 0.105

IL-7 − 0.34 (0.10) < 0.001 − 0.40 (0.09) < 0.001 − 0.35 (0.11) < 0.001 − 0.40 (0.17) 0.021

Th1 IL-15 − 0.39 (0.16) 0.015 − 0.52 (0.14) < 0.001 − 0.52 (0.17) 0.003 − 0.36 (0.28) 0.190

IL-2 − 0.15 (0.08) 0.064 − 0.16 (0.07) 0.032 − 0.18 (0.09) 0.053 − 0.12 (0.14) 0.382

IFN-γ − 0.14 (0.08) 0.094 − 0.17 (0.07) 0.023 − 0.21 (0.09) 0.024 − 0.10 (0.14) 0.494

Th2 IL-13 − 0.25 (0.12) 0.038 − 0.22 (0.11) 0.042 − 0.32 (0.13) 0.014 − 0.12 (0.21) 0.056

IL-4 − 0.27 (0.14) 0.057 − 0.40 (0.13) 0.002 − 0.26 (0.15) 0.096 − 0.07 (0.25) 0.769

Th17 IL-17 − 0.13 (0.07) 0.046 − 0.15 (0.06) 0.016 − 0.17 (0.07) 0.017 − 0.18 (0.12) 0.128

Chemokines MIP-1α − 0.29 (0.28) 0.297 − 0.56 (0.25) 0.029 − 0.50 (0.31) 0.102 − 0.37 (0.49) 0.453

RANTES − 0.23 (0.12) 0.050 − 0.25 (0.11) 0.023 − 0.28 (0.13) 0.029 − 0.19 (0.21) 0.371

Growth factors EGF − 0.11 (0.07) 0.106 − 0.12 (0.06) 0.047 − 0.15 (0.07) 0.049 − 0.09 (0.12) 0.446

FGF − 0.12 (0.08) 0.151 − 0.15 (0.08) 0.049 − 0. 17(0.09) 0.070 − 0.17 (0.15) 0.244
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placenta is associated with the maturation of cord blood
myeloid and plasmocytoid DCs (innate immune cells
triggered by TLR7/8 agonists [11, 30]), which may ex-
plain why cytokine responses to TLR7/8 stimulation
were significantly enhanced in past PM (as well as in
chronic PM, although with modest significance possibly
due to the smaller sample size) compared to the other
PME categories. A number of studies have also explored
the effect of in utero malaria exposure on cord blood
immune cell populations including dendritic cells (DCs),
γδ T cells, CD4+ T regulatory, and effector cells [10–15].
Interestingly, all revealed a varying effect of PME cat-
egories on cord blood mononuclear cells, thus ultimately
demonstrating inter-individual variation in immune re-
sponses following different types of PME. Consequently,
the differential admixture of cell types across PME

categories may be explanatory of the observed differences
in cytokine production in the present study. In addition,
there is increasing evidence that the innate system has im-
munological memory [50–54] and that innate stimulations
can lead to sensitization to following pathogen exposure, a
process termed trained innate immunity [53]. Therefore,
in utero exposure could affect TLR responses of cord
blood cells through the development of trained immunity.
While TLR7/8 stimulation induced robust cytokine re-

sponses, overall cytokine responses induced by TLR3
and TLR9 stimulations were low with limited variations
between PME categories, consistent with previous inves-
tigations in African children [30, 55, 56] and non-Afri-
can children [57, 58]. Although TLR3 and TLR9 are
endosomal PRRs like TLR7/8, they differ in their
responses depending on the cell populations, which may

Table 2 Multivariable linear regression analyses assessing the effect of prenatal malaria exposure (PME) categories on TLR-mediated
cytokine responses at birth (Continued)

Cytokines* Exposed/no PM vs non-exposed Past PM vs non-exposed Chronic PM vs non-exposed Acute PM vs non-exposed

Coeff (SE) P Coeff (SE) P Coeff (SE) P Coeff (SE) P

G-CSF − 0.21 (0.17) 0.229 − 0.37 (0.15) 0.019 − 0.37 (0.15) 0.045 − 0.33 (0.30) 0.276

GM-CSF − 0.36 (0.19) 0.058 − 0.59 (0.17) < 0.001 − 0.60 (0.21) 0.004 − 0.59 (0.33) 0.079

HGF − 0.19 (0.07) 0.008 − 0.20 (0.06) 0.002 − 0.19 (0.08) 0.015 − 0.15 (0.12) 0.221

VEGF − 0.45 (0.22) 0.041 − 0.59 (0.20) 0.003 − 0.43 (0.24) 0.070 − 0.35 (0.38) 0.356

PM placental malaria, Coeff coefficient, SE standard error, Pro proinflammatory cytokines, P p value, Anti anti-inflammatory cytokines, Th1 Th1-type cytokines, Th2
Th2-type cytokines, Th17 Th17, type cytokines. *Only cytokines whose concentrations are significantly modified by categories of PME are presented. Non-exposed
category was used as reference in each model. Significant results are shown in italic

Fig. 3 Risk of clinical malaria during the first year of life, by prenatal malaria exposure (placental malaria versus no placental malaria). Kaplan-Meier
survival curves (including 95% confidence intervals) stratified by infants born to mothers with (blue line) or without (red line) PM. a Clinical malaria
episodes during the first 6 months of life. b Clinical malaria episodes from 6 to 12 months of life. P values were determined by log-rank test
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explain differences in their inducible capacity of
cytokine responses. Importantly, spontaneous cytokine
production by cord blood cells in unstimulated samples
also displayed significant variations between PME
groups, with a trend towards decreased baseline levels
in infants born to mothers with peripheral infection to
those born to mothers with PM (past, chronic, and

acute PM, respectively). Altogether, our findings are
consistent with the hypothesis that PME results in a
downregulation of cytokines production that can affect
all the important functional classes of cytokines, but
followed by a hyper-responsiveness to particular PRR
agonists, such as TLR7/8 agonist, as compared to that
in non-exposed infants.

Fig. 4 Risk of clinical malaria during the first year of life, by birth weight. Kaplan-Meier survival curves (including 95% confidence intervals)
stratified by infants born with a birth weight ≥ 2500 g (red line) and with a birth weight below 2500 g (low birth weight, blue line). P value was
determined by log-rank test

Fig. 5 Risk of clinical malaria during the first year of life, by birth season. Kaplan-Meier survival curves (including 95% confidence intervals)
stratified by infants born during malaria high-transmission season (July–December, red line) and low-transmission season (January–June, blue
line). P value was determined by log-rank test
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Innate immune activation plays a crucial role in host
protection as well as pathogenesis during malaria infection
[59, 60]. Therefore, the second important aim of our study
was to determine the predictive value of cytokines that
were significantly influenced by PME for clinical malaria
occurrence during the first year of life. Of note, we have
shown that PME has a clinical impact on the risk of mal-
aria among the study population. Indeed, we observed that
infants born to mothers with PM had a lower risk of clin-
ical malaria during the first 6 months of life, in contrast to

that reported in several epidemiological studies [2, 4, 5, 7].
This paradoxal finding may be at least partially explained
by the protective effect of maternal antibodies and the
strong malaria seasonality of the study area [39], which
may make PME dynamics different from other sites. How-
ever, we cannot exclude a confounding or explanatory
effect of other factors not assessed in this study.
Notably, we observed that some cytokines, which were

associated with PME, were independent predictors of mal-
aria risk or protection, demonstrating the clinical relevance

Table 3 Cox proportional hazards analyses assessing the association between TLR-induced cytokine responses and the risk of
malaria during the first year of life. Adjusted hazard ratio and 95% CI for each model is shown

Cytokines** Unstimulated TLR3 responses TLR7/8 responses TLR9 responses

Crude Crude Ratios Crude Ratios Crude Ratios

AHR (95% CI) AHR (95% CI) AHR (95% CI) AHR (95% CI) AHR (95% CI) AHR (95% CI) AHR (95% CI)

Pro IFN-α 0.24 (0.05–1.10)

IL-1RA* 0.61 (0.36–1.03) 0.70 (0.50–0.98)

IL-1β 1.16 (0.98–1.37) 1.15 (0.97–1.36) 1.18 (1.01–1.39)

TNF

Anti IL-10 1.12 (0.99–1.25)

IL-7 1.80 (1.26–2.58) 1.54 (1.11–2.15)

Th1 IL-15 1.22 (0.96–1.54)

IL-12* 1.28 (0.97–1.69) 1.26 (0.95–1.68) 0.27 (0.07–1.15) 0.76 (0.59–0.98) 0.46 (0.20–1.04)

IL-2

IL-2R

IFN-γ

Th2 IL-13

IL-5

IL-4

Th17 IL-17

IL-6

Chemokines IL-8

IP-10* 0.64 (0.38–1.08) 0.66 (0.46–0.93) 0.75 (0.59–0.96)

MCP-1

MIG 0.77 (0.56–1.05)

MIP-1α 1.13 (0.97–1.31)

MIP-1β

RANTES

EOTAXIN 1.83 (1.11–3.01) 1.60 (0.99–2.58) 0.19 (0.03–1.14) 1.72 (1.01–2.94) 0.46 (0.24–0.86)

Growth factors EGF 0.29 (0.08–1.07)

FGF 1.63 (0.91–2.93)

G-CSF 1.24 (0.97–1.57)

GM-CSF* 1.28 (1.01–1.15)

HGF

VEGF

HR hazard ratio, CI confidence interval, Pro proinflammatory cytokines, Anti anti-inflammatory cytokines, Th1 Th1-type cytokines, Th2 Th2-type cytokines, Th17
Th17-type cytokines. **Only results of cox proportional analysis for cytokines with P value (P) ≤ 0.100 are presented. *Cytokines whose levels were significantly
modified by prenatal malaria exposure categories. Significant results are shwon in italic
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of the modulation of infants’ innate immune responses by
PME. However, few studies have investigated the predictive
value of cytokines, measured at birth either in unstimulated
samples [49, 61] or upon stimulation with TLR [30], on the
risk of clinical malaria during infancy. Those studies
showed a protective prediction of high proinflammatory
cytokine levels in unstimulated samples (TNF, TNF-RI,
IL-1β), while high levels of anti-inflammatory cytokines
such as IL-10 (upon TLR3 and TLR7/8 stimulations) pre-
dicted an increased risk of clinical malaria in early child-
hood [30, 49, 61]. Here, we found that Th1 cytokines and
chemokines (IL-12 TLR7/8 ratio and IP-10 TLR3 crude)
and cytokines induced upon inflammation (IL-1RA TLR7/8
ratio) were associated with a decreased risk of clinical mal-
aria during the first year of life. These results are in agree-
ment with a key role of IL-12 in the induction of a
Th1-type protective immunity against malaria mediated by
IFN-γ, TNF, and nitric oxide productions [62–66] and the
inhibiting effect on disease severity of IL-1RA on IL-1A
and IL-1β (through binding to IL-1 receptors) [67]. For
IP-10, a cytokine belonging to the CXC chemokine family
that induces chemotaxis, apoptosis, cell growth, and angios-
tasis, the association with malaria protection observed in
this study is in agreement with studies in the murine model
[68], although in contrast with others that have shown an
association with clinical malaria and disease severity [69–
72]. Among biomarkers that were significantly associated
with PME, GM-CSF TLR7/8 crude was associated with a
risk of developing clinical malaria during the first year of
life, which is in contrast with previous observations [73–
75], but in agreement with others [76]. These conflicting
findings could be related to the fact that cytokines promot-
ing a protective inflammatory environment during malaria
infection could become harmful if exaggerated and act in
favor of disease manifestation [77–79]. Overall, these results
suggest that PME has an impact on malaria risk and that
the effect is at least partially mediated by the modulation of
TLR and the consequent cytokine responses. Given that
past PM, which potentially occurs early during pregnancy,
has a profound effect on fetal immune system, a strategy
based on screening and treatment of malaria during preg-
nancy that we proved to benefit infants [40] should be im-
plemented as early as possible during the first trimester.
In this study, two main limitations should be noted.

First, some of the PME groups including acute PM and
non-exposed groups were small in comparison with
others. Therefore, we cannot exclude an underestima-
tion of the effect of acute PM on innate immune
responses measured. However, this number reflects the
prevalence of PM categories in the main COSMIC trial
as most of malaria infections in the placenta were past
or chronic PM (95.5%). The relatively limited number of
non-exposed controls is due to the high malaria trans-
mission in the study area and the strict definition and

recruitment that we applied to this group, where pregnant
women had negative RDT/LM and qPCR results at each
screening and ANC visit, in addition to negative placental
histology. Second, in this study, the measurement of white
blood cells population and lymphocyte subsets in cord
blood at delivery was not performed while there is evi-
dence that PME can alter myeloid subsets abundance and
thus influence TLR-mediated innate immune responses.
Therefore, the lack of these information has eventually
limited the interpretation of our data.

Conclusions
In conclusion, despite these limitations, our findings indi-
cate that the various PME categories have different effects
on innate immune responses of the newborn at birth,
which might drive variation between individuals to malaria
susceptibility during the first year of life. The differential
alteration of TLR-mediated immune responses by PME
categories may have profound implications on immune
responses to other infections as well as to vaccines formu-
lated with TLR-based adjuvants in infants prenatally
exposed to malaria.
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